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Altered tropical seascapes 
influence patterns of fish 
assemblage and ecological 
functions in the Western Indian 
ocean
D. H. Chacin1,2*, C. D. Stallings1, M. Eggertsen3, C. Åkerlund3, C. Halling3 & C. Berkström3,4

The arrangement and composition of habitats within landscapes and fine-scale habitat characteristics 
influence community structure and ecological processes. These aspects can be altered by 
anthropogenic activities, thus influencing associated assemblages. Farming of macroalgae is a 
common practice in tropical settings and alters the natural composition of seascapes by introducing 
monoculture patches. The farmed macroalgae may also differ in palatability compared to naturally-
occurring macroalgae, influencing herbivory. This study assessed how these farms may differ from 
natural macroalgal beds in terms of habitat heterogeneity, fish assemblages, and herbivory. We 
surveyed fish assemblages and deployed macroalgal assays within macroalgal beds, farms and at 
varying distances from these habitats near Mafia Island, Tanzania. Fish composition and herbivory 
differed between the habitats likely due to different macrophyte species richness, underlying hard 
substrate in natural macroalgal beds, and high abundance of browsers nearby the farms. Additionally, 
fish assemblage patterns and herbivory were not consistent across the seascapes and varied with 
distance from the focal habitats possibly due to the presence of other habitats. The results suggest 
alterations of seascapes by farming practices may have consequences on fish assemblages and 
the ecological functions performed, thus positioning of farms should be carefully considered in 
management and conservation plans.

The spatial arrangement and composition of habitats within landscapes along with fine-scale habitat character-
istics influence patterns of community structure and ecological  processes1–5. For example, the abundance and 
diversity of native pollinators (and the process of pollination) in agricultural settings is strongly influenced by 
spatial characteristics of the landscape, such as the relative proportion of natural habitats neighboring farmed 
 patches6. Similarly, in forest settings, organismal fire refuge depends on the composition, fine-scale structure, 
and spatial arrangement of the vegetation within the  landscape7. Anthropogenic activities such as land use can 
influence fine-scale habitat characteristics and the composition of habitats in the landscape, thus affecting associ-
ated communities across the  globe8–10. Landscape alterations can influence habitat heterogeneity, and ultimately 
food resource quality and availability, resulting in modification of trophic structure, biodiversity, and ecosystem 
 function11–13. For instance, agricultural intensification of landscapes has been shown to lower heterogeneity 
resulting in reduced refuge, feeding areas, and dispersal corridors for birds consequently influencing their diver-
sity, density, and breeding  success14–16. Land-use patterns can therefore affect the persistence of regional metap-
opulations and the structure of biological  communities17,18. This may also be the case in marine systems where 
alterations of seascape composition and heterogeneity within habitats will likely affect ecosystem functioning.
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Farming and harvesting of macroalgae is a common practice in many tropical marine settings 19,20. Macroalgal 
farming has been increasingly advocated as a sustainable alternative form of aquaculture due to lack of fertilizers 
or medicines applied (e.g., compared to shrimp farms) for many local communities in developing countries and 
is expanding rapidly  worldwide21–25. Despite the practice being promoted as a means to improve coral-reef health 
through poverty reduction and reduced fisheries  exploitation22, the ecological effects and benefits of macroalgal 
farming remain unclear, partly because studies have shown contrasting  results26.

In tropical seascapes, the introduction of macroalgal farms can alter the natural structure and composition 
of habitats in several ways. Typically, farms consist of numerous ropes arranged in a dense and parallel fashion 
suspended above the seafloor over large, shallow subtidal  areas26. Macroalgae thalli are tied to the ropes, introduc-
ing habitat patches of monocultures over substrate naturally covered by sand, seagrasses (Cymodocea or Thalassia 
spp.), native macroalgae, or small coral  patches27,28. The macroalgae taxa used in the farming practices may not 
be native to the farming location, resulting in the introduction of a potentially invasive species, which may spread 
from the farms into neighboring components of the  seascape29,30. The farmed macroalgae may also grow faster 
or differ in palatability to local marine herbivores compared to native macroalgae, resulting in changes in rates 
of  herbivory31. The extensive and readily available aggregations of farmed fleshy macroalgae may also attract her-
bivores within the seascape. All these factors have the potential to influence fish assemblages and the ecological 
functions the fishes perform, which may depend on the fine-scale heterogeneity within habitats as well as on the 
arrangement and composition of tropical habitat patches. Therefore, the alteration of tropical seascapes through 
the introduction of macroalgal farms has the potential to affect the entire ecosystem structure and function.

In contrast to macroalgal farms, beds of native canopy-forming macroalgae occur naturally interspersed 
within or adjacent to other habitats (e.g., seagrass beds, coral reefs) comprising a mosaic of interlinked patches. 
Despite the fact that canopy-forming macroalgae in temperate systems has long been recognized as important 
habitats for  fishes32–35, tropical natural macroalgal beds have only recently been recognized as important fish 
habitat offering structural complexity (both through the macroalgae itself and the underlying hard substrate 
upon which macroalgae grow) and a variety of food  resources36–40. Natural macroalgal beds in tropical systems 
can cover extensive  areas41,42 and enhance productivity by providing habitat and food resources to numerous 
organisms including fishes and  invertebrates37,38,43–47. While our knowledge on the ecological role of natural 
macroalgal beds in tropical seascapes is advancing, information on the process of herbivory (e.g., rates of mac-
roalgae consumption, identification of consumers) within these habitats or on patterns of herbivory and fish 
assemblages in the surrounding seascape is scarce (but  see47). Even less is known about how the alteration of 
seascapes, through the introduction of macroalgal farms, may affect ecological processes that influence ecosystem 
function and how it compares to seascapes with natural macroalgal beds.

Indeed, macroalgae farming has been demonstrated to influence organismal communities of  bacteria48, 
 meiofauna49, benthic  macrofauna50,  fish51, and  corals52. Macroalgal farms have also influenced fishery catch com-
position and ecosystem structure and function within seagrass  beds53,54. However, there are no previous studies 
in the tropics that compare macroalgal farms to natural macroalgal beds and the surrounding seascape in terms 
of fish community structure and ecological processes. The goal of this study was to fill this knowledge gap and 
understand how macroalgal farms differ from naturally-occurring macroalgal beds in terms of fish community 
assembly and ecological processes such as herbivory. We hypothesized that habitat heterogeneity would be higher 
in natural macroalgal beds compared to macroalgal farms (due to methods of algae cultivation and underlying 
substrate) and subsequently fish abundance and richness would be higher in macroalgal beds. We hypothesize 
that macroalgal farms may attract browsers due to the high concentration of readily available farmed macroalgae 
in contrast to natural macroalgal beds where macroalgae may be more spread out. Thus, browser abundance as 
well as the associated macroalgae loss (through herbivory) would be higher in the interior and edge of macroalgal 
farms compared to natural macroalgal beds and the surrounding seascape. Therefore, we expected macroalgae 
loss to be context dependent and affected by habitat arrangement and fish assemblages in the seascape.

Materials and methods
Study location. This study was conducted during September–November 2016 in the southern region of 
Mafia Island off the east coast of Tanzania (Fig. 1). Mafia Island is located 60 km south of Dar es Salaam and 
21 km east of the Rufiji  delta55. The backreef areas around Chole Bay, where the study was conducted, have a 
maximum depth of 15 m, except in the deep channels that connect the Bay with the open  ocean56. Mafia Island 
is influenced by the East African Coastal Current (EACC) and has semidiurnal tides with 3.3  m in average 
 amplitude55.

In the tropical Western Indian Ocean, macroalgal farming began on the Zanzibar archipelago, Tanzania in 
the late 1980s, with the introduction of Philippine strains of Eucheuma denticulatum and Kappaphycus alvarezii 
and is currently practiced along the coast, with Zanzibar being the largest  producer57. These two red macroal-
gae are farmed in shallow coastal areas for their polysaccharide carrageenan content, which is widely used by 
the pharmaceutical, food, cosmetics, and textile industries for gelling constituents, medicines, and toothpaste 
among other  products58. In addition to tourism, macroalgal farming has become one of the most important 
industries bringing foreign revenue into the local economy through exports and raising living standards of rural 
 communities22,23,59. For this study, we selected E. denticulatum as our farmed study species over K. alvarezii since 
its farming is more prevalent in the study  area30,47.

The focal habitats compared in this study included natural macroalgal beds (Fig. 2a), and macroalgal farms 
(Fig. 2b). The natural macroalgal beds were dominated by Sargassum aquifolium and Turbinaria conoides with 
the occasional presence of other species including Padina spp., Portieria harveyi, Ulva spp., and E. denticulatum. 
The natural macroalgal beds were also heterogeneous with irregular patches of sand, coral, sponges, and rub-
ble mixed in with the macroalgae. Macroalgal farms of E. denticulatum were placed in shallow, accessible, and 
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well-flushed coastal areas. The farms require no addition of fertilizers or pesticides, only sufficient water motion 
and natural  light60,61). The macroalgae is farmed by using the “peg-and-line” or “off-bottom” method, in which 
macroalgal fronds are tied using ribbons, known as “tie-ties,” to ropes that are extended and tied to wooden 
pegs on the marine  sediment61. The size and spacing of macroalgal fronds was variable, with the size of fronds 
ranging from ~ 10–30 cm in diameter and tending to be evenly spaced with ~ 40–60 cm of rope in between. 
Other macrophytes such as seagrasses (Cymodocea and Thalassia spp.) were occasionally found on the substrate 
beneath the macroalgae fronds, otherwise sand was the most common substrate. Both the natural macroalgal 
bed and macroalgal farm sites selected were similar in area (~ 600  m2) and seawater temperature (26–28 °C).

The study sites were located within and in the vicinity of Chole Bay, which is an area comprising shallow 
mosaics of macroalgal beds, seagrass meadows, mangrove shorelines, and coral  reefs62,63. Three natural macroal-
gal beds and three macroalgal farms with their surrounding seascape (up to 100 m distance from focal habitat 
patches) were selected for this study (Fig. 1). We surveyed fish assemblages and conducted field experiments 
within the focal macroalgal habitats and at varying distances from the habitats in the seascapes to characterize 
fish assemblages and gain insight into herbivory of the different macroalgae.

Fish assemblage surveys. To determine whether fish assemblages differed among natural macroalgal 
beds, macroalgal farms, and the neighboring seascapes, fish surveys (25 m × 2 m strip transects) were conducted 
in focal macroalgal habitats and at different distances (edge/boundary of focal patches, 10 m, 50 m, and 100 m) 
from the habitats. This method was selected following the approach used by Tano et al.38 and the occasional low 
visibility within the bay. Fishes were identified to the lowest taxonomic level possible (usually species) and their 
total lengths were estimated to the closest centimeter. Five minutes after the transect strip was laid down, a snor-
keler swam along the transect line ~ 0.1 m s − 1 documenting all mobile fish species and then returned to docu-
ment small, cryptic species. Sea urchins encountered in our surveys were also included since they are known 
for their importance as herbivores in benthic marine  habitats64–66. Surveys were conducted between 0900 and 
1630 h during similar tidal height to reduce variability in fish density associated with crepuscular periods. At the 
end of every survey, benthic substrate composition was categorized (e.g., sand, macroalgae, seagrass, sponges) 
and quantified within 0.25  m2 quadrats every 5 m on the transect line.

We compared fish assemblage structure from field surveys among focal habitats within the seascape. Permu-
tation-based, non-parametric analysis of variance (np-ANOVA) was used to compare fish densities and species 
richness between the two focal macroalgal habitats and among the different locations in the seascape. Fish assem-
blages were compared between natural macroalgal beds and macroalgal farms by conducting a permutation-
based, non-parametric multivariate analysis of  variance67,68 (np-MANOVA) on square-root transformed data. 
This test is a multivariate equivalent of Fisher’s F-statistic and it was employed to test the null hypothesis of no 

Figure. 1.  Study sites in Mafia Island, Tanzania. Black circles indicate locations of macroalgal farms and white 
triangles indicate locations of natural macroalgal beds. Map was generated using ArcMap 10.4.1 (https ://deskt 
op.arcgi s.com/en/quick -start -guide s/10.4/arcgi s-deskt op-quick -start -guide .htm).

https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm
https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm
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difference among  groups67. To identify which species were significantly indicative of each group (i.e., macroalgal 
bed vs. macroalgal farm) the indicator value  method69 (IndVal) was used. The test was followed by a canonical 
analysis of principal  coordinates70,71 (CAP) to create a bi-plot and a correlation vector plot to visualize the main 
species driving the observed differences. A second CAP bi-plot was produced to visualize herbivore assemblages 
in natural macroalgal beds and macroalgal farms. Homogeneity of dispersion was verified with the function np-
disp, which is equivalent to Levene’s  test72,73, and when needed data were square-root transformed. All statistical 
analyses were conducted using MATLAB and the Fathom  toolbox74.

Macroalgal assays field experiments. To test potential differences in herbivory among natural macroal-
gal beds, macroalgal farms, and the surrounding seascapes, a fully-orthogonal field experiment was conducted. 
Macroalgal species were collected from the field by hand, placed in buckets filled with seawater, and brought 
back to the laboratory. At the laboratory the macroalgae samples were rinsed multiple times and shaken to 
remove all large epiphytes. The macroalgae were divided into smaller single-thallus pieces and were spun in 
a salad spinner for ten seconds to remove any excess water. Single-thallus pieces of Sargassum aquifolium and 
farmed Eucheuma denticulatum were tethered within each focal habitat (i.e., macroalgal beds of Sargassum spp., 
macroalgal farms of E. denticulatum) for 24 h and at different distances (edge of focal patches, 10 m, 50 m, and 
100 m) from each focal habitat to quantify percent of macroalgae loss throughout the surrounding seascape. 

Figure 2.  Image of a natural macroalgal bed (a) and a macroalgal farm (b).
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We hypothesized that the percent loss of the native macroalgae S. aquifolium would be higher compared to the 
farmed E. denticulatum due to its higher nutritional  content75, however this pattern would be context-dependent 
upon location of deployment.

The macroalgal assays were created from a 40 cm long, 3 cm wide PVC pipe where two thalli of each mac-
roalgal species were fixed in place with a transparent plastic line and separated by approximately 8 cm (Fig. 3). 
For a subset of the macroalgal assays, a video camera (GoPro Hero Session, Black) was placed facing directly 
toward the assay, and allowed to record for 20 min. At five and ten minutes into the recordings, any fishes that 
came into the field of view of the camera were noted and identified to the lowest taxonomic level possible. We 
omitted the first and last five minutes in order to avoid any potential effects related to snorkelers traveling to 
the camera location thus affecting fish behavior during the set-up and retrieval of the cameras. The remaining 
time from the videos were further subsampled due to time constraints. The macroalgae were weighted before 
and after the deployment and percent of macroalgae loss per unit time calculated. The rate of macroalgae loss 
was then compared between focal macroalgal habitats using permutation-based, non-parametric analysis of 
variances (np-ANOVAs). To control for the effects of handling or algal growth, a caged control with two thalli 
pieces of each species was deployed during each sampling event. Macroalgal biomass losses that occurred in 
the control cages (due to natural reasons) were used in the calculations to adjust experimental (non-control) 
macroalgae biomass accordingly.

Results
Habitat heterogeneity was markedly different between natural macroalgal beds and farms while no differences 
in macrophyte characteristics (i.e. cover, height) were detected between the focal habitats. More specifically, 
the mean percent cover (± standard error of the mean) of hard substrate (e.g., rubble, rocks, reef) was over four 
times higher in natural macroalgal beds (39.63 ± 4.89) compared to macroalgal farms (9.42 ± 5.84; F(1, 30) = 13.34, 
p = 0.002). The mean macrophyte cover (including seagrass and farmed/non-farmed macroalgae; F(1, 30) = 3.18, 
p = 0.08) and height (F(1, 30) = 3.18, p = 0. 38) were similar between the natural macroalgal beds and macroalgal 
farms. Although not significant at the alpha 0.05 level, there was a marginal support for higher species rich-
ness of macrophytes in natural macroalgal beds (6.4 ± 0.5 species) than in macroalgal farms (4.8 ± 0.4 species; 
F(1, 30) = 4.17, p = 0.057).

In total, 4,464 fish were quantified from 97 visual surveys (see Supplementary Table S1 online). Fish abun-
dance (mean number of fish per transect ± standard error of the mean) was similar between the interior of 
focal habitats, with 51.0 ± 6.9 fish observed in natural macroalgal beds and 39.0 ± 12.2 fish in macroalgal farms 
(F(1, 30) = 2.15, p = 0.09). Fish abundance did not differ between the interior and edge of natural macroalgal beds 
(t = 0.50, p = 0.722) but decreased significantly with distance away from the natural macroalgal beds (F(4, 43) = 4.42, 
p =  < 0.01; Fig. 4a). In contrast, fish abundance tended to increase with distance away from farms in the seascape 
(Fig. 4a). However, this pattern was not statistically significant (F(4, 42) = 1.78, p = 0.06).

Fish species richness (± standard error of the mean) was higher in natural macroalgal beds (16.5 ± 1.8 fish 
species) than in macroalgal farms (6.7 ± 1.3 fish species; F(1, 30) = 10.7, p =  < 0.01). Species richness decreased 
drastically within 10 m from the edge of natural macroalgal beds and stayed rather constant at greater distances 
away from the edge of natural macroalgal beds (F(4,43) = 5.52, p =  < 0.01; Fig. 4b). Species richness in macroalgal 
farms, on the other hand, was constant throughout the seascape (F(4, 42) = 1.78, p = 0.07; Fig. 4b).

On average, a greater percentage of turf, sponges, and macroalgae were observed in the interior and edge of 
natural macroalgal beds while the percentage of seagrass (dominated by Thalassodendron ciliatum) increased 
with distance away from the focal habitat (Fig. 4c). In seascapes with macroalgal farms, macroalgae and seagrass 
beds were the most common benthic substrate while turf and sponges constituted comparatively lower percent-
ages (Fig. 4d). The seagrasses Cymodocea spp. and Thalassia hemprichii were the dominant species in the interior 
and edge of macroalgal farms, while the seagrass Enhalus acoroides dominated the seagrass composition in the 
surrounding seascape.

Fish assemblage composition differed significantly between natural macroalgal beds and farms (F(1, 30) = 5.33 
, p = 0.001). The ten species with highest indicator power values were identified and visualized with a CAP plot 
(Table 1). The CAP demonstrated through the correlation vectors with the longest components on canonical axis 
I, that wrasses such as Thalassoma hebraicum, Labroides dimidiatus, the goatfish Parupeneus macronemus, and 
damselfishes Plectroglyphidodon lacrymatus, Dascyllus aruanus, and Chrysiptera unimaculata were the taxa most 
indicative of the macroalgal beds driving the assemblage patterns. Parrotfishes such as Leptoscarus vaigensis and 

Figure 3.  Tethering unit with macroalgae Eucheuma denticulatum and Sargassum aquifolium. The tethering 
units were deployed within focal macroalgal patches (macroalgal farms and natural macroalgal beds), at the 
edges and at 10 m, 50 m, and 100 m from the habitats.
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juvenile Scarus spp., the wrasse Cheilio inermis, and the emperor Lethrinus harak were the taxa most indicative of 
macroalgal farms (Fig. 5). A second CAP plot with focus on the herbivore assemblage, showed similar results in 
that the browsers L. vaigiensis, Siganus sutor and juvenile Scarus species were common in the macroalgal farms, 

Figure 4.  Average (± standard error) fish density (a) and species richness (b) in natural macroalgal beds, 
macroalgal farms, and neighboring locations in the seascape. Benthic composition in natural macroalgal beds 
(c) and macroalgal farms (d) and neighboring locations within each habitat’s seascape. The term interior refers 
to the interior of the focal habitat, edge refers to the boundary of the focal habitat, 10 m refers to 10 m from the 
edge of the focal habitat, 50 m refers to 50 m from the edge of the focal habitat, and 100 m refers to 100 m from 
the edge of the focal habitat.

Table 1.  Results of IndVal analysis comparing natural macroalgal beds versus macroalgal farms. The 10 
species with highest indicator power values (ranges from 0–100%) were selected and used for visualization in 
the CAP plot.

Group Family Taxa I p-value

Macroalgal bed

Labridae (wrasses parrotfishes) Thalassoma hebraicum 76.19 0.001

Labridae (wrasses parrotfishes) Labroides dimidiatus 57.14 0.007

Pomacentridae (damselfishes) Plectroglyphidodon lacrymatus 52.38 0.013

Pomacentridae (damselfishes) Chrysiptera unimaculata 46.44 0.057

Pomacentridae (damselfishes) Dascyllus aruanus 42.86 0.022

Mullidae (goatfishes) Parupeneus macronemus 38.85 0.034

Macroalgal farm

Labridae (wrasses and parrotfishes) Leptoscarus vaigiensis 70.10 0.002

Labridae (wrasses and parrotfishes) Juvenile Scarus spp. 49.67 0.066

Labridae (wrasses parrotfishes) Cheilio inermis 43.74 0.015

Lethrinidae (emperors) Lethrinus harak 27.27 0.025
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while grazers, scrapers, and territorial grazers such as Chrysiptera unimaculata, Scarus ghobban and Stegastes 
nigricans respectively, drove assemblage patterns in natural macroalgal beds (see Supplementary Fig. S1 online).

In general, macroalgal loss during the macroalgae assay field experiments was higher and more variable in 
macroalgal farm seascapes compared to macroalgal bed seascapes (F(1, 386) = 14.60 , p = 0.001; Fig. 6). Furthermore, 
percent loss of S. aquifolium did not differ from E. denticulatum in the seascapes for either natural macroalgal 
beds (F(1, 212) = 1.79 , p = 0.21; Fig. 6) or farms (F(1, 172) = 0.002 , p = 0.953). There was no difference in mean loss of 
S. aquifolium among the different distances away from natural macroalgal beds (F(4,102) = 0.84, p = 0.53; Fig. 7a) 
or among distances away from the macroalgal farms (F(4,82) = 0.42, p = 0.82; Fig. 7a). The percent loss of E. den-
ticulatum did not differ among the different distances in the natural macroalgal beds (F(4,102) = 1.75, p = 0.131; 
Fig. 7b). In addition to higher percentage of E. denticulatum loss in the macroalgal farms compared to natural 
macroalgal beds, the percentage of macroalgae loss was both higher and more variable at 10 and 50 m from the 
farms compared to the other locations within the seascape (F(4,82) = 3.01, p = 0.02; Fig. 7b).

In terms of trophic composition, the surveys demonstrated that territorial grazers, other grazers, and scrap-
ers were common in the interior and edge of natural macroalgal beds, and the percentage of territorial grazers 
decreased in the surrounding seascape (Fig. S2a). In the interior and edge of macroalgal farms, a greater per-
centage of browsers was present compared to the surrounding seascape wherein the percentages of browsers 
decreased with increasing distance from farms (Fig. S2b). Instead, the percentage of scrapers and excavators 
increased in the surrounding seascape compared to the interior and edge of the macroalgal farms (Fig. S2b). 
Furthermore, the abundance of browsers was also higher in the interior and edge of macroalgal farms, and both 
lower and more consistent in natural macroalgal beds and neighboring seascape (Fig. 7c). Sea urchins were 
nearly absent from natural macroalgal bed seascapes and not abundant in the interior and edge of the farms 
(Fig. 7d). Sea urchin abundance was higher and more variable in the neighboring seascape of the macroalgal 
farms (Fig. 7d). Invertivores in contrast, were more common in natural macroalgal beds and the surrounding 
seascape compared to the macroalgal farms and the surrounding seascape (see Supplementary Fig. S2 online).

Discussion
As hypothesized, patterns of fish assemblage, habitat heterogeneity, and percent of macroalgae loss differed 
between natural macroalgal beds and macroalgal farms in tropical Western Indian Ocean seascapes. Addition-
ally, fish assemblages and rates of herbivory were not consistent across the seascapes and varied with distance 
from the focal habitat patches likely due to the presence of other benthic habitats in the seascape. However, 

Figure 5.  Canonical Analysis of Principal Coordinates of Mafia Island, Tanzania fish assemblage structure (a). 
Circles represent data points in natural macroalgal beds and crosses represent data points in macroalgal farms. 
The Y-axis data are jittered to ease visual assessment of the assemblage patterns. Fish species vectors pointing 
to the right correspond to those species mainly found in macroalgal farms and those vectors pointing to the left 
correspond to those observed in the macroalgal beds (b).
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Figure 6.  Percent loss of macroalgae in macroalgal bed seascapes and macroalgal farm seascapes ± standard 
error of the mean.

Figure 7.  Percent loss (mean ± standard error) of Sargassum aquifolium (a) and Eucheuma denticulatum (b) 
in natural macroalgal beds, macroalgal farms, and neighboring locations in the seascape. Average density 
(± standard error) of browsers (c) and sea urchins (d) in natural macroalgal beds, macroalgal farms, and 
neighboring locations in the seascape. The term interior refers to the interior of the focal habitat, edge refers to 
the boundary of the focal habitat, 10 m refers to 10 m from the edge of the focal habitat, 50 m refers to 50 m 
from the edge of the focal habitat, and 100 m refers to 100 m from the edge of the focal habitat.
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contrary to predictions, certain macrophyte characteristics (such as cover and height) did not differ and fish 
abundance was not higher in natural macroalgal beds compared to macroalgal farms. The results of the present 
study indicate that macroalgal farms, such as those of monospecific Eucheuma denticulatum, do not host the 
same fish assemblage as natural macroalgal beds and that the underlying substratum in natural macroalgal beds 
could have been an important factor influencing fish assemblages. Similar to Bergman et al.55 and Anyango 
et al.76, macroalgal farms also differed in fish trophic composition from surrounding uncultivated habitats (e.g., 
seagrass beds, macroalgal patches) in the seascape and had a high abundance of browsers. This suggests altera-
tions of tropical seascapes by farming practices may have consequences on fish community composition and 
the ecological functions performed.

Fish abundance was similar among natural macroalgal beds and macroalgal farms and may be explained 
by similar habitat characteristics and food resource availability among habitats. Habitat characteristics such as 
macrophyte cover and height, which provide structural complexity in ecosystems, were similar between natural 
macroalgal beds and macroalgal farms. The dense structure of macrophytes can impede effective foraging by 
predators, consequently reducing predation  rates77 and macroalgal density, height, and percent cover have been 
identified as important drivers of fish abundance and distribution in temperate  reefs34,78. Similarly, canopy height, 
density of holdfasts, and coverage of macroalgal habitat patches are important predictors of fish assemblages (e.g., 
settlement, abundance) in the Western Indian Ocean as well as other tropical locations such as in the Caribbean 
and Indo-Pacific36,39,47,79–81. Additionally, high seagrass blade density (which is usually correlated with macro-
phyte cover) and the presence of macroalgae can reduce mortality rates of  fishes82,83 and many  invertebrates84–87, 
suggesting that the structural complexity provided by the two macroalgal habitats in Mafia Island likely offered 
similar refuge to fishes.

Fish species richness was, however, higher in natural macroalgal beds compared to macroalgal farms and both 
habitats hosted different fish assemblages, which may have been related to the individual or combined effects of 
higher macrophyte species richness and greater percentage cover of underlying hard substrate found in natural 
macroalgal beds. The combination of different macrophyte species and hard substrate in natural macroalgal beds 
likely provided fine-scale habitat heterogeneity, thus increasing structural complexity and potentially greater food 
and habitat resources for  fishes43. Indeed, the interior of natural macroalgal beds had higher cover of sponges, 
corals, and filamentous algal turf (compared to the interior of the macroalgal farms), and these may have offered 
crevices and holes for a variety of species to use as  refuge47. Similarly, van Lier et al.46 observed that hard complex-
ity coupled with soft canopy structure of tropical natural macroalgal beds in Western Australia provided a large 
number of microhabitat types, and thus supported a high number of species likely due to niche  partitioning88,89. 
Similar patterns have been observed in cichlid fish communities in lakes in central Africa and in Iberian bat 
populations where habitat heterogeneity allows partitioning of resources and supports diverse  assemblages90,91. 
This is likely the reason why the territorial pomacentrid P. lacrymatus, which farms and feeds on the epilithic 
algal  matrix92 growing on hard  substrates93, and the invertivores T. hebraicum and P. macronemus, which feed 
on invertebrates found on macroalgae and hard substrates, were found to highly influence assemblage patterns 
in natural macroalgal beds. Moreover, monocultures on land in agricultural fields can have lower within-habitat 
heterogeneity and lower species richness of associated organisms compared to natural, uncultivated vegetative 
 habitats94,95. Similar patterns could have occurred in the macroalgal farms where monocultures offer less struc-
tural complexity and variety of resources thus lowering fish species richness. Overall, fine-scale heterogeneity 
due to both macroalgae and underlying hard substrate likely influenced assemblage patterns, but we were not 
able to disentangle one factor from the other. Future experimental studies that orthogonally manipulate and 
control the presence and amount of macroalgae and hard substrate would improve our understanding of the 
relative importance of each of these factors for fish assemblages.

In contrast, the macroalgal farms had lower percentage of hard substrate and filamentous algal turf, and 
were mainly composed of macroalgae and seagrass. This is likely the reason why macroalgal farms comprised 
a different fish assemblage with higher percentage of herbivorous fishes and a lower percentage of carnivores, 
omnivores, and corallivores compared to natural macroalgal beds. Similar results have been observed in ter-
restrial agronomic practices where for instance, ground beetle assemblages in uncultivated fields differed from 
those in harvested  fields96. In the present study the parrotfish L. vaigiensis, and juvenile Scarus spp. were the 
most abundant herbivores and some of the most indicative taxa in macroalgal farms. The high presence of the 
parrotfish L. vaigiensis in farms may be explained by its feeding ecology. It feeds on both algae and seagrass 
blades and may do so both within the farms and in the nearby surrounding seagrass  patches97. Other studies 
have observed high abundances of siganids (rabbitfishes—common browsers in Indo-Pacific tropical seascapes) 
within macroalgal farms in Zanzibar,  Tanzania51,54,76. Surprisingly, siganids were recorded in low numbers in the 
visual surveys. However, the rabbitfish Siganus sutor was frequently observed swimming in 43% of the deployed 
videos in the macroalgal farms, suggesting this species evades human presence and the reason why we did not 
observe them frequently in our visual surveys. Although siganids are targeted by artisanal fishers in the study 
region, possibly explaining their avoidance behaviors towards human presence, similar observations have been 
made on the Great Barrier Reef where they are not  fished98,99, suggesting general avoidance behavior to divers. 
In Southeast Asia (Indonesia, Malaysia, and the Philippines), siganid catches have increased disproportionally 
with macroalgal  farming26. While it is unclear whether a similar increase in siganid abundance is occurring in the 
tropical Western Indian Ocean, where farming is performed at a substantially smaller-scale, it is not surprising 
to observe the siganids swimming in and out the macroalgal farms. All the siganids observed in the videos were 
juveniles, which could indicate recruitment to these macroalgal habitats similar to patterns observed in other 
tropical macroalgal  locations81. Overall, these patterns suggest that while both macroalgal habitats (natural beds 
and farms) may provide similar structural complexity for fishes (to some extent), the identity of the macroalgae 
and the available amount of hard structural complexity can influence the composition of the assemblage, deter-
mining the ecological functions performed by the fishes.
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Fish abundance and species richness in the surrounding seascape differed between natural macroalgal beds 
and macroalgal farms. In seascapes where natural macroalgal beds were located, fish abundance and species 
richness were similar between the interior and edge of the focal habitat, and generally decreased with distance 
from the habitat. These patterns were likely influenced by the change of benthic composition from structurally 
diverse habitats including turf and sponges to a benthic cover of the monospecific Thalassodendron ciliatum 
seagrass, resulting in reduced habitat heterogeneity as distance increased away from natural macroalgal beds. 
As previously discussed, high fine-scale habitat heterogeneity offers a range of resources, both in terms of refuge 
and feeding grounds, hence attracting a more diverse fish  assemblage100,101. In addition, lower epiphytic cover in 
seagrass beds compared to those of other benthic habitats in tropical settings may also provide less food resources 
and thus lower abundance and richness of associated fish. In contrast, both epiphytic growth on seagrass and 
fish abundance is high in subtropical and temperate seagrass  beds102,103. The abundance and species richness of 
fishes was similar across the seascape where macroalgal farms were located, even as distance increased from the 
focal habitat. Other types of benthic habitats present in the vicinity of the farms likely influenced these patterns. 
Patches of seagrasses mainly dominated by the long-bladed Enhalus acoroides may have provided refuge for many 
fishes similar to the mix of seagrass and algae in the macroalgal farms, thus explaining the consistent pattern of 
fish species richness across the seascape surrounding the  farms104. High fish density and diversity has previously 
been associated with patches of E. acoroides since several taxa are able to rely on E. acoroides as a food  source104,105.

Macroalgae loss due to herbivores was generally higher in seascapes where macroalgal farms were located 
compared to seascapes where natural macroalgal beds were present. These patterns were likely related to the 
greater number of browsers in seascapes with farms. Indeed, abundance of browsers was higher inside the mac-
roalgal farms suggesting the readily available farmed E. denticulatum served as a viable food source. Additionally, 
E. denticulatum was intensively grazed while under cultivation in the present study and has been found in the 
stomachs of browsers (e.g., Siganus spp.) in the tropical Western Indian  Ocean51,76. It was also the most frequently 
found macroalgae in the stomachs of the rabbitfish Siganus sutor, caught in the same macroalgal farms as the 
present  study75. Comparably, in terrestrial farmlands granivorous bird species (i.e., those with a substantial seed 
component in the diet) can feed off cereal grain and the seeds of many plants cultivated in the farmlands and 
thus benefit from these harvestable  habitats106.

Biomass loss of E. denticulatum and S. aquifolium was low in the natural macroalgal beds and did not differ 
significantly in the surrounding seascape. These patterns were likely related to the low percentage of browsers and 
low abundance of grazing urchins in the surrounding seascape. Instead, invertivores and omnivores constituted 
a high percentage of the fishes observed in the surrounding seascapes of natural macroalgal beds. Tanzanian 
natural macroalgal beds comprise a high abundance and diversity of epifaunal  invertebrates31, thus these habitats 
can serve as feeding grounds, not only for herbivorous fishes, but also for a number of invertivores and omnivores.

In contrast to the surrounding seascape of natural macroalgal beds, the percent loss of E. denticulatum was 
not consistent across the seascape with macroalgal farms. It was lower in the interior and edge of the farms com-
pared to the rest of the seascape despite the high abundance of browsers observed. This may be explained by the 
high availability of E. denticulatum fronds in the farms, resulting in lower browsing intensity on the tethered E. 
denticulatum. Similar patterns have been described in other  studies107,108. Alternatively, some herbivorous fish 
may avoid feeding in densely aggregated macroalgal  areas109,110 such as within the farms. The biomass loss of E. 
denticulatum was higher and more variable with distance from the farms despite the decrease in abundance of 
browsers and might have been related to less available farmed macroalgae as a food source in the surrounding 
seascape. It may also have been influenced by the sporadically high abundance of grazing urchins found in the 
vicinity of the farms. Interestingly, patchy aggregations of sea urchins, including Diadema savigni, D. setosum, 
Echinometra mathaei, and Echinotrix diadema were encountered in the vicinity of the farms but not within 
them. Occasionally, during low tide, the macroalgal farms were exposed to the air and thus unavailable as feed-
ing grounds for marine herbivores. Air exposure can be detrimental to marine invertebrates due to desiccation 
 stress111. This is possibly the reason why the sea urchins were found nearby the farms and not in their interior 
and why the percent loss of macroalgae in general tended to be more variable in the vicinity of the farms.

In this study we observed that macroalgal farms differed from naturally-occurring macroalgal beds, both 
in terms of habitat heterogenity and fish species richness. This suggests that macroalgal farming may modify 
habitat heterogeneity of coastal habitats with potential secondary effects on community assemblage and ecologi-
cal processes. If the intensity of the macroalgal farming were to increase (such as in Southeast Asia), it could 
lead to homogenization and degradation of coastal habitats across the seascape with losses in the diversity of 
macrophytes and fishes with consequences on ecosystem function. In agricultural terrestrial systems increased 
land use intensity has caused loss of habitat heterogeneity resulting in declines of species richness of birds and 
 arthropods16,112–116. As such, the placement of farms and farming intensity might have significant implications 
for associated fauna and ecological processes. Alternatively, macroalgae farming if practiced properly could 
have positive effects, such as carbon sequestration to mitigate carbon  emissions117. Therefore, further studies 
are recommended to understand generalities. This study allowed us to gain a greater understanding of how 
“land-use” practices in seascapes may influence patterns of community assembly and ecological processes and 
was an attempt to attain a more holistic view of tropical seascapes in the Western Indian Ocean subjected to 
human practices.
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