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A B S T R A C T

Soil mineral compositions are often complex and spatially diverse, with each mineral exhibiting characteristic
chemical properties that determine the intrinsic total concentration of soil nutrients and their phyto-availability.
Defining soil mineral-nutrient relationships is therefore important for understanding the inherent fertility of soils
for sustainable nutrient management, and data-driven approaches such as cluster analysis allow for these re-
lations to be assessed in new detail.

Here the fuzzy-c-means clustering algorithm was applied to an X-ray powder diffraction (XRPD) dataset of
935 soils from sub-Saharan Africa, with each diffractogram representing a digital signature of a soil’s miner-
alogy. Nine mineralogically distinct clusters were objectively selected from the soil mineralogy continuum by
retaining samples exceeding the 75% quantile of the membership coefficients in each cluster, yielding a dataset of
239 soils. As such, samples within each cluster represented mineralogically similar soils from different agro-
ecological environments of sub-Saharan Africa. Mineral quantification based on the mean diffractogram of each
cluster illustrated substantial mineralogical diversity between the nine groups with respect to quartz, K-feldspar,
plagioclase, Fe/Al/Ti-(hydr)oxides, phyllosilicates (1:1 and 2:1), ferromagnesians, and calcite.

Mineral–nutrient relationships were defined using the clustered XRPD patterns and corresponding mea-
surements of total and/or extractable (Mehlich-3) nutrient concentrations (B, Mg, K, Ca, Mn, Fe, Ni, Cu and Zn)
in combination with log-ratio compositional data analysis. Fe/Al/Ti/Mn-(hydr)oxides and feldspars were found
to be the primary control of total nutrient concentrations, whereas 2:1 phyllosilicates were the main source of all
extractable nutrients except for Fe and Zn. Kaolin minerals were the most abundant phyllosilicate group within
the dataset but did not represent a nutrient source, which reflects the lack of nutrients within their chemical
composition and their low cation exchange capacity. Results highlight how the mineral composition controls the
total nutrient reserves and their phyto-availability in soils of sub-Saharan Africa. The typical characterisation of
soils and their parent material based on the clay particle size fraction (i.e. texture) and/or the overall silica
component (i.e. acid and basic rock types) alone may therefore mask the intricacies of mineral contributions to
soil nutrient concentrations.

1. Introduction

Minerals are the major component of most soils. Through direct
inheritance from the parent material and subsequent alteration by
chemical weathering, the soil mineral composition can be spatially di-
verse - reflecting the many soil forming factors (Jenny, 1994). Minerals
present within the soil environment exhibit characteristic crystal

structures, chemical compositions and chemical properties (Dixon and
Schulze, 2002) that determine the total reserves of essential plant nu-
trients (White and Brown, 2010). Aside from these total nutrient re-
serves, the fate, phyto-availability and toxicity of these nutrients de-
pends upon the form in which they occur (Cornu et al., 2009) along
with associated dissolution–precipitation, adsorption–desorption and
reduction–oxidation reactions (Singh and Schulze, 2015).
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Soil macro- and micro-nutrient concentrations and their phyto-
availability are inherently related to soil fertility (Ajiboye et al., 2019).
Understanding mineral contributions to soil nutrient reserves is a key
priority at present given the threat of negative soil nutrient balances to
food security (Sutton et al., 2013; Omuto and Vargas, 2018). Further,
estimates suggest that of cultivated soils suffer from growth-limiting
problems relating to nutrient deficiencies and/or toxicities (Cakmak,
2002; Schjoerring et al., 2019; Keskinen et al., 2019). In particular,
many African soils are considered to have a typically low fertility
caused by a lack of volcanic/tectonic rejuvenation, resulting in long and
repeated cycles of weathering, erosion and leaching predominating
over millions of years. This leaves the soils poor in nutrients, especially
soils derived from basement complex rocks and aeolian sands
(Voortman et al., 2003). Furthermore, since the use of fertiliser in sub-
Saharan African crop production is very limited, there is a dependence
on inherent reserves of soil nutrients (Vitousek et al., 2009; Vanlauwe
et al., 2014; Keskinen et al., 2019), of which mineralogy is a key
component.

Indeed, soil fertility degradation has been described as the single
most important constraint on food security in sub-Saharan Africa
(Smaling, 1994). By 2050, the population of sub-Saharan Africa is ex-
pected to increase 2.5-fold and demand for cereals approximately triple
(Van Ittersum et al., 2016). To maintain the current level of cereal self-
sufficiency of approximately 80% by 2050, nearly complete closure of
the gap between current farm yields and water-limited yield potential is
needed, which is in the range of 20% to 50% (Van Ittersum et al., 2016).
Meeting these demands for food production will require an increase in
nutrient inputs combined with a better understanding of the intrinsic
soil mineral reserves of plant nutrients.

X-ray powder diffraction (XRPD) measurements are commonly used
to identify and quantify soil mineralogy because diffraction data are
fundamentally related to the crystal structure and crystal chemistry of
the soil minerals present (Schulze, 1989). A typical soil XRPD pattern
(diffractogram) is comprised of discrete ‘Bragg’ diffraction peaks
varying in intensity (y) that are distributed along an experimental axis
(x) usually expressed in degrees 2 . The ‘Bragg’ peaks rise above a
background that often includes diffuse scattering from X-ray amor-
phous components such as soil organic matter or volcanic glass. The
mineralogical detail associated with soil XRPD analysis therefore makes
it arguably the most powerful approach to accurately identify and
quantify the complex suite of minerals in the soil environment. Clas-
sically, identifying and quantifying soil minerals from XRPD data is a
time and labour intensive process, requiring each diffractogram to be
manually inspected and analysed in combination with mineral data-
bases [e.g. the Powder Diffraction File; ICDD, 2019] and specialised
computer software. Such workflows become inconvenient when pro-
cessing large numbers of samples, and the recent acquisition of high-
throughput XRPD datasets containing thousands of soil diffractograms
has promoted application of alternative, data-driven, approaches to soil
XRPD data for the first time (Butler et al., 2018; Butler et al., 2019;
Hillier and Butler, 2018). These approaches remove the need for clas-
sical expert interpretation in the initial stages of analysis, which can be
particularly challenging and time consuming in diverse datasets of this
size.

One such high-throughput soil XRPD dataset is that of the Africa
Soil Information Service (AfSIS) Sentinel sites, which contains ap-
proximately 2000 georeferenced soil samples from sub-Saharan Africa
that have each been analysed by XRPD (Vågen et al., 2010; Towett
et al., 2013). Associated with each XRPD measurement is a range of site
attributes and soil property measurements, including total and ex-
tractable nutrient concentrations. By treating each diffractogram within
this dataset as a reproducible mineralogical signature of a soil, the data
can be combined with data-driven analysis and related to the associated
nutrient concentrations in order to identify and interpret mineral con-
tributions to soil nutrient concentrations. The application of data-
driven analysis to soil XRPD data defines a new concept for soil

mineralogy research which has been labelled ‘Digital Soil Mineralogy’
(Hillier and Butler, 2018).

Cluster analysis is a branch of multivariate statistical analysis for
unsupervised machine learning and has notable potential to facilitate
expert interpretation of soil mineralogy–nutrient relationships in large
XRPD datasets by grouping the data into a manageable number of
classes. Each cluster defined from soil XRPD data should represent a
group of mineralogically similar soils that are mineralogically distinct
from those in other clusters. Recently, a suitable protocol for clustering
soil XRPD data has been determined (Butler et al., 2019), and the
present study uses this protocol to investigate mineral–nutrient re-
lationships in soils sampled from a diverse range of agro-ecological
environments in sub-Saharan Africa (Vågen et al., 2010). Analysis in-
cludes a suite of macro-nutrients (Mg, K and Ca) and micro-nutrients (B,
Mn, Fe, Ni, Cu and Zn), both in terms of total and extractable con-
centrations. Novel statistical approaches are applied that account for
the compositional nature of nutrient concentration data. That is, mul-
tivariate data conveying relative information, with values of the con-
stituting components representing fractions of a total (e.g. 100 or 106

when expressed respectively in percentage or ppm units). Such data are
only meaningful in relation to each other, regardless of the measure-
ment scale used, and compositional data analysis methods seek to en-
sure that meaningful conclusions are obtained on this basis (Aitchison,
1982). In combining soil XRPD patterns and nutrient concentrations
with cluster analysis and compositional methods, we generate new
understanding that can contribute to a move towards more sustainable
and mineralogically tailored land management practices.

2. Sample collection and laboratory analyses

2.1. Soil sampling

Georeferenced samples associated with the AfSIS project (Vågen
et al., 2010) were taken from the set of sixty ×10 10 km ‘Sentinel’ sites
distributed across sub-Saharan Africa (Fig. 1). The Sentinel sites were
designed to be statistically representative of the variability in climate,
topography and vegetation of sub-Saharan Africa (Vågen et al., 2010;
Hengl et al., 2017). Field sampling was conducted based on the field
methods collectively referred to as the Land Degradation Surveillance
Framework (LDSF) protocol (Vågen et al., 2010; Vågen et al., 2015).
Each Sentinel site was divided into 16 grid cells of equal size, and a soil
sampled at a random location within each grid cell (Fig. 1).

Only subsoil samples were investigated here with the aim of mini-
mising the potential effects of land management practices (see Table 1
in Towett et al., 2015) and soil organic matter on nutrient concentra-
tions, both of which would be more prominent in topsoils. In doing so
the naturally occurring mineral contributions to soil element con-
centrations could be focused upon. Subsoil samples were collected at
depths of 20 50 cm from each grid cell at each Sentinel site, giving a
total of 960 soil samples (16 grid cells per site × 60 Sentinel sites) of
which 935 were measured by XRPD.

2.2. Laboratory analyses

A total of 10 elements are examined herein to understand how
nutrient and micro-nutrient concentrations relate to the mineralogy of
African soils. These elements include:

1. The total organic carbon (TOC) concentration, used as an esti-
mate of soil organic matter content.
2. Mg, K and Ca concentrations examined as essential plant macro-
nutrients.
3. B, Mn, Fe, Ni, Cu and Zn concentrations examined as essential
plant micro-nutrients.

Further to these 10 elements, soil pH and clay particle size fraction
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were also examined as common soil properties linked to plant nutrient
provision. All laboratory analyses were conducted on the dry sieved
<2 mm size fraction.

2.2.1. Determination of total organic carbon, pH and clay particle size
fraction

Samples were prepared for TOC analysis by acidification with hy-
drochloric acid and drying at 60 °C using a modification of the protocol
described in Harris et al., 2001. The carbon concentrations were then
determined by thermal oxidation on a Thermoquest FlashEA 1112
equipped with an autoanalyser (Vågen et al., 2010).

Soil pH was determined with a combination electrode on the su-
pernatant of a 1:2 soil:solution ratio. Clay particle size fraction was
determined by laser diffraction as the percentage volume of <2 µm
sized particles (assuming spherical morphology) on a Horiba LA-950V2
Particle Size Analyser with a detectable size range of 0.01 3000 µm
(Vågen et al., 2010). It is important to distinguish that the clay particle
size fraction includes any mineral particle <2 µm in diameter. Whilst
this size delineation is most often associated with the clay minerals (i.e.
phyllosilicates), this does not rule out the fact that other rock forming
minerals can sometimes be present in the clay particle size fraction, and
conversely phyllosilicates can have particle sizes > µ2 m. As such the
clay particle size fraction may differ to the percentage of phyllosili-
cates/clay minerals determined from quantitative mineralogical ana-
lysis (Section 2.2.3).

2.2.2. Determination of nutrient concentrations
Total X-ray fluorescence spectroscopy (TXRF) was used to de-

termine the total concentrations of K, Ca, Mn, Fe, Ni, Cu, and Zn
(hereafter denoted by subscript ‘T’, e.g. KT). Detailed accounts of the
TXRF protocol and limits of detection are provided in Towett et al.,
2013; Towett et al., 2015. Briefly, 50 mg of air-dried (40 °C) and ground
(20–50 μm) soil sample was mixed with 2.5 ml of Triton X100 (Fisher)
solution (0.1 vol.%) to form a soil suspension, and spiked with 40 μl of
1000 mg l−1 Selenium (Fluka) as the internal standard. The resulting
suspension was placed into an ultrasonic water bath at room tem-
perature and sonicated for 15 min, and then mixed well using a digital
shaker. 10 μl of the turbid soil solution was then dispensed onto a clean
siliconised quartz glass sample carrier and dried for 10 15 min at
52 °C. Samples were analysed in triplicate on an S2 PICOFOX TXRF
(Bruker) with a data acquisition time of 1000 s per sample. Spectral
evaluation and element quantification were performed using the soft-
ware SPECTRA 6.3 (Bruker).

Phyto-available nutrient concentrations were estimated using the

Mehlich-3 extraction protocol (Mehlich, 1984; Ziadi and Tran, 2007),
hereafter referred to as ‘M3’. The M3 extracting solution is composed of
0.2 N ethanoic acid (CH3COOH), 0.25 N ammonium nitrate (NH4NO3),
0.015 N ammonium fluoride (NH4F), 0.013 N nitric acid (HNO3), and
0.001 M ethylenediaminetetraacetic acid (C10H16N2O8). The method
allows for multiple elements to be analysed from a single extraction,
namely B, Mg, K, Ca, Mn, Fe, Cu and Zn in this case - hereafter denoted
by subscript ‘M’, e.g. KM. All extracted elements were quantified by
inductively-coupled plasma optical emission spectroscopy using a
Perkin Elmer Optima 8300 instrument.

2.2.3. X-ray powder diffraction and mineral quantification
Sub-sampling for XRPD analysis was conducted by coning and

quartering. Sub-samples were then prepared for XRPD by McCrone
milling 3 g of sieved (<2 mm) and air-dried soil for 12 min in ethanol.
Excess ethanol was removed by centrifugation and each sample re-
suspended in 1.5 ml of hexane. The samples were then oven dried at
80 °C before being disaggregated and ground by hand in a mortar and
pestle before passing through a 250 μm sieve. Loading into the instru-
ment was carried out by loosely filling the sample holders with the
finely ground powders, before flattening the surface with the sharp
edge of a razor blade, with personnel instructed to take care to apply
minimum pressure and to avoid shearing motion. The combination of
methodical milling and loading was designed to produce samples with
appropriate particle statistics and to minimise preferred orientation
(Zhang et al., 2003).

After loading, XRPD data were collected on a Bruker desktop D2
PHASER diffractometer, with Ni-filter, Cu-K radiation with the X-ray
tube operated at 30 kV and 10 mA. The beam was collimated using a
0.6 mm divergence slit, a 1 mm anti-scatter slit and a 2.5 mm Soller slit.
Samples were rotated continuously at 15 rpm during data collection
over the angular range of 3 to 75 2 , counting for 96 s per 0.02 step
with a Lynxeye position sensitive detector.

To quantitatively summarise the mineralogy of each cluster, un-
treated diffractograms were aligned relative to a standard quartz pat-
tern (ICDD, 2019; Butler et al., 2019), and the mean diffractogram of
each cluster computed. Phases in each mean diffractogram were iden-
tified using the Powder Diffraction File database (ICDD, 2019), taking
all peaks of each mineral component into account, and subsequently
quantified by the full pattern summation method (Omotoso et al., 2006)
as implemented in the ‘powdR’ package (Butler and Hillier, 2020) of the
R language and environment for statistical computing (R Core Team,
2018). This approach treats an observed diffractogram as the sum of
contributions from individual crystalline, para-crystalline and

Fig. 1. The survey design used for the sampling of Sentinel sites. Each of the sixty ×10 10 km sites was separated into a ×4 4 grid, and a soil at a random location
within each grid cell sampled.
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amorphous components within it. Using a library of prior measured
diffractograms of pure phases (Eberl, 2003) and their Reference In-
tensity Ratios (Hillier, 2000), an observed pattern can be modelled as
the sum of these pure components and their concentrations can be ac-
curately determined (Omotoso et al., 2006). Given the overlapping
features of some clay minerals in bulk XRPD measurements (i.e. ran-
domly oriented milled subsamples of the <2 mm fraction), clay mi-
nerals characterised as dioctahedral smectites along with mixed-layered
(interstratified) clay minerals with dioctahedral character were
grouped into a general category labelled as ‘dioctahedral expandable’
phyllosilicates.

3. Statistical analyses

All statistical analyses outlined in subsequent sections were con-
ducted using the R language and environment for statistical computing
(R Core Team, 2018). Statistical test results were assessed at the usual
0.05 significance level.

3.1. Cluster analysis of X-ray powder diffraction data

Prior to cluster analysis, the XRPD data were subset to the
6 75 2 range before being pre-treated by alignment, binning (bin
width = 5), square-root transformation and mean centering as re-
commended by Butler et al., 2019. This procedure was designed to
stabilise sample independent variability of the signals to enhance
comparison across samples, whilst reducing the overwhelming signal
from strong diffractors such as quartz.

For the cluster analysis, principal component analysis [PCA, Jolliffe,
1986] was firstly applied to reduce the pre-processed XRPD dataset by
projection onto a low-dimensional space (Rossel et al., 2016; Butler
et al., 2019). Principal components that explained 99% of pre-processed
data variability (in this case 21 principal components) were then used
as the input for the fuzzy-c-means clustering algorithm (Bezdek et al.,
1984; Meyer et al., 2017). Fuzzy clustering allows for classification
uncertainty by considering soft boundaries between clusters so that for
each sample it determines membership coefficients, defined in the [0,1]
interval, to each cluster (using a cluster fuzziness hyper-parameter set
to 2). The optimum number of clusters was objectively derived by ap-
plying the fuzzy-c-means algorithm to 19 iterations with cluster nodes
ranging from 2 to 20, and selecting the instance with the highest par-
tition coefficient from the clustering statistics (Bezdek et al., 1984;
Rossel et al., 2016). To facilitate neater characterisation of clusters from
the soil mineralogy continuum, only samples exceeding the 75% quan-
tile of the membership coefficients in each cluster were retained for
further inspection of soil properties across the clusters. This yielded a
subset of the data containing 239 samples upon which all subsequent
analysis was applied, allowing the investigation to focus on more dis-
tinct mineralogical groupings within the data.

3.2. Compositional analysis of nutrient concentrations

Nutrient concentrations describing the relative make-up of a soil
sample are inherently multivariate data. Regardless of the units of
measurement, the data are constrained in that each chemical species
measurement is a fraction or part of a total (e.g. total sample weight or
volume) and, hence, changes in the relative abundance of one species
necessarily implies changes in at least one of the others. It has been long
recognised that, for example, ordinary correlation measures computed
on data carrying relative information can result in spurious associa-
tions, with pairwise correlations between parts not being consistent
when measured from a full composition or a subset of it (Pearson, 1897;
Aitchison, 1986). Since the correlation structure of a dataset is a key
piece of information in multivariate analysis, this is a fundamental
drawback. Following on the seminal work by Aitchison, 1986, the
mainstream approach to dealing with compositional data focuses on the

analysis of log-ratios between parts which contain the relative in-
formation. This eliminates technical issues like spurious correlations,
singularity of the covariance matrix or data curvature, producing re-
sults which do not depend on the scale of the data nor the sample total.
Moreover, through log-ratios the data are mapped onto the ordinary
real space, which then facilitates analysis, modelling and visualisation
using ordinary statistical methods on real-valued log-ratio coordinates.

A form of log-ratios, so called balances (Egozcue and Pawlowsky-
Glahn, 2005), were used here to represent the total and M3 nutrient
compositions (TOC–KT–CaT–MnT–FeT–NiT–CuT–ZnT and BM–MgM–KM–
CaM–MnM–FeM–CuM–ZnM, respectively, expressed in units of mg kg−1;
see Section 2.2.2). This facilitated interpretability since these balances
correspond to trade-offs between subsets of parts of the composition
determined according to their co-dependence structure (measured in
terms of proportionality by the variation matrix; see details on the
construction of these balances in accompanying Supplementary
Material).

3.2.1. Values below the detection limit and average nutrient concentrations
The subset ( =n 239) M3 dataset included overall 5.23% cells with

values below the detection limit, which were mostly concentrated in BM
(34.31%) and CuM (6.69%). These values were dealt with using statistical
imputation to enable subsequent multivariate analysis. The log-ratio
expectation–maximisation (EM) algorithm (Palarea-Albaladejo et al.,
2007) implemented in the ‘zCompositions’ R package (Palarea-
Albaladejo and Martin-Fernandez, 2015) was used for this which pre-
serves the log-ratios between parts while accounting for the corre-
sponding detection limit thresholds and the co-dependence structure of
the observed data.

Following imputation of values below the detection limit, geometric
means were used to summarise the various nutrient concentrations of
each cluster (Section 3.1) in a way that is consistent with their relative
scale (Aitchison, 1986; Montero-Serrano et al., 2010). It is worth noting
that geometric means and associated geometric standard deviations are
related to one-another by division and multiplication, as opposed to the
traditional subtractions and additions of their arithmetic equivalents.
Thus the ‘divide on times’ notation ( ) is provided wherever geometric
means and geometric standard deviations are reported.

3.2.2. Multivariate analysis of variance
The entire nutrient compositions from the total and M3 datasets

were statistically compared between the groups determined by cluster
analysis of the XRPD data (Section 3.1) using multivariate analysis of
variance (MANOVA) on log-ratio balances. More specifically, the non-
parametric permutational MANOVA (PERMANOVA) introduced by
Anderson, 2001 was applied since the ordinary assumption of multi-
variate normality for the standard MANOVA was not met. Results from
PERMANOVA are invariant to the log-ratio balance representation
chosen, as determined by a sequential binary partition into subsets of
parts of the composition (Egozcue and Pawlowsky-Glahn, 2005), thus
balances built according to co-dependences between parts were used as
described in the Supplementary Material.

3.2.3. Principal component analysis biplots
To visualise relationships between log-ratio nutrient balances and

soil mineralogy, PCA biplots were produced by PCA of the pre-treated
and subset XRPD data ( =n 239). Log-ratio balances of the total and M3
datasets were provided as supplementary variables to the PCA (Lê et al.,
2008) so that they could subsequently be added as vectors to biplots
based on the first three principal components. Mineral contributions to
the principal components derived from the XRPD data were interpreted
using the loadings of each component in combination with the known
diffraction features of soil mineral components (ICDD, 2019).
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3.3. Analysis of variance of soil pH

Soil nutrient concentrations are directly and indirectly related to
soil pH via the effects of changing H+ activity on adsorption–desorp-
tion and dissolution–precipitation reactions (Dixon and Schulze, 2002;
Singh and Schulze, 2015). Thus measurements of pH are included
within this investigation to help isolate mineralogical drivers of soil
nutrient concentrations. The variation in pH between the miner-
alogically defined clusters (Section 3.1) was assessed using analysis of
variance (ANOVA).

4. Results and discussion

4.1. Cluster analysis

The optimum number of clusters for the XRPD dataset, defined by
maximisation of the partition coefficient of the fuzzy-c-means algorithm
(Section 3.1), was found to be nine. A broad spread of the XRPD data
when plotted in principal component space was observed, reflecting the
soil mineralogy continuum (Fig. 2). Certain samples from this con-
tinuum were excluded from subsequent analysis (based on membership
coefficients< 75% quantile threshold; Section 3.1), creating miner-
alogically discrete clusters more suitable for identifying miner-
al–nutrient relationships. Estimates of the quartz concentration for each
cluster, derived from the quantitative mineral analysis (Sections 2.2.3
and 4.2), were used to order the clusters from 1 through to 9 by de-
creasing quartz concentration, and thus aid interpretation of the data.
The resulting dataset comprised a total of 239 soil samples across the
nine clusters, with cluster sizes ranging from 17 to 33 (Fig. 2).

The 239 samples in the nine clusters represented soils from 57 of the
60 Sentinel sites in total. The samples in each cluster display con-
siderable spatial variation across sub-Saharan Africa (Fig. 3). The mean
number of sites represented by each cluster is twelve, with mean dis-
tances between samples within each cluster being approximately
2000 3000 km. The only obvious exception to this is Cluster 8, which
is represented by only three sites, with a mean distance between sam-
ples of 813 km. Given that the Sentinel sites cover the major agro-
ecological zones of sub-Saharan Africa (Vågen et al., 2010; Hengl et al.,
2017), the spatial distribution of the clustered data suggests that the
mineralogically similar soils within each cluster are representative of a

wide variety of land uses, climatic properties and ecosystems (see
Table 1 in Towett et al., 2015).

Soil TOC concentration (i.e. organic matter), pH and clay particle
size fraction can affect soil nutrient concentrations, and are therefore
taken into account here when interpreting the results from the cluster
analysis (Table 1). The average pH values for each Cluster range from
5.39 (Cluster 3) to 8.02 (Cluster 8). Notably, the mean pH of Cluster 8 is
close to the 90th percentile of the entire dataset (Table 1), thus the soils
within this group are relatively unusual in this context. Indeed, ANOVA
of pH (Section 3.3) between the clusters yields a statistically significant
difference in means only when Cluster 8 is included, suggesting that pH
should only be taken into account when interpreting results associated
with this cluster. The average clay particle size fraction and soil TOC
concentration of the nine clusters both display a general increase from
Cluster 1 through to Cluster 9 (Table 1), with notable features that will
be discussed in relation to soil mineralogy and nutrient concentrations
below.

4.1.1. Soil mineralogy and nutrient concentrations
Quantitative estimates for the mineral compositions of each cluster,

derived from their mean diffractograms (Fig. 4), are expressed in terms
of weight percent of soil mineral components (i.e. organic matter is not
implicit in the composition; Table 2; Fig. 5). This quantitative in-
formation allows for improved interpretation of mineral–nutrient re-
lationships from the cluster analysis.

A total of 17 minerals were identified across the nine clusters
(Table 2). Quartz, phyllosilicates (divided into kaolin, expandable
dioctahedral and illitic/micaceous mineral groups), feldspars (K-feld-
spar and plagioclase) and Fe/Al/Ti-(hydr)oxides (goethite, maghemite,
ilmenite, hematite, gibbsite, magnetite and anatase) dominated the
mineral compositions (Fig. 5), whilst amphibole (Clusters 6 and 8),
pyroxene (Cluster 9), calcite (Cluster 8) and gypsum (Cluster 8) had
more limited occurrence. Several of the nine clusters stand out based on
the mineralogy of the mean diffractogram (Fig. 5; Table 2). These in-
clude the mineralogy of Cluster 1 being almost entirely quartz; Cluster 4
being by far the richest in K-feldspar minerals; Cluster 6 being parti-
cularly enriched in illitic/micaceous minerals; Cluster 8 displaying high
concentrations of expandable dioctahedral phyllosilicates along with
the presence of calcite and gypsum; and Cluster 9 containing high
concentrations of Fe/Al/Ti-(hydr)oxides. Together these contrasting

Fig. 2. Principal component scores of pre-treated X-ray power diffraction data and the resulting clusters defined by the fuzzy-c-means algorithm. Total number of
samples = 935. Samples excluded from subsequent analysis are plotted as translucent symbols, whilst those retained are plotted as opaque symbols.
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soil mineralogies illustrate that the cluster analysis of soil XRPD data
yielded nine groups of mineralogically distinct soils, with each group
formed of soils from different agro-ecological environments of sub-Sa-
haran Africa (Fig. 3).

Nutrient concentrations (total and/or M3 nutrients) also displayed
substantial variation between the nine clusters (Table 1). This variation
is visualised in Fig. 6 according to the deviation (in log-ratio scale) of
each cluster’s geometric mean from that of the entire dataset (Montero-
Serrano et al., 2010). Results illustrate general nutrient deficiencies in
Clusters 1 4, and enrichments in Clusters 5 9 (Fig. 6). Aside from
this broad trend, the mineralogical and geochemical data can be com-
bined to interpret far more specific mineral–nutrient relationships.

4.1.2. Mineral–nutrient relationships
The mean diffractograms of Clusters 1 and 2 represent soils con-

taining 98% and 85% quartz, respectively. The soils within these clusters
are consistently deficient in almost all nutrients and micronutrients
investigated (Fig. 6; Table 1) with average concentrations consistently
near the 10th or 25th percentile of the entire dataset. This deficiency
can be explained by the dominance of quartz and kaolin minerals in
these soils (Fig. 5; Table 2). Quartz is a notoriously inert mineral that
displays negligible contributions to total and extractable soil nutrients
(Hardy and Cornu, 2006), whilst kaolinite is not generally considered a

significant source of plant nutrients (Dixon and Schulze, 2002). Indeed
the consistent nutrient deficiencies of Clusters 1 and 2 suggest that such
soils may require special management practices that account for their
low nutrient status and potential susceptibility to nutrient leaching in
response to fertiliser applications.

Clusters 3 and 4 have almost identical concentrations of quartz
(Fig. 5; Table 2), but exhibit distinct KT concentrations (Fig. 6). More
specifically, the average KT concentration of Cluster 3 is near the 25th
percentile of the dataset, whilst that of Cluster 4 exceeds the 90th
percentile (Table 1). These relatively high KT concentrations in Cluster
4 are found to be driven by the enrichment of these soils in K-feldspar
minerals (17%; Table 2), which represent a large soil KT reservoir where
present (Towett et al., 2015). The contrasting KT concentrations be-
tween Clusters 3 and 4 despite their near identical quartz concentra-
tions illustrates how important information can be lost when char-
acterising soil parent material by its silica (i.e. quartz) content alone
(Gray et al., 2016).

Clusters 8 and 9 display similar concentrations of both quartz and
phyllosilicate mineral components (Fig. 5; Table 2), but differ greatly in
M3 nutrient concentrations, with Cluster 8 showing far greater en-
richment in BM, MgM, KM and CaM (Fig. 6; Table 1). This difference is
driven in part by the contrasting phyllosilicate mineralogies of these
clusters, with Cluster 8 dominated by expandable dioctahedral

Fig. 3. The spatial distribution of soil samples within each cluster. Symbols are labelled according to the number of samples at a given Sentinel site. Min, Mean and
Max represent the minimum, mean and maximum distance between soil samples within the cluster, respectively.
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phyllosilicates (45%; Table 2) that can represent substantial sources of
adsorbed cations (Velde and Barré, 2009), and Cluster 9 dominated by
kaolin minerals (34%; Table 2) that offer limited cation exchange ca-
pacities in comparison (Dixon and Schulze, 2002). Further influence of
mineralogy on the contrasts in nutrient concentrations between Clusters
8 and 9 relate to the presence of calcite in the soils of Cluster 8
(Table 2), resulting in an alkaline pH (Table 1) that would favour the
adsorption of base cations to expandable dioctahedral phyllosilicates
(Dixon and Schulze, 2002). Further to the similar concentrations of
total phyllosilicate minerals in Clusters 8 and 9, their clay particle size
fractions are almost identical (Cluster 8 = 73.4 1.18; Cluster 9 =
77.75 1.14 Table 1). Together the contrasting nutrient concentrations
of Clusters 8 and 9 despite their similar phyllosilicate concentrations
(Table 2) and particle size fractions (Table 1) illustrate how important
information can be lost when summarising soil clay content as a size
fraction (commonplace in soil science; Churchman, 2010) or total
phyllosilicate concentration.

A useful attribute of the present dataset is the availability of both
total and extractable concentrations of some elements (K, Ca, Mn, Fe,
Cu and Zn), which offers a rare insight into how these properties can
contrast, and how some of these contrasts are mineralogically driven. In
this context, Cluster 4 stands out as having the highest mean KT con-
centration of all Clusters, but this enrichment is not expressed in the KM
concentrations of these soils (Fig. 6; Table 1). This contrast between KT
and KM in Cluster 4 illustrates how despite K-feldspar minerals being a
major K reserve in these soils, it is not accessible to the M3 extraction,
which is in agreement with the notorious resistance of K-feldspar to
chemical extractions (Andrist-Rangel et al., 2010; Butler et al., 2018).

Fig. 4. The mean diffractograms for each cluster, which were subsequently
used to derive quantitative estimates of each cluster’s mineralogy. The y-axis
has been square-root transformed to aid with comparison.
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Further distinctions between total and extractable nutrients are pro-
vided in the soils of Cluster 9, which show enrichments in CaT, MnT,
FeT, CuT and ZnT that are not reflected in their M3 equivalents. Thus the
total reserves of these nutrients, likely present within the high con-
centration of Fe/Al/Ti/Mn-(hydr)oxides (Table 2), are not generally
accessible to the M3 extraction.

FeT and ZnT concentrations vary considerably between the nine
clusters, but this is not replicated for either FeM or ZnM. The only ex-
ception to this lack of variability is the FeM deficiency of Cluster 8, with
these soils having an average FeM concentration approximately half that
of all other clusters (Fig. 6; Table 1). This relative FeM deficiency of
Cluster 8 (with an average near the 10th percentile of the dataset;
Table 1) is explained by the alkaline pH of these soils (caused by the
presence of calcite; Fig. 5) since the solubility of Fe-(hydr)oxides is
particularly dependent upon pH (Lindsay and Schwab, 1982). The
consistent lack of variability of ZnM concentrations between the nine
mineralogically diverse clusters suggests that neither major soil mineral
constituents nor pH are key drivers of ZnM in this case, and further
research could seek to identify potentially important mineral sources of
phyto-available Zn given recent concerns about Zn deficiencies in crops
and humans (Alloway, 2009).

4.2. Compositional data analysis

Further mineral–nutrient relationships within the dataset were ex-
plored by applying compositional data analysis to the nine clusters
(Section 3.2). On a general basis, the PERMANOVA applied to nutrient
balances (Sections 3.2.2 and 3.2) supports a statistically significant
difference in (geometric) mean nutrient compositions between clusters
( <p 0.0001) for both total and M3 nutrients, reflecting how the con-
trasting soil mineralogies of the nine clusters yield differences in nu-
trient compositions.

4.2.1. Balances
Dendrograms based on the variation matrices of the total and M3

datasets (Fig. 7; Supplementary Material) show the overall grouping
structures of the parts of the respective compositions according to their
co-dependence. The dendrogram of the total nutrient dataset presents

two clear groupings of co-dependent components (Fig. 7a), the first
formed of TOC–MnT–NiT–ZnT–FeT–CuT, and the second formed of
KT–CaT. The groupings were used to define seven balances between the
components of the total nutrient dataset (Table 3). The dendrogram of
the M3 nutrient dataset presents about four groups of co-dependent
components (Fig. 7b). The first of these groups comprises BM alone,
which is clearly the most independent element in the M3 dataset. The
remaining three groups are comprised of FeM–ZnM, MgM–KM–CaM, and
MnM–CuM. Again these groupings were used to define seven balances
between the components of the M3 nutrient dataset (Table 3).

4.2.2. Principal component biplots
Principal component analysis applied to the subset ( =n 239; Section

3.2.3) pre-treated XRPD data from the cluster analysis was used to re-
present the multivariate data in three dimensions (i.e. the first three
principal components). These principal components (PCs) together ex-
plained 95.54% of total variation of XRPD data (PC1 = 90.13%, PC2
= 3.94% and PC3 = 1.47%), and are plotted in combination with the
balances in biplots provided in Fig. 8. More specifically, PC scores in
Fig. 8 are represented by point data (coloured by the Cluster factor),
whilst the balances are represented as vectors. It is worth noting that
since the balances were supplementary variables in the PCA, the PC
scores remain solely defined by the XRPD data. In general the biplots
illustrate how a range of total and M3 nutrient balances correspond to
the principal component scores, and therefore to soil mineralogy. Bal-
ances b b b b, , ,T

1
T
2

M
1

M
2 and bM

3 display the strongest correlations to the
PCs, as reflected by their length and proximity to the corresponding PC
reference axes presented in Figs. 8a–c.

The loadings of the three principal component dimensions (Fig. 9)
represent the positive or negative contributions of the XRPD variables
to the PCs. The Powder Diffraction File database (ICDD, 2019) and the
mean diffractograms of the nine clusters were used to assign likely
mineral components to regions of notably high or low loading values
(Fig. 9) so that mineral–nutrient relationships could be interpreted from
Fig. 8.

The loadings of PC1 are dominated by negative values in regions of
the XRPD data that are associated with quartz peaks (Fig. 9a). Thus
increasing quartz peak intensity would promote decreased PC1 values

Fig. 5. Simplified mineralogy of each cluster, with Fe/Ti-(hydr)oxides grouped together. The Fe/Ti-(hydr)oxide bar therefore represents the sum of goethite,
maghemite, ilmenite, hematite and magnetite. A more detailed summary is provided in Table 2.
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in Fig. 8. The high proportion of variability accounted for by PC1
(90.13%) is explained by the near ubiquitous presence of quartz in soil
(Dixon and Schulze, 2002) along with it being a relatively strong dif-
fractor (Butler et al., 2019). In contrast to PC1, the loadings of PC2 and
PC3 represent more subtle features within the diffraction data, ac-
counting for 3.94% and 1.47% of XRPD data variability, respectively.
Despite this, the loadings of PC2 and PC3 contain various regions
characterised by distinctly positive or negative values that relate to the
diffraction features of several common mineral components within the
dataset. Namely, positive PC2 loadings are associated with kaolin mi-
nerals and Fe/Al-(hydr)oxides, whilst negative PC2 loadings are asso-
ciated with 2:1 phyllosilicates (i.e. both expandable 2:1 and micaceous
2:1 phyllosilicates), K-feldspar and plagioclase (Fig. 9b). Positive PC3
loadings are associated with K-feldspar and kaolin minerals, whilst
negative PC3 loadings are associated with 2:1 phyllosilicates, plagio-
clase and calcite (Fig. 9c). Together these interpretations of the PC
loadings provide a mineralogical meaning for the PCs presented in
Fig. 8, allowing further mineral–nutrient relationships to be explored.

4.2.3. Total nutrient balances
Of the seven log-ratio balances defined from the total nutrient da-

taset (Table 3), bT
1 and bT

2 stand out as being related to soil mineralogy
based on PCA biplot analysis (Fig. 8).

The balance bT
1 accounts for 40.94% of variability in the total nutrient

dataset (Table 3). This balance partitions the two most distinct groups
of co-dependent variables in the total nutrient dataset (Fig. 7), re-
presenting TOC–MnT–FeT–NiT–CuT–ZnT:KT–CaT, and correlates posi-
tively with PC2 scores of the XRPD data (Fig. 8). Positive PC2 scores
(and increased bT

1 values) are driven by enrichment of the soils in Fe/Al-
(hydr)oxides and kaolin minerals relative to feldspars and 2:1 phyllo-
silicates. Based on this interpretation of PC2 and estimated chemical
compositions of these minerals, it is Fe/Al/Ti-(hydr)oxides that are
likely to be the main driver of increased bT

1 values given their associa-
tion with Mn, Fe, Ni, Cu and Zn (Bruemmer et al., 1988; Neaman et al.,
2008), whilst both 2:1 phyllosilicates and feldspars represent known
sources of KT and CaT (Towett et al., 2015) that are likely to promote
decreased bT

1 values. Soils rich in Fe/Al-(hydr)oxides are often also

Fig. 6. Total (a) and M3 (b) average nutrient concentrations of each cluster expressed as deviation in log-ratio scale from the overall geometric mean of the dataset
(i.e. all 935 subsoils; at zero reference line). Values below zero represent average concentrations lower than that for the entire dataset, whilst values above zero
represent the opposite.
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enriched in Mn-oxides (Neaman et al., 2008), which are difficult to
characterise or even identify from complex XRPD data unless especially
abundant. Together, Fe/Al/Ti/Mn-(hydr)oxides in soil may also act as
strong adsorbents of Ni (Bruemmer et al., 1988), Cu and Zn (Violante
et al., 2003), which may partly explain the co-dependence of these
elements in bT

1. Further, the inclusion of TOC in the
TOC–MnT–FeT–NiT–CuT–ZnT sub-composition also aligns with the con-
sensus that Fe/Al/Ti/Mn-oxides play an important role in the stabili-
sation of organic matter in soils and sediments (Lützow et al., 2006;
Wagai and Mayer, 2007; Lalonde et al., 2012). In contrast to the geo-
chemistry of Fe/Al-(hydr)oxides, K-feldspar and plagioclase minerals do
not usually represent a source of structural or adsorbed transition metal
micro-nutrients, and the dominance of feldspars in defining KT and CaT
concentrations likely contributes to the two independent sub-compo-
nents of bT

1.
The balance bT

2 accounts for 17% of variability in the total nutrient
dataset, and contrasts to bT

1 because it partitions the two components of
the KT–CaT sub-composition, yielding KT:CaT (Fig. 7; Table 3). Biplots
illustrate how bT

2 positively correlates with PC3 of the XRPD data
(Fig. 8). Positive PC3 scores (and increased bT

2 values) are largely

associated with soils rich in K-feldspar and kaolin minerals relative to
plagioclase, 2:1 phyllosilicates and calcite, whilst the reverse applies to
negative PC3 scores. Pure K-feldspar minerals contain approximately
14% K by weight (Andrist-Rangel et al., 2006) and represent the main KT
reservoir in most soils (Towett et al., 2015). Ca-enriched 2:1 phyllosi-
licates such as Ca-montmorillonite contain up to 2% Ca, plagioclase up
to 14% Ca (anorthite), and calcite up to 40% Ca. Based on this in-
formation, 2:1 phyllosilicates, plagioclase and calcite could all act as a
considerable source of CaT, which is reflected in the CaT concentration
of Cluster 8 being 5 times higher than that of any other cluster
(Table 1). As found for bT

1, this analysis illustrates mineralogical con-
trols on total nutrient concentrations, and highlights how K-feldspar,
plagioclase, 2:1 phyllosilicates and calcite control bT

2.
In summary, total nutrient compositions in the present dataset pri-

marily relate to the concentrations of Fe/Al/Ti/Mn-(hydr)oxides, feld-
spars, 2:1 phyllosilicates, and calcite. TOC, MnT, FeT, NiT, CuT and ZnT
form a group of co-dependent variables that reflect how Fe/Al/Ti/Mn-
(hydr)oxides are the main host of these transition metal micro-nutrients
in soil, and that these minerals have a tendency to promote the stabi-
lisation of soil organic matter (Wagai and Mayer, 2007; Zhao et al.,
2016). KT and CaT concentrations are largely independent of the
TOC–MnT–FeT–NiT–CuT–ZnT sub-composition and primarily relate to K-
feldspar and plagioclase minerals along with contributions from 2:1
phyllosilicates and calcite.

4.2.4. M3 nutrient balances
Of the seven log-ratio balances defined from the M3 nutrient dataset

(Table 3), b b,M
1

M
2 and bM

3 are found to have specific relationships to soil
mineralogy based on PCA biplot analysis (Fig. 8).

BM is the most independent nutrient of the M3 dataset (Fig. 7) and is
partitioned from all other M3 nutrients in bM

1 (BM:MgM–KM–
CaM–MnM–FeM–CuM–ZnM), which accounts for 51.75% of variability in
the M3 dataset (Table 3). This independence is primarily controlled by
the enrichment of BM in the soils of Cluster 8, which have a mean BM
concentration 17 times higher than that of any other cluster (Table 1).
Thus bM

1 is consistently associated with Cluster 8 in the PCA biplots
(Fig. 8), driven by low quartz concentrations (positive PC1 scores),
enrichment in 2:1 phyllosilicates (negative PC2 and PC3 scores) and the
presence of calcite (negative PC3 scores). The notable enrichment of
Cluster 8 in 2:1 phyllosilicates, especially expandable dioctahedral
minerals, combined with the presence of calcite (Table 2), therefore act
to create soils with high BM concentrations. In this context the presence
of calcite explains the alkaline pH of the soils of Cluster 8 (pH =

±8.02 0.90; Table 1), which would affect B adsorption to 2:1

Fig. 7. Groupings of the total (a) and M3 (b) nutrient concentration datasets derived from their respective variation matrices (see Tables S1 and S2 and
Supplementary Material), used to define meaningful nutrient balances (Table 3).

Table 3
Nutrient balances for the total and M3 datasets, defined from the overall
grouping structure of the variation matrix for each dataset (Fig. 7 and Sup-
plementary Material), along with their contributions to total variance.

Balance Components Total variance (%)

Total
bT

1 TOC–MnT–FeT–NiT–CuT–ZnT:KT–CaT 40.94

bT
2 KT:CaT 16.64

bT
3 TOC:MnT–FeT–NiT–CuT–ZnT 14.42

bT
4 MnT:FeT–NiT–CuT–ZnT 9.01

bT
5 NiT:FeT–CuT–ZnT 7.54

bT
6 ZnT:FeT–CuT 5.79

bT
7 FeT:CuT 5.65

M3
bM

1 BM:MgM–KM–CaM–MnM–FeM–CuM–ZnM 51.75

bM
2 FeM–ZnM:MgM–KM–CaM–MnM–CuM 17.47

bM
3 MgM–KM–CaM:MnM–CuM 11.48

bM
4 MnM:CuM 7.81

bM
5 KM:MgM–CaM 5.61

bM
6 FeM:ZnM 4.21

bM
7 MgM:CaM 1.68
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phyllosilicates (Karahan et al., 2006). More specifically, aqueous BM
concentrations are driven by the equilibrium reaction of boric acid
(H3BO3):

+ + +H BO H O B(OH) H .3 3 2 4

Below pH 7, H3BO3 predominates, whilst alkaline solutions favour
B(OH)4 (Russell and Wild, 1988). In alkaline conditions (pH >8;
Karahan et al., 2006) 2:1 phyllosilicates have a high capacity for
B(OH)4 adsorption, whilst at <pH 7 B is readily leached from the soil
which can result in B deficiencies (Gupta et al., 1985). The alkaline pH
of the soils of Cluster 8 would promote adsorption of B by the ex-
pandable dioctahedral minerals in the form of B(OH)4 (Karahan et al.,
2006). All other clusters had similarly acidic pH’s on average (Table 1),
limiting the potential for B(OH)4 adsorption by phyllosilicates. To-
gether this not only highlights the combined importance of calcite,
phyllosilicate minerals and pH on soil B availability, but also suggests
that the M3 extraction results in the desorption of B(OH)4 from ex-
pandable dioctahedral phyllosilicates.

The balance bM
2 represents the contrast of FeM–ZnM:MgM–KM–

CaM–MnM–CuM that accounts for 17.47% of variability in the M3 nu-
trient dataset. It is worth noting that of all M3 nutrients, FeM and ZnM
display the least variation between the nine clusters (Fig. 6), therefore
drivers of variation in bM

2 will primarily relate to changes within the
MgM–KM–CaM–MnM–CuM sub-composition. bM

2 displays positive corre-
lations with PCs 2 and 3, and negative correlations with PC1. Increased
bM

2 values are therefore promoted by soils enriched in quartz, Fe/Al-
(hydr)oxides, K-feldspar, and kaolin relative to 2:1 phyllosilicates,

plagioclase and calcite. Of the minerals within this list, quartz would
not represent a source of any M3 nutrients (Hardy and Cornu, 2006),
whilst structural Ca and K in plagioclase and K-feldspars, respectively,
would not contribute considerably to the M3 nutrient concentrations
since these framework silicates are particularly resistant even to quite
aggressive chemical extractants (Andrist-Rangel et al., 2010; Reimann
et al., 2014; Butler et al., 2018). Of the remaining minerals driving
changes in bM

2 , 2:1 phyllosilicates represent the most likely source of
elements within the MgM–KM–CaM–MnM–CuM sub-composition. It is
therefore considered that bM

2 represents how 2:1 phyllosilicates are less
likely to represent a source of FeM or ZnM than they are of MgM, KM,
CaM, MnM or CuM.

The balance bM
3 partitions the MgM–KM–CaM–MnM–CuM sub-com-

ponent of bM
2 , representing MgM–KM–CaM:MnM–CuM and accounting for

11.48% of variability in the M3 nutrient dataset. It is found that bM
3

correlates negatively with PCs 2 and 3 (Fig. 8). Negative correlation of
bM

3 with PC2 suggests soils enriched in 2:1 phyllosilicates and feldspar
minerals relative to kaolin and Fe/Al-(hydr)oxides favour increased bM

3

values. Similarly the negative correlation of bM
3 with PC3 is also driven

by enrichment of the soil in 2:1 phyllosilicates along with the presence
of calcite. Given these mineral–nutrient relationships, soils in Clusters 6
(enriched in 2:1 phyllosilicates) and 8 (enriched in 2:1 phyllosilicates
and calcite) display the highest bM

3 values (Fig. 8). Since PC2 scores are
not affected by calcite and yet still relate to bM

3 , the data suggest that 2:1
phyllosilicates are more likely to represent sources of nutrients within
the MgM–KM–CaM sub-composition than the MnM–CuM sub-composition
- in agreement with most literature highlighting 2:1 phyllosilicates as
sources of base cations (Velde and Barré, 2009; Churchman, 2010;
Singh and Schulze, 2015). Therefore, assuming that 2:1 phyllosilicates
represent the main source of M3 nutrient concentrations, bM

2 and bM
3

together suggest an approximate sequence of co-dependent soil nu-
trients that are associated with these minerals of MgM–KM–CaM >
MnM–CuM > FeM–ZnM.

In summary, whilst Fe/Al/Ti/Mn-(hydr)oxides and feldspar mi-
nerals are key drivers of total soil nutrient concentrations in the present
dataset (Section 4.2.3), it is 2:1 phyllosilicates that represent the main
source of all M3 extractable nutrients except for FeM and ZnM. Since 2:1
phyllosilicates are therefore not likely to represent a source of FeM or
ZnM in soils investigated here, potential deficiencies in these elements
must be accounted for by other organic or mineral soil components.

4.3. Future prospects

The mineral–nutrient relationships defined here from the cluster
analysis and compositional methods illustrate how mineralogy is the
key driver of soil nutrient concentrations in African soils. With in-
creasing availability of geo-referenced soil XRPD datasets (Hillier and
Butler, 2018) and associated geochemical data, further data-driven
research could progress towards classifying soil nutrient statuses from
XRPD measurements via the use of cluster analysis or other data-driven
methods. These ‘Digital Mineralogy’ approaches could aid in defining
mineralogically tailored nutrient management schemes that can ac-
count for the full suite of essential plant nutrients. Doing so would help
land users avoid the risks of excessive fertiliser use (Sebilo et al., 2013)
and nutrient mining (Jones et al., 2013), and aid in tackling human
micro-nutrient deficiencies (Alloway, 2009).

5. Conclusions

Cluster analysis of soil XRPD data was used to define nine miner-
alogically distinct clusters from the soil mineralogy continuum. Each of
the nine clusters derived from XRPD data was comprised of miner-
alogically similar soils from different agro-ecological environments of
sub-Saharan Africa. Despite this spatial variation, meaningful differ-
ences between clusters were found for both the total and M3 nutrient
compositions. Quartz and kaolin minerals did not show a notable

Fig. 9. The loadings of PC1 (a), PC2 (b) and PC3 (c) from PCA of the pre-treated
and subset ( =n 239) XRPD data (Section 3.2.3). Highlighted regions represent
the soil minerals associated with that specific region of XRPD variables.
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contribution to any of the total or M3 nutrient concentrations analysed.
Feldspar minerals were found to be major sources of KT (K-feldspar) and
CaT (plagioclase), but did not directly contribute to KM or CaM. Fe/Al/
Ti/Mn-(hydr)oxides were found to be associated with TOC concentra-
tions as reflected in the co-dependence of TOC, MnT, FeT, NiT, CuT and
ZnT sub-composition. Compared to the contribution of Fe/Al/Ti/Mn-
(hydr)oxides to total nutrient concentrations, their importance as a
source of nutrients accessible to the M3 extraction was found to be
limited. All M3 nutrient concentrations except for FeM and ZnM were
primarily driven by 2:1 phyllosilicates, namely expandable dioctahe-
dral and illitic/micaceous minerals. The importance of 2:1 phyllosili-
cates as a source of phyto-available nutrients suggests that the relative
abundance of these minerals could provide a powerful indicator of the
inherent fertility in African soils.

The interpreted soil mineralogy–nutrient relationships highlight
how the soil mineral composition drives soil nutrient concentrations
and their phyto-availability. As such, characterising soils based on their
silica (e.g. basic vs acidic) and/or clay (e.g. soil texture) components
alone acts to over-simplify the intricacies of mineral contributions to
soil nutrients.

This is the first application of cluster analysis to soil XRPD data,
from which it is evident that its use in combination with compositional
data analysis methods can allow for detailed interpretation of soil mi-
neral–nutrient relationships. Information encoded within soil XRPD
data is thus inherently related to the total and/or extractable con-
centrations of B, Mg, K, Ca, Mn, Fe, Ni, Cu and Zn. Data-driven analysis
of soil XRPD data can therefore be used to extract this information in
new detail.
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