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A New Approach in Profile Analysis with High-Dimensional
Data Using Scores

Abstract

In profile analysis, there exist three tests: test of parallelism, test of
levels and test of flatness. In this thesis, these tests have been studied.
Firstly, a classical setting, where the sample size is greater than the
dimension of the parameter space, is considered. The hypotheses have
been established and likelihood ratio tests have been derived. The dis-
tributions of these test statistics have been given. In the latter stage, all
tests have been derived in a high-dimensional setting, where the number
of parameters exceeds the number of sample size. Such settings have
become more common due to the advances in computer technologies in
the last decades. In high-dimensional data analysis, several issues arise
with the dimensionality and different techniques have been developed
to deal with these issues. We propose a dimension reduction method
using scores that was first proposed by Läuter et al. (1996). To be able
to find the specific distributions of the test statistics of profile analysis
in this context, the properties of spherical distributions are utilized.
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Linköping University Electronic Press, LiTH-MAT-R-2020/07–SE.

9





1 Introduction

Multivariate statistics focuses on methods for analyzing data which have been
collected over time, also called repeated measures data, or for analyzing data
which have been taken on different characteristics of a subject. The obser-
vations taken from an individual can be written as a column vector and this
vector of observations can be considered as taken from a population according
to some distribution law. The idea can be illustrated by a general p× n data
matrix with n individuals and p variables:

v
a
ri

a
b
le

s



individuals︷ ︸︸ ︷
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xp1 xp2 · · · xpn

 ·

Many methods that are used for analysing univariate observations can be
generalized to multivariate observations. Instead of analysing one dimensional
quantities which appear in the univariate case, such as mean, variance, etc., we
will have a vector or matrix of these quantities; mean vector which consists
of the univariate means and dispersion matrix which consists of univariate
variances and bivariate covariances. If we consider the classical problem of
comparing means, univariate analysis of variance (ANOVA) will be general-
ized to the multivariate case which is called multivarite analysis of variance
(MANOVA). We should note that the dependency between the variables are
important in multivariate analysis and it should be taken into account.

One of the most fundamental resources for our study is the book Introduc-
tion to Multivariate Analysis by Anderson (2003) which was first published
in 1958. Rao’s (1973) book Linear Statistical Inference and its Applications
is another classical resource. Other interesting books have been written by
Srivastava and Khatri (1979), Mardia, Kent and Bibby (1979), Muirhead
(1982), Bilodeau and Brenner (1999), Rencher (2002) and Morrison (2004).
Some of these references focus on the theory, whereas some of them present
applications and computer practices. For more advanced studies, the book by
Kollo and von Rosen (2005) Advanced Multivariate Statistics with Matrices
is recommended where the topic is treated with the help of matrix formula-
tions. Bilinear Regression Analysis: An Introduction from von Rosen (2018)
gives the extension of the theory to bilinear regression models (BRM) which
is also known as generalized multivariate analysis of variance (GMANOVA)
or the analysis of the growth curve model. These last two references play an
important role in the thesis. Technical details, properties, theorems will be
frequently used from the first book (Kollo and von Rosen, 2005) and ideas for
testing hypotheses from the second book (von Rosen, 2018) give us a crucial
insight. Srivastava and Carter (1983) and Srivastava (2002) will be referred to
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later, in particular for profile analysis which falls into the scope of multivariate
analysis. Fang and Zhang’s (1990) Generalized Multivariate Analysis extends
the topic from classical multivariate analysis, which focuses generally on the
multivariate normal distributions, to generalized multivariate analysis which
is based on elliptically contoured distributions, that involves many multivari-
ate distributions including the multivariate normal distribution. Last but
not least, Läuter’s (2016) Multivariate Statistik - drei Manuskripte gives an
introduction and summary of the topic.

1.1 Motivation

This thesis is mainly based on two topics; profile analysis and high-dimensional
statistics. Profile analysis is a multivariate technique to compare two or more
groups and test for similarity of means. High-dimensional statistics is con-
cerned with the data where the dimension is larger than the sample size which
means that the number of variables exceeds the number of subjects. In recent
applications of statistics we have started to encounter these type of data sets
more often due to the advancing data collection technologies and computing
sources. The above mentioned two topics will be treated extensively in the
upcoming sections. We mention them briefly here to express our interest. Our
motivation lies on the challenges that occur in the high dimensional analysis.
Among other problems, there is the problem of singularity. When p > n,
where p is the number of variables and n is the number of subjects, the sam-
ple covariance matrix S becomes singular, so S−1 does not exist. Thus, we
cannot carry out likelihood ratio tests which contain this inverse or the de-
terminant of this matrix. There have been different approaches proposed to
deal with this challenge which we are going to present in the high dimensional
section. The idea for our approach includes a dimension reduction method.
This method proposes to take linear combinations of variables, which means
each individual will have one measure, which also is called score, instead of p
separate variables. As Mardia, Kent and Bibby (1979) stated in their book
in Section 1.5, taking linear combinations of the varibles is one of the most
important tools in multivariate analysis. We should note that the structure of
this linear combination has to follow some rules. Useful properties of spherical
distributions motivate us to integrate this topic to show the robustness of the
methods.

1.2 Aim and outline

Our aim for this thesis is to develop a new method for testing problems in
profile analysis within a high-dimensional framework. We list the following
specific steps of what is planned to take place:

1. Give a brief introduction to profile analysis, introduce the three tests;
test of parallelism, test of levels and test of flatness, give relevant refer-
ences, introduce mathematical notation and present the hypotheses for
two groups;
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2. Give a brief introduction to high-dimensional analysis, list appropriate
references, discuss common challanges that appear in a high-dimensional
setting and give information on common practices, introduce scores and
Läuter’s ideas;

3. Give a brief introduction for elliptical and spherical distributions, men-
tion relevant references, introduce ideas that will be used in finding
distributions of test statistics.

4. Give the results from the report.

The aims of the report which this thesis is based on:

5. Introduce suitable notation;

6. Present related definitons and theorems that are used in the derivations
of the test statistics;

7. Present the model of our research problem, derive the likelihood ratio
tests for the three hypotheses with q groups in a normal setting where
the number of variables is less than the number of subjects, conduct
the derivation with matrix notation which is different from, for example
Srivastava’s approach (1987, 2002);

8. Introduce the high-dimensional problem, scores and spherical distribu-
tion, achieve dimension reduction with the help of scores and derive the
test statistics of the hypotheses in profile analysis, that are parallelism
hypothesis, level hypothesis and flatness hypothesis, find explicit distri-
butions of the test statistics using the theory of spherical distributions.
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2 Profile analysis

2.1 Introduction and notation

Profile analysis is a multivariate technique that is used for comparing the
patterns of variables between groups. The term arose from social sciences,
but, for example, nowadays it is used in many medical applications. We have
repeated measurements for each individual and mean levels for each variable
are calculated per group. The profile is then obtained by plotting the means
for each variable and connecting these points by drawing straight lines.

Example: A survey is conducted within a school to see if there is a difference
between classes in terms of success. Say there are nA students in class A and
nB students in class B. The marks for four subjects, Mathematics, English,
Physics and History, will be compared between class A and class B.
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Figure 1: Profiles of class A and class B based on mean level of marks for four
subjects; Mathematics, English, Physics and History.

Here we have repeated measurements for each individual and mean levels for
each class are plotted in the graph in Figure 1. The main interest is to see
if there is a difference between these two profiles or in other words if there
is an interaction between classes and tests. Similar profiles will indicate no
interaction between subjects and groups.

Note that we are not interested in the mean values of the variables but in the
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relative difference between the shapes across groups.

Two cases are possible in profile analysis:

1. Different variables can be measured per subject.

2. The same variable can be measured repeatedly over different time points.

The second one is also known as repeated measures case or growth curve case.
Note that the response variables are not mutually independent.

There are three types of tests which are commonly used in profile analysis; test
of parallelism, test of levels and test of flatness (Srivastava and Carter, 1983;
Srivastava, 2002). For simplicity, assume that we have two groups. Then the
tests can be visualised as it follows.

1) Test of parallelism

We start testing to see if the profiles are parallel, which is illustrated in
Figure 2.
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Figure 2: Parallel and non-parallel profiles for two groups.

2) Test of levels

If there exists parallelism between the profiles, then one can check if
they coincide or not (see Figure 3).
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Figure 3: Coincident and non-coincident profiles for two groups.
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3) Test of flatness

If the profiles are parallel, one can additionally check if they are flat (see
Figure 4).
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Figure 4: Flat profiles for two groups.

Our interest is to go from the parallelism hypothesis to the level hypothesis
or the flatness hypothesis which is following Srivastava’s approach of profile
analysis. This is illustrated in Figure 5.

1

2 3

Figure 5: Testing the parallelism hypothesis which is denoted by circle 1 and
then moving on to either testing the level hypothesis which is denoted by
circle 2 or testing the flatness hypothesis which is denoted by circle 3.

Other types of relationships can also be of interest and one can study if the
profiles are parallel, then investigate if the levels are the same, and if the levels
are the same, test if they are flat. This is illustrated in Figure 6.
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Figure 6: Testing the parallelism hypothesis which is denoted by circle 1 and
then moving on to the level hypothesis which is denoted by circle 2 and from
there moving on testing the flatness hypothesis which is denoted by circle 3.
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The topic has been studied by several authors with different focus. Green-
house and Geisser (1959) gave a good introduction to the theory and it is
one of the early papers on the topic. Srivastava has a substantial contri-
bution to the topic. In his paper, Srivastava (1987) derived the likelihood
ratio tests together with their distributions for the three hypotheses. Prior
to this paper, Srivastava and Carter (1983) published a book with a chapter
on profile analysis. Another reference is the book on multivariate statistics
from Srivastava (2002). One of the first papers on the growth curve model
is by Potthoff and Roy (1964) and profile analysis with extensions within the
framework of growth curve models can be found in Fujikoshi (2009), where
he extended profile analysis, especially statistical inference on the parallelism
hypothesis. Ohlson and Srivastava (2010) considered profile analysis of sev-
eral groups where the groups have partly equal means which leads to a profile
analysis for a growth curve model. Seo, Sakurai and Fujikoshi (2011) derived
likelihood ratio tests for two hypotheses (level and flatness) in profile analysis
for growth curve data. Another focus is on profile analysis with random effects
covariance structure which has been studied by Srivastava and Singull (2012),
Yokoyama (1995) and Yokoyama and Fujikoshi (1993). Singull and Srivastava
(2012) constructed tests based on the likelihood ratio, without any restrictions
on the parameter space, for testing the covariance matrix for random-effects
structure or sphericity. Yokoyama (1995) derived the likelihood ratio crite-
rion with random-effects covariance structure under the parallel profile model.
Yokoyama and Fujikoshi (1993) conducted analysis of parallel growth curves
of groups where they assumed a random-effects covariance structure. They
also gave the asymptotic null distributions of the test. Extension to high-
dimensional data are given by Harrar and Kong (2016), Onozawa, Nishiyama
and Seo (2016) and Shutoh and Takahashi (2016).

Now we start giving the statistical expressions and the notations for profile
analysis. Assume there are p variables of interest and q groups of size nk, k =
1, ..., q. In total, there will be N =

∑q
k=1 nk subjects and N × p observations.

The measurements for the i-th individual in the k-th group can be denoted
by

(xik1, xik2, ..., xikj , ..., xikp)

where there are r i = 1, 2, ..., nk individuals in group k,r j = 1, 2, ..., p variables,r k = 1, 2, ..., q groups.

The group profile for group k can be written

(x̄.k1, x̄.k2, ..., x̄.kp),

where x̄.kj represents the group mean (group k) for the variable j.
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We visualise all the information in Table 1 given below:

Table 1: Measurements for q groups, each of sample size nk, where k = 1, ..., q,
consisting of p variables for each individual and their relevant means.

Variables

Group Individual x1 · · · xj · · · xp
1 1 x111 x11j x11p

...
n1 xn111 xn11j xn11p

Means: Group 1 x̄.11 x̄.1j x̄.1p x̄.1.
...

k 1 x1k1 x1kj x1kp

...
i xik1 xikj xikp
...
nk xnkk1 xnkkj xnkkp

Means: Group k x̄.k1 x̄.kj x̄.kp x̄.k.
...

q 1 x1q1 x1qj x1qp

...
nq xnqq1 xnqqj xnqqp

Means: Group q x̄.q1 x̄.qj x̄.qp x̄.q.
Means: All groups x̄..1 x̄..j x̄..p x̄...

Since we have multiple measurements for each individual, we will consider it as
a multivariate analysis problem. We assume that each individual is randomly
sampled from their corresponding groups and

E(Xikj) = µkj , i = 1, 2, ..., nk.

We have multivariate observations for each individual which means that they
cannot be considered as independent. Thus, the observations per individual
are correlated which is also called the within-subject correlation. Moreover,
it is assumed that the observations between individuals are independent:

Cov(Xi1k1j1 , Xi2k2j2) =

{
σj1j2 for i1 = i2, k1 = k2,

0 otherwise.

Furthermore, it is assumed that we have a p-variate normal distribution with
an arbitrary dispersion matrix from which the vector of observations for each
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individual is sampled:

Σ =


σ2

1 ρ12σ1σ2 · · · ρ1pσ1σp
ρ12σ1σ2 σ2

2 · · · ρ2pσ2σp
...

...
...

ρ1pσ1σp ρ2pσ2σp · · · σ2
p

 =


σ11 σ12 · · · σ1p

σ12 σ22 · · · σ2p

...
...

...
σ1p σ2p · · · σpp

 ·
Different covariance structures, such as autocorrelation, intraclass correlation,
equicorrelation, etc, can be assumed for the matrix Σ. In our research, an
unstructured variance-covariance matrix is supposed to hold.

2.2 The construction of the three hypotheses for two groups

Let µkj denote the mean value of variable j of the k-th group, where k = 1, 2.
Mean vectors can be written

µ1 = (µ11, µ12, ..., µ1p)
′,

µ2 = (µ21, µ22, ..., µ2p)
′.

Let’s introduce a matrix which we are going to use frequently for the hy-
potheses given below, i.e., the contrast matrix C is a (p−1)×p matrix which
satisfies C1 = 0. One possible choice is a matrix satisfying

C =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 −1

 . (1)

1. Parallelism hypothesis:

The null hypothesis to test parallel group profiles can be written

H1 =

 µ11 − µ12

...
µ1,p−1 − µ1,p

 =

 µ21 − µ22

...
µ2,p−1 − µ2,p


which means that for each profile the slopes of line segments are the same,
which is equivalent to that there does not exist any interaction between the
groups and the responses.

Another way of writing the null hypothesis with the alternative hypothesis is:

H1 : C(µ1 − µ2) = 0 versus A1 : C(µ1 − µ2) 6= 0,

where C is the contrast matrix defined in (1) and A1 denotes the alternative
hypothesis. An equivalent expression is:

H1 : µ1 − µ2 = γ1 versus A1 : µ1 − µ2 6= γ1,
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where γ is an unknown parameter which is called the average difference be-
tween two profiles and 1 is a vector of ones.

2. Level hypothesis:

The hypotheses for the test of levels can be written

H2|H1 : γ = 0 versus A2 : γ 6= 0

or equivalently

H2|H1 : 1′
pµ1 = 1′

pµ2 versus A2 : 1′
pµ1 6= 1′

pµ2,

where H2|H1 denotes the hypothesis H2 given that H1 holds.

3. Flatness hypothesis:

Lastly, the hypotheses for testing flatness are given

H3|H1 : µ11 = µ12 = · · · = µ1p, µ21 = µ22 = · · · = µ2p versus A3 6= H3|H1

or equivalently

H3|H1 : C(µ1 + µ2) = 0 versus A3 6= H3|H1,

where H3|H1 denotes the hypothesis H3 given that H1 holds.

2.3 The test statistics for two groups

The hypotheses have been given in the previous chapter. Now the test statis-
tics for these hypotheses will be presented.

Let the p-dimensional random vectors x
(i)
1 , ...,x

(i)
ni , i = 1, 2, be independently

normally distributed with mean vector µi and covariance matrix Σ. The
sample mean vectors, the sample covariance matrices and the pooled sample
covariance matrix are given by

x(i) =
1

ni

ni∑
j=1

x
(i)
j ,

S(i) =
1

ni − 1

ni∑
j=1

(x
(i)
j − x

(i))(x
(i)
j − x

(i))′,

Sp =
1

n1 + n2 − 2
[(n1 − 1)S(1) + (n2 − 1)S(2)].

Define a (p− 1)× p contrast matrix C which satisfies C1p = 0 and is of rank
r(C) = p− 1, where 1p is a p-vector of ones. Let

b =
n1n2

n1 + n2
, f = n1 + n2 − 2, u = x(1) − x(2).
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Then the three hypotheses and related test statistics can be written as below
(Srivastava and Carter, 1983; Srivastava, 1987, 2002):

(1) Parallelism hypothesis: H1 : Cµ1 = Cµ2.

The null hypothesis is rejected if

f − (p− 1) + 1

f(p− 1)
bu′C ′(CSpC

′)−1Cu ≥ Fp−1,f−p+2,α ,

where Fp−1,f−p+2,α denotes the α-percentile of the F -distribution with
p− 1 and f − p+ 2 degrees of freedom.

(2) Level hypothesis: H2|H1 : 1′pµ1 = 1′pµ2.

The null hypothesis is rejected if

(f − p+ 1

f

)
b(1′S−1

p u)2(1′S−1
p 1)−1(1 + f−1T 2

p−1)−1 ≥ t2f−p+1,α/2

= F1,f−p+1,α ,

where T 2
p−1 = bu′C ′(CSpC

′)−1Cu and t2f−p+1,α/2 is the α/2-percentile
of the t-distribution with f − p+ 1 degrees of freedom.

(3) Flatness hypothesis: H3|H1 : C(µ1 + µ2) = 0.

The null hypothesis is rejected if

n(f − p+ 3)

p− 1
x′C ′(CV C ′ + bCuu′C ′)−1Cx ≥ Fp−1,n−p+1,α ,

where x = (n1x
(1) + n2x

(2))/(n1 + n2) and V = fSp.

As it is mentioned before, the second hypothesis is tested given that H1 is true.
If we fail to reject the first hypothesis, we cannot conclude that the profiles
are parallel. It means only that the data do not provide enough evidence for
rejecting H1. Moreover, notice that parallelism hypothesis together with level
hypothesis, given that the former holds, gives that the means of the groups
are the same, but one cannot calculate the correct level of significance because
the levels of significance of these two hypotheses are not additive. If we fail
to reject H1 and H2 each at 5% significance level, this does not mean that we
will fail to reject Hotelling’s T 2, which is used to test the equality of mean
vectors, at 5% or even 10% significance level. The other way around gives
a similar conclusion. Failing to reject that two mean vectors are equal does
not necessarily mean that we will fail to reject H1 and H2 (Srivastava, 2002,
Chapter 7). Thus, Srivastava (2002) suggests that one should perform the
tests for profile analysis if similar profiles are expected and one considers the
problem of finding the confidence interval for γ. Recall that γ was shown in
Section 2.2 and it is also known as the difference in the levels of profiles.
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2.4 Hypotheses and test statistics for q groups

The results, which have been presented so far in Chapter 2, have already been
given in the literature and they act as informative and supporting bodies for
the topic. We will construct the likelihood ratio tests in profile analysis with
a different approach and derive the distributions of the test statistics for each
hypothesis given in the previous sections of this chapter. This time the tests
will be generalized to the setting, where there are q groups. Before we give
the motivation of our approach, let’s give the definitions of two models which
are frequently used in multivariate analysis.

Definition 2.1. (General Multivariate Linear Model) A general multivariate
linear model is given by

X = BL+E, (2)

where X : p × n denotes the random matrix, B : p × k denotes the matrix
of unknown parameters, L : k × n denotes the design matrix which is known
and E is the error matrix which satisfies E ∼ Np,n(0,Σ, I), where Σ is an
unknown p.d. matrix and Np,n(0,Σ, I) denotes matrix normal distribution.

Definition 2.2. (Bilinear Regression Model) A bilinear regression model is
given by

X = KBL+E, (3)

where X, B, L and E are defined in the same way as in Definition 2.1 and K
is a known design matrix. This model is also named as growth curve model
or generalized multivariate analysis of variance (GMANOVA) model.

More details on these models can be found in von Rosen (2018). The reason
why these models are introduced here is that they are going to be used for the
derivation of the test statistics of profile analysis. Our aim is to reformulate
the hypotheses given in Section 2.2 as problems in MANOVA and GMANOVA
and derive the tests statistics based on this reformulation. The derivations
will be based on the scenario where there are q-groups. Reformulation of
the problems as problems in MANOVA and GMANOVA is crucial in terms of
constructing a structure for later use when we have a high-dimensional setting.
The challanges that rise with high-dimensional data will be mentioned in the
following chapter, but with the reformulation in MANOVA and GMANOVA
that will be introduced in this chapter, it will be easier to propose methods
to solve these challanges.

2.4.1 The model

The model for one group, say the k-th group, can be written as

Xk = MkDk +Ek,

where Xk represents the matrix of observations, Mk the p-vector of mean
parameters, Dk a vector of nk ones and Ek is an error matrix. The columns

23



of Xk are independently distributed, which means that the columns of Ek
are independently distributed. The assumption for the distribution of Ek
is that the column vectors of Ek follow a multivariate normal distribution:
ejk ∼ Np(0,Σ).

When we have q groups, we have q models:

(X1 : X2 : · · · : Xq) = (M1D1 : M2D2 : · · · : MqDq) + (E1 : E2 : · · · : Eq)
= (M1 : M2 : · · · : Mq)D + (E1 : E2 : · · · : Eq) , (4)

where D is a q ×N matrix, N =
∑q
k=1 nk, which equals

D =


1 · · · 1 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0
...

. . .
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1


and where Ek ∼ Np,nk

(0,Σ, Ink
). The relation in (4) can be written as

X
(p×N)

= M
(p×q)

D
(q×N)

+ E
(p×N)

, X ∼ Np,N (MD,Σ, IN ) ,

where X = (X1 : X2 : · · · : Xq), M = (M1 : M2 : · · · : Mq) and E = (E1 :
E2 : · · · : Eq)

Moreover, let F be a q× (q− 1) and C be a (p− 1)× p matrix which satisfies
1′F = 0 and C1 = 0 respectively, i.e.,

F =



1 0 · · · 0
−1 1 · · · 0
0 −1 · · · 0
...

...
...

...
0 0 · · · 1
0 0 · · · −1


, C =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 −1

 ·

Since the common F and C are used in each hypothesis, they are introduced
here.

2.4.2 Hypotheses and the tests

The model for q groups has been given above by

X = MD +E, (5)

where X = (X1 : X2 : · · · : Xq). This model is often called the MANOVA
model. If we want to deduct any inference from the model, the unknown
parameters M and Σ need to be estimated.

For the model in (5), the likelihood function equals

L(M ,Σ) = (2π)−
1
2pN |Σ|−N/2exp

{
− 1

2
trΣ−1(X −MD)(X −MD)′

}
,
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where N =
∑q
k=1 nk. One can deduce the following from this likelihood:

XPD′ = M̂D,

NΣ̂ = RR′,

where ” ·̂ ” denotes the estimator and R = X(I − PD′) with the projection
matrix PD′ = D′(DD′)−1D.

This is the general model without any restriction on the mean parameter
space. Our aim is to put restrictions on the mean parameter space based on
the test and each test (parallelism test, level test or flatness test) requires
different formulation of the hypothesis. These restrictions will be given in
matrix form.

The structure will be as follows: First, the hypothesis for the parallelism test
will be introduced and the test statistic with it’s distribution will be given.
Then we move on to the level test assuming that the parallelism hypothesis
holds. The same structure will be followed, such as, introducing the null and
alternative hypotheses initially and then giving the distribution of the test
statistic. Alternatively, we move on to the flatness test assuming that the
parallelism hypothesis holds.

1) Parallelism hypothesis

For the parallelism hypothesis, the restrictions on the mean parameter space
will be introduced with two matrices; C and F which have been defined in
Section 2.4.1. Then the null hypothesis and the alternative hypothesis for
parallelism can be written

H1 : E(X) = MD, CMF = 0,

A1 : E(X) = MD, CMF 6= 0. (6)

Now the aim is to find the maximum of the likelihoods, more precisely propor-
tional expressions, for both hypotheses. These results are deducted from the
estimation of Σ. Denote the maximum likelihood estimator of Σ under the
null hypothesis by Σ̂H1 and under the alternative hypothesis by Σ̂A1 . Then
we can give the following theorem:

Theorem 2.1. The likelihood ratio statistic for the parallelism hypothesis pre-
sented in (6) can be given as

λ2/N =
|NΣ̂A1 |
|NΣ̂H1 |

=
|CSC ′|

|CSC ′ +CXPD′(DD′)−1KX ′C ′|
, (7)

where S = X(I − PD′)X ′ and K is any matrix satisfying C(K) = C(D) ∩
C(F ),

CSC ′ ∼Wp−1(CΣC ′, N − r(D)),

CXPD′(DD′)−1KX
′C ′ ∼Wp−1(CΣC ′, r(K)).

25



Then

λ2/N =
|CSC ′|

|CSC ′ +CXPD′(DD′)−1KX ′C ′|
∼ Λ(p− 1, N − r(D), r(K)),

where Λ(·, ·, ·) denotes the Wilks’ lambda distribution.

2) Level Hypothesis

Assuming that the profiles are parallel, that is CMF = 0, we will construct a
test to check if they have equals level, in other words if they coincide. In this
case, the restrictions on the mean parameter space will be introduced only
with the matrix F . Then the null hypothesis and the alternative hypothesis
for the level test can be written

H2|H1 : E(X) = MD, MF = 0,

A2|H1 : E(X) = MD, CMF = 0.

The same routine as with parallelism hypothesis will be followed; find the
maximum of the likelihoods for both hypotheses and investigate the ratio of
these two. Then the following theorem can be given:

Theorem 2.2. The likelihood ratio statistic for the level hypothesis can be ex-
pressed as

λ2/N =
|NΣ̂A2

|
|NΣ̂H2

|

=
|(C ′)◦′S−1(C ′)◦|−1∣∣∣∣ ((C ′)◦′S−1(C ′)◦)−1 + ((C ′)◦

′
S−1(C ′)◦)−1(C ′)◦

′
S−1XD′

× (DD′)−1KQ−1K ′(DD′)−1DX ′S−1(C ′)◦((C ′)◦
′
S−1(C ′)◦)−1

∣∣∣∣
,

(8)

where Q = K ′(DD′)−1K+K ′(DD′)−1DX ′C ′(CSC ′)−1CXD′(DD′)−1K
and C(K) = C(D) ∩ C(F ),

((C ′)◦
′
S−1(C ′)◦)−1 ∼W1(((C ′)◦

′
Σ−1(C ′)◦)−1, N − r(D)− p+ 1),

((C ′)◦
′
S−1(C ′)◦)−1(C ′)◦

′
S−1XD′(DD′)−1KQ−1K ′(DD′)−1DX ′S−1

× (C ′)◦((C ′)◦
′
S−1(C ′)◦)−1 ∼W1(((C ′)◦

′
Σ−1(C ′)◦)−1, r(K)).

Then

λ2/N ∼ Λ(1, N − r(D)− p+ 1, r(K)).
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3) Flatness Hypothesis

Assuming that the profiles are parallel, we will test if they are flat or not.
The restrictions on the mean parameter space will be introduced only with
the matrix C:

H3|H1 : E(X) = MD, CM = 0,

A3|H1 : E(X) = MD, CMF = 0.

Theorem 2.3. The likelihood ratio statistic for the flatness hypothesis is given
by

λ2/N =
|NΣ̂A3 |
|NΣ̂H3

|
=

|CSC ′ +CXPD′(DD′)−1KX
′C ′|

|CSC ′ +CXPD′(DD′)−1KX ′C ′ +CXPD′F◦X ′C ′|
,

(9)

where

CXPD′F◦X
′C ′ ∼Wp−1(CΣC ′, r(D′F ◦)),

CSC ′ +CXPD′(DD′)−1KX
′C ′ ∼Wp−1(CΣC ′, N − r(D) + r(K)).

Then
λ2/N ∼ Λ(p− 1, N − r(D) + r(K), r(D′F ◦)).

The details of the derivations can be found in the report.
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3 Elliptical and spherical distributions

3.1 Introduction

The multivariate normal distribution has been in the centre of the statistical
analysis of multivariate observations. In general, the normal distribution:

1. describes the process of data generation (as an underlying distribution);

2. approximates the sampling distribution of a statistic (as a limiting dis-
tribution).

In reality, the assumption that the data follows the normal distribution is
often not satisfied. Even if there exist some optimal tests which may work ef-
ficiently under non-normality, one needs to consider the situations where this
is violated and investigate the robustness of the procedures. This has led to a
search for extending the theory to cover not just the normal distribution, but
a wider class of distributions. The focus has been reflected on the elliptically
contoured distributions (or elliptical distributions). Note that the multivari-
ate normal distribution is in this class and moreover, several properties for
normal distribution can be transmitted to the elliptical distributions. Thus,
the class of elliptical distributions can be considered as an extension of the
class of multivariate normal distributions. For example, in addition to the
multivariate normal distribution, there exist the multivariate t, the multivari-
ate Cauchy, the multivariate Laplace, the multivariate uniform and mixtures
of normal distributions which all belong to the class of elliptically contoured
distributions (Anderson and Fang, 1990).

The first detailed paper on spherical distributions was written by Kelker
(1970), in which he studied the distribution theory of spherical distributions.
Dawid (1977, 1978) worked on spherical matrix distributions. An early refer-
ence on the theory of elliptically contoured distributions is Cambanis, Huang
and Simons (1981). Anderson and Fang (1982, 1990) presented technical re-
ports on the topic. Two book references are Kariya and Sinha (1989) and
Fang, Kotz and Ng (1990), where the former presents the development of a
general theory of the robustness of tests and its application to a wide variety
of multiparameter hypotheses testing problems and the latter presents sym-
metric multivariate and related distributions. We will focus mainly on the
book by Fang and Zhang (1990) which we consider as an important reference.
Some classical results on elliptical distributions can also be found in Kollo and
von Rosen (2005).

In the following sections, the definitions of both elliptical and spherical dis-
tribution will be given and the difference between the two will be pointed
out.
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3.2 Spherical distributions

Definition 3.1. An n-dimensional random vector x is distributed according
to an elliptically contoured distribution with parameters µ, Σ and φ if the
characteristic function of x has the form exp(it′µ)φ(t′Σt), where µ : n × 1,
Σ : n× n and Σ ≥ 0 and this is denoted by x ∼ ECn(µ,Σ, φ).

Definition 3.2. If in Definition 3.1 µ = 0 and Σ = In, ECn(0, In, φ) is called a
spherical distribution and denoted by Sn(φ). Then the characteristic function
of x has the form φ(t′t).

φ(.) is a function of a scalar variable and it is called the characteristic generator
of the spherical distribution. This means, if x has a spherical distribution,
there exists a function φ(.) of a scalar variable such that ψ(t) = φ(t′t), where
ψ(t) is the characteristic function of the random vector x. The reverse holds
as well.

One important spherical distribution is the uniform distribution. Let u(n)

be a random vector distributed uniformly on the unit sphere in Rn. The
characteristic function of u(n) is of the form φ(t′t). The proof can be found in
Fang and Zhang (1990), which will be omitted here. The uniform distribution
will appear in the following theorems that will be later used in the report and
in the proofs of the results which will be presented in the thesis. Another
example is the multivariate normal distribution. Let x′ = (x1, ..., xn) be
distributed as Nn(0, In). The characteristic function of x is

exp

{
− 1

2
(t21 + · · · t2n)

}
= exp

{
− 1

2
t′t

}
. (10)

We begin with a theorem which denotes a relation that we will come across
in Corollary 3.1.

Theorem 3.1. A function φ(.) ∈ Φn, where Φn is the set of all possible φ’s,
that is Φn = {φ(.)|φ(t21 + · · ·+ t2n) is a characteristic function}, if and only if

φ(x) =

∫ ∞
0

Ωn(xr2)dF (r), (11)

where F (.) is a cumulative distribution function (c.d.f.) over [0,∞) and

Ωn(y′y) =

∫
S:x′x=1

eiy
′xdS/Sn,

where Sn is the area of unit sphere surface in Rn, i.e., Ωn(t′t) is the charac-
teristic function of u(n).

Now let’s give two crucial corollaries.
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Corollary 3.1. Assume that the characteristic function of a n × 1 random
vector x is φ(t′t) and φ ∈ Φn. Then x has a stochastic representation

x
d
= Ru(n), (12)

where R ∼ F (x) is related to φ as in (11) and is independent of u(n). This
random variable R can be thought of as a radius (Kollo and von Rosen, 2005).

Corollary 3.2. An n × 1 random vector x ∼ Sn(φ) if and only if for every
Γ ∈ O(n),

x
d
= Γx,

where O(n) is the set of n× n orthogonal matrices.

Corollary 3.2 can sometimes be used as a definition for spherical distributions
(Fang, Kotz and Ng, 1990). As one can see, there are several definitions for
spherical distibution or theorems which indicates sphericity. If all information
given so far is gathered in one theorem, the following can be written.

Theorem 3.2. Let x be an n×1 random vector. Then the following statements
are equivalent:

(i) The characteristic function of x has the form φ(t′t), where φ ∈ Φn;

(ii) x has a stochastic representation x
d
= Ru(n), where R ≥ 0 is indepen-

dent of u(n);

(iii) x
d
= Γx for every Γ ∈ O(n).

Corollary 3.3. Suppose x
d
= Ru(n) ∼ Sn(φ) and P (x = 0) = 0. Then

‖x‖ d
= R,

x

‖x‖
d
= u(n),

which are independent. ‖x‖ denotes the Euclidean norm, that is ‖x‖ =√∑n
i=1 x

2
i .

If x ∼ Sn(φ) and P (x = 0) = 0, this is denoted by x ∼ S+
n (φ). A very

important fact is that the distribution of x
‖x‖ does not depend on any special

element of the class of S+
n (φ)’s. Thus, one can assume x ∼ Nn(0, In) (Fang

and Zhang, 1990). This connection between the standard normal distribution
and the spherical distrbution will be the core of some important results which
are going to be introduced below.

Corollary 3.4. Let x ∼ Sn(φ) with φ ∈ Φ∞, where Φ∞ =
∞⋂
n=1

Φn, if and only

if

x
d
= Rz,

where z ∼ Nn(0, In) is independent of R ≥ 0.
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The results that have been given so far and that will be introduced after
Definition 3.3 are based on a random vector x. The only property which is
based on a random matrix is the following definition.

Definition 3.3. Let X be a p × n random matrix. If X
d
= XΓ for every

Γ ∈ O(n), X is called right-spherical.

All theorems and corollaries given so far form a basis for the understanding
why spherical distributions are of interest and how they can be used in our
research. As mentioned before, the multivariate normal distibution lies at the
centre of multivariate statistics and an appropriate extension of this distribu-
tion will provide broader usage of properties which will be valid also in a wider
class of distributions. Let’s demonstrate the idea of invariant distribution with
two examples.

Let x = (x1, ..., xn)′ be a random vector and

x̄ =
1

n

n∑
i=1

xi =
1

n
1′nx, s2 =

1

n− 1

n∑
i=1

(xi − x̄)2 =
1

n− 1
x′Jx,

where 1n = (1, ..., 1)′ and J = In − 1
n1n1′n.

Example 3.1. Define

t =
√
n
x̄

s
·

It is known that if x ∼ Nn(0, In), t ∼ tn−1, where tn−1 denotes the t-
distribution with n− 1 degrees of freedom. To show that this holds whenever
x ∼ S+

n (φ), first define

f(x) =
√
n

1
n1′nx(

1
n−1x

′Jx
) 1

2

·

Then

t = f(x)
d
= f(Ru(n)) =

√
n

R
n 1′nu

(n)(
R2

n−1u
(n)′Ju(n)

) 1
2

=
√
n

1
n1′nu

(n)(
1

n−1u
(n)′Ju(n)

) 1
2

·

Notice that t’s distribution is independent of R. Recall that the normal distri-
bution Nn(0, In) is S+

n (φ) with the characteristic generator φ given in (10).
Thus, t follows the same distribution tn−1 for the whole class {S+

n (φ)}.

Example 3.2. Define

F =
x′P1x/r1

x′P2x/r2

where P1 and P2 are two orthogonal projection matrices of ranks r1 and
r2 respectively, such that P1P2 = 0. It is known that if x ∼ Nn(0, In),
F ∼ F (r1, r2), where F (r1, r2) denotes the F -distribution with r1 and r2
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degrees of freedom. However, F follows the same distribution F (r1, r2) in the
class {S+

n (φ)}. The proof can be given similarly to the way it was given for
the t-distribution in Example 3.1.

The idea of invariant distribution can be generalized with the following theo-
rem.

Theorem 3.3. A statistic t(x)’s distribution remains the same whenever x ∼
S+
n (φ) if

t(αx)
d
= t(x) (13)

for each α > 0 and each x ∼ S+
n (.).

Theorem 3.3 provides a very useful connection between the normal distribu-
tion and other members of the class of spherical distributions. One will be
able to determine the distribution of a statistic even if the random quantity
does not have a normal distibution as long as the relation given by (13) is
satisfied. But first, one needs to show that the random quantity is spher-
ically distributed. This theorem will be used in the derivations of the test
statistics in a high-dimensional setting, particularly when we try to attain the
distributions of the ratios that are derived for the three hypotheses.

The definitions and theorems presented so far in this chapter have been taken
mainly from Fang and Zhang (1990) and also from Fang, Kotz and Ng (1990).
More have been presented in these references and also in the other references
mentioned in the introduction, such as properties of elliptical distributions,
spherical matrix distributions, estimation of parameters etc. If one is inter-
ested further in the topic, see the reference list in Section 3.1.
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4 High-dimensional analysis

The methods and theories that have been introduced and developed so far
consider the setting where the number of independent observations is greater
than the number of dependent variables. In classical multivariate methods,
the number of dependent variables, which is denoted by p, needs to be less
than the number of independent observations, which is denoted by n, for es-
timability reasons. Several multivariate techniques are based on large sample
approximations, where p is fixed and n → ∞. For example, central limit
theorems and the law of large numbers are often based on these assumptions.

However, due to the substantial advances in computer technologies, data stor-
age capacity and computing speed have improved significantly. Therefore,
recently one encounters high-dimensional data more frequently in several ap-
plications of statistics. Examples include genetic data, finance, brain imaging,
climate data, signal processing, etc. In this setting, p is larger than n, which
is also called ”large p, small n” paradigm.

In the high-dimensional setting, where the dimension (p) is larger than the
sample size (n), the conventional testing methods, for instance likelihod ratio
tests, are not applicable. One important problem is that S, which is the
sample covariance matrix, becomes singular, so S−1, which is used as an
unbiased estimator of Σ−1, does not exist. The following three principles can
be used to overcome the problem:

� Shrinking: Use S+ instead of Σ−1.

� Tikhonov regularization: (S + λI)−1 instead of Σ−1.

� Krylov space method: Based on the Cayley-Hamilton

Σ−1 =

p∑
i=1

ciΣ
i−1,

where Σ is of the size p × p and since Σ is unknown, the constants ci
are also unknown. Then an approximation of Σ−1 is given by

Σ−1 ≈
a∑
i=1

ciΣ
i−1, a ≤ p,

and an estimator is found via Σ̂−1 ≈
∑a
i=1 ĉiS

i−1. When determining
ci, a Krylov space method, partial least squares (PLS), is used.

These challenges have led to a search for re-examining the classical methods
and extending them to high-dimensional settings. Ledoit and Wolf (2002)
derived the hypothesis tests for the covariance matrix in a high dimensional
setting. Srivastava (2005) also developed tests for certain hypotheses on the
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covariance matrix in high dimension. Srivastava and Fujikoshi (2006), Srivas-
tava (2007), Srivastava and Du (2008) are other examples in the multivariate
area. Kollo, von Rosen and von Rosen (2011) focused on estimating the pa-
rameters describing the mean structure in the Growth Curve model. Testing
for the mean matrix in a Growth Curve model for high dimensions was stud-
ied by Srivastava and Singull (2017) as well. Fujikoshi, Ulyanov and Shimizu
(2010) focused on high dimensional and large-sample approximations for mul-
tivariate statistics.

The attention in this thesis is on high dimensional profile analysis. Onozawa,
Nishiyama and Seo (2016) derived test statistics for profile analysis with un-
equal covariance matrices in high dimension. Similarly, Harrar and Kong
(2016) worked on this topic. Shutoh and Takahashi (2016) proposed new test
statistics in profile analysis with high-dimensional data by using the Cauchy-
Schwarz inequality. All these references study the asymptotic distributions
of the test statistics. They introduce different high-dimensional asymptotic
frameworks and derive the test statistics in profile analysis under these frame-
works. In this context, such asymptotics can be of interest as n→∞:

(i) p
n → c, where c ∈ (a, b),

(ii) p
n →∞.

Our approach will be different than the approaches mentioned above. We will
not focus on the asymptotic distributions of the test statistics. In this thesis,
fixed p and n are of interest and the following scenario is considered:

p > n or p� n. (14)

4.1 Dimension reduction using scores and spherical distribu-
tions

As stated before, many classical tests are not feasible in high-dimensional
situations. Läuter (1996, 2016) and Läuter, Glimm and Kropf (1996, 1998)
proposed a new method for dealing with the problem that arises in high di-
mensional settings. The tests they proposed are based on linear scores which
have been obtained by using score coefficients that are determined from data
via sums of products matrices. These scores are basically linear combinations
of the repeated measures and the coefficients of the linear combinations are
also called vectors of weights. With this approach high-dimensional observa-
tions are compressed into low-dimensional scores. Then they use these scores
for the analysis instead of the original data. This approach can be useful in
many situations because we often do not have the knowledge on the effect of
each single variable or one may want to investigate the joint effect of several
variables.

Let’s give the mathematical representation of the theory. Suppose

x = (xi) ∼ Np(µ,Σ)
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and n individual p-dimensional vectors form the p×n matrixX which satisfies

X = (xij) ∼ Np,n(µ1′n,Σ, In).

Consider a single score

z′ = (z1, z2, · · · , zn) = (d1, d2, · · · , dp)X = d′X,

where d is the vector of weights and zj ’s, j = 1, ..., n are the individual
scores. The rule for choosing the vector d of the coefficients is that it has
to be a unique function of XX ′ which is the p × p matrix of the sums of
the products. Moreover, the condition d′X 6= 0 with probability 1 needs
to be satisfied. The total sums of product matrix XX ′ corresponds to the
hypothesis µ = 0. Consequently, the structure of the function can change
based on the hypothesis. We will try to illustrate the idea with two primary
theorems presented in Läuter, Glimm and Kropf (1996).

Theorem 4.1. (Läuter, Glimm and Kropf, 1996) Assume that X is a
p × n matrix consisting of n p-dimensional observations (p ≥ 1, n ≥ 2) that
follows the normal distribution X ∼ Np,n(0,Σ, In). Define a p-dimensional
vector of weights d which is a function of XX ′ and assume d′X 6= 0 with
probability 1. Then

t =

√
nz̄

sz
(15)

has the exact t distribution with n− 1 degrees of freedom, where

z′ = (zj)
′ = d′X, z̄ =

1

n
z′1n, s2

z =
1

n− 1
(z′z − nz̄2).

Proof. Define the orthogonal transformation of the random matrix X:

XΓ = XΓ,

where Γ is an n×n orthogonal matrix. Take a linear combination of both X
and XΓ in the following way:

z′ = d′X, z′Γ = d′ΓXΓ.

Since the coefficients d and d′Γ are derived from the same matrix, they are
equal, d = dΓ:

XΓX
′
Γ = (XΓ)(XΓ)′ = XΓΓ′X ′ = XX ′.

Thus,
z′Γ = d′ΓXΓ = d′XΓ = z′Γ. (16)

Then we need to show that X and XΓ have the same normal distribution:

E[XΓ] = E[XΓ] = E[X]Γ = 0,

D[XΓ] = D[XΓ] = Γ′Γ⊗Σ = I ⊗Σ.
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It is proved that X and XΓ have the same distribution, consequently X
is right-spherically distributed. This means that the transformed random
vectors z′ and z′Γ have the same distribution which is spherical due to (16).
From Theorem 3.3, the statistic t is distibuted according to t-distribution with
n− 1 degrees of freedom.

Theorem 4.2. (Läuter, Glimm and Kropf, 1996) Assume that H ∼
Wp(Σ,m) and G ∼ Wp(Σ, f) and they are independently distributed. De-
fine a p-dimensional vector of weights d which is a function of H + G and
assume d′(H +G)d 6= 0 with probability 1. Then

F =
f

m

d′Hd

d′Gd

follows an F -distibution with m and f degrees of freedom.

Proof. From the definition of the Wishart distribution, H and G can be
written

H =

m∑
j=1

hjh
′
j , G =

f∑
j=1

gjg
′
j ,

where h1,h2, ...,hm and g1, g2, ..., gf are independent vectors, each with the
normal distribution Np(0,Σ). Define the matrix

X = (h1 h2 ... hm g1 g2 ... gf )

of size p × n and notice that n = m + f . Then X ∼ Np,n(0,Σ, In) and
H +G = XX ′. One can show that z′ = d′X has a spherical distribution in
the same way that is shown in Theorem 4.1. Then again from Theorem 3.3,
the F -statistic has an F -distribution with m and n degrees of freedom.

These theorems have been given to illustrate the idea of the approach we are
going to use in the report.
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5 Results from the report

5.1 Motivation

The three hypotheses of profile analysis have been given and test statistics
with their distributions have been presented in Chapter 2, Section 2.4 in this
thesis. The details for the calculations can be found in Section 3 of the report.
These calculations have been carried out by the authors. The results which
were given in the literature have also been presented (see Section 2.3). Recall
that our approach was an extension of the current methods to problems in
MANOVA and GMANOVA model. The motivation for this reformulation
comes from intention to see the tests in compact forms and to be able to
detect the effect of dimensionality on the test statistics. For instance. let’s
have a look at the parallelism hypothesis. The aim is to investigate if the
differences of the mean values across groups are the same. Instead of writing
individual differences, such as µ11 − µ12 = µ12 − µ13 = · · · = µ1,p−1 − µ1,p =
... = µq1 − µq2 = µq2 − µq3 = · · · = µq,p−1 − µq,p, the test can be summarized
with CMF = 0 (see (6)). The likelihood ratio has been derived based on this
matrix formulation. However, when we have high-dimensional data, S, which
is equal to X(I − PD′)X ′, becomes singular, consequently the determinants
given in (7) will become zero and in this case, the likelihood ratio is not
defined. The same complication arises in the other two hypotheses. Thus,
we propose a dimension reduction method to solve the problem. The idea of
dimension reduction using linear combination of data by Läuter (1996, 2016)
and Läuter, Glimm and Kropf (1996, 1998) is given in Section 4.1. By this
way, each p-dimensional observation will be compressed into one-dimensional
observation. The same linear combination will be taken for each individual.
But our approach is slightly different than Läuter’s and Läuter, Glimm and
Kropf’s in terms of when and where this reduction takes place.

According to the present theories, one applies the weight vector d to the
matrix X and obtain scores which are denoted by z:

z′ = d′X = [z1, z2, · · · , zn] = [d1, d2, · · · , dp]


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xp1 xp2 · · · xpn

 ·

Here, the illustration is with one group of size n. If this approach, which is
applying the vector d from the beginning to the matrix X, is followed in our
research problem (high-dimensional profile analysis), we cannot continue to
conduct the tests in profile analysis, because the profiles will be reduced to
one dimensional quantities:
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−→

Figure 7: First figure corresponds to the profile of one group. After the
dimension reduction with d, the profile information will be summarised with
one point, shown with the second figure.

The solution that is proposed is that dimension reduction should be imple-
mented to the ratio for each hypothesis which is given by (7), (8) and (9). The
detailed derivation of these ratios, which have been given in the report in Sec-
tion 3, will be useful when we implement the methods in the high-dimensional
setting since these derivations give clear intuitions where dimension reduction
is needed and how the calculations should progress. There will be a special
case with the level hypothesis. The specifics on this matter will be given in
the following chapter. Now let’s give the test statistics and distributions.

5.2 Test statistics and distributions of profile analysis with high-
dimensional data

Consider the high-dimensional setting where p > N . The first step is to
construct scores and the latter step is to derive the likelihood ratio tests
based on these scores.

1) Parallelism hypothesis

Recall from Section 2.4.2

H1 : E(X) = MD, CMF = 0,

A1 : E(X) = MD, CMF 6= 0

and

LR =
|ΣA1

|
|ΣH1

|
=

|CSC ′|
|CSC ′ +CXPD′(DD′)−1KX ′C ′|

,

where

CSC ′ ∼Wp−1(CΣC ′, N − r(D)),

CXPD′(DD′)−1KX
′C ′ ∼Wp−1(CΣC ′, r(K)). (17)
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It is assumed that X ∼ Np,N (MD,Σ, IN ). From the properties of matrix
normal distribution (see Theorem 2.5 in the report), CX is also normally
distributed with CX ∼ N(p−1),N (CMD,CΣC ′, IN ). One can easily notice
that X appears with C in the statistics CSC ′ and CXPD′(DD′)−1KX

′C ′.
Say CX = Y . Then

CSC ′ = CX(I − PD′)X ′C ′ = Y (I − PD′)Y ′ ∼Wp−1(CΣC ′, N − r(D)),

CXPD′(DD′)−1KX
′C ′ = Y PD′(DD′)−1KY

′ ∼Wp−1(CΣC ′, r(K)).

We propose to apply the vector d to Y instead of applying it to X. This
means we are taking a linear combination of the restricted X. Here d is a
(p − 1) × 1 vector. When Y is multiplied with d′ from left (and Y ′ with d
from right), it will be reduced to a vector and we call this new vector the
score vector and denote it by z, that is z′ = d′Y , which was obtained in the
report:

λ2/N =
d′Y (I − PD′)Y ′d

d′Y (I − PD′)Y ′d+ d′Y PD′(DD′)−1KY ′d

=
z′(I − PD′)z

z′(I − PD′)z + z′PD′(DD′)−1Kz
. (18)

Notice that this ratio is not a likelihood ratio anymore. Now let’s give the
distribution of this ratio.

Theorem 5.1. The ratio given in (18) follows Wilks’ lambda distribution with
parameters 1, N − r(D) and r(K) that is denoted by Λ(1, N − r(D), r(K))

which is equivalent to B
(N−r(D)

2 , r(K)
2

)
, where B(·, ·) denotes the Beta-distri-

bution.

2) Level hypothesis

The null and the alternative hypotheses in the normal setting have been given
in Section 2.4.2 as:

H2|H1 : E(X) = MD, MF = 0,

A2|H1 : E(X) = MD, CMF = 0

and the likelihood ratio equals

LR =
|(C′)◦

′
S−1(C′)◦|−1∣∣∣∣ ((C′)◦′S−1(C′)◦)−1 + ((C′)◦

′
S−1(C′)◦)−1(C′)◦

′
S−1XD′(DD′)−1K

×Q−1K′(DD′)−1DX ′S−1(C′)◦((C′)◦
′
S−1(C′)◦)−1

∣∣∣∣
·

(19)

Here we have a special case, because both expressions in the likelihood ratio

are already one dimensional. If LR is imagined as LR = |U |
|U+V | , the expres-

sions in question are U and V . To see this, one should calculate the dimension
of (C ′)◦

′
:

C : (p− 1)× p ⇒ C ′ : p× (p− 1) ⇒ (C ′)◦ : p× 1 ⇒ (C ′)◦
′

: 1× p.
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The issue for this hypothesis lies within the degrees of freedom in the Wishart
distribution. Recall

((C ′)◦
′
S−1(C ′)◦)−1 ∼W1(((C ′)◦

′
Σ−1(C ′)◦)−1, N − r(D)− p+ 1).

When p exceeds N , that is p > N , the degrees of freedom will become negative
which cannot take place. In addition to this, S−1 does not exist. To handle
these problems we propose a dimension reduction by using the weight vector
d which has been defined previously. In the beginning, it is not very clear
where to apply the dimension reduction in the ratio given by (19). After using
some properties given in Appendix, we have found equivalent expressions for
U and V and then d is applied to CX. Denote these new statistics with ŨL
and ṼL. Then

ŨL = ((C ′)◦
′
Σ−1(C ′)◦)−1(C ′)◦

′
Σ−1X[(I − PD′)(I −X ′C ′d(d′CX

× (I − PD′)X ′C ′d)−1d′CX(I − PD′))]X ′Σ−1(C ′)◦((C ′)◦
′
Σ−1(C ′)◦)−1,

ṼL = ((C ′)◦
′
Σ−1(C ′)◦)−1(C ′)◦

′
Σ−1X[I − (I − PD′)X ′C ′d(d′CX

× (I − PD′)X ′C ′d)−1d′CX]D′(DD′)−1KQ̃−1K ′(DD′)−1D

× [I −X ′C ′d(d′CX(I − PD′)X ′C ′d)−1d′CX(I − PD′)]X ′

×Σ−1(C ′)◦((C ′)◦
′
Σ−1(C ′)◦)−1·

After simplification,

ŨL = ((C ′)◦
′
Σ−1(C ′)◦)−1(C ′)◦

′
Σ−1[S(I − PC′d,S−1)]Σ−1(C ′)◦

× ((C ′)◦
′
Σ−1(C ′)◦)−1 ∼W1(((C ′)◦

′
Σ−1(C ′)◦)−1, N − r(D)− 1),

ṼL = ((C ′)◦
′
Σ−1(C ′)◦)−1(C ′)◦

′
Σ−1(I − P ′C′d,S−1)XD′(DD′)−1KQ̃−1

×K ′(DD′)−1DX ′(I − PC′d,S−1) ∼W1(((C ′)◦
′
Σ−1(C ′)◦)−1, r(K)).

The following theorem was presented in the report.

Theorem 5.2.

λ2/N =
ŨL

ŨL + ṼL
∼Λ(1, N − r(D)− 1, r(K))

≡B
(
N − r(D)− 1

2
,
r(K)

2

)
.

3) Flatness Hypothesis

The test statistics in the likelihood ratio for the parallelism hypothesis and
the flatness hypothesis have similar structures, therefore a similar approach to
the parallelism hypothesis will be followed. Recall the null and the alternative
hypotheses from Section 2.4.2:

H3|H1 : E(X) = MD, CM = 0,

A3|H1 : E(X) = MD, CMF = 0
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and

LR =
|Σ̂A3 |
|Σ̂H3 |

=
|CSC ′ +CXPD′(DD′)−1KX

′C ′|
|CSC ′ +CXPD′(DD′)−1KX ′C ′ +CXPD′F◦X ′C ′|

,

where

CSC ′ +CXPD′(DD′)−1KX
′C ′ ∼Wp−1(CΣC ′, N − r(D) + r(K)), (20)

CXPD′F◦X
′C ′ ∼Wp−1(CΣC ′, r(D′F ◦)). (21)

We investigate CSC ′ first. CSC ′ = CX(I − PD′)X ′C ′ has been given
several times before. Put Y = CX and since X ∼ Np,N (MD,Σ, IN ),
Y ∼ N(p−1),N (CMD,CΣC ′, IN ). To reduce the dimension, the weight
vector d will be applied to Y instead of the data matrix X like we did for
the parallelism hypothesis and denote the new vector by z, where z′ = d′Y .
Then

λ2/N =
d′Y (I − PD′)Y ′d+ d′Y PD′(DD′)−1KY

′d

d′Y (I − PD′)Y ′d+ d′Y PD′(DD′)−1KY ′d+ d′Y PD′F◦Y ′d

=
z′(I − PD′)z + z′PD′(DD′)−1Kz

z′(I − PD′)z + z′PD′(DD′)−1Kz + z′PD′F◦z
. (22)

The distribution of this ratio is presented in the next theorem.

Theorem 5.3. The ratio given in (22) follows Wilks’ lambda distribution with
parameters 1, N − r(D) + r(K) and r(D′F ◦) that is denoted by Λ(1, N −
r(D) + r(K), r(D′F ◦)) which equals B

(N−r(D)+r(K)
2 , r(D

′F ◦)
2

)
.
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6 Conclusion

6.1 Discussion

Our aim in this thesis was to develop a method which can be applied to
compare profiles in a high-dimensional setting. The three hypotheses of profile
analysis were investigated. To be able to work in high-dimensions, we first
conducted the derivations in the normal setting (N > p). The calculations

were directed to form a ratio |U |
|U+V | , where U and V are independent and

Wishart distributed. The distribution of this ratio is well-known, i.e., the
Wilks’ lambda distribution. Then the crucial question was how to implement
a dimension reduction method using scores which was inspired by Läuter
(1996, 2016) and Läuter, Glimm and Kropf (1996, 1998). Applying a vector
d solely to X would not work in our problem since it would not be possible
to apply the restrictions on the mean parameter space.

Note that the level hypothesis in high-dimensions was treated differently than
the other two hypotheses, because the matrices in the last statistic were al-
ready one-dimensional. Since the degrees of freedom of the Wishart distri-
bution for one of the statistics that appears in the likelihood ratio became
negative when p > N , a dimension reduction was necessary.

Multivariate normal distributions are frequently used in the multivariate anal-
ysis and the results that were derived in the first part of the thesis (when
N > p) are based on the assumption of normality. We assumed that X ∼
Np,N (MD,Σ, IN ), but normality will not hold when the dimension reduction
is applied because d depends onX. This is where we utilized the properties of
spherical distributions. In the end, for all three hypotheses, the ratios follow
Wilks’ lambda distribution after properly done dimension reductions.

6.2 Future work

Besides the results that have been given in this thesis, there are still several
questions which require attention. There are mainly two problems which we
are interested in:

1. How should we choose the vector d?

As Läuter, Glimm and Kropf (1996) suggested, d has to be a unique
function of the p× p matrix of the sums of the products XX ′. This is
the matrix which corresponds to the hypothesis µ = 0. If one compares
the equality of group means, i.e. H : µ1 = µ2 = · · · = µq, the weight
vector d may be some arbitrary function of the total sum of squares
matrix under H, that is (X − X̄)(X − X̄)′. For the standardized
sum test, d is chosen based on d = [Diag(XX ′)]−1/21p and for the
principle component test, d is the solution to the eigenvalue problem
(XX ′)d = Diag(XX ′)dλ (Läuter, Glimm and Kropf, 1996, 1998). In

45



this thesis, d is a function of CX, where C is defined in Section 2.4.1,
but it is still unclear how to choose d exactly. This requires further
investigations.

2. Instead of using one linear combination of the variables, which is denoted
by the vector d, what will happen if one considers several, say r linear
scores, which is denoted by the p× r weight matrix D̃ where r ≤ p?

In this case, the scores are obtained via Z = D̃′X (Läuter, Glimm and

Kropf, 1996, 1998). For our research, it will be Z = D̃′CX. Part of the
research will be to investigate how the distributions of the likelohood
ratios will be effected.
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[17] Kollo, T. and von Rosen, D. (2005). Advanced Multivariate Statistics with
Matrices. Springer Dordrecht.

[18] Kollo, T., von Rosen, T. and von Rosen, D. (2011). Estimation in high-
himensional analysis and multivariate linear models. Communications in
Statistics - Theory and Methods, 40, 1241-1253.

[19] Kropf, S. (2000). Hochdimensionale Multivariate Verfahren In Der Medi-
zinischen Statistik. Shaker Verlag, Aachen.
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