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Abstract

Background: The non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) are important
energy source or nutrients for all plant growth and metabolism. To persist in shaded understory, saplings have to
maintain the dynamic balance of carbon and nutrients, such as leaf NSCs, C, N and P. To improve understanding of
the nutrient utilization strategies between shade-tolerant and shade-intolerant species, we therefore compared the
leaf NSCs, C, N, P in response to shade between seedlings of shade-tolerant Schima superba and shade-intolerant
Cunninghamia lanceolate. Shading treatments were created with five levels (0, 40, 60, 85, 95% shading degree) to
determine the effect of shade on leaf NSCs contents and C:N:P stoichiometry characteristics.

Results: Mean leaf area was significantly larger under 60% shading degree for C. lanceolata while maximum mean
leaf area was observed under 85% shading degree for S. superba seedlings, whereas leaf mass per area decreased
consistently with increasing shading degree in both species. In general, both species showed decreasing NSC,
soluble sugar and starch contents with increasing shading degree. However shade-tolerant S. superba seedlings
exhibited higher NSC, soluble sugar and starch content than shade-intolerant C. lanceolate. The soluble sugar/starch
ratio of C. lanceolate decreased with increasing shading degree, whereas that of S. superb remained stable. Leaf C:N
ratio decreased while N:P ratio increased with increasing shading degree; leaf C:P ratio was highest in 60% shading
degree for C. lanceolata and in 40% shading degree for S. superba.

Conclusion: S. superba is better adapted to low light condition than C. lanceolata through enlarged leaf area and
increased carbohydrate reserves that allow the plant to cope with low light stress. From mixed plantation viewpoint, it
would be advisable to plant S. superba later once the canopy of C. lanceolata is well developed but allowing enough
sunlight.
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Introduction
Non-structural carbohydrates (NSCs, mainly composed
of soluble sugars and starch) are important energy
source for all plant growth and metabolism [1, 2]. Sol-
uble sugars are photosynthesis products and are used to
meet plant current requirements and osmotic regulation
[3]. Starch is the main form of energy stores and is used
to meet plants’ future needs [1]. NSCs reflect the rela-
tionship between C-gain (photosynthesis) and C-loss
(respiration and growth) [4, 5]. NSCs are used to endure
periods of negative net carbon balance when plants be-
come suddenly defoliated, shaded, and drought-inflicted
[6–10]. So, NSCs play a key role in resisting external ad-
verse environmental stress for plants [2, 6]. Carbon (C),
nitrogen (N) and phosphorus (P) are the basic elements
for plant growth and development. The concentrations
of C, N, P in plants reflect nutrient uptake, utilization ef-
ficiency and adaptation to the environment stress.
Higher N contents are associated with higher leaf area
index values, extended photosynthesis duration and
greater nutrient uptake [11]. Phosphorus influences
photosynthetic assimilation and biomass production in
plants [12]. Thus, light intensity affect the leaf photosyn-
thetic capacity, NSC synthesis, and leaf C, N, P content.
Under canopy, light intensity is greatly attenuated before

reaching leaf surfaces of seedlings and saplings in the for-
est understory [13, 14]. Plants have therefore evolved
strategies to cope with low light conditions, such as mor-
phological and physiological plasticity, and metabolic ad-
justments throughout their entire life cycle, especially
during the early stages [15, 16]. Shading is especially fre-
quent in the forest understory, and it is therefore likely
that allocation to storage would enhance shade tolerance.
Some studies predict that more shade-tolerant species
should have higher NSCs concentrations [6]. Previous
studies showed that soluble sugars and starch content de-
creased with increasing shading degree [6, 7]. However,
Munns (1993) showed that soluble sugars and starch con-
tent increased with increasing shading degree [17]. As a
result, the NSCs content in different light environment
are still controversial, and might be species specific. Shad-
ing not only affect the photosynthetic capacity, but also
affect the activity of carbon and nitrogen fixation related
enzymes, and then affect the content of C and N in plants
[18]. Phosphorus involves in several metabolic process
and affects biomass production in plants [19]. Thus, the
C:N:P variations in leaves are directly affected by shading
degree. In recent years, several studies have tested changes
in NSCs, the C:N:P stoichiometry in response to different
growth conditions, such as temperature, drought, CO2

concentrations, nitrogen deposition, and phosphorus
addition [20–24]. However, few studies have addressed
the effects of shade on species in terms of NSCs and C:N:
P stoichiometry.

Thus, we investigated the effects of varying levels of shad-
ing on leaf morphology, NSCs and C:N:P stoichiometry in
Cunninghamia lanceolata (Lamb.) Hook and Schima
superba Gardn. & Champ – the two most important forest
species in subtropical China, which are intended for estab-
lishment of mixed species forest. C. lanceolata, a fast-
growing, high-yielding tree, is one of the most important
plantation tree in China [25]. Like other monocultures, the
sustainability of C. lanceolata plantations is threatened by
soil degradation, production loss, biodiversity reduction, and
a lack of self-regeneration [26–30]. In order to solve this
problem, S. superba, a broadleaf tree, is increasingly mixed
with C. lanceolata stands [26, 27, 31, 32]. Previous studies
showed that C. lanceolate is shade-intolerant tree, in con-
trast, S. superba is shade-tolerant tree [26]. A shift in prefer-
ence from monoculture plantations to mixed broadleaf-
conifer plantations has highlighted the need for research on
tree development under management-related variation in
light environments. Thus, understanding the morphological
and physiological responses to light fluctuations should be
useful for determining the proper sequence for introducing
species in mixed-species plantations during early post-
planting.
The objectives of the study were: 1) to examine responses

in leaf traits and NSCs contents to different levels of shading
between shade-tolerant and shade-intolerant tree species; 2)
to investigate the variations in leaf C, N and P contents, and
the C:N:P ratio in response to different levels of shading in
shade-tolerant and shade-intolerant tree species; 3) to deter-
mine the relationships between leaf NSCs, and C:N:P stoichi-
ometry across shading degrees in shade-tolerant and shade-
intolerant tree species. We hypothesized that (1) low light
conditions (shade) result in larger leaf area but smaller leaf
mass per unit area in shade- tolerant (S. superba) than
shade-intolerant (C. lanceolata) species so as to acquire more
light for photosynthesis under low-light environments – the
so called carbon gain hypothesis, (2) NSCs concentrations
would be higher in shade-tolerant than shade-intolerant spe-
cies due to low carbon gain in understory while NSC re-
serves are needed to enhance shade tolerance; and (3) C:N:P
stoichiometry varies with shade levels and the response is
species-specific due to differences in photosynthetic effi-
ciency and nutrient absorption. To test these hypotheses, we
conducted an experiment by altering light intensity along a
gradient to determine the differential effects on leaf morpho-
logical traits, NSC content and C:N:P stoichiometry in C.
lanceolata and S. superba. We also examined variation in
soluble sugar and starch contents as well as leaf C, N, and P
contents. Finally, we looked for potential relationships be-
tween leaf NSCs, C:N:P stoichiometry, and their combined
effects on plant survival mechanisms. The study will provide
valuable insights about optimum light conditions for the es-
tablishment and growth of both species under mixed plant-
ing scheme.
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Results
Leaf morphological responses to shade
Leaf traits differed significantly (P < 0.05) across shade
treatments for each species (Table 1). For S. superba, leaf
length, width, and area were the greatest under 85%
shading degree. For C. lanceolata, leaf length, width, and
area were the greatest under 60% shading degree. Leaf
mass per unit area was positively correlated with light
for both species.

NSCs contents response to shade
Soluble sugar content, NSC content and soluble sugar/
starch ratio varied significantly across all shade levels in
both species (Table 2). Soluble sugar content was higher
for C. lanceolata seedlings exposed to 60, 40 and 0%
shading degree than 95 and 85% shading degree,
whereas it was higher for S. superba seedlings exposed
to 40 and 0% shading degree than 95, 85 and 60% shad-
ing degree (Fig. 1a). The soluble sugar content was
higher for S. superba than C. lanceolata seedlings ex-
posed to 95 and 85% shading degree. Starch content was
higher for S. superba than C. lanceolata across all shade
levels, and the highest starch content was observed in
seedlings exposed to 40% shading degree in both species
(Fig. 1b). The leaf NSC content was higher in S. superba
than in C. lanceolata under all shade levels, and signifi-
cantly higher under 0, 85 and 95% shading degree, and
in both species NSC content was the highest under 40%
shading degree (Fig. 1c). The soluble sugar to starch ra-
tio was larger for C. lanceolata than S. superba across all
levels of shade (Fig. 1d). There was no significant differ-
ence in soluble sugar to starch ratio across all levels of
shade for S. superba. However, C. lanceolata seedlings
exposed to 0% shading degree had the highest soluble
sugar to starch ratio, followed by those exposed to 60
and 40% shading degree and the least being in 95 and
85% shading degree.

Leaf C:N:P stoichiometry responses to shade
Leaf C, N and P contents, as well as C:N:P ratios varied
significantly among shade levels in both species. S.

superba exhibited higher leaf C content than C. lanceo-
lata (Fig. 2a). In both species, the leaf N content, con-
trarily to sugar, NSC, and starch contents that decreased
as light reduced, an increasing tendency with increasing
shading degree. C. lanceolata had higher leaf N content
than S. superba (Fig. 2b). In both species, the highest leaf
N content was observed in 95% shading degree com-
pared to other shading degree. Leaf P content in C. lan-
ceolata showed 70% drop from no shading treatment
(3.13 ± 0.02 mg·g− 1) to 60% shading degree (0.93 ± 0.01
mg·g− 1) (Fig. 2c). Leaf P content in S. superba was
higher under no shading treatment and 95% shade de-
gree than under 40, 60 and 85% shading degree. C. lan-
ceolata exhibited higher leaf P content than S. superba
(Fig. 2c). For both species, leaf C:N ratio decreased with
increasing shading degree (Fig. 2d), except no shading
treatment. Leaf N:P ratio in both species increased with
increasing shading degree (Fig. 2e), leaf N:P ratio of S.
superba was significantly higher than that of C. lanceo-
lata. Leaf C:P ratio of C. lanceolata reached the max-
imum at 60% shading degree, and that of S. superba at
40% shading degree (Fig. 2f). S. superba had greater leaf
C:P ratio than C. lanceolata under all shading degree.

Correlations between NSCs contents and C, N, P contents
and C:N:P ratio
Soluble sugar content showed a significantly negative
correlation with N content and N:P ratio in both species.
Soluble sugar content showed a significantly positive
correlation with C:N ratio in C. lanceolata and showed
significantly positive correlation with C content and C:N
ratio in S. superba (Table 2). Starch content was signifi-
cantly negatively correlated with N content in C. lanceo-
lata, and with N and P contents in S. superba. Starch
content was positively correlated with C:N ratio in C.
lanceolata, and was positively correlated with C content,
C:N and C:P ratio in S. superba. NSC content positively
correlated with C content, C:N, and C:P ratio, while
NSC was negatively related to N content and N:P ratio
in both species. The soluble sugar to starch ratio was
positively correlated with C and P content, while it had a

Table 1 Leaf traits of Cunninghamia lanceolata and Schima superba in response to different shade degrees

Shading
degree

Cunninghamia lanceolata Schima superba

LL (cm) LW (cm) LS (cm2) LMA (mg·cm−2) LL (cm) LW (cm) LS (cm2) LMA (mg·cm−2)

0%* 4.44 ± 0.17d 0.21 ± 0.03b 0.74 ± 0.02d 12.75 ± 0.17a 8.18 ± 0.50c 2.21 ± 0.18d 14.91 ± 0.48d 11.33 ± 0.19a

40%* 4.67 ± 0.15 cd 0.26 ± 0.04ab 0.80 ± 0.03 cd 9.41 ± 0.10b 12.65 ± 0.59b 2.72 ± 0.16c 21.94 ± 0.71c 8.32 ± 0.12b

60%* 6.17 ± 0.14a 0.30 ± 0.03a 1.23 ± 0.03a 9.15 ± 0.14b 13.49 ± 0.57b 3.09 ± 0.17bc 22.62 ± 0.72c 7.69 ± 0.12c

85%* 5.34 ± 0.26b 0.29 ± 0.02ab 0.92 ± 0.04b 9.10 ± 0.25b 18.29 ± 0.78a 3.95 ± 0.16a 43.02 ± 1.82b 6.43 ± 0.16d

95%* 5.16 ± 0.22bc 0.25 ± 0.02ab 0.83 ± 0.02c 5.92 ± 0.10c 17.20 ± 0.67a 3.21 ± 0.12b 32.46 ± 1.51a 5.11 ± 0.08e

Data are represented as means ± SE. Different lowercase letters indicate significant difference (ANOVA, Tukey’s test, p < 0.05) among shade treatments within each
species. An asterisk after shading degree indicates significant differences between the two species; LL Leaf length, LW Leaf width, LS Leaf size, LMA Leaf mass per
unit area

Liu et al. BMC Plant Biology          (2020) 20:354 Page 3 of 10



negative correlation with N content and N:P ratio in C.
lanceolata.

Discussion
The considerable variation in leaf morphology and struc-
ture reflects the organ’s phenotypic plasticity [33].
Therefore, leaf characteristics are often used as an indi-
cator of plant acclimation potential and adaptation
mechanism [34]. Because excessive irradiance has a det-
rimental impact on photosynthetic tissues, plants must
produce smaller and thicker leaves with higher leaf mass
per area under high light conditions. This morphology
allows heat dissipation, avoiding damage from overheat-
ing and high transpiration rates [35, 36]. Conversely,
shaded conditions result in increasing area and decreas-
ing thickness of leaves [26, 37], with low leaf mass per
unit area [38]. Increasing leaf area allows plants to ac-
quire more light for photosynthesis [13, 39] and is thus
an adaptation to low-light environments [36]. In this
study, we observed larger leaf area under 85% shading
degree for S. superba and under 60% shading degree for
C. lanceolata. Our findings are in line with previous re-
search on Elaeagnus angustifolia leaves, which became
smaller and thicker under high light intensity [36].
Furthermore, leaf mass per unit area (LMA) decreased

with increasing shading degree in both species. In agree-
ment with our results, Alocasia macrorrhiza displays the
same adaptations (larger and thinner leaves) to optimize
photosynthetic efficiency under low light availability
[40]. Shading also resulted in greater LMA for Citharex-
ylum, Dendropanax, Fraxinus, Quercus, and Magnolia
[41]. Interestingly, our study revealed between-species
differences in the response of mean leaf area to increas-
ing shading degree. Specifically, mean leaf area was
greatest at 60% shading degree in C. lanceolata, but at
85% shading degree in S. superba. These traits enhanced

the ability of S. superba to tolerate low light condition
(shading) compared with C. lanceolata, which concords
with a previous study [42]. Our finding is in line with
the carbon gain hypothesis that leaf area is higher in
shade-tolerant seedlings than in shade-intolerant seed-
lings [43], and implies that S. superba is better adapted
to shading.
C. lanceolata seedlings have been shown to adapt to

shaded conditions through adjusting morphological
characteristics [44]. However, seedlings had difficulty
maintaining C balance under extremely shaded (95%
shading degree) conditions, causing poor growth and sur-
vival. The issue of negative C and relatedly NSCs balance
under low light is a common problem plants face. For in-
stance, a study made on Pinus koraiensis and Quercus
mongolica demonstrated that low light induced carbohy-
drate deficiency and therefore high seedling mortality,
with none surviving at 1% light intensity [6]. Similarly,
under extremely shaded conditions, Quercus aliena seed-
lings had difficulty maintaining C balance and thus experi-
enced mortality [45]. To overcome the lack of an energy
source under low light intensity, plants store NSCs to en-
hance growth and survival [6, 7, 24, 38]. Here, we found
that 40% shading degree results in significantly higher sol-
uble sugar, starch, and NSC content for both species.
Once under low light intensity, all three variables de-
creased, presumably as a result of seedlings using their en-
ergy stores for growth and also a decrease in C fixation
due to light limitation.
Shade-tolerant species should have higher NSCs con-

centrations than shade-intolerant species [7], because
carbon gain was low in understory and NSC reserves
are needed to enhance shade tolerance. Other studies
also found that shade-tolerant species tend to have
greater NSC reserves. For example, the seedlings of
palm Chamaedora elegans (shade-tolerant species) had

Table 2 Correlations between leaf NSCs contents and C, N, P content, and C:N:P ratio of C. lanceolata and S. superba seedlings

Species Soluble sugar Starch NSC (Soluble sugar+Starch) Soluble sugar/Starch

C. lanceolata C 0.443 −0.136 0.371 0.768**

N −0.879** −0.788** − 0.903** −0.477*

P 0.248 −0.319 0.168 0.663*

C:N 0.898** 0.841** 0.929** 0.443

N:P −0.731** −0.282 −0.692** − 0.762**

C:P −0.023 0.407 0.045 −0.434

S. superba C 0.555* 0.539* 0.587** 0.024

N −0.820** −0.774** − 0.860** −0.082

P −0.242 −0.497* − 0.339 0.330

C:N 0.781** 0.735** 0.819** 0.080

N:P −0.725** − 0.436 −0.681** − 0.402

C:P 0.341 0.583** 0.441 −0.306

Date are Pearson correlation coefficients. **Significant at p < 0.01, * significant at p < 0.05
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higher NSC content than seedling of Chrysalidocarpus
lutescens (shade-intolerant species) [46, 47]; and the
shade-tolerant species Acer saccharum seedlings had
higher NSC concentrations than seedlings of intermedi-
ate light-demanding Betula alleghaniensis [48]. In our
study, seedlings of shade-tolerant S. superba had higher
NSC content than shade-intolerant C. lanceolate, espe-
cially under low light conditions. This result demon-
strates that S. superba seedlings had an advantage
under shaded conditions and, moreover, could flexibly
adjust to a vast range of shade levels. In terms of

mechanism, exposure to high light intensity would re-
sult in greater C gain than demand, leading to NSCs
storage [38, 49]. Once light becomes a limiting re-
source, plants will mobilize NSCs to support growth
and survival [50]. Under 85% shading, growth in height,
diameter and biomass production of S. superba were
considerable higher than other shading treatments
(Data not shown). The results support our hypothesis
that S. superba produces more NSCs under low light
condition than C. lanceolata. This finding agrees with a
previous study that demonstrated that shade-tolerant

Fig. 1 Soluble sugar content (a), starch content (b), NSC content (c), and Soluble sugar/starch ratio (d) in leaves of C. lanceolata and S. superba
seedlings under different shading degrees. Bars with different lower letters represent significant differences among shade levels of the same
species at 0.05 level
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species exhibit higher NSCs content than shade-
intolerant species [7].
Both genetic and environmental factors influence plant

nutrient uptake, as demonstrated by interspecific differ-
ences, along with intraspecific differences under various
habitats [51]. In our study, S. superba and C. lanceolata
produce C during photosynthesis and absorb N and P
differently under varying shading degree, suggesting
species-specific strategies in balancing nutritional metab-
olism and adapting to environmental stress. Both species
had higher C content under intermediate shade condi-
tion (40–60% to full light availability), likely due to
strong photosynthetic efficiency resulting in heightened
synthesis of organic matter and C accumulation. Import-
antly C content was significantly larger in S. superba
than in C. lanceolata. Given previous research linking

higher C content with greater photosynthetic efficiency
and resilience to adverse environments [52], our findings
imply that S. superba is better adapted to low light con-
dition than C. lanceolata. Our results are consistent with
previous studies demonstrating that shade-tolerant
plants have higher NSCs accumulation and C pool than
shade-intolerant plants [7, 24], this is because their
photosynthetic machinery is adapted to be more efficient
in the low light condition and store more C than plants
that are not adapted their photosystems to low light.
Higher P and N contents in both species were observed
under no shading treatment and 95% shading degree, re-
spectively. These results support that the adaptive strat-
egy to shade might be species specific. P and N are
essential macro-elements for plant growth and develop-
ment, which participate in a number of metabolic

Fig. 2 C content (a), N content (b), P content (c), C:N ratio (d), N:P ratio (e), C:P ratio (f) in leaves of C. lanceolata and S. superba seedlings under
different shading degrees. Bars with different lower letters represent significant differences among shade levels of the same species at 0.05 level
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processes, such as photosynthetic phosphorylation, ATP
production, the production and export of triose-P and
ribulose-1, 5-bisphosphate regeneration as well as syn-
thesis of amino acids [53]. This outcome is the vigorous
growth under strong photosynthetic ability in full sun-
light, leading to greater requirements for proteins and
nucleic acids. On the contrary, seedlings of both species
may use more N resources to synthesize light-trapping
proteins under low light intensity. This is further evi-
denced in our study that NSC content was negatively
correlated with N content and N:P ratio in both species,
whereas a positive correlation was observed between
NSC and C:N ratio in C. lanceolata and with C content
and C:N ratio in S. superba. Our findings are corrobo-
rated by previous research showing that plants growing
under low light condition will have increased leaf N con-
tent and allocate more N to photosynthetic pigments.
We observed higher chlorophyll a content in S. superba
than in C. lanceolata (data not shown). Due to the pre-
vention of photo-damage, this strategy increases light
use efficiency and maintain normal photosynthetic func-
tion [54]. The findings give credence to our results that
C:N:P stoichiometry varies with shade levels might be
species-specific. As a whole, the findings have greater
implication for establishment and maintenance of mixed
species stand. S. superba is better adapted to low light
intensity (shade tolerant), thus it would be advisable to
plant S. superba later once the canopy of C. lanceolata is
well developed but allowing enough sunlight (up to
40%). Conversely, thinning of dense stands of C. lanceo-
lata to allow sufficient light to reach the understory
would be recommended to expedite the natural regener-
ation and subsequent growth of S. superba.

Conclusions
The results demonstrate that shading significantly af-
fected foliage morphology, leaf NSC content, and C, N,
P stoichiometry in shade-intolerant species C. lanceolata
and shade-tolerant species S. superba seedlings. In gen-
eral, both species showed a decrease in NSC, soluble
sugar and starch content with increasing shading degree.
However, S. superba had higher NSC content than C.
lanceolate, especially under low light conditions. These
results imply a decrease in photosynthesis efficiency in
C. lanceolata with increasing shading and suggest that
carbohydrate storage is especially important for species
that regenerate in persistently shady habitats. Highly sig-
nificant correlations were found between leaf NSC vari-
ables and C, N, P content and C:N:P ratio in C.
lanceolate and S. superba. It was likely that the dynamic
trade-off of photosynthesis products exists between leaf
NSCs and C:N:P stoichiometry. Our results improve our
understanding of the balance of leaf C, N, P components
and NSCs contents in shade-tolerant and shade-

intolerant plants. In addition, the findings have greater
implication for establishment of mixed species stand. As
S. superba is better adapted to low light condition (shade
tolerant), it would be advisable to plant S. superba later
once the canopy of C. lanceolata is well developed but
allowing enough sunlight (up to 40% light transmit-
tance). Conversely, in dense stands of C. lanceolata,
thinning to allow sufficient light to reach the understory
would be recommended to expedite the natural regener-
ation and subsequent growth of S. superba as we ob-
served better growth of S. superba under low light
condition.

Materials and methods
Experimental design and treatments
The pot experiment was conducted in a flat, open area
at the Fujian Agriculture and Forestry University. Five
shade levels were created, i.e., 0% (control, no-shading),
40% shaded (60% irradiance), 60% shaded (40% irradi-
ance), 85% shaded (15% irradiance), 95% shaded (5% ir-
radiance). Each shading degree was created using frame
covered with black nylon shade cloth of differing mesh
size (0% shaded did not use shade cloth) [55]. The
frames were 2.0 m high, 6.0 m × 2.5 m in length and
width, and were placed parallel to the sun’s daily track
to minimize spatiotemporal variation in solar radiation.
The light intensity in each shading degree treatment was
measured with two light meters (Hipoint HP350,
Taiwan, China, and Red/Far-red Sensor, Skye Instru-
ments Ltd., UK) during clear day (see Appendix S1).
In July 2016, C. lanceolata and S. superba seedlings were

purchased from a container nursery in Zhangping Wuyi For-
est Farm, Fujian, China. Purchased seedlings were trans-
planted to pots containing a mixture of peat soil and
vermiculite (2:1 w/w) and were grown for 1month in a
greenhouse at the experimental site. Fertilizer was not added
during the experiment period. In August 2016, well-
developed seedlings of uniform height (C. lanceolata:
18.49 ± 1.97 cm, S. superba: 27.40 ± 1.19 cm) were selected
and randomly divided into five groups. Each group com-
prised four seedlings per species and was assigned to each of
shading degree treatment. Individual seedling pots were
treated as replicates and randomly positioned to ensure each
obtained similar light irradiation with no mutual shading.
Pots were rotated weekly to ensure homogeneous conditions.
Weeds were periodically cleared from the experimental plot
and seedlings were watered 2–3 times weekly.

Leaf morphology measurements
All plants were maintained under their assigned shade
levels for 1 y. To estimate mean leaf area, 10 healthy and
fully expanded green leaves were randomly collected
from seedlings of comparable height in the same pot. In
order to keep the leaves fresh, leaf samples were placed
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in ice and immediately taken to the laboratory for fur-
ther analysis. Individual leaf area (cm2) was determined
with a portable leaf area meter (Yaxin-1241, Shanghai,
China). Leaves were then individually placed in paper
bags and oven-dried for 30 min at 105 °C, followed by at
least 24 h at 80 °C. Upon reaching a constant dry mass,
the dry mass of each leaf was determined. Leaf mass per
unit area (LMA, mg·cm− 2) was computed as the oven-
dry mass per leaf divided by the corresponding area.

Measurements of NSCs
At the end of the experiment in August 2017, leaves
were randomly collected from seedlings of both species
across all shade treatments, cleaned with distilled water,
and grounded to powder. 0.2 g of the ground sample
were mixed with 5 mL of distilled water in a test tube.
After 30 min in a boiling water bath, the supernatant
was collected. This process was repeated twice to ensure
complete sugar extraction. The two extracts were col-
lected in a centrifuge tube and distilled water was then
added to achieve a 25mL constant volume. Thereafter,
sediments from the soluble sugar extraction were dried
and then the perchloric acid was added to extract starch.
Soluble sugar and starch contents were determined
using the anthrone colorimetric method. Absorbance at
630 nm was measured to calculate soluble sugar and
starch contents according to the glucose standard curve.
Non-structural carbohydrates content was calculated as
the sum of soluble sugar and starch content. The ana-
lysis was replicated four times per treatment.

Measurements of leaf C, N, P
At the end of the experiment, all leaves of the same rep-
licate seedling under the same treatment were collected,
and then grounded into uniformly fine powder, and
sieved with a 1 mm mesh before chemical analysis. Total
C and N content (mg·g− 1, dry mass basis) were mea-
sured via dry combustion using an elemental analyzer
(VARIO MAX CN; Elementary, Germany). Total P con-
centration (mg·L− 1) was determined with ICP-OES (Op-
tima 8000, PerkinElmer) after H2SO4-HClO4 solution
digestion and dilution. After converting to mg·g− 1, the
C:N, C:P and N:P ratios were calculated as content ratio.
All chemical analyses were replicated four times per
light treatment and species.

Statistical analysis
One-way ANOVA was performed for each species sep-
arately to test the significant effect of shading on leaf
morphology, NSCs contents, and C, N, P content, and
C:N:P stoichiometry. Pearson’s correlation analysis was
performed to examine the relationship between NSCs
contents, and C, N, P content and C:N:P ratio. Data are
presented as means ± SE for different shade treatments

and species. Statistical significance was set at p < 0.05.
All statistical analyses were performed in SPSS version
20.0 for Windows (SPSS Inc., Chicago, IL, USA).
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