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ABSTRACT

One of the most common and reliable ways of moni-
toring udder health and milk quality in dairy herds 
is by monthly cow composite somatic cell counts 
(CMSCC). However, such sampling can be time con-
suming, and more automated sampling tools entail ex-
tra costs. Machine learning methods for prediction have 
been widely investigated in mastitis detection research, 
and CMSCC is normally used as a predictor or gold 
standard in such models. Predicted CMSCC between 
samplings could supply important information and 
be used as an input for udder health decision-support 
tools. To our knowledge, methods to predict CMSCC 
are lacking. Our aim was to find a method to predict 
CMSCC by using regularly recorded quarter milk data 
such as milk flow or conductivity. The milk data were 
collected at the quarter level for 8 wk when milking 
372 Holstein-Friesian cows, resulting in a data set of 
30,734 records with information on 87 variables. The 
cows were milked in an automatic milking rotary and 
sampled once weekly to obtain CMSCC values. The 
machine learning methods chosen for evaluation were 
the generalized additive model (GAM), random forest, 
and multilayer perceptron (MLP). For each method, 
4 models with different predictor variable setups were 
evaluated: models based on 7-d lagged or 3-d lagged 
records before the CMSCC sampling and additionally 
for each setup but removing cow number as a predictor 
variable (which captures indirect information regard-
ing cows’ overall level of CMSCC based on previous 
samplings). The methods were evaluated by a 5-fold 
cross validation and predictions on future data using 
models with the 4 different variable setups. The results 
indicated that GAM was the superior model, although 
MLP was equally good when fewer data were used. In-
formation regarding the cows’ level of previous CMSCC 
was shown to be important for prediction, lowering 

prediction error in both GAM and MLP. We conclude 
that the use of GAM or MLP for CMSCC prediction 
is promising.
Key words: generalized additive model, multilayer 
perceptron, random forest, udder health

INTRODUCTION

Udder health monitoring is one of the most impor-
tant tasks on a dairy farm. Udder health-related issues 
affect many things, such as animal welfare and farm 
economy (Halasa et al., 2007; Hogeveen et al., 2011), 
milk quality (Forsbäck et al., 2009), and production 
volume (Dürr et al., 2008). The primary way to monitor 
udder health on farms is by counting somatic cells in 
milk; that is, the presence of white blood cells indicating 
an inflammatory process (Pyörälä, 2003; International 
Dairy Federation, 2013). The SCC reflects not only ud-
der health status but also milk quality (Schukken et al., 
2003). Accordingly, many countries apply penalties if 
milk with elevated SCC is delivered to dairies. Sampling 
individual cows for cow composite somatic cell count 
(CMSCC) is a way to monitor herd status and is also 
useful in identifying the cows influencing the bulk milk 
SCC. Sampling is normally done monthly, but there is 
a risk of udder health misclassification because normal 
variations in CMSCC can affect the results (Quist et 
al., 2008). One reason for increased CMSCC variation 
between days could be an IMI (Chagunda et al., 2006) 
causing clinical or subclinical mastitis. Such informa-
tion is missed if the sampling rate is low. Screening 
more frequently for CMSCC at the herd level could 
improve the ability to manage udder health (Sørensen 
et al., 2016). However, frequent CMSCC sampling can 
be time consuming, and the more automated sampling 
methods currently available entail additional costs. 
These factors together often limit the sampling fre-
quency (Pyörälä, 2003).

Machine learning (ML) prediction models have been 
extensively explored in several areas because they are 
well-suited for handling the “big data” analyses required 
for accurate predictions and complex relationships be-

Comparison of methods for predicting cow composite somatic cell counts
Dorota Anglart,1,2*  Charlotte Hallén-Sandgren,1 Ulf Emanuelson,2  and Lars Rönnegård3,4  
1DeLaval International AB, PO Box 39, SE-147 21, Tumba, Sweden
2Swedish University of Agricultural Sciences, Department of Clinical Sciences, PO Box 7054, SE-750 07 Uppsala, Sweden
3School of Technology and Business Studies, Dalarna University, SE-791 88 Falun, Sweden
4Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, PO Box 7023, SE-750 07 Uppsala, Sweden

 

J. Dairy Sci. 103:8433–8442
https://doi.org/10.3168/jds.2020-18320
© 2020, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Received February 6, 2020.
Accepted April 9, 2020.
*Corresponding author: dorota.anglart@ delaval .com

https://orcid.org/0000-0003-1412-0057
https://orcid.org/0000-0001-7889-417X
https://orcid.org/0000-0002-1057-5401
mailto:dorota.anglart@delaval.com


8434

Journal of Dairy Science Vol. 103 No. 9, 2020

tween variables. Evaluation of ML methods is common 
in dairy health management (Lokhorst et al., 2019), 
specifically in mastitis detection research (Rutten et 
al., 2013). In recent decades, various mastitis prediction 
methods have been considered. However, CMSCC has 
mainly been used as input for the models evaluated for 
mastitis detection (e.g., Kamphuis et al., 2010; Jensen 
et al., 2016; Sørensen et al., 2016) and as the gold stan-
dard (i.e., the “true” reference) for mastitis cases (e.g., 
Chagunda et al., 2006; Cavero et al., 2008). Applica-
tions capable of predicting CMSCC between regular 
samplings could reduce workload and costs and, more 
importantly, provide additional information for udder 
health decision-support tools. Prediction of CMSCC 
cut-off levels has been investigated to some extent, 
mainly by comparing ML methods (Mammadova and 
Keskin, 2015; Sitkowska et al., 2017; Ebrahimi et al., 
2019). However, the usefulness of cut-off levels has been 
questioned (Ruegg, 2003) and any cut-off level will 
have advantages and disadvantages (Schukken et al., 
2003). For example, Bach et al. (2019) demonstrated 
that blanket cut-off points such as 200,000 cells/mL are 
inefficient as a diagnostic tool regardless of composite 
or quarter SCC evaluation. Hence, models predicting 
actual CMSCC values should be more useful as udder 
health decision-support tools, because predictions of 
CMSCC values make it possible to detect increases in 
CMSCC or recovery from elevated CMSCC.

To our knowledge, no previous studies have attempt-
ed to evaluate methods for predicting CMSCC values. 
The objective of this study was therefore to find a 
method for CMSCC prediction using regularly recorded 
quarter milk data as the model input. This was done 
by comparing the CMSCC prediction performance of 3 
methods: the generalized additive model (GAM), ran-
dom forest (RF), and multilayer perceptron (MLP).

MATERIALS AND METHODS

Data Collection

The data were collected during an 8-wk trial period 
from an agricultural college dairy farm in Germany. 
The 372 Holstein-Friesian cows were milked twice daily 
in an automatic milking rotary (24-unit platform with 
5 robotic arms; DeLaval International AB, Tumba, 
Sweden). The bulk tank SCC ranged between 160,000 
and 200,000 cells/mL during the year, and average milk 
production was 11,500 kg/cow per year. The cows were 
kept in a loose housing system and fed a TMR; calving 
was year-round.

Animal information, such as DIM and parity, was 
extracted from the herd management system, together 

with information from each milking during the 8 wk 
(henceforth, “milking data”). Milking data at the 
quarter level comprised conductivity (mS/cm), blood 
in milk (mg/kg), milk yield (g), expected milk yield 
(g), mean and peak milk flow (g/min), cups kicked off 
during milking (yes/no), and incompletely (yes/no) 
and not-milked (yes/no) quarters. Milking data at the 
cow composite level comprised milking duration (min), 
milking unit number, mastitis detection index (MDi; 
unitless, an index giving the likelihood of mastitis by 
incorporating different phases of conductivity during 
milking together with blood in milk), and udder coun-
ters (a counter triggered by MDi >1.4).

Sampling for CMSCC was done once weekly during 
the afternoon milkings throughout the 8 trial weeks. 
Each cow’s foremilk was visually inspected by strip 
milking before the milking cups were attached. The cows 
present at the milking were sampled for CMSCC by a 
milk sampler (milk meter MM6, DeLaval International 
AB) attached to each milking unit, collecting a repre-
sentative sample form each cow separately throughout 
the milking. Bronopol (Fisher Scientific, Schwerte, Ger-
many) and Kathon (Fisher Scientific) were used as pre-
servatives for the milk samples. Samples were stored at 
room temperature (15–20°C) during the milking session 
and transported to the laboratory (Jena, Germany) 
immediately after milking to be analyzed within 24 h. 
The samples were analyzed for CMSCC according to 
ISO/IEC (2005) in the laboratory using a Fossomatic 
7, DC 600 system (Foss, Hillerød, Denmark). During 
the trial period, the distribution of the number of cows 
over parities 1, 2, and ≥3 was 132, 101, and 139, re-
spectively, and the average DIM on the testing day was 
191. The geometric average CMSCC was 68,000 cells/
mL and the interquartile range was 26,000 to 125,000 
cells/mL.

Data Preparation

Information such as parity and DIM together with 
data collected from each milking during the 8 wk of 
the trial was extracted from the database of the herd 
management system. The raw milking data contained 
30,734 records from 372 cows, where each record con-
tained information on 87 variables. The data cleaning 
steps are summarized in Table 1 and were performed 
accordingly: data from cows present in the database 
but not included in the weekly CMSCC sampling were 
removed from the milking data. The cows were catego-
rized into parity 1, 2, and ≥3, and all milking events for 
cows during the first week of lactation were removed. 
Mean and peak milk flow values classified as outliers 
according to boxplots (i.e., outside 1.5 × interquartile 
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range above the upper and below the lower quartiles) 
were removed. Quarter conductivity values <3 and 
>10 mS/cm were removed with support from plots of 
conductivity data from each quarter, to balance what 
is considered to be biologically reasonable with keeping 
important information regarding variation.

From the cleaned milking data, new variables com-
bining quarter variables were created and named with 
a suffix as follows: max—the highest value of a variable 
within cow and milking session; mean—the arithmetic 
mean of a variable within cow and milking session; 
diff—the difference in a variable between quarters; 
var—the variance of a variable within cow between 
quarters; diff.milkings—the difference in the milk yield 
variable between milking sessions; and min—the low-
est quarter value of a variable within cow and milking 
session. Milk yield-associated variables such as quarter 
milk yield and composite milk yield were removed before 
variable screening, because milk yield was considered 
an intervening variable on the causal path between the 
other predictor variables and CMSCC. Variables not 
used for analysis, such as cows’ birth date, transponder 
ID, and so forth, were also removed from the milk-
ing data set. Past-period records (lags) were added as 
lagged variables to all variables for 7 d (i.e., 14 milking 
sessions; thus, the milking of the CMSCC sample event 
corresponded to milking session 0 and so on) for each of 
the 8 CMSCC sampling events. Thus, the complete and 
cleaned data set contained 2,384 observations of 372 
milking cows with 934 potential explanatory variables 
available (i.e., 840 variables with day lag records and 94 
variables for milking session 0).

The CMSCC values in the sample data set were 
divided by 1,000 and log10-transformed (henceforth, 
log10CMSCC) to achieve normally distributed residuals 

from the statistical analyses. The milking data contain-
ing the created variables with lag records were merged 
with the sample data. Finally, CMSCC observations 
that did not include a complete set of explanatory 
variables for 14 milking sessions before the CMSCC 
sampling event were removed, leaving 319 cows with 
1,758 cow observations for variable screening.

Data Analysis

Variable screening was performed using a GAM (Has-
tie and Tibshirani, 1990). Hence, log10CMSCC was set 
as the response variable, and the potential confounders 
parity (factor), DIM (continuous covariate), and cow 
(random factor) were added to the screening model. 
Subsequently, all potential explanatory variables were 
added one by one. In the next step, Bonferroni correc-
tion was performed and variables with P > 0.01 were 
removed. The remaining variables were tested for mul-
ticollinearity using the variance inflation factor (VIF) 
according to Fox and Monette (1992). Variables with 
VIF >8 were removed, leaving 1,758 observations of 
105 variables from 7 d before the CMSCC sample for 
analysis.

The modeling methods considered in evaluating the 
abilities of different ML methods to predict CMSCC 
were GAM, RF, and MLP. The response variable in 
each model was weekly log10CMSCC. Variables includ-
ed in all models as predictors, for evaluating methods, 
were cow, DIM, parity, diverse conductivity variables, 
peakflow.min, MDi, and diff.milkings (Table 2). Thus, 
a data set containing 1,758 observations of 84 variables 
was used in the model development. The numerical 
variables, including the response variable log10CMSCC, 
were scaled; that is, normalized with a mean value of 
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Table 1. Steps in preparing the data set before model development

Steps Obs.1 Var.2 n cows3

Raw milk data 30,734 87 372
Cleaned milking data 28,634 87 372
Creating day lag records as variables 2,384 934 372
Cow composite SCC sample data 2,384 1 372
Merging the milking data with the sample data 2,384 935 372
Removing cows lacking complete setup of explanatory variables 14 milking sessions before 
 the cow composite SCC sampling event

1,758 935 319

Variable screening 1,758 905 319
Removing variables P > 0.001 1,758 268 319
Adjusting for multiple comparison using Bonferroni correction; removing variables P > 0.010 1,758 158 319
Test for multicollinearity; removing variables with variance inflation factor >8 1,758 105 319
Variables with lagged records included as predictor variables in models for method comparison 1,758 84 319
Creating dummy variables 1,758 404 319
1Number of available observations.
2Number of variables retained.
3Number of unique remaining cows.
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zero and standard deviation of 1; however, results (fig-
ures) are presented on the original scale. Four predictor 
variable setups were evaluated for each of the 3 model-
ing methods: data with 7-d lags (7D), data with 3-d 
lags (3D), and removing cow as predictor variable from 
both day lag variations. The 7D data were also used in 
tuning the hyperparameters (i.e., values set before the 
learning process) for RF and MLP. Furthermore, cow 
number was converted to dummy variables for these 2 
methods.

ML Methods for Evaluation  
of Prediction Performance

The choice of methods for the evaluation was based 
on the properties of each main method; that is, regres-
sion (GAM), decision tree (RF), and artificial neural 
network (MLP). The methods were aligned with previ-
ously proposed approaches to predicting CMSCC cut-
off levels (e.g., Panchal et al., 2016; Ebrahimi et al., 
2019).

Generalized Additive Model

Generalized additive models are flexible additive 
regression models in which smooth functions allow the 
relationship between the response and predictor to be 
nonlinear (Hastie and Tibshirani, 1990). The GAM was 
fitted according to

y parity DIM f Xi LN DIM Cow
j

p

j ij i= + + + + ( ) +
=
∑β β β α ε0
1

��� ��� ,

 [1]

 α εCow Cow  ~ , , ~ , ,N Ni0 02 2σ ε σ( ) ( )  

where y is the response variable, parity (factor), DIM 
(linear variable) and αCow (random factor) are potential 
confounders, fj(X) is the nonparametric spline functions 
of the potential nonlinear predictors, β symbolizes the 
regression coefficients, i is the ith observation, j is the 
jth variable, ij is the jth variable of the ith observation, 
p is the number of variables, ε is the error term, and σ 
is the variance.

To make predictions with GAM for cows not sampled 
on all sampling occasions (due to normal circumstances 
such as dry off and sickness), the estimated random ef-
fect of cow (i.e., αCow) in GAM was set to zero in cases 
in which cow was missing. Because the expectation of a 
random effect without any information is zero, we could 
make predictions for all cows regardless of whether a 
particular cow was sampled. The smoothing parameter 
estimation method used in all model variations was 
REML. The “mgcv” package in R was used for GAM 
model development (R Development Core Team, 2018).

Random Forest

Random forest is a tree-based ensemble learning 
method that can be used for both classification and 
regression problems. The method combines bagging 
with multiple random decision trees; that is, each deci-
sion tree is trained on a different data sample, with 
sampling done through replacement, which prevents 
overfitting (Breiman, 2001).

In RF model development, the “randomForest” pack-
age in R was used (Wiener and Liaw, 2002). Initially, 
several RF regression models were fitted using the 7D 
data with predetermined hyperparameters; that is, 
parameters assigned before training the model. The 
number of decision trees considered in these models was 
250, 500, 750, 1,000, 1,250, 1,500, and 2,000. Analyses 
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Table 2. Predictor variables used in model development together with cow number, DIM, and parity

Variable  Definition  Milking session lag1

Conductivity  Quarter conductivity (mS/cm) {1 4}
Conductivity.max  Highest conductivity (mS/cm) value (quarter) within cow and 

milking session
{0 1 3 4 6 7 8 9 10 11 13 14}

Conductivity.mean  All-quarter conductivity (mS/cm); arithmetic mean within cow 
and milking session

{0 4 9 11 14}

Conductivity.diff  Highest conductivity (mS/cm) value; lowest conductivity (mS/cm) 
value within cow and milking session

{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14}

Conductivity.var  Conductivity (mS/cm) variance between quarters within cow and 
milking session

{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14}

Diff.milkings  Deviation in quarter yield (kg) from previous corresponding 
milking session

{0}

Peak flow.min  Lowest (quarter) value (g/min) of the maximum milk flow within 
cow and milking session

{0 1 2 11 12 13}

MDi  Mastitis detection index based on conductivity and blood in milk {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14}
1Number of past-period lags in milking sessions before the composite SCC (CMSCC). Zero indicates the milking session of the CMSCC sampling 
event, whereas 14 indicates the 7 d before the CMSCC sampling event.
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of mean squared error (MSe) plots indicated that low-
est MSe was obtained in the model using 1,000 trees. 
The optimal number of variables selected in each tree 
(mtry) was determined using the “tune RF” function 
provided in the randomForest package (Wiener and 
Liaw, 2002). The MSe was very similar between the 
models (results not shown); hence, the default mtry 
was used together with 1,000 trees for the 4 predictor 
variable setups in the final analysis

Multilayer Perceptron

The MLP is a network of linear classifiers containing 
several perceptrons organized into layers. The percep-
tron was introduced by Rosenblatt (1958) for use when 
multiple value inputs are estimated with a single output 
as the result. Each layer can be described as follows:

 y w x b b
i

n

i i= +










= +( )

=
∑φ φ
1

w xT ,  [2]

where y is the intermediate basis function (response 
variable in last layer), w denotes the estimated vector 
of weights (w), wT is the transposed vector w, x is the 
vector of input or outputs from previous layer, b is the 
bias, ϕ is the chosen activation function, i is the ith 
observation, and n is the number of nodes in the previ-
ous layer (Bishop, 1996; Haykin, 2009).

The MLP was constructed with Keras for R (Chollet, 
2017), using the Keras model sequentially. Two lay-
ers were applied in the model. The number of units in 
each layer was determined by running several models 
on the 7D data, divided into 80% training and 20% 
validation data by random sampling. In searching for 
the lowest validation MSe, 50 to 500 units were evalu-
ated. The optimal choice was found to be 200 units in 
the first layer and 100 in the second. The output layer 
was constructed using one unit, because our model is 
a regression problem with a single response variable. 
Furthermore, the rectified linear activation function 
(relu) was used, being the default activation function 
for regression problems in Keras; relu was applied in 
first and second layers but not in the output layer. The 
option of having dropout between the layers was not 
used because the difference in the results was negligible.

To configure the learning process, model compilation 
was done according to the following steps. As optimizer, 
we chose ADAM (Kingma and Ba, 2014), a stochastic 
optimization method that works well even with lit-
tle tuning of the hyperparameters. The loss function, 
being the object that the model will try to minimize 
(i.e., showing a difference between the observed and 

predicted values), was set to MSe. For model training, 
the default number of times for full forward and back-
ward propagation was used (i.e., epoch = 10). A batch 
size of 64 was chosen because it gave slightly lower error 
rates than did the default batch size of 32.

Model Evaluation

Cross Validation. Model performance was evalu-
ated using 5-fold cross validation (5-CV), estimating 
the test error associated with each of the 3 methods. 
Data were divided by random sampling, where 80% of 
the data were used for model training and remaining 
20% was used for model test; that is, predicting new 
values. The predicted and observed values of log10C-
MSCC were compared and MSe was analyzed for each 
method. In Keras, model weights are initiated randomly 
for each subset in the 5-CV, so the MSe for the MLP 
was calculated as the mean MSe over ten 5-CV runs to 
obtain more consistent results.

Predictions on Future Data. To make predictions 
of future CMSCC (predictions of future data, PFD), 
the data set was divided according to the CMSCC sam-
pling events. All data associated with milk sampling 
events 1 to 6 were used for training, and data associ-
ated with milk sampling events 7 and 8 were used for 
testing in each of the 3 methods evaluated. Models for 
each method were thus trained on approximately 75% 
of the data and predictions were made on the remain-
ing 25%. The MSe was calculated for the prediction 
of each model within methods. The MSe for MLP was 
calculated as the mean MSe over 10 prediction runs. 
All statistical procedures were carried out using R (R 
Development Core Team, 2018).

RESULTS

In the cleaned data set used for model development, 
319 cows with CMSCC observations, including a com-
plete set of explanatory variables for 7 d before the 
CMSCC sampling event, were distributed over parities 
1, 2, and ≥3 (119, 90, and 110 cows, respectively). The 
average DIM on the testing day was 176. The geometric 
average CMSCC was 61,000 cells/mL and the inter-
quartile range was 26,000 to 112,000 cells/mL.

Cross Validation

The lowest MSe (i.e., 0.09) from the 5-CV of the 3 
methods was found for GAM with the 7D predictor 
variable set as model input (Table 3). Results of the 
models with the 3D predictor variable also displayed 
low MSe (0.10) for GAM and MLP. Models including 
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the predictor variable cow (i.e., the cow number con-
nected to the CMSCC value) were the most favorable 
for GAM and MLP, whereas RF was almost unaffected. 
Thus, when cow was excluded as the predictor variable 
from the first 2 methods, MSe increased. The GAM 
accounted for the largest increase, as MSe increased to 
0.20, the highest MSe of all comparisons tested, just 
by removing cow as the predictor in the 7D predictor 
variable setup.

The MSe for RF was only weakly affected by changes 
in the 4 predictor variable setups. However, the lowest 
MSe (0.16) among the models without cow as the pre-
dictor variable was found for RF. Overall, differences in 
MSe between predictor variable setups within methods 
were greater than the differences between methods, 
when compared across the same predictor variable 
setup for each method.

Predictions on Future Data

Comparison of PFD between methods showed that 
the MSe was the lowest (i.e., 0.09) for GAM models, as 
long as cow was included as the predictor variable (Ta-
ble 4). The difference in MSe between GAM and MLP 
was small, whereas RF had the highest MSe in models 
including cow as the predictor variable. Removing cow 
from the models increased the MSe for all methods, for 
GAM more than for MLP and RF. The differences in 
MSe between methods were very small for the models 
from which cow was removed as the predictor variable. 
All results of the future data predictions for the 4 pre-
dictor variable setups can be found in Table 4.

Figure 1 shows the PFD results for the observed ver-
sus predicted values of log10CMSCC for each method, 
estimated by models fitted with the 3D data. Compared 
with the other methods, GAM (Figure 1a) displayed 
the most linear pattern, in agreement with the slightly 
lower MSe for GAM obtained for the future predictions. 

In addition, both GAM and MLP displayed a more bal-
anced pattern across the predicted axis than does RF. 
In Figure 1b, PFD by RF displayed predicted log10C-
MSCC values clustered around 1.5 on the x-axis. This 
shows that the method overestimates low log10CMSCC 
values, since there are no predictions for log10CMSCC 
≤1.4. All 3 methods underestimated values >2.5.

DISCUSSION

The objective of this study was to find the most ac-
curate of 3 ML methods comparing CMSCC prediction. 
The evaluation was carried out by comparing GAM, 
RF, and MLP based on 5-CV and PFD. Our results 
indicated that the best prediction performance was 
achieved by GAM, in terms of both 5-CV and PFD. 
This was illustrated by the lowest value of MSe (i.e., 
0.09) using the 7D predictor variable setup, and can be 
seen by comparing the observed and predicted CMSCC 
values (Figure 1).

The results indicated more disparity in MSe among 
the different predictor variable setups within methods 
than between methods. Thus, an equally low MSe (0.10) 
was obtained for MLP and GAM using the 3D predictor 
variable setup in the 5-CV. Hence, the average squared 
error of the predictions was small (0.1) compared with 
the variation in the observed values (variance of 1). 
In the study by Ankinakatte et al. (2013), GAM per-
formed slightly better compared with an artificial neu-
ral network in detecting clinical mastitis, depending on 
the input variables used for each method. Despite the 
different target used by Ankinakatte et al. (2013), this 
is in agreement with our results, showing that predictor 
input variables did affect prediction performance. The 
variable scanning performed by GAM might have ben-
efited the method somewhat, although most of the vari-
ables selected for model development were suggested in 
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Table 3. Results of 5-fold cross validation of the generalized additive 
model (GAM), random forest (RF), and multilayer perceptron (MLP)1

Method

Predictor variable setup2

7D 3D

7D 
without 

cow

3D 
without 

cow

GAM 0.09 0.10 0.20 0.19
RF 0.16 0.15 0.16 0.16
MLP 0.12 0.10 0.17 0.17
1The mean squared error is shown for each method with the 4 predic-
tor variable setups used in the method evaluation.
2Where 7D = data set with 7-d lags and 3D = data set with 3-d lags, 
with and without cow as a predictor variable. 

Table 4. Results of the predictions on future data for the generalized 
additive model (GAM), random forest (RF), and multilayer perceptron 
(MLP)1

Method

Predictor variable setups2

7D 3D

7D 
without 

cow

3D 
 without 

cow

GAM 0.09 0.09 0.18 0.17
RF 0.16 0.16 0.17 0.17
MLP 0.12 0.11 0.18 0.17
1The mean squared error is shown for each method with the 4 predic-
tor variable setups used in the method evaluation.
2Where 7D = data set with 7-d lags and 3D = data set with 3-d lags, 
with and without cow as a predictor variable. 
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other studies predicting CMSCC cut-offs (Panchal et 
al., 2016; Sitkowska et al., 2017; Ebrahimi et al., 2019). 
This indicates that either GAM or MLP could be suit-
able for CMSCC prediction models, depending on how 
many data (i.e., information from previous milkings) 
are available. Additionally, the convergence speed of 
MLP was much higher than that of GAM (data not 
shown), which is a major advantage if the method is 
to be used for applications operating on real-time data.

Including cow number as a predictor variable, which 
captures information regarding the cows’ overall level 
of CMSCC based on previous samplings, was found to 
be important for prediction performance by lowering 
the MSe, especially for GAM but also for MLP. The 
variable “cow” was also chosen as the variable with 
highest importance by the RF (results not shown). 
However, the MSe changed very little among the RF 
models when using different predictor variable setups 

as input. Variable importance is a measure of how much 
the variable affects the residual sum of squares within 
the training (Wiener and Liaw, 2002; Louppe et al., 
2013) and an explanation for the discrepancy between 
variable importance and prediction MSe could be that 
high importance scores were caused by overfitting since 
several cows had a limited number of observations each. 
The RF for PFD also failed to predict log10CMSCC 
≤1.4 (Figure 1b). When the RF grows trees, it uses the 
best split point from a randomly selected set of input 
variables. Using random input in regression problems 
could affect their performance (Breiman, 2001), possi-
bly explaining the lower prediction performance of RF.

To our knowledge, only a few studies have evaluated 
methods for predicting CMSCC values as output. The 
SCC prediction results presented by Jędruś et al. (2012) 
are somewhat difficult to compare with our results due 
to the different scales used; that is, log10CMSCC and 
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Figure 1. Observed versus predicted values of cow composite SCC divided by 1,000 on a log10 scale estimated by the generalized additive 
model (a), random forest (b), and multilayer perceptron (c) on future data, based on the combination of predictor variables for 3-d lags.
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SCC. However, there are studies investigating methods 
for predicting subclinical mastitis, which is often ap-
proached as a classification problem; that is, predicting 
CMSCC cut-off levels (Mammadova and Keskin, 2015; 
Sitkowska et al., 2017; Ebrahimi et al., 2019). Despite 
the differences in approach to the problem (i.e., regres-
sion versus classification), there are some similarities to 
our findings. For instance, different types of artificial 
neural network methods were suggested to be superior 
classifiers compared with decision tree methods (Mam-
madova and Keskin, 2015; Ebrahimi et al., 2019). This 
was confirmed by our results, which indicate that RF 
is the least suitable method due to its higher predic-
tion MSe. Decision tree methods generally have lower 
prediction accuracy than other methods (Gareth et al., 
2013), as confirmed by Sitkowska et al. (2017), who 
found that the decision tree model had a higher mis-
classification rate than did logistic regression.

Predictions of CMSCC between ordinary test sam-
plings could improve udder health decision support in 
2 ways, either by detecting deviations from the ani-
mals’ baseline CMSCC or by detecting the recovery of 
individual cows with elevated CMSCC (Sørensen et 
al., 2016). Normal variability contributes greatly to 
the overall variability of SCC in a healthy cow’s udder 
(Quist et al., 2008; Forsbäck et al., 2010; Nørstebø et 
al., 2019). Accordingly, to distinguish sick from healthy 
cows, CMSCC prediction methods need to be sensi-
tive enough to accurately predict changes in CSMCC 
independent of the expected magnitude of the outcome. 
Our results indicate a low MSe for prediction and, 
additionally, the capacity to also predict low values 
of CMSCC (around 12,500 cells/mL) for 2 of the 3 
models. This demonstrates the increased applicability 
of methods predicting CMSCC values compared with 
methods that predict CMSCC cut-off levels.

For practical reasons, test samplings of CMSCC 
occur monthly or even less frequently, although ad-
ditional samplings using simpler methods (e.g., the 
California Mastitis Test) may be carried out if an IMI 
is suspected. Important information can be missed 
due to a low sampling frequency or deficient sampling 
accuracy. Generally, a single cell count measurement 
will not yield the same understanding as information 
from several measurements. Dalen et al. (2019) found 
that single measurements from an inline cell counter 
were outperformed in detecting subclinical mastitis 
by a 7-d rolling average. Predictions of CMSCC could 
be utilized as input for such models, contributing to 
the more accurate interpretation of the udder health 
of individual cows. Furthermore, predicted CMSCC 
values could be valuable as input for clinical mastitis 

prediction models, because the performance of clinical 
mastitis detection models is improved by adding inline 
CMSCC values (Kamphuis et al., 2008). Predictions of 
CMSCC between routine monthly samplings could save 
time and money by reducing the number of samples 
needed. For example, our results from the 5-CV indi-
cate that by using 3 d of data from 80% of the cows in 
the herd as GAM input, the CMSCC of the remaining 
cows could be predicted with an MSe of 0.10.

Another possible application of the prediction results 
could be to reduce the number of required samples; 
for example, predicting every fifth CMSCC sample 
instead of actually sampling the cows. Furthermore, 
PFD indicates that by using historical information 
regarding the cows’ milkings as model input, the next 
CMSCC samples can be predicted with a low MSe. The 
difference in our MSe results between 5-CV and PFD 
was small, which is likely a good indicator of how the 
methods would perform under real conditions, with 
5-CV being an accepted method for model evaluation 
and PFD reflecting a “real life” situation with a limited 
amount of data on which to base future predictions.

We are aware that our study has limitations that 
should be considered when interpreting the results. 
Data for model development were obtained from one 
farm only, which contributed to an unbalanced dis-
tribution of CMSCC values for model training, and 
there may be farm-specific SCC patterns, as shown by 
Sørensen et al. (2016) for online cell counts. Thus, our 
prediction models would need to train on data from 
the farms for which predictions are to be used to make 
them valid. Our interpretation of the plots of observed 
versus predicted CMSCC is that predictions of lower 
log10CMSCC values (i.e., log10CMSCC ≤2, correspond-
ing to 100,000 cells/mL) are more or less in accordance 
with observed values. This might reflect the small num-
ber of milk samples with high cell counts in the data 
set; that is, the cows were too healthy and the data 
set contained fewer observations of log10CMSCC ≥2. 
Although the present results can be indicative, predic-
tions of CMSCC exceeding 100,000 cells/mL should be 
interpreted with caution.

CONCLUSIONS

The lowest prediction error was found for the GAM 
using data from the 7 preceding days of milkings, 
although there was no general disadvantage to using 
data from only the 3 preceding days. We suggest that 
information regarding cows’ previous CMSCC should 
be used for model training to lower the prediction er-
ror. The use of GAM or MLP for CMSCC prediction 
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appears promising, although the results cannot be gen-
eralized broadly due to the limited data used in this 
study.
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