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Abstract 

Background: Next generation sequencing (NGS) technologies are extensively used to dissect the molecular mecha-
nisms of host-parasite interactions in human pathogens. However, ecological studies have yet to fully exploit the 
power of NGS as a rich source for formulating and testing new hypotheses.

Methods: We studied Eurasian perch (Perca fluviatilis) and its eye parasite (Trematoda, Diplostomidae) communities 
in 14 lakes that differed in humic content in order to explore host-parasite-environment interactions. We hypoth-
esised that high humic content along with low pH would decrease the abundance of the intermediate hosts (gastro-
pods), thus limiting the occurrence of diplostomid parasites in humic lakes. This hypothesis was initially invoked by 
whole eye RNA-seq data analysis and subsequently tested using PCR-based detection and a novel targeted metabar-
coding approach.

Results: Whole eye transcriptome results revealed overexpression of immune-related genes and the presence of eye 
parasite sequences in RNA-seq data obtained from perch living in clear-water lakes. Both PCR-based and targeted-
metabarcoding approach showed that perch from humic lakes were completely free from diplostomid parasites, 
while the prevalence of eye flukes in clear-water lakes that contain low amounts of humic substances was close to 
100%, with the majority of NGS reads assigned to Tylodelphys clavata.

Conclusions: High intraspecific diversity of T. clavata indicates that massively parallel sequencing of naturally pooled 
samples represents an efficient and powerful strategy for shedding light on cryptic diversity of eye parasites. Our 
results demonstrate that perch populations in clear-water lakes experience contrasting eye parasite pressure com-
pared to those from humic lakes, which is reflected by prevalent differences in the expression of immune-related 
genes in the eye. This study highlights the utility of NGS to discover novel host-parasite-environment interactions and 
provide unprecedented power to characterize the molecular diversity of cryptic parasites.
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Background
The evolutionary arms-race between host and para-
sites is of a key importance for maintaining species 
diversity and community composition. However, the 
pace of evolutionary change in host-parasite systems is 
modulated not only by co-interacting communities, but 
also by common components of their extrinsic envi-
ronment [1–3]. Yet, the role of environment in shap-
ing host-parasite interactions is poorly understood [4]. 
The advancement of next-generation sequencing (NGS) 
technologies provides opportunities to expand our 
understanding about such complex interactions at an 
unprecedented speed [5, 6].

During the last decade, high-throughput RNA 
sequencing (RNA-seq) has been increasingly used to 
explore infection, disease- and stress-related changes in 
gene expression of the host. Gene expression analyses 
at the whole transcriptome level have also shed light on 
fundamental aspects of host and parasite biology [e.g. 
7, 8] and host-parasite interactions [9–12]. In addition, 
novel insights into the dynamics of host-parasite inter-
actions at the molecular level are increasingly gained 
also by analysing sequence data that were tradition-
ally deemed to be invaluable and hence excluded [13]. 
For example, a typical bioinformatics analysis pipe-
line involves a step where reads from DNA or RNA 
sequencing are aligned to the target species genome; 
those that do not align are simply discarded. This prin-
ciple is integrated into the majority of existing pipelines 
because unmapped reads could originate from library 
contamination and sequencing errors. As such, much 
effort has been put towards sorting out this type of nui-
sance information [13, 14]. However, there is growing 
awareness that some of the unmapped reads could actu-
ally harbour novel genetic and ecological information. 
Thus far, unmapped reads from RNA- or DNA-seq data 
have been used to discover symbionts, pathogens, and 
undescribed features of the target species genome, such 
as highly divergent regions or insertions of the refer-
ence genome that would have been missed otherwise 
[13, 15–18]. Given that parasite and pathogen RNA 
typically represent only a tiny proportion of the total 
RNA of the host, very deep sequencing is necessary 
to obtain comprehensive understanding of the patho-
gen transcriptomes and genetic diversity. This means 
that by using untargeted sequencing of the host tran-
scriptome it is rarely possible to obtain enough power 
for pathogen community composition analyses. As an 
alternative, a targeted amplicon-based high-throughput 
sequencing, known as metabarcoding, has become an 
essential tool for monitoring biodiversity [19, 20] and 
also increasingly used for understanding parasite diver-
sity in host tissues and environmental samples [e.g. 

21, 22]. Community metabarcoding is a sensitive tech-
nique that allows detection of rare and cryptic species 
and species associations [23, 24] as well as analyses of 
within species genetic variability and population struc-
turing [25].

Diplostomidae is a geographically widely distributed 
trematode parasite group of species with complex life-
cycles which include two intermediate hosts, lymnaeid 
snails and fishes, while a piscivorous bird usually serves 
as a definitive host. After infecting and completing its 
development in the snail, cercariae enter fish through 
the gills and skin, before settling in fish-eye struc-
tures and sometimes neural tissues. This may lead to 
changes in host behaviour, such as reduced feeding effi-
ciency which decreases the body condition of the fish 
([26] but see [27]). Species of the Diplostomidae are 
morphologically extremely difficult to distinguish and 
each fish may be infected by hundreds of parasites. As 
a result, estimating species diversity, community com-
position, host-parasite interaction and effects of envi-
ronmental factors in this group is challenging [28–30]. 
While the use of molecular approaches and especially 
cox1 fragment-based species identification via Sanger 
sequencing [31] have advanced the field by reveal-
ing hidden species diversity, most of the studies have 
focused on describing species from single fluke isolates 
[30, 32, 33]. However, using single fluke sequencing is 
suboptimal for characterizing community composi-
tion and intraspecific genetic diversity. Massive paral-
lel sequencing with whole tissue extracts from the host 
represents a potentially powerful strategy to improve 
characterization of both inter- and intraspecific diver-
sity of parasites [29].

Here, we describe how initial transcriptome screen-
ing of fish eyes, where we used both host-specific and 
unmapped RNA-seq reads, invoked a novel hypothesis 
that humic-associated differences among lakes affect 
the prevalence of diplostomid eye parasites in the Eura-
sian perch (Perca fluviatilis). In particular, by building on 
RNA-seq read data and expanding upon previous work 
on eye parasites in perch [34], we hypothesized that the 
elevated content of humic substances (often measured 
as dissolved organic carbon (DOC) concentrations and 
spectral parameters of the water) would have a nega-
tive effect on the abundance of the intermediate hosts 
of eye flukes, gastropods, primarily via combined effects 
of low pH and water transparency affecting underwater 
plant growth [35]. We tested the potential link between 
humic substances and occurrence of diplostomid eye 
parasites by conducting extensive molecular screening 
of eye flukes and developing a targeted metabarcoding 
approach to efficiently screen intra- and interspecific 
genetic diversity of parasites from host eye tissue.
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Methods
Sample collection
Perch sampling was carried out in 8 humic and 6 clear-
water lakes in Estonia in 2016 and 2017 (Additional 
file  1: Figure S1, Additional file  2: Table  S1). Fish were 
sacrificed by an overdose of tricaine methanesulfonate 
(MS-222), individually labelled, and their eyes were enu-
cleated and snap frozen in liquid nitrogen. Surface water 
samples from each lake were collected during the sam-
pling in 2016 and pH, DOC concentrations to charac-
terize the humic content of lakes, and different spectral 
parameters were determined (Additional file 2: Table S6) 
as described previously [36]. The diversity of gastropods 
in 10 out of the 14 studied lakes was obtained from the 
Estonian Environmental Monitoring database (Table  1, 
https ://www.keskk onnaa gentu ur.ee). The details on sam-
pling protocol and subsequent NGS analyses are pro-
vided in the Additional file 3: Text S1.

RNA expression and unmapped read analysis
Total RNA was extracted from the whole eye tissues col-
lected in 2016, and libraries were sequenced with Illu-
mina HiSeq 3000 (Illumina Inc., San Diego, USA). Reads 
that passed quality control were mapped onto the refer-
ence genome of Perca fluviatilis [37] using hisat 2 2.1.0 
[38] (Additional file  3: Text S1). Differential expression 
analysis between the two groups of lakes (humic vs clear-
water) was performed using the DEseq2 package 1.22.2 
[39] in R 3.3.4 [40]. All genes with an adjusted P-value ≤ 
0.05 [41] were considered as significantly differentially 
expressed between populations from the two groups of 
lakes. Human orthologue gene symbols were searched 
for using complete gene names in NCBI. Gene Ontol-
ogy (GO)-enrichment analysis of differentially expressed 
genes against all orthologous gene symbols as a back-
ground was performed using Gorilla [42]. The GO terms 
with a false discovery rate (FDR) ≤ 0.05 were considered 
as significant.

Unmapped reads from each sample were further ana-
lysed to detect the occurrence of parasite reads among 
the whole-eye RNA-seq data. Briefly, NCBI’s blastn 
2.6.0 [43] was applied to align the non-redundant sets of 
unmapped reads to the sequences in a non-redundant 
nucleotide database. To reveal the presence of the eye 
fluke parasites’ sequences (Trematoda: Digenea: Diplos-
tomidae) among the unmapped reads, the taxonomic 
analysis of blastn outputs was processed in Megan Com-
munity Edition 6.8.18 [44].

PCR‑based confirmation of diplostomids in perch eye
DNA was extracted from the whole eye using a stand-
ard salt extraction method [45], and PCR-based screen-
ing was performed in 212 perch eye samples (Additional 

file  2: Table  S1) using diplostomid-specific primers that 
amplified a fragment of the cytochrome c oxidase subunit 
1 (cox1) gene [31]. Primers were modified to include link-
ers for Illumina-compatible adapters at their 5’-ends [46, 
47]. Both eyes were screened in 172 individuals, while 
only the left eye was screened in the remaining 40 indi-
viduals. PCR products were visualised on a 1.5% agarose 
gel, and the presence of a ~500-bp amplification product 
was recorded as evidence of Diplostomidae infection in a 
given eye (Additional file 2: Table S1).

Metabarcoding of the diplostomid community in perch eye
We used whole eyes as the starting material for the 
analysis; that is, the diplostomids were not individually 
extracted from the eye, but rather sequenced together as 
a naturally pooled sample [29]. Libraries were prepared 
from SPRI-bead-purified PCR products of 142 diplosto-
mid-positive samples identified with the PCR described 
above (Additional file 2: Table S1) by attaching Illumina 
adapters and unique individual indices following the 
PCR protocol described in [47] with minor modifications 
(see Additional file 3: Text S1). Samples were pooled and 
sequenced using an Illumina MiSeq instrument (Illumina 
Inc., San Diego, California, USA) at the Turku Centre 
for Biotechnology (Turku, Finland). The paired-end raw 
reads were demultiplexed (Additional file  2: Table  S2) 
and merged using PEAR 0.9.6 [48]. For robust down-
stream analysis, we followed a conservative approach, i.e. 
only the samples containing ≥ 1000 sequences [49] were 
retained (115 of 142; Additional file 2: Table S2).

Taxonomic classification was performed with Kraken 
2.0.6-beta [50]. In addition, to validate the Kaken results 
with a probabilistic approach the sequences were clas-
sified by applying a naïve Bayesian classifier using RPD 
11.5 [51] following [52]. For both classifiers, a custom 
database was generated using the available cox1 gene 
sequences for Platyhelminthes from NCBI GenBank 
(https ://www.ncbi.nlm.nih.gov/; see details in Additional 
file  3: Text S1). As both taxonomic classifiers showed 
consistent results, the further analyses are based only on 
the Kraken classification. To avoid biases related to une-
qual number of reads per sample [53], the presence of a 
particular parasite genus/species in a sample was consid-
ered as highly supported if ≥ 5% of the sequences were 
assigned to that parasite genus/species per eye sample.

Next, we rigorously filtered the sequences to further 
minimize technical artefacts that could lead to overes-
timation of haplotype diversity [25, 54]. As the majority 
of parasite sequences belonged to Tylodelphys clavata 
(mean = 83.6%; median = 94.0%; Fig. 1; Additional file 2: 
Table S2), we further characterized the intraspecific vari-
ation of this species. All of the sequences assigned to T. 
clavata were extracted and clustered with cd-hit 4.7 [55, 

https://www.keskkonnaagentuur.ee
https://www.ncbi.nlm.nih.gov/
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56] using 100% similarity to remove redundancy and 
exclude unique sequences, as the latter could appear due 
to technical PCR or sequencing errors. For the subse-
quent analyses, we used only representative sequences of 
the clusters with more than 2.5% of the total number of 
sequences assigned to T. clavata per sample. In addition, 
the haplotypes that were observed only in a single sample 
were excluded, as they may represent sequencing arte-
facts [25, 54]. However, this procedure might potentially 

eliminate rare haplotypes from the subsequent analysis. 
The final dataset contained 348 T. clavata sequences 
from 113 eye samples (79 individuals). For compara-
tive purposes we added 7 partial sequences of T. clav-
ata cox1 retrieved from GenBank (accession numbers: 
KR271473.1; KR271475.1; KR271480.1; KT751175.1; 
KT768015.1; KT961707.1; and KY271544.1). All 
sequences were aligned using Muscle 3.8.31 [57], and the 
NCBI sequences were trimmed to the same size of the 

Table 1 Study lake characteristics and gastropod occurrence data

a Snail occurrence data was obtained from Estonian Environmental Monitoring database (https ://www.keskk onnaa gentu ur.ee)

Abbreviations: H, humic-water lake; CW, clear-water lake; none, no gastropod species observed; na, data not available

Lake Type Geographical 
coordinates

Water chemistry Gastropod species  occurencea

Dissolved 
organic carbon 
(DOC, mg/l)

Freshness index Fluorescence 
index

pH No. of 
sampling 
visits

Sampling year Gastropod species

Holvandi Kivijärv H 58.0410°N, 
27.1965°E

50.04 0.38 1.27 6.30 1 2012 None

Virosi H 58.0259°N, 
27.2551°E

66.1 0.34 1.26 5.45 7 1995–2012 None

Partsi Saarjärv H 57.9978°N, 
27.1662°E

64.8 0.34 1.25 5.30 6 1995–2012 None

Heisri Mustjärv H 58.0249°N, 
26.8312°E

33.28 0.43 1.29 8.20 na na na

Kuulma H 57.9569°N, 
27.1613°E

47.1 0.41 1.30 4.50 na na na

Loosalu H 58.9361°N, 
25.0824°E

17.41 0.44 1.28 4.70 14 Multiple None

Matsimäe Püh-
ajärv

H 59.0611°N, 
25.5135°E

41.63 0.39 1.22 na na na na

Meelva H 58.1407°N, 
27.3852°E

47.77 0.38 1.28 5.60 7 1994-1995 Anisus vortex, 
Planorbis corneus

Paidra CW 57.9110°N, 
27.1910°E

10.23 0.68 1.39 6.70 na na na

Hino CW 57.5766°N, 
27.2298°E

13.91 0.84 1.56 8.65 2 2001 Lymnaea stagnalis

Verijärv CW 57.8106°N, 
27.0470°E

16.78 0.73 1.53 8.50 1 2002 Lymnaea stagnalis, 
Ancylus fluviatilis, 
Valvata piscinalis, 
Bithynia tentacu-
lata

Saadjärv CW 58.5535°N, 
26.6059°E

11.24 0.75 1.51 8.75 14 Multiple Lymnaea stag-
nalis, Bithynia 
tentaculata, 
Physa fontinalis, 
Radix balthica, 
Myxas glutinosa, 
Valvata piscinalis, 
Valvata pulchella, 
Valvata depressa, 
Gyraulus albus, 
Anisus vortex

Uiakatsi CW 57.9532°N, 
26.6365°E

6.684 0.72 1.46 8.35 2 2007–2012 Lymnaea stagnalis, 
Hippeutis com-
planatus

Piigandi CW 58.0176°N, 
26.7913°E

8.337 0.73 1.48 7.00 1 2012 None

https://www.keskkonnaagentuur.ee
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cox1 fragments generated during NGS sequencing, using 
BioEdit 7.2.5 [58]. To visualize the relationships among 
haplotypes, a TCS haplotype network [59] was generated 
using PopART1.7 (http://popar t.otago .ac.nz).

Results
Initial insights from eye transcriptomes
Altogether, 94% of the reads from the 14 RNA-seq librar-
ies generated from whole-eye tissue were mapped to the 
reference perch genome (Additional file 2: Table S3). In 
total, 265 perch genes were found to be differentially 
expressed (Padj ≤ 0.05) between fish originating from 
humic and clear-water lakes (Fig.  1, Additional file  2: 
Table  S4). Gene Ontology (GO) analysis indicated that 
the differentially expressed genes were enriched for 69 
GO process terms (GOrilla, FDR ≤ 0.05), with the top 
3 terms (FDR < 1.14*10−5), consisting of immune sys-
tem process (GO:0002376, n = 50), adaptive immune 
response process (GO:0002250, n = 15) and immune 
response process (GO:0006955, n = 27, Additional file 2: 
Table S5).

Evaluation of unmapped whole-eye RNA-seq reads 
revealed that the samples from 4 out of 6 clear-water 
lakes contained sequences that originated from parasitic 
flatworms of the order Strigeidida or/and superfamily 
Diplostomoidea, but no reads were detected in any of the 
8 humic water lakes (Fig. 1).

PCR‑based validation
The ~500-bp Diplostomidae cox1 gene fragment was 
successfully amplified in 95 of the 212 individuals addi-
tionally sampled in 2017 (142 of 384 eye samples; Addi-
tional file 2: Table S1). All of the collected samples from 
the 8 humic lakes were free of diplostomid parasites, 
whereas perch from 4 of the 5 clear-water lakes were 
infected. Infection prevalence was very high in 3 clear-
water lakes (prevalence 96–100%, Fig.  1, Additional 
file 2: Table S1).

Targeted metabarcoding of eye parasites
The majority of the PCR-positive eye samples produced 
a large number of sequences of parasites belonging to 
the Diplostomidae (mean number of reads = 53,171; 
median = 39,651). In total, 99.3% of the sequences 
were assigned to the superfamily Diplostomoidea. The 
majority of sequences (mean = 83.6%) were assigned to 
Tylodelphys clavata (Additional file  2: Table  S2) while 
a small number of sequences were assigned to 3 spe-
cies from the genus Diplostomum (D. baeri complex 
sp. 2 SAL-2014 (neyes = 7), D. spathaceum (neyes = 4) 
and D. pseudospathaceum (neyes = 7; Additional file 2: 
Table S2).

Altogether, 34 distinct T. clavata haplotypes were iden-
tified in the 113 analysed eye samples collected from 79 
perch; of these, 4 haplotypes were identical to published 
GenBank sequences. The most common haplotype was 
found in 107 samples, while the other haplotypes were 
observed in 2 to 16 samples (Fig. 2). The majority of the 
eyes contained 1 to 5 haplotypes. Most of the haplotypes 
formed a genetically close star-like network, whereas two 
smaller haplotype groups were more distant from the 
former (Fig. 2). There was no evidence of strong genetic 
structuring, as common haplotypes were present in all 4 
lakes.

Discussion
The extent to which extrinsic environmental conditions 
shape host-pathogen coevolution and contribute to the 
emergence of locally adapted populations are currently 
poorly understood. Here, we demonstrate how inte-
grated use of complementary NGS approaches can pro-
vide novel insights on such complex associations [2, 15, 
18, 60]. By analysing both host-specific and unmapped 
whole-eye RNA-seq reads, we discovered that perch 
individuals from humic and clear-water lakes differ in 
immune system related gene expression, and that this 
difference could be explained by contrasting diplosto-
mid parasite pressure between the two habitats. We 
subsequently developed a targeted metabarcoding 
approach to further investigate the molecular diversity 
of this parasite group. We found that T. clavata is the 
dominant eye parasite in perch, with high prevalence 
and haplotype diversity in the four clear-water lakes. 
While high prevalence and abundance of T. clavata in 
perch has been observed earlier [26], our work provides 
support for the hypothesis that the humic environ-
ment is unfavourable at least for this diplostomid eye 
parasite species to successfully complete its life-cycle. 
Moreover, to the best of our knowledge, we show for 
the first time that in addition to the head-kidney, which 
is the main lymphoid organ involved in piscine immune 
defence [61], the presence of eye parasites also alters 
the expression patterns of a number of host immune 
genes measured from the whole eye.

Differential expression of immune genes
The adaptive importance of gene functions can be 
studied by analysing gene expression differences in an 
ecological context [62]. Among the genes that were 
differentially expressed between eyes of perch from 
clear-water and humic lakes, those with immune 
system-related functions were strongly overrepre-
sented. Differentially expressed genes included inter-
ferons, interleukins, and other proteins (e.g. interferon 

http://popart.otago.ac.nz
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regulatory factor 1, interferon induced proteins, inter-
leukin-8 like protein, MHC class II beta subunit and T 
cell antigens) that are involved in immune cell activa-
tion and antigen presentation.

In wild populations, immune system genes are often 
found to be at the very centre of evolutionary change 
[63–65]. Nevertheless, the expression of immune-related 

genes in the perch eye was initially unexpected, as tradi-
tionally the eye has been thought to be an “immunoprivi-
leged” organ [66–69]. However, accumulating evidence 
has started to paint a more complex picture of ocular 
immunity by, for instance, showing that leucocytes can 
selectively penetrate the retina-blood barrier [70], and 
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that immune system related genes are expressed in vari-
ous eye microhabitats [71, 72].

One interesting differentially expressed gene found in 
our study is catalase (CAT; EC1.11.1.6), which is a prin-
cipal enzyme in antioxidant pathway that functions by 
converting reactive  H2O2 to  H2O and  O2. CAT showed a 
marked downregulation in clear-water lakes (Additional 
file 2: Table S5). CAT enzymatic activity has been stud-
ied in various compartments of the eye in humans and 
model organisms [73, 74], and reduced CAT activity was 
linked to decreased parasitosis [75]. However, because 
here we have analysed gene expression of the whole eye 
rather than that of specific eye structures and tissues, and 
without blood expression data for contrast, we cannot 
determine the extent to which the observed expression 
differences are driven by the processes in blood versus 
internal eye structures. Nevertheless, our results indicate 
that T. clavata is most likely influencing immune gene 
expression patterns of the host. Most of the current (and 
limited) information we have on eye immunity comes 

from mammalian models; we know very little about 
immune processes in the eye of other taxa [68, 69, 76, 
77]. More studies targeting multiple eye tissues [78] are 
therefore clearly needed to evaluate the “immunopriv-
iliged” status of fish eyes in response to eye parasites.

Humic lakes as eye parasite‑free environment for perch
To explain the excess of differentially expressed immune-
related genes between humic and clear-water perch 
populations, we hypothesized that observed differences 
in transcript abundances may be driven by eye para-
sites. In order to test the potential link between humic 
substances and occurrence of diplostomid parasites, we 
scanned the proportion of RNA-seq reads that were not 
mapped to the perch genome. For individuals originating 
from humic lakes, none of the unmapped RNA-seq reads 
were assigned to the Diplostomoidea. This initial result 
was later confirmed with PCR-based screening of addi-
tional samples collected the following year when a very 
high prevalence of diplostomid parasites was observed 
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in four out of six clear-water lakes. This result is consist-
ent with previous studies in perch and other fish spe-
cies, which showed the absence of some parasite taxa in 
potentially challenging habitats [34, 79, 80]. Diplostomid 
parasites have a complex life-cycle with three hosts and 
free-living stages, making this group particularly sensi-
tive to biotic and abiotic elements of their environment. 
Because both clear-water and humic lake pairs are in very 
close geographical proximity (see Additional file  1: Fig-
ure S1), the difference in parasite prevalence cannot be 
explained by the lack of dispersal opportunities for the 
parasite [81]. The most obvious difference between lakes 
is their colour, which is tightly linked to water chemis-
try, particularly DOC and pH (Pearsons’s r = − 0.64, P = 
0.003). Monitoring data of gastropod diversity indicated 
their absence in most of the studied humic lakes. In clear-
water lakes, however, at least one species of gastropod 
was recorded (Lymnaea spp. or Radix spp.), which are 
both considered as first intermediate hosts for diplosto-
mid species. Moreover, high density of underwater veg-
etation in clear-water lakes likely supports high density 
of gastropods, while humic lakes are typically very poor 
in aquatic vegetation. Taken together, this suggests that 
interactive effects driven by the humic content on diplos-
tomid parasite free-living stage and the lack of the first 
intermediate gastropod host [34, 82] most likely create a 
‘life-cycle bottleneck’ for the parasite [81].

Cryptic diversity in T. clavata
DNA analysis of naturally pooled fish-eye parasites has 
previously been used in combination with pyrosequenc-
ing [29]. However, the early attempts to harness the 
power of NGS for intra- and interspecific analysis were 
severely hampered by very short read length (e.g. only 
22 bp were sequenced in [29]). In the present study, we 
developed targeted metabarcoding of a longer (~ 500 bp) 
diplostomid-specific cox1 fragment for whole-eye para-
site community analysis. Using a conservative approach 
of eliminating singletons and rare reads we assigned most 
of the cox1 fragments to T. clavata.

We observed high T. clavata haplotype diversity among 
the studied lakes, as well as a lack of genetic structur-
ing, consistent with previous studies [32, 83]. Together, 
this suggests that T. clavata forms a large well-connected 
population system, as is expected for parasites with highly 
mobile definitive hosts such as piscivorous birds [83]. The 
high haplotype diversity in T. clavata observed here also 
suggests that earlier sequencing efforts have likely man-
aged to capture only a fraction of the intraspecific genetic 
diversity. It is likely that this finding also holds for other 
diplostomid species; current molecular studies of fish 
eye flukes are typically based on analysis of less than a 

hundred individually sampled parasites (but see [32]), 
yet a single fish eye may harbour hundreds of parasites 
(e.g. [26]). Thus, it was not surprising that the developed 
diplostomid metabarcoding approach revealed, for the 
first time, an extensive intraspecific diversity in T. clav-
ata. Our study also showed that the majority of perch 
were infected by several T. clavata haplotypes. The lat-
ter result would indicate continual infection by different 
haplotypes that co-exist in the same lakes—a result also 
observed for liver flukes [84, 85].

Conclusions
Taken together, this study demonstrates how compo-
nents of the abiotic environment drastically shape com-
mon parasite communities and host immune response, 
highlighting the significance of analysing results of host-
parasite studies in an ecological context. In addition, 
our study illustrates the utility of integrating RNA-seq 
and targeted metabarcoding approaches in host-parasite 
community studies. The high intraspecific diversity of 
T. clavata recovered from our targeted metabarcoding 
approach suggests that NGS of naturally pooled samples 
represents an efficient and powerful strategy for shedding 
light on cryptic diversity of eye parasites.
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