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Cytokinin fluoroprobe reveals multiple sites of
cytokinin perception at plasma membrane and
endoplasmic reticulum
Karolina Kubiasová 1,8, Juan Carlos Montesinos2,8, Olga Šamajová3, Jaroslav Nisler 4,5, Václav Mik 4,

Hana Semerádová2, Lucie Plíhalová 4,5, Ondřej Novák 5, Peter Marhavý 2,6, Nicola Cavallari2,

David Zalabák1, Karel Berka7, Karel Doležal 4,5, Petr Galuszka9, Jozef Šamaj 3, Miroslav Strnad5,

Eva Benková 2✉, Ondřej Plíhal 1,4,5✉ & Lukáš Spíchal 4✉

Plant hormone cytokinins are perceived by a subfamily of sensor histidine kinases (HKs),

which via a two-component phosphorelay cascade activate transcriptional responses in the

nucleus. Subcellular localization of the receptors proposed the endoplasmic reticulum (ER)

membrane as a principal cytokinin perception site, while study of cytokinin transport pointed

to the plasma membrane (PM)-mediated cytokinin signalling. Here, by detailed monitoring

of subcellular localizations of the fluorescently labelled natural cytokinin probe and the

receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4) fused to GFP reporter, we show

that pools of the ER-located cytokinin receptors can enter the secretory pathway and reach

the PM in cells of the root apical meristem, and the cell plate of dividing meristematic cells.

Brefeldin A (BFA) experiments revealed vesicular recycling of the receptor and its accu-

mulation in BFA compartments. We provide a revised view on cytokinin signalling and the

possibility of multiple sites of perception at PM and ER.
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The plant hormone cytokinin regulates various cell and
developmental processes, including cell division and dif-
ferentiation, embryogenesis, activity of shoot and root

apical meristems, formation of shoot and root lateral organs and
others1. Cytokinins are perceived by a subfamily of sensor histi-
dine kinases (HKs), which via a two-component phosphorelay
cascade activate transcriptional responses in the nucleus. Based
on the subcellular localization of cytokinin receptors in various
transient expression systems, such as leaf epidermal cells of
tobacco (Nicotiana benthamiana), and membrane fractionation
experiments of Arabidopsis and maize, the endoplasmic reticu-
lum (ER) membrane has been proposed as a principal hormone
perception site2–4. Intriguingly, recent study of the cytokinin
transporter PURINE PERMEASE 14 (PUP14) has pointed out
that the plasma membrane (PM)-mediated signalling might play
an important role in the establishment of cytokinin response
gradients in various plant organs5. However, localization of
cytokinin HK receptors to the PM, although initially suggested6,
remains ambiguous. Here, by monitoring subcellular localizations
of the fluorescently labelled cytokinin probe iP-NBD7, derived
from the natural bioactive cytokinin iP, and the cytokinin
receptor ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/AHK4)
fused to GFP reporter, we show that pools of the ER-located
cytokinin fluoroprobes and receptors can enter the secretory
pathway and reach the PM. We demonstrate that in cells of the
root apical meristem, CRE1/AHK4 localizes to the PM and the
cell plate of dividing meristematic cells. Brefeldin A (BFA)
experiments revealed vesicular recycling of the receptor and its
accumulation in BFA compartments. Our results provide a
revised view on cytokinin signalling and the possibility of mul-
tiple sites of perception at both PM and ER, which may determine
specific outputs of cytokinin signalling.

Results and discussion
Cytokinin fluoroprobe iP-NBD shows affinity to receptors.
Fluorescently labelled analogues of phytohormones, including
auxin, gibberellin, brassinosteroid and strigolactone, have been
successfully used to map the intracellular fate of their receptors in
planta8. To adopt this tool for mapping subcellular localization of
cytokinin receptors, using docking experiments and cytokinin
activity screening bioassays, we selected a fluorescently labelled
bioactive compound that interacts with the binding site of a
cytokinin receptor.

Cytokinin groups a collection of N6-substituted adenine
derivatives, including trans-zeatin (tZ) and isopentenyladenine
(iP). They show different localization pattern and distinct
partially overlapping functions in planta. tZ-type cytokinins play
a role of acropetal messengers, whereas iP‐type cytokinins operate
as systemic or basipetal messengers9. The isoprenoid cytokinins
(tZ- or iP-types) showed similar distribution patterns in different
cell type populations within the root apex10. While tZ-type
cytokinins were detected at much lower levels than other
isoprenoid cytokinins, when concerns free cytokinin bases, the
tZ content was found to be the highest among the free bases,
followed by free iP that showed relatively enhanced content also
in the stele10. Hence, iP seems to be a good candidate for a
cytokinin fluoroprobe design. Moreover, iP is a natural cytokinin
that cannot be transformed through O-glycosylation at the
cytokinin side chain and thus the possibility of metabolic
conversions of the cytokinin fluoroprobe by cytokinin deactiva-
tion enzymes in planta is minimized. Furthermore, covalent
attachment of 7-nitro-2,1,3-benzoxadiazole (NBD), a small
fluorophore, to the N9 position of iP eliminates a risk of a
metabolic conversion of the final cytokinin fluorescent probe iP-
NBD (Fig. 1a) through N-glycosylation, or formation of cytokinin

nucleotides. The stable attachment of the N9-substitutent also
prevents modifications at the N7 position by making this CK
derivative completely inaccessible for N-glucosyltransferases11.
Docking simulations using the CRE1/AHK4-iP crystal structure12

and corresponding homology models suggested that iP-NBD may
be fully embedded into the active sites of all AHK receptors
(Fig. 1b) with micromolar range affinity. The affinity of iP-NBD
to cytokinin receptors was measured using bacterially expressed
recombinant AHK3 and CRE1/AHK4 13. Both receptors share
ligand preference for tZ, but AHK3 has about tenfold lower
affinity towards iP compared to CRE1/AHK413,14. Competitive
binding assays with E. coli expressing either AHK3 or CRE1/
AHK4 15 showed that iP-NBD competes for receptor binding
with radiolabelled natural cytokinins iP and tZ in different ranges
of ligand concentrations (Fig. 1c; Supplementary Fig. 1a),
corresponding with the receptor ligand preferences. As predicted,
iP-NBD had lower affinity to AHK3 (with Ki∼ 37 µM and
>100 µM against radiolabelled tZ and iP, respectively) than to
CRE1/AHK4 (with Ki∼ 1.4 µM and ∼31 µM against radiolabelled
tZ and iP, respectively), indicating that this fluoroprobe is more
specific to CRE1/AHK4 (Fig. 1c; Supplementary Fig. 1a). Docking
into the CRE1/AHK4-iP crystal structure12 showed that iP-NBD
binds into the receptor cavity in a similar manner to iP, but the
lack of interaction via N9 (which links the fluorescent probe)
causes the purine ring shift leading to the larger distance and thus
weaker interaction between N7 and Asp137 (Fig. 1b). Despite iP-
NBD being accommodated into the cytokinin-binding pockets of
the receptors, it showed limited ability to trigger cytokinin
response in E. coli (ΔrcsC, cps::lacZ) receptor activation assay13

(Supplementary Fig. 1b). In Arabidopsis seedlings, iP-NBD in a
concentration-dependent manner significantly increased the
expression of the early cytokinin response gene ARABIDOPSIS
RESPONSE REGULATOR5 (ARR5) already 15 min after its
application, suggesting that the synthetic cytokinin fluoroprobe
can activate cytokinin signalling pathway in planta (Fig. 1d;
Supplementary Fig. 1c). In comparison to iP, a natural cytokinin,
iP-NBD triggered cytokinin response with significantly lower
efficacy and when applied together with iP no additive effect on
the ARR5 expression could be detected (Fig. 1d). In the pTCSn::
ntdTomato:TNOS cytokinin reporter assay16, iP-NBD did not
increase expression of the reporter 6 h after treatment, but when
applied simultaneously with iP, iP-NBD partially attenuated iP-
mediated enhancement of the TCS reporter expression (Supple-
mentary Fig. 1d). Altogether, these analyses suggest partial
agonistic mode of action of iP-NBD that binds to a cytokinin
receptor and activates it with only minimal efficacy compared to a
natural cytokinin ligand. At excess concentrations, iP-NBD is
then acting as a competitive antagonist, competing with the full
agonist (a natural cytokinin) for receptor occupancy. Altogether,
the above experiments show that iP-NBD binds to cytokinin
receptors and has potential for specifically tracking their
subcellular localization in planta.

Biological characteristics of iP-NBD. To reliably monitor iP-
NBD distribution in planta, we first evaluated its biological sta-
bility, fluorescence characteristics and saturation kinetics. iP-NBD
stability across the different pH conditions that appear in apoplast,
cytosol and different cell organelles was tested in vitro in the pH
ranging from 4 to 8 by quantitative liquid chromatography-
tandem mass spectrometry (LC-MS/MS). No significant changes
of iP-NBD concentration were found in the buffered solutions
under both 6 and 16 h of incubation pointing to a broad pH
stability of iP-NBD (Supplementary Fig. 2a). Taking into account
the chemical structure of iP-NBD that prevents O- and/or N-
glycosylation, the presumed in planta catabolic pathway of this
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17949-0 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4285 | https://doi.org/10.1038/s41467-020-17949-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


molecule might be N6 side-chain cleavage by endogenous
CYTOKININ OXIDASE/DEHYDROGENASE (CKX) activity.
Hence, the in vivo stability of the fluoroprobe was tested. iP-NBD
was applied to Arabidopsis cells, and its intracellular processing
was followed over a period of 0.5–5 h by LC-MS/MS analysis.
Thus, iP-NBD and N9-NBD-labelled adenine (Ade-NBD), the
expected product of iP-NBD deprenylation by CKXs, were used as
molecular standards. Under these conditions, iP-NBD showed
high stability within the first 30min (≥90% recovery of intact
molecule), dropping drastically after 5 h. The concentration of
Ade-NBD steadily increased, reaching the maximal concentration
after 4 h (Supplementary Fig. 2b). The fact that iP-NBD can be
recognized by CKXs as a substrate was confirmed by in vitro
enzymatic reaction with AtCKX2, one of the most active CKX
isoforms with an apoplastic localization17. AtCKX2 converted iP-
NBD to the product with approx. six times lower turnover rate kcat
compared to the parental iP molecule, but only with 33% lower
catalytic efficiency Vmax/Km (Supplementary Fig. 2c).

Internalization of iP-NBD follows rapid saturation kinetics. In
terms of fluorescent characteristics, the emission maximum of the
cytokinin fluoroprobe was in the yellow-green part of the spec-
trum at 528 nm suitable for co-localization with fluorescent
markers emitting at red wavelengths (Supplementary Fig. 2d, f).
Quantitative fluorescence microscopy of wild-type plants (Col-0)
showed that cellular internalization of iP-NBD followed rapid
saturation kinetics, reaching a plateau after approximately 12 min
(Fig. 1e). Pre-treatment with non-labelled iP and subsequent
application of iP-NBD resulted in a significant reduction of
intracellular iP-NBD fluorescence (Fig. 1e). This suggested that
transport and/or intracellular binding competition between iP-
NBD and the natural cytokinin competitor was taking place,
further pointing to the cytokinin-like properties of the iP-NBD
molecule. Significantly slower progression of iP-NBD accumula-
tion in cells of a pup14 mutant (lacking the functional cytokinin
transporter PUP14) confirmed that specific cytokinin transport
partially accounts for the amount of iP-NBD detected intra-
cellularly (Fig. 1f). Unlike iP-NBD, Ade-NBD, which lacks the
cytokinin-specific side chain, has no affinity to the cytokinin
receptors (Supplementary Fig. 2e) and exhibited a weak diffused
apoplastic and patchy intracellular signal in epidermal cells
(Supplementary Fig. 2f).

iP-NBD co-localizes with ER, TGN and early endosomal
markers. Affinity of iP-NBD to cytokinin receptors, in particular
to CRE1/AHK4, motivated us to monitor subcellular localization
of this cytokinin fluoroprobe, aiming to trace potential sites of
interaction with the receptor. Two cell types, namely differ-
entiated lateral root cap (LRC) cells and epidermal cells at the
root meristematic zone of Arabidopsis root, were selected for in-
depth analyses. In a line with reported ER-localization of the
AHK cytokinin receptors2,3, iP-NBD co-localized with p24δ5-
RFP, an ER-specific marker, in both cell types (Fig. 2a, b, red
arrowheads; Supplementary Table 1). Notably, we also detected
strong iP-NBD fluorescence signal in distinct spot-like structures,
which did not overlap with the ER reporter (Fig. 2a, b; white
arrowheads). Likewise, co-visualization with HDEL-RFP, an ER-
specific marker, corroborated dual ER and spot-like localization
of iP-NBD in both LRC and epidermal cells (Supplementary
Fig. 3a, b).

To further explore the nature of peripheral and spot-like
subcellular structures showing affinity to iP-NBD, we performed
co-staining with FM4-64, the membrane selective dye labelling PM
and endosomal/recycling vesicles in plant cells18. In both epidermal
and LRC cells, iP-NBD signal was detected intracellularly and

partially co-localized with the FM4-64 stained vesicles correspond-
ing to internalized and recycling endosomes (Fig. 2c, e; Supple-
mentary Fig. 3c). Interestingly, detailed profiles of fluorescence
intensity distributions of iP-NBD and FM4-64 revealed their
partial co-localization at the PM of epidermal cells, which was not
the case for LRC (Fig. 2d compared to Fig. 2f). These observations
suggested that apart from ER, iP-NBD might accumulate in
subcellular vesicles and at the PM.

To gain further insights into iP-NBD subcellular localization and
to test its affinity to endomembrane structures, we analysed the
impact of brefeldin A (BFA), a fungal toxin, inhibiting ER-Golgi
and post-Golgi trafficking to the PM and to vacuoles, thus causing
formation of endosomal clusters, so-called BFA compartments19.
Strikingly, in root epidermal cells, we observed accumulation of iP-
NBD signal in clusters corresponding to BFA compartments stained
with FM4-64 (Fig. 2g, blue arrowheads). Co-localization with
RabA1e-mCherry, a BFA-sensitive endosome/recycling endosome
marker, provided additional supporting evidence that in root
epidermal cells iP-NBD exhibits affinity to vesicular endomembrane
system where subpopulations of cytokinin receptors may be
localized (Supplementary Fig. 3d; Supplementary Table 1). Next,
we traced the localization of the cytokinin fluoroprobe using a set of
Wave marker lines specific for various subcellular organelles20.
Notably, in root epidermal cells, we observed a partial co-
localization of iP-NBD with a cis-Golgi (GA) marker, SYP32-
mCherry (Supplementary Fig. 3e; Supplementary Table 1), an
integral GA membrane protein, Got1p homologue-mCherry
(Supplementary Fig. 3f; Supplementary Table 1), and with TGN/
early endosome marker, VTI12-mCherry (Supplementary Fig. 3g;
Supplementary Table 1). Interestingly, iP-NBD did not co-localize
with a late endosome marker, RabF2b/W2R-mCherry (Supplemen-
tary Fig. 3h; Supplementary Table 1) nor with a vacuolar marker,
VAMP711-mCherry (Supplementary Fig. 3i; Supplementary
Table 1). In cells of LRC, we observed partial co-localization with
the GA markers, SYP32-mCherry (Supplementary Fig. 4a; Supple-
mentary Table 1) and Got1p homologue-mCherry (Supplementary
Fig. 4b; Supplementary Table 1), an endosome/recycling endosome
marker RabA1e-mCherry (Supplementary Fig. 4c; Supplementary
Table 1) and with the TGN/early endosomal marker VTI12
(Supplementary Fig. 4d; Supplementary Table 1). However, no co-
localization was detected with late endosomal RabF2b-mCherry
(Supplementary Fig. 4e; Supplementary Table 1) or vacuolar
VAMP711-mCherry markers (Supplementary Fig. 4f; Supplemen-
tary Table 1).

Overall, monitoring of iP-NBD in LRC and epidermal cells
corroborate the ER as an organelle with affinity to cytokinin.
However, co-localization of iP-NBD with TGN and early
endosomal markers as well as its accumulation in BFA compart-
ments indicate that proteins with affinity to iP-NBD, such as
cytokinin receptors, do not reside exclusively at ER, but may enter
the endomembrane trafficking system and possibly localize also to
the PM.

Generation and isolation of CRE1/AHK4-GFP transgenic lines.
Previously, ER-localization of Arabidopsis cytokinin receptors has
been demonstrated using transiently transformed Nicotiana ben-
thamiana2,3 and Arabidopsis3, and by employing cytokinin-
binding assays with fractionated Arabidopsis cells expressing Myc-
tagged receptors2. However, so far no experimental support has
been provided for their possible entry into the subcellular vesicular
trafficking and PM localization. Yet, the possibility of cytokinin
HKs localization to the PM has been hypothesized within a con-
text of an integrative model for cytokinin perception and signal-
ling21. The potential sites of CKs perception had been questioned
in relation to the pH dependence of the binding by HKs. It was
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shown that CK binding to AHK3 is pH dependent with optimum
at basic pH and a dramatic decrease at acidic pH14. This finding
fits with the ER-localization of CK receptors and has also been
used to cast doubt on PM-function of the receptors due to the
acidic pH of apoplast acting as a constraint on efficient CK
binding. However, in contrary to AHK3, CRE1/AHK4 affinity was
shown not to be dramatically altered at acidic pH14. Importantly, a
recent work by Jaworek et al.22 shows detailed analysis of pH
influence on binding strength of CKs to the receptors from poplar
(Populus × canadensis cv. Robusta). They showed that CK binding
to PcHK3 (ortholog of AHK3) steadily increases towards higher
pH values, whereas binding to PcHK4 (ortholog of CRE1/AHK4)
linearly decreased from an optimum for ligand binding at pH 5.5.
These findings support the idea that CRE1/AHK4 can effectively
sense CKs from the apoplast.

The only cytokinin receptor studied for its localization using
stably transformed Arabidopsis plants was AHK3 3. Unlike this
receptor, subcellular localization of CRE1/AHK4 has not been
addressed in much detail. Taking into account a higher affinity of
iP-NBD to this receptor, we focused on monitoring its subcellular
localization using Arabidopsis stable transgenic lines carrying
CRE1/AHK4-GFP construct driven by a constitutive 35S promo-
ter. Two independent lines displaying significantly increased
transcription of CRE1/AHK4-GFP when compared to wild type
were selected for detailed observations (Supplementary Fig. 5a).
Western blot analyses confirmed accumulation of the CRE1/
AHK4-GFP product of proper ~150 kDa size in both lines,
although lower levels of the fusion protein were detected in the
35S::CRE1/AHK4-GFP line (1) when compared to the line (2)
(Supplementary Fig. 5b, c). To test the functionality of the CRE1/
AHK4-GFP fusion protein, we performed transient expression
assays in Arabidopsis protoplasts. Co-expression of 35S::CRE1/
AHK4-GFP with a cytokinin sensitive reporter TCS::LUCIFER-
ASE (TCS::LUC) resulted in 85 ± 6.9-fold upregulation of the
reporter activity by cytokinin when compared to protoplasts co-
transformed with controls (plasmids carrying either GFP or GUS
reporter only resulting in 28 ± 2.4- and 32 ± 1.5-fold increase of
LUCIFERASE activity, respectively) (Supplementary Fig. 5d). In
planta, functionality of the CRE1/AHK4-GFP was tested by
expression analyses of the type-A early cytokinin response genes
in the 35S::CRE1/AHK4-GFP transgenic lines. Application of
cytokinin resulted in strong upregulation of ARR5 and ARR7 in
wild type and both transgenic lines expressing CRE1/AHK4-GFP
(Supplementary Fig. 5e). However, a significantly enhanced
transcription of ARR5 and ARR7 in response to cytokinin
compared to wild type was detected only in 35S::CRE1/AHK4-
GFP line (2), which displayed a higher accumulation of CRE1/
AHK4-GFP. ARR5 and ARR7 have been reported as being among
the most sensitive type-A early cytokinin response genes,
reaching expression maxima within 10–15 min following cytoki-
nin application23. We argued that a high responsiveness of these
genes to cytokinin might hinder detection of more subtle changes
in cytokinin sensitivity in line with lower expression of the CRE1/
AHK4-GFP. When compared to ARR5 and ARR7, ARR16 showed
maximum transcription within 40–60min following cytokinin
application23. A significantly higher expression of ARR16 after
cytokinin application for 15 min was detected in both CRE1/
AHK4-GFP overexpressing lines when compared to wild type.
These results suggest that proportionally with levels of CRE1/
AHK4-GFP expression, the sensitivity of both lines to cytokinin
stimulus is enhanced (Supplementary Fig. 5e), indicating that
CRE1/AHK4-GFP maintains its biological activity.

Transgenic Arabidopsis lines expressing CRE1/AHK4-GFP exhib-
ited phenotypes typical of plants with enhanced activity of cytokinin
such as a shorter primary root, slower root growth rate and decreased
lateral root density (Supplementary Fig. 5f–i). Both transgenic lines

expressing CRE1/AHK4-GFP displayed hypersensitive-like responses
to exogenous cytokinin treatment on the primary root growth
compared to the wild-type control, and in contrast to cytokinin
insensitive ahk4/cre1-2 loss-of-function mutant (Supplementary
Fig. 5j).

CRE1/AHK4-GFP co-localizes with the ER and the PM mar-
kers. As previously reported and in line with iP-NBD subcellular
localization, CRE1/AHK4-GFP in LRC and epidermal cells of root
apical meristem co-localized with ER marker p24δ5-RFP
(Fig. 3a–c, red arrowheads). Intriguingly, in epidermal cells of
the root meristematic zone, CRE1/AHK4-GFP signal at the PM
area, not co-localizing with ER reporter, could also be detected
(Fig. 3d, e). Subsequent analysis revealed strong overlap of CRE1/
AHK4-GFP with the PM reporter PIP1;4-mCherry and NPSN12-
mCherry (Fig. 4a–d), thus hinting at localization of the cytokinin
receptor at the PM. Moreover, in dividing meristematic cells
CRE1/AHK4-GFP could also be detected at the expanding cell
plate (Fig. 4c–f, asterisks) while it co-localized there with estab-
lished cell plate vesicular marker FM4-64 (Fig. 4e, f). Importantly,
it has been shown that during cytokinesis the cell plate might
receive material both from post-Golgi compartments as well as
from the PM through sorting and recycling endosomes24. Hence,
detection of CRE1/AHK4-GFP at the cell plate provides further
supporting evidence that the cytokinin receptor might reside
outside of ER, namely on cytokinetic vesicles forming cell plate25.
Further evidence confirming localization of CRE1/AHK4-GFP to
the PM resulted from the subcellular study using super-resolution
structural illumination microscopy (SIM)26. This SIM analysis
revealed co-localization of CRE1/AHK4-GFP with FM4-64 label-
led PM with average Pearson’s coefficient 0.345 ± 0.113 (n= 30;
Fig. 4g; Supplementary Fig. 6a). Unlike epidermal cells of the root
meristematic zone, in LRC cells the CRE1/AHK4-GFP signal
resided in the ER and no co-localization with a PM reporter
(NPSN12-mCherry) could be detected (Supplementary Fig. 6b, c).
Inhibition of endocytic trafficking and vesicular recycling in
meristematic cells by BFA resulted in co-accumulation of CRE1/
AHK4-GFP and FM4-64 in the BFA compartments in line with
the presence of the receptor in the endomembrane system
(Fig. 4h). Wash-out of BFA allowed re-localization of the cyto-
kinin receptor back to the PM indicating that it might cycle
between PM and TGN (Supplementary Fig. 6d). Although occa-
sionally in some cells of LRC co-staining with FM4-64 revealed
CRE1/AHK4-GFP in BFA compartments, they were relatively rare
and randomly scattered in some LRC cells indicating that CRE1/
AHK4-GFP trafficking in differentiated cells of LRC might differ
from that observed in epidermal cells of root apical meristem
(Supplementary Fig. 6e). Importantly, no accumulation of the ER
marker p24δ5-RFP in the BFA compartments in either epidermal
cells of meristem (Fig. 4i) or LRC cells (Supplementary Fig. 6f)
could be detected, suggesting that CRE1/AHK4-GFP signal is
specifically enriched in the BFA bodies and not related to struc-
tural changes of ER in BFA-treated cells.

Altogether, these results indicate that in LRC cells CRE1/AHK4
may reside preferentially at the ER, whereas in epidermal cells of the
root apical meristem the cytokinin receptor can enter the
endomembrane system and localizes both at the ER and at the PM.

To further explore whether cytokinin receptor might occupy
different subcellular location in cells at distinct stage of differentiation,
we monitored CRE1/AHK4-GFP in different cell types. Similarly to
epidermis, in provasculature cells in the root meristematic zone, the
CRE1/AHK4-GFP seems to localize at the ER, the PM and at the cell
plate of dividing stele cells (Supplementary Fig. 6g). To strengthen the
conclusion that in meristematically active cells cytokinin receptor
might enter the secretory pathway and reach the PM, we performed
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real-time monitoring of the CRE1/AHK4-GFP in developing lateral
root primordia (LRP). Although expression of CRE1/AHK4-GFP
driven by 35S promoter in LRP was relatively weak, similarly to cells
in the root meristem, the CRE1/AHK4-GFP tends to localize at the
ER and the PM (Supplementary Fig. 6h). Furthermore, in actively
dividing cells we could detect a weak CRE1/AHK4-GFP signal during
cell plate formation (Supplementary Movie 1).

Unlike cells located at the root apical meristem, in the
differentiated cells of the LRC the CRE1/AHK4-GFP was detected
in the ER, but not at the PM. To support further our conclusion
about dominant localization of the cytokinin receptor at the ER in
differentiated cells, we performed detailed observations of CRE1/
AHK4-GFP in differentiated root epidermal cells above the
meristematic zone. In these cells, the CRE1/AHK4-GFP was located
at the ER (Supplementary Fig. 6i, j), but no co-localization with the
PM reporter NPSN12 could be detected (Supplementary Fig. 6k, l).

Based on these observations we hypothesize that CRE1/AHK4-
GFP located either at the ER or at the PM might activate distinct
branches of downstream signalling to control specific process in
differentiated versus meristematically active cells. Internalization
and recycling of the receptor between PM and endosomal
compartments in meristematic cells may represent another level
in controlling signalling receptor function. Whether similarly to
the CRE1/AHK4-GFP, also AHK2 and AHK3 might enter
secretory pathway and reach the PM in meristematically active
cells remains to be addressed. In previously reported studies
localizations of the AHK3-GFP and AHK2-GFP have been
observed in above-ground plant parts using transiently trans-
formed Nicotiana benthamiana epidermal leaf cells2 and
transiently transformed Arabidopsis cotyledon cells3, all in the
differentiated stages. Hence, whether in specific cell types AHK2
and AHK3 might localize to the PM needs to be examined.
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Fig. 3 CRE1/AHK4-GFP subcellular localization in cells of Arabidopsis root. a–e Monitoring of CRE1/AHK4-GFP cytokinin receptor (green) and ER-
marker p24δ5-RFP (red) in LRC cells (a, b) and root meristematic epidermal cells (c–e). Red arrowheads mark areas of co-localization. Fluorescence
intensity profiles of the ER marker (red line) and CRE1/AHK4-GFP (green line) (b, e) were measured along the white lines (a, c) starting from upper end
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Taken together, monitoring of intracellular localization of the
fluorescent cytokinin probe iP-NBD with higher affinity to CRE1/
AHK4 cytokinin receptor, as well as direct visualization of CRE1/
AHK4-GFP leads us to the conclusion that besides ER, cytokinin
signal might also be perceived at other cellular compartments
including the PM. As suggested by different localization of CRE1/
AHK4 receptor in differentiated cells of LRC when compared to
epidermal cells of root apical meristem, perception of cytokinin at
either ER or PM might be cell- and developmental-context
dependent. In particular, the strong expression of the cytokinin
sensitive reporter TCS::GFP detected in columella and LRC cells27

suggests that the ER-located cytokinin receptors activate cytokinin
signalling cascade in these particular cell types. On the other hand,
it remains to be resolved whether there is a specific branch of
cytokinin signalling activated by receptors located at the PM of
meristematic cells.

Methods
Plant material. Arabidopsis thaliana (L.) Heynh (Arabidopsis) plants were used.
The transgenic lines have been described elsewhere: cre1-228, TCSn::ntdT:tNOS-
pDR5v2::n3GFP16, pup145, p24δ5-RFP29, HDEL-RFP30, Wave lines 2R/RabF2b
(LE/PVC), 9R/VAMP711 (Vacuole), 13R/VTI12 (TGN/EE), 18R/Got1p (Golgi),
22R/SYP32 (Golgi), 34R/RabA1e (Endosomal/Recycling endosomal), 131R/
NPSN12 (PM) and 138R/PIP1;4 (PM)20, ARR5::GUS23, 35S::GFP line was kindly
provided by Shutang Tan (IST Austria, Austria). 35S::CRE1/AHK4-GFP plants
were generated as described below.

Growth conditions. Surface-sterilized seeds of Arabidopsis ecotype Columbia
(Col-0) and the other transgenic lines were plated on half-strength (0.5×) Mura-
shige and Skoog (MS) medium (Duchefa) with 1% (w/v) sucrose and 1% (w/v) agar
(pH 5.7). The seeds were stratified for 2−3 days at 4 °C in darkness. Seedlings were
grown on vertically oriented plates in growth chambers at 21 °C under long day
conditions (16 h light and 8 h darkness) using white light (W), which was provided
by blue and red LEDs (70−100 µmol m−2 s−1 of photosynthetically active radia-
tion), if not stated otherwise.

Pharmacological treatments for bio-imaging. Seedlings 4−5-day-old were
transferred onto solid 0.5× MS medium with or without the indicated chemicals.
The drugs and hormones used were: N6-benzyladenine (BA) in different con-
centrations (0.1, 0.5, 1 and 2 µM), trans-zeatin (tZ 0.1 and 1 µM), N6-iso-
pentenyladenine (iP, 5 µM). Mock treatments were performed with equal amounts
of solvent (dimethylsulfoxide (DMSO)). Treatments with 5 µM iP-NBD and 5 µM
Ade-NBD were performed in liquid 0.5× MS medium and imaging was carried out
within 30 min time frame. For co-localization of the cytokinin fluoroprobe with
PM marker, seedlings were pre-treated with 2 µM FM4-64 for 5 min and trans-
ferred into 5 µM iP-NBD supplemented 0.5× MS medium, followed by imaging
within 30 min time frame. To explore affinity of iP-NBD to BFA endosomal
compartments, seedlings were incubated in 50 µM BFA for 1 h and afterwards
transferred into iP-NBD supplemented medium and imaged. Localization of
CRE1/AHK4-GFP in BFA endosomal compartments was examined in 4−5-day-
old seedlings incubated in 50 µM BFA for 1 h. For BFA washout experiments,
seedlings were placed in a fresh BFA-free 0.5× MS medium, which was replaced
every 10 min for at least 1 h.

Recombinant DNA techniques. The coding region of the cytokinin receptor
CRE1/AHK4 (At2g01830) was amplified without the stop codon by PCR using a
gDNA from Arabidopsis thaliana Col-0 as a template and cloned into the Gateway
vector pENTR_2B dual selection (primers: AHK4_Fw_SalI_KOZAK CGCGTC
GACccaccATGAGAAGAGATTTTGTGTATAATAATAATGC and AHK4_R_NotI
TTTTCCTTTTGCGGCCGCgaCGACGAAGGTGAGATAGGATTAGG). To con-
struct C-terminal fusion of CRE1/AHK4 with GFP, CRE1/AHK4 was shuttled into
the destination vector pGWB531 containing 35S promoter to create 35S::CRE1/
AHK4-GFP construct. For the transient Luciferase assay in Arabidopsis protoplasts,
CRE1/AHK4-GFP fusion construct was re-cloned into p2GW7,0 vector. CRE1/
AHK4-GFP region was amplified by PCR using pGWB5_CRE1/AHK4-GFP as a
template (primers: 35S_FW CCACTATCCTTCGCAAGACCCTTC and AHK4_
5A_NheI_RE TATTCCAATgctagcTTACTTGTACAGCTCGTCCATGC) and ligated
into the Gateway pENTR_2B dual selection entry vector. CRE1/AHK4-GFP was
shuttled into the destination vector p2GW7,0.

Plant transformation. Transgenic Arabidopsis plants were generated by the floral
dip method using Agrobacterium tumefaciens strain GV3101 32. Transformed
seedlings were selected on medium supplemented with 30 μg mL−1 hygromycin.

Homology modelling and molecular docking. CRE/AHK structures were mod-
elled based on CRE1/AHK4-iP crystal structure (PDBID: 3T4L)12 using Modeller
9.10 33. The geometry of iP-NBD was modelled with Marvin (http://www.
chemaxon.com), and then the compounds were prepared for docking in the
AutoDockTools program suite34. The Autodock Vina program35 was used for
docking iP-NBD ligand into the set of AHK structures obtained from homology
modelling. A 15 Å box centred at the original ligand binding position was used.
The exhaustiveness parameter was set to 20.

Competitive binding assay in E. coli strains. Receptor direct binding assays were
conducted using the E. coli strain KMI001 harbouring either the plasmid pIN-III-
AHK4 or pSTV28-AHK3, which express the Arabidopsis histidine kinases CRE1/
AHK4 or AHK336,37. Bacterial strains were kindly provided by Dr. T. Mizuno
(Nagoya, Japan). The competitive binding assays15,38 were performed with
homogenous bacterial suspension with an OD600 of 0.8 and 1.2 for CRE1/AHK4
and AHK3 expressing strains, respectively. The competition reaction was allowed
to proceed with 3 nM [2-3H]tZ and 6–18 nM [2-3H]iP, and various concentrations
of iP and iP-NBD, 0.1% (v/v) DMSO was added as a solvent control. After 30-min
incubation at 4 °C, the sample was centrifuged (6000 × g, 6 min, 4 °C), the super-
natant was carefully removed, and the bacterial pellet was resuspended in 1 ml of
scintillation cocktail (Beckman, Ramsey, MN, USA) in an ultrasonic bath. Radio-
activity was measured by scintillation counting by a Hidex 300 SL scintillation
counter (Hidex, Finland). To discriminate between specific and nonspecific bind-
ing, a high excess of unlabelled natural ligand tZ, or iP (at least 3000-fold) was used
for competition. The functional inhibition curves were used to estimate the IC50

values. The Ki values were calculated using the equation Ki= IC50/(1+ [radio-
ligand]/KD) according to Cheng and Prusoff39. [2-3H]tZ and [2-3H]iP were pro-
vided by Dr. Zahajská from the Isotope Laboratory, Institute of Experimental
Botany, Czech Academy of Sciences.

Quantitative RT–PCR. RNA was extracted with Monarch® Total RNA Miniprep
Kit (NEB) from roots of 5-day-old plants that were sprayed with mock (DMSO) or
0.01 µM iP, 0.1 µM iP, 1 µM iP, 10 µM iP-NBD, 100 µM iP-NBD or co-treatment of
0.1 µM iP+ 10 µM iP-NBD, 0.1 µM iP+ 100 µM iP-NBD for 15 min (Fig. 1d);
Mock (DMSO) or 5 μM iP (Supplementary Fig. 5e); for 15 min. Poly(dT) cDNA
was prepared from 1 μg of total RNA with the iScript cDNA Synthesis Kit (Bio-
Rad) and analysed on a LightCycler 480 (Roche Diagnostics) with the Luna®
Universal qPCR Master Mix (NEB) according to the manufacturer’s instructions.
The expression of CRE1/AHK4 of the two independent lines was quantified either
with a specific primer pair (AHK4-GFP_FW: TATCTCACCTTCGTCGTCGC and
AHK4-GFP_RE: CCTTGCTCACCATGGATCCTC) and their relative expressions
were compared to the house-keeping gene PP2A (PP2A_FW: TAACGTGGC-
CAAAATGATGC and PP2A_RE: GTTCTCCACAACCGCTTGGT) or with
AHK4_FW: GAACTGGGCACTCAACAATCA and AHK4_RE: ACGAATTCA-
GAGCACCACCA pair of primers and their relative expression refer to the Col-0
mock treatment. All qRT-PCR quantifications were done using PP2A as a reference
gene (Fig. 1d; Supplementary Fig. 5a, e). For the ARR expressions (ARR5_FW:
TGCCTGGGATGACTGGATATG, ARR5_RE: CTCCTTCTTCAAGACATCTATCG,
ARR7_FW: TACTCAATGCCAGGACTTTCAGG, ARR7_RE: TCTTTGAGA-
CATTCTTGTATACGAGG, ARR16_FW: CGTAAACTCGTTGAGAGGTTGCTC
and ARR16_RE: GCATTCTCTGCTGTTGTCACTTTG), the fold change refer to
the Col-0 mock treatment. The experiment was performed in three technical and
three biological replicates.

Measurements of iP-NBD cell transport kinetics. Seedlings of 4-day-old Ara-
bidopsis Col-0 were pre-treated for 20 min with 5 µM iP or DMSO and transferred
into MS media containing 5 µM iP-NBD and 5 µM iP/DMSO and instantly imaged.
To examine PUP14-dependent iP-NBD transport kinetics, 4-day-old seedlings of
pup14 and Col-0 were treated with 5 µM iP-NBD and immediately imaged. For
both experiments imaging was performed in the same area of the root for 12 min
every 2, 7 and 12 min to minimize photobleaching. iP-NBD fluorescence was
measured with ImageJ in the LRC cells (iP pre-treatment experiment) and in the
root epidermal cells (pup14 experiment) from 4 to 7 cells originating from 4 to
5 roots.

Imaging. For confocal microscopy imaging, a vertical-stage laser scanning confocal
Zeiss 700 (LSM 700) and Zeiss 800 (LSM 800), described in ref. 40, with a ×20/0.8
Plan-Apochromat M27 objective, an LSM 800 inverted confocal scanning micro-
scope Zeiss, with a ×40 Plan-Apochromat water immersion objective and a Zeiss
LSM 880 inverted fast Airyscan microscope with a Plan-Apochromat ×63 NA 1.4
oil immersion objective were used. Samples were imaged with excitation lasers
488 nm for GFP (emission spectrum 490−560 nm) and NBD (emission spectrum
529−570 nm) and 555/561 nm (inverted/vertical) for RFP (emission spectrum
583−700 nm), FM4-64 (emission spectrum 650−730 nm), mCherry (emission
spectrum 570−700 nm) and tdTomato (emission 560−700 nm).

For super-resolution SIM microscopy, an Axioimager Z.1 with Elyra
PS.1 system coupled with a PCO.Edge 5.5 sCMOS camera was used. Samples were
excited with the 488 nm and 561 nm laser lines. Oil immersion objective (×63/1.40)
and standard settings (the grating pattern with five rotations and five standard
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phase shifts per angular position) were used for image acquisition. Image
reconstruction was done in Zeiss Zen software (black version with structured
illumination module) using manual mode with adjusting the noise filter and super-
resolution frequency weighting sliders as described in ref. 41. For image post-
processing, profile measurements and co-localization analysis, the Zeiss Zen 2011,
ImageJ (National Institute of Health, http://rsb.info.nih.gov/ij), Photoshop 6.0/CS,
GraphPad Prism 8 and Microsoft PowerPoint programs were used. For SIM co-
localization experiments 30 PM regions originating from root cells of 5 seedling
plants were used.

Statistics. The statistical significance was evaluated with the Student’s t test and
two-way ANOVA.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data in this study are available in the main text or the Supplementary materials. Extra
data are available from the corresponding authors upon request. Source data are
provided with this paper.
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