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1. INTRODUCTION 

The current food system puts enormous pressures on natural ecosystems. To mitigate these pressures, 

three overarching strategies are necessary – improvements in production, reductions in food waste and 

food losses, and dietary change (Willett et al., 2019; Röös et al., 2017). The focus has long been on 

reductions in meat and dairy in Westernized diets, as animal products have substantially higher climate 

impacts than most plant-based foods (Moberg et al., 2020). However, there is increasing interest in the 

sustainability of plant-based foods, reaching beyond the climate impact. For example, concerns have 

been raised about water and pesticide use in fruit, nut, and vegetable production, high energy use in 

ready-made food production, and high emissions from products transported over long distances. To 

provide guidance on such issues, WWF Sweden initiated development of a new consumer guide for 

plant-based products in a project called ‘World-class Veggie’ (‘Vego i världsklass’). The Vego-guide 

will complement their current consumer guides on meat (Spendrup et al., 2019; Röös et al., 2014) and 

fish.   

This report was prepared for WWF Sweden, to provide scientific background information for its 

consumer guide on plant-based products targeting Swedish consumers. The remainder of the report is 

structured as follows: Chapter 2 describes the methodology used for collecting data for the Vego-guide. 

Chapter 3 presents the results obtained for individual plant-based products and Chapter 4 presents more 

general results.  A short concluding discussion is provided in Chapter 5. A comprehensive set of 

appendices (Appendix A1-A8), providing examples of data from all underlying studies for all individual 

products and specific details on the methodology used in the studies, is provided at the end of the report. 

Motives and reasoning behind selection of environmental impact categories, the establishment of limits 

and criteria for the different environmental impact categories, and a description of the underlying work 

in development of the consumer guide are presented in a separate scientific paper (Karlsson Potter & 

Röös, manuscript). 
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2. METHOD 

This chapter provides a description of methods applied in data collection, i.e., data sources (section 2.2), 

environmental impact assessment methods used (section 2.3), functional unit and system boundaries for 

the data collection (section 2.4), and selected food products and food groups (section 2.5). The strategy 

used for arriving at a final estimate of the climate impact, water use, land use, and biodiversity impact 

of the products on the Swedish market is described in section 2.6. 

Selection of environmental impact categories, the development of evaluation criteria, underlying 

indicators used for environmental assessment, and thresholds for environment evaluation for the 

different levels in the Vego-guide are not described in this report, as it was not part of data collection. It 

is explained in the scientific paper on the process of developing the consumer guide (Karlsson Potter & 

Röös, manuscript). 

2.1. Overview 

Literature data were compiled from life cycle assessment (LCA) studies on 91 products, from 123 

scientific papers, 31 conference papers, 42 reports, and other grey literature, and data were also obtained 

from two LCA databases. For all products, land use, biodiversity impact from land use, total water use, 

and regional impact of blue water use were also estimated. The results were stored in an Excel-sheet, 

hereafter called ‘the database’ (see section 2.2). 

The aim was to collect and estimate environmental information relevant for products on the Swedish 

market, since the Vego-guide targets Swedish consumers and therefore it is important that it is based on 

information relevant for Swedish products. For all products on the Swedish market, country of origin 

was traced using import statistics (see subsection Country of origin in section 2.2). 

The following environmental impact categories were selected to be included in the Vego-guide: climate 

impact, land use, biodiversity impact from land use, water use, regional impact from blue water use, and 

pesticide use (see section 2.3). The selection of impact categories was carried out collaboratively by 

researchers involved in the project and WWF Sweden. The criteria for selection were: environmental 

relevance in relation to production of plant-based foods, relevance for the user of the Vego-guide, 

availability of scientifically acceptable methods to assess impacts, and availability of data. Selection of 

criteria and other aspects related to development of the consumer guide are presented in the scientific 

paper (Karlsson Potter & Röös, manuscript). 

In the presentation of results in this report, the products are divided into six product groups: ‘Protein 

sources’, ‘Nuts and  seeds’, ‘Carbohydrate sources’, ‘Plant-based drinks and cream’, ‘Fruits and berries’, 

and ‘Vegetables and mushrooms’. For the purpose of the environmental assessment in the Vego-guide, 

the products were evaluated using different boundaries for different food groups. More details can be 

found in in Karlsson Potter & Röös (manuscript). 
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2.2. Data collection 

2.2.1. Literature review  

A recent review on the climate impact of food products by Clune et al. (2017) was used as a basis for 

finding previous LCA studies on food products. This review includes results from 369 studies on 168 

food products from several world regions, but only includes the climate impacts of food. Therefore data 

on land use and water use (where available) from the individual studies reviewed by Clune et al. (2017) 

were also added to the database. The climate impacts assessed by previous studies were used as a basis 

for the final assessment on climate impact. The data on land use and water use collected from the 

literature were used for comparing the results from the consistent calculations of water and land use 

presented in this report. Therefore, literature data on land and total water use are not included in the 

graphs in this report, except for the food categories ‘Protein sources’ and ‘Plant-based drinks and cream’, 

as these categories contain composite products for which the exact amounts of different ingredients, 

information needed for estimating land and water use, are not known.   

Data from additional studies on all types of products were added to the database, particularly focusing 

on Swedish produce, vegetarian alternatives to meat, and plant-based drinks and cream. Vegetarian 

alternatives are not included in the review by Clune et al. (2017) and some studies on Swedish produce 

are not included in that review, since they were published in Swedish. In addition, some studies have 

since been published. Searches were made in Google scholar, using the key words “LCA food item”, 

“life cycle assessment food item” and “environmental impact food item”. In addition, for all food 

products, a search was made in the databases ecoinvent (version 3.4) and Agri-footprint (4.0), and data 

on climate impact, land use, and water use were extracted and added to the database. 

For a study to be included, results had to be presented so that they could be further analyzed and 

processed. Thus the study had to report characterized results, not normalized or weighted values where 

the climate impact of the individual food product could not be extracted. Results also had to be presented 

for individual food items, not for whole meals or diets. Publications in which emissions could not be 

divided between the different life cycle steps (no detailed information about contributions of different 

steps could be found) were excluded. 

Many studies included more than one scenario on the same type of production. If scenarios represented 

different years, the average was added to the database as one data point, while if the scenarios 

represented different production systems (i.e., open field and greenhouse), then the values were kept as 

individual data points. 

For studies with system boundaries beyond cradle to retail, the impact from cradle to farm gate/regional 

distribution center (for unprocessed products) and factory gate (ready-made products) was extracted 

from the reports/articles, and emissions from transport to Sweden were then added to the result. 

Climate impact assessments where land use change (LUC) was included were included in the analysis, 

but these data points are marked separately in the graphs. If the studies that included LUC were relevant 

for the Swedish market, this was noted, but not included, in the final assessment. LUC was not included 

in the final assessment for two reasons: (i) it is not normally included in a common LCA of food products 

and therefore it is most often not included in the earlier studies identified; and (ii) methods for including 

LUC, such as time period over which the carbon loss or gain is allocated, can differ between studies and 

can therefore be difficult to compare between studies. 

 

Country of origin 
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To determine the country of origin of imported foods, the following procedure was performed. Trade 

statistics were taken from the Statistics Sweden category ‘Handel med varor och tjänster’ (‘Trade in 

goods and services’)1. For each food commodity, the average volume of imports over the previous five 

years (2013-2017) from each country was calculated. The countries that contributed more than 10% to 

total imports were included. The remaining imports for a specific commodity were assumed to come 

from the country with the largest trade surplus (export minus import) for that commodity according to 

FAOSTAT data for the previous five-year period (2012-2016). 

Trade statistics do not always show the country of production. For example, according to trade statistics, 

imports to Sweden include products that are produced in tropical areas and come via the Netherlands 

and Denmark. Therefore, for each country contributing more than 10% of total imports for a certain 

product, it was verified using FAOSTAT data that the country had primary production of the product. 

If not, the import was assumed to come from the largest exporter globally. 

Apart from country-specific land and water use per product (see section 2.3.2 and 2.3.4 on how this was 

assessed), global average land use and water use for all products were also calculated. The global 

average value could be seen as an indicator of possible impacts of import to Sweden that were not 

captured by the way in which export countries were identified here.  

Following initial selection of export countries, when diverging results on land use, biodiversity, or water 

use were found for the same product coming from different countries, at least two additional export 

countries were identified. This selection was based on the identified large global exporters (as described 

above). When the imports were coming from both Europe and outside Europe, the extra countries were 

selected so that there were two European countries and two countries located outside Europe, called 

Rest of the world in the analysis. When the export countries identified were only countries outside 

Europe, two extra countries were added. Extra countries were added for: dry beans, faba beans, almonds, 

cashews, coconuts, pistachios, walnuts, corn, apricots, cherries, dates, grapefruit, guavas and mangoes, 

lemons and lime, melons, oranges, pineapples, plums and sloes, mandarins, asparagus, avocados, and 

garlic. The purpose of this addition was to provide more background data for products where the results 

differed greatly between the identified export countries. 

For dry and canned beans, it is known that a large proportion of the beans sold in Sweden are imported 

from China and Canada (Ekqvist et al., 2019), but these countries did not show up in the trade statistics. 

Therefore, data on land use, biodiversity impact, and water use were collected for these countries and 

included in the results for dry beans.  

2.2.2. Food losses and waste 

Food losses and waste were accounted for, to estimate the primary food production required for 

generating 1 kg product at a Swedish retailer, using factors taken from Gustavsson et al. (2011). Post-

harvest losses, processing and packaging losses, and distribution and handling losses were included (see 

Appendix A5). 

For some of the products, such as some nuts, data on yield are given for products with shells. However, 

since the products are often sold without shells, this was accounted for using conversion factors to 

eatable product (these can be found in Appendix A5). 

In estimating global average production, average losses (average for all regions) were calculated and 

used to estimate food losses (Appendix A5). 

                                                           
1www.statistikdatabasen.scb.se 
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2.3. Environmental assessment 

2.3.1. Climate impact 

Data on climate impact in kg CO2e per kg product in a Swedish store were collected from LCA studies, 

reports, and databases, identified as explained in section 2.2. For commodities produced outside Sweden, 

emissions from transportation to Sweden and packaging (Moberg et al., 2019) were added if not already 

included in the study. The system boundary for all data added to the climate impact database was cradle 

to a retail store in Sweden. 

All studies included used the climate impact assessment metric GWP100. However, characterization 

factors differ across studies for the main climate gases (methane and nitrous oxide). No adjustment made 

for this was done. This means that differences in results between studies could be partly explained by 

the use of different characterization factors. Differences in results may also be due to other choices made 

in the modeling. 

When climate impact effects from land use change were included in the studies (as e.g., in all data from 

ecoinvent (Wernet et al., 2016) and Agri-footprint (2018)), these studies were included in the database 

and the results are included in the graphs in Chapters 3 and 4 of this report. However, if these studies 

were identified as important for the Swedish market, and therefore included as a basis for the final 

climate impact assessment, the impact from land use change was not included, as land use change was 

only included in parts of the studies and, when making comparisons, the same system boundaries should 

be used. However, where land use change proved to have possible large effects on the climate impact 

of the product, it was noted in the final assessment.  

Some plant-based products are transported by air to Sweden. To determine products for which there is 

a probability of air transport, we (WWF Sweden and the authors of this report) compiled a list of 

products for which we perceived a risk of air transport. This list was sent to fruit and vegetable importers 

and food retailers (two importers and two retailers) for verification. The resulting list of seven products 

was used as a basis for estimating climate impact from transportation by air of these products. Climate 

impact from air transport was estimated by calculating the climate impact from traveling by air from the 

capital in the identified export country to Stockholm, Sweden, using NTM calc (NTM, 2019). 

Ecoinvent (Wernet et al., 2016) has processes called “Global market” for several products and processes 

called “Rest of the world” for a number of products. Global market processes represent consumption 

mixes of certain products, and include transportation and losses along the chain. The system boundary 

for a global market process is cradle to retailer. The so-called rest of the world processes are estimates 

by ecoinvent for rest of the world data not represented in the ecoinvent dataset. The processes have a 

system boundary, which is the same as for the processes representing production in individual countries, 

i.e., cradle to farm gate. Both these processes were added to the database. However, these processes 

were rarely relevant in the final assessment of the climate impact, when we were often trying to find 

data for specific regions, e.g., in many cases data on European production were considered most relevant 

if most of the imports originate from within Europe. 

2.3.2. Land use 

To calculate the land requirements for producing a certain food product, yield statistics from FAOSTAT 

for the last five years available (2012-2016) were used, with data from Statistics Sweden (2012-2016) 

used for Swedish products not available in FAOSTAT. For the product groups ‘Protein sources’ and 

‘Plant-based drinks and cream’, land use assessments from earlier studies are presented together with 

our own assessments. This because these product groups contain several different types of ready-made 
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products involving many ingredients. It was therefore useful to include earlier assessments, as the 

amounts of the different ingredients are not always known. 

Land use for global average production of the different products was estimated using global average 

yields (FAOSTAT, 2012-2016). 

In some regions, the climate allows for multiple harvests through the year, a system called 

multicropping. Multicropping in the regions where this is possible was corrected for following Röös et 

al. (2017), with the exception that no intercropping was assumed for Northern Europe (United Nations 

(UN) definition) including Denmark, Finland, Iceland, Norway, Sweden, Estonia, Latvia, Lithuania, and 

the United Kingdom (UK) (Table 1). Multicropping was assumed to be possible for the following crops: 

vegetables, cereals, roots, pulses (Röös et al., 2017) and seeds (including sunflower seeds, linseeds, and 

sesame seeds).  

For world average land use estimates, multicropping was included by using the multicropping factor for 

the country with the largest production globally (based on FAOSTAT). 

Table 1. Factors applied for multicropping systems, taken from Röös et al. (2017) 
  Limited double  

cropping 

Double 

cropping 

Limited triple 

cropping 

Triple cropping 

Yield increase 50% 100% 150% 200% 

Proportion of cropland assumed to be suitable for multicropping: 

Region         

E Europe 2% 0% 0% 0% 

W Europe 5% 1% 0% 0% 

C Asia 0% 0% 0% 0% 

E Asia 5% 15% 14% 1% 

S Asia 6% 6% 1% 0% 

SE Asia 1% 33% 5% 29% 

W Asia 0% 0% 0% 0% 

L America 7% 38% 11% 7% 

N America 17% 15% 7% 1% 

SS Africa 11% 23% 5% 1% 

N Africa 2% 0% 0% 0% 

Oceania 2% 3% 0% 0% 

 

 

 

 

Organic produce 

Land use and biodiversity impacts were also calculated for organic produce, by accounting for the lower 

yields in organic production using yield statistics from FAOSTAT and lowering these in accordance 

with De Ponti et al. (2012). Since there are no trade statistics on organic products to determine the 

country of origin, the same import countries as for conventional products were assumed.  

2.3.3. Biodiversity impact 

Land use for agriculture is one of the most important drivers of biodiversity loss (IPBES, 2019). Impacts 

on biodiversity from land occupation was estimated using the method presented in Chaudhary et al. 

(2018) (an updated version of the method in Chaudhary et al., 2015), combined with estimated land use 

data (see Karlsson Potter & Röös, manuscript for details). The Chaudhary et al. (2018) method was 
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chosen since it was the most recent method and represents an improvement on earlier methods to account 

for biodiversity impacts in LCA (de Baan et al., 2012). It is also the method recommended by the United 

Nations Environment Programme-Society of Environmental Toxicology and Chemistry (UNEP-

SETAC) for assessing biodiversity impacts from agriculture (UNEP, 2019). The method provides a 

global characterization factor, which was required in the present context, and allows for distinction 

between different land use types, although these are still rather broad. The method uses country area 

species richness (SAR), which is a model for estimating, based on available data, species richness 

(number of species) for different taxa (such as mammals and plants) in different land use types, 

compared with the natural habitat (Chaudhary et al., 2018). The method also incorporates a vulnerability 

score that takes the presence and range of endangered species into account (Chaudhary et al., 2018). 

Impact on species richness in five different taxa is included: mammals, birds, amphibians, reptiles, and 

plants (notably leaving out e.g., insects) and five different land use types: natural habitat, regeneration 

secondary vegetation, managed forests, plantation forests, crop land, and urban land, the latter four with 

three different intensity levels (minimal, light, and intensive) (Chaudhary et al., 2018). In the present 

analysis, land use intensity was assumed to be cropland-intensive use for conventional farming and 

cropland-light use for organic production. The taxa-aggregated characterization factors for land 

occupation were used. 

2.3.4. Water use 

Food production is one of the most water-demanding sectors globally, with around 70% of all freshwater 

use estimated to be in agriculture (FAO, 2017). 

The environmental assessment of water use was based on total water use (as an indicator of water use 

as an resource demand), blue water use (as an indicator of freshwater use), and potential impacts on 

local water stress, assessed by the AWARE method (explained below).  

Data on total water use (green, blue, and grey water) and blue (fresh) water use were collected from 

Mekonnen et al. (2011). Figure 1 illustrates water types included in green and blue water (Hoekstra et 

al., 2011). Green water is the precipitation on land that does not run off or recharge the groundwater, 

i.e., water that is (temporarily) stored in the soil and will eventually be taken up by plants or evaporate 

(Hoekstra et al., 2011). The green water use reported in Mekonnen et al. (2011) corresponds to the 

rainwater consumed during crop production. Blue water is surface or fresh water consumed during crop 

production, i.e., irrigation water that is evaporated from the field or taken up by plants (Hoekstra et al., 

2011). Grey water is the theoretical amount of water needed to dilute pollutants and nutrients leaching 

from the field (Hoekstra et al., 2011). Due to lack of data, only nitrogen leaching was considered by 

Mekonnen et al. (2011) when estimating the amount of grey water, and hence also in this study.  
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Figure 1. Description of green and blue water, taken from Hoekstra et al. (2011). Evapotranspiration 

= evaporation and transpiration by plants. 

Water use for processing was included for ready-made protein sources (Appendix A2) and plant-based 

dairy replacements (Appendix A3). Water use for washing e.g., vegetables was not included. 

AWARE 

The water footprint scarcity method AWARE (Available Water Remaining) was used to assess local 

(country-level) impacts from water consumption (blue water use) (Boulay et al., 2018). Methods for 

assessing freshwater use and the impact on water availability are currently under development for 

application in LCA. A well-known earlier method, developed by Pfister et al. (2009), is primarily based 

on withdrawal in relation to availability, i.e., human use of freshwater. The AWARE method is based 

on demand in relation to availability, meaning that both ecosystem and human demands are accounted 

for (Boulay et al., 2018). On analyzing the methods of Pfister et al. (2009) and Boulay et al. (2018), 

Lundmark (2019) found that the results differed somewhat, but that the ranking of the products, i.e., the 

best to worst performing products, was largely similar. The AWARE method (Boulay et al., 2018) was 

selected here because it builds on consensus by the working group on Water Use in Life Cycle 

Assessment (WULCA) under the UNEP-SETAC Life Cycle Initiative (Boulay et al., 2018). It is 

currently the recommended method for water scarcity assessment in LCA, but it is also recommended 

that a complementary method be used for sensitivity analysis (Jolliet et al., 2018). Sensitivity analysis 

of the results in this report is described by Lundmark (2019). 

The AWARE method offers yearly average characterization factors and country average factors for 

agricultural land and unspecified land for different countries. Characterization factors are also given on 

watershed level, which would be preferable (over country average) for assessing the impact on water 

stress. Similarly, there are temporal differences in the effect of freshwater use on water scarcity (Boulay 

et al., 2018). However, since geographical location and time of crop production were not known for all 

crops assessed, we used country average characterization factors for agricultural land. 

2.3.5. Pesticide use 

Estimating the impact of pesticide use in food production is challenging. This is mainly due to lack of 

data on pesticide use (especially divided into different food products) and limitations in methods to 

assess eco-toxicity and human toxicity, i.e., the actual negative impacts on ecosystems and humans, for 

the vast number of pesticides on the market. To compare all products on the Swedish market, statistics 
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on pesticide use for all countries exporting to Sweden would be needed. No such data are currently 

available, especially for countries outside the EU, for which data on pesticide use are very scarce. 

In this report, statistics on pesticide use based on the amount of active substance (kg AS) per hectare, in 

Sweden and Europe (only for EU member states), are presented. These data can give an indication of 

the ecotoxicity impacts from the production of different crops. The most recent statistics on EU pesticide 

use do not include data for individual crops, but give aggregated figures for the whole country. For 

European products, an publication from 2007 was therefore used (EUROSTAT, 2007). It presents 

average (1999-2003) pesticide use for different European countries for “cereals, maize, oil seeds, 

potatoes, sugar beet, other arable crops (arable crops total), fruit trees, vegetables (fruit and vegetables 

total)”. The most recent available statistics were used for Swedish products (SBA, 2018b). 

For imports from outside Europe, no uniform dataset could be found for pesticide use in different crops 

in different countries. Therefore, no data on pesticide use were collected for production outside Europe. 

In the Vego-guide, this was treated as “lack of data”, similarly to European and Swedish production for 

which no data could be found. See Karlsson Potter and Röös (manuscript) for more details on how this 

was handled in the Vego-guide. 

Results from data collection on pesticide use, aggregated for all food categories, are presented in Chapter 

3 of this report. Detailed data for all food products are presented in Appendix A7. 

2.4. Functional unit and system boundaries 

The functional unit (FU) selected was 1 kg product at a store in Sweden, i.e., the following steps in the 

production chain were included: primary production including the production of inputs, processing (in 

the case of processed products), storage, packaging, and transport to a store in Sweden. 

There are several alternatives to using a mass-based functional unit. For food products, the functional 

unit could be e.g., protein content for protein foods, energy content for carbohydrate sources, or based 

on different nutrient indices. This issue is further discussed in Appendix A4. 

The functional unit when collecting data from earlier studies was 1 kg product, and studies with varying 

system boundaries were included. To enable us to compare the results from earlier studies, the results 

were modified to represent the same system boundary. This meant that if e.g., cooking and waste 

management were included in the study, these steps were removed. For studies that ended at factory 

gate/farm gate, emissions from transport to a retailer (in Sweden) were added. More detailed information 

about this can be found in Appendix A1.  

Emissions from transport and packaging were added using emission factors from Moberg et al. (2019) 

(Tables 2 and 3). In general, all transport was considered to be road and/or sea transport. Transport 

within Sweden was also included for both imported and domestic products. Transport within Sweden 

was calculated using weighted average for food transport within Sweden, meaning that population 

distribution was accounted for (Moberg et al., 2019). 

For packaging, representative packaging type was considered for the different products in Table 3, after 

analysis by Moberg et al. (2019). The climate impact for packaging used is well in line with the climate 

impact of different packaging types presented by Nilsson et al. (2009), with the exception of metal cans 

and glass jars. This because no such packaging was assumed for the products included. Beans sold as 

ready-to eat in Sweden today are mainly packaged in cardboard cartons (see Appendix A6). However, 

it is important to note that the climate impact from transport and packaging was considered using rather 

general figures, i.e., no specific analysis of transportation mode and typical packaging type was made 

for each product.  
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Table 2. Emission factors for transport to Sweden and within Sweden (Moberg et al., 2019) 
  Emissions, kg CO2e/kg transported to 

Sweden (sea and/or road) 

Emissions factor, kg CO2e/kg 

transported by road in Sweden 

Nordic and Baltic 

countriesa 

0.05 0.03 

West Europeb 0.1 0.03 

South Europec 0.2 0.03 

East Europed 0.3 0.03 

Rest of Europe 0.2 0.03 

West Africae 0.3 0.03 

North, Central 

and South 

Americaf 

0.3 0.03 

Southeast Asiag 0.4 0.03 

China 0.5 0.03 

Oceaniah 0.5 0.03 

Rest of the world  0.4 0.03 
aIncludes Denmark and Norway. 
bIncludes Germany, Belgium, the Netherlands, France, and Ireland. 
cIncludes Italy and Spain. 
dIncludes Greece and Turkey. 
eIncludes Ivory Coast. 
fIncludes United States, Panamá, Costa Rica, Brazil, and Ecuador. 
gIncludes Thailand and Vietnam. 
hIncludes New Zealand. 

 
Table 3. Emission factors for packaging based on data collection from Moberg et al. (2019) 

 Product category kg CO2e/kg product 

Berries 0.15 

All other plant-based foods 0.05 

Soda, cider, beer, mineral water, juice, and squash drink 0.15 

All other processed foods 0.05 

Milk and dairy products 0.05 

 

Beans, peas, and lentils are bought either as dried or canned. For these products to be comparable, the 

weight of dried legumes was adjusted to that of the canned equivalent. For beans, 1 kg dry beans equals 

2.5 kg boiled beans (for the subcategories dry beans and faba beans) (Bognár, 2002). For chickpeas, 

lentils, and soybeans, specific conversion factors were calculated based on the protein content of dry 

versus boiled beans based on information in Livsmedelsdatabasen (SFA, 2019), to 2.5 kg for chickpeas, 

2.3 kg for lentils, and 3.1 kg for soybeans. Since cooking is included in canned legumes, this step was 

also added to the dried legumes. Environmental impact for boiling at home was added assuming that 

cooking requires 4.6 MJ electricity per kg boiled beans (Carlsson-Kanyama & Faist, 2000) and using 

the environmental impact from the Swedish electricity mix taken from Ecoinvent (Wernet et al., 2016). 

In the group ‘Carbohydrate sources’, the weight of the dried grains was adjusted to represent edible 

product. This was done to enable comparison with other carbohydrate sources such as potato and root 

vegetables. All grains were adjusted so that 1 kg of grain (barley, corn, pasta, sorghum, oats, rye, wheat) 

represented 1.9 kg edible product (average for three types of bread, whole wheat boiled, and pasta) 

(taken from RAC tables and Bognár (2002)). One kilogram of dry rice was assumed to equal 3 kg edible 

product, 1 kg millet 2.4 kg edible product, and 1 kg quinoa 3.4 kg edible product (Bognár, 2002). 
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2.5. Food products and food groups 

The food products were divided into the following food categories: Protein sources, Plant-based drinks 

and cream, Carbohydrate sources, Nuts and seeds, Fruits and berries, and Vegetables and mushrooms. 

The Vego-guide aims to include the main plant-based commodities on the Swedish market, including 

plant-based protein sources and other products such as nuts that are interesting for many consumers 

choosing to eat less animal-based products, and which are relevant for a more plant-based diet. The list 

of products assessed was continuously discussed with WWF Sweden. 

Some products were excluded due to lack of data. For example, the aim was to include more variants of 

plant-based protein sources, but this was not possible due to lack of data. Similarly, there are few studies 

on different types of mushrooms and it was therefore decided to provide data only for Agaricus bisporus 

(common mushroom, champinjon in Swedish). 

Table 4. Food categories and food products included in the analysis, but not necessarily in the final 

guide 
Protein  

sources 

Carbohydrate 

sources 

Plant-based drinks 

and cream 

Fruit and 

 berries 

Vegetables and 

mushrooms 

Green peas Cereals Almond drink Apples Artichokes 

Yellow peas Barley Coconut drink Apricots Asparagus 

Dry beans Maize Soy drink Bananas Avocados 

Faba beans Millet Oat drink Cherries Broccoli 

Canned beans (including  Oats Oat cream Dates Cabbage 

lentils) Pasta Coconut milk Grapefruit and  Capsicums/ 

Chickpeas Quinoa  pomelo Peppers 

Dry lentils Rice  Grapes Cauliflower 

Soybeans Rye  Guavas and mangoes Celery 

Ready-made products Sorghum  Kiwi fruit Cucumber 

Mixed without animal  Wheat  Lemons and limes Eggplant 

products1 Root vegetables  Melons Garlic 

Pea-protein products Beetroot  Oranges Ginger 

Quorn Carrots  Papayas Lettuce 

Soy-based Potatoes  Peaches Green beans 

Tofu and tempeh Swedes  Pears Olives 

Nuts and seeds Sweet potato  Pineapples Onions 

Almonds Jerusalem artichoke  Plums and sloes Pumpkins and 

Cashew nuts Parsnips  Tangerines, squash 

Chestnuts   mandarins etc. Spinach 

Coconut (grated)   Watermelon Tomatoes 

Hazelnuts   Berries Mushrooms 

Walnuts   Cranberries  

Pistachios   Blueberries  

Peanuts   Raspberries and   

Sesame seeds   other berries  

Sunflower seeds   Strawberries  
1For example falafel. 

2.6. Strategy used for producing final estimates for the Vego-

guide 

Here we describe the method used for analyzing the data and arriving at likely impact, or range of 

impact, of the specific product on the Swedish market. 

Climate impact 
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The final assessments on the climate impact of different products were based on the results from the 

literature review of earlier studies and an analysis of the applicability of the results for products found 

on the Swedish market. This analysis was based on information regarding countries that export to 

Sweden and how representative the study was of current production systems including technological 

developments. For many products, there were a limited number of studies available. In these cases, 

available earlier studies were used to give an indication of possible climate impact. After each final 

assessment in tables in this report, the number of references used for making the final assessment for 

each individual product is shown. The sources included scientific papers, reports, databases, and in some 

cases company documents. We compiled the results from previous studies and expressed the likely 

climate impact in terms of “likely below X kg CO2e per kg product”, where the relevant study with the 

highest climate impact was used to describe the climate impact that the particular product will most 

likely not exceed (since all other identified studies showed a lower climate impact). For most products, 

relatively few studies were identified and it was therefore not considered feasible to use an average value 

of the studies found. 

Land use, biodiversity, and water use (including water scarcity indicator) 

Final assessments for land use, biodiversity and water use (see Chapter 3) were primarily based on 

assessments performed within this study (see section 2.3.2, 2.3.3, 2.3.4). For the product groups ‘Protein 

sources’ and ‘Plant-based drinks and cream’, results from earlier studies were used in the final 

assessment, because these groups contain ready-made products with several processed ingredients and 

therefore information from previous studies is particularly relevant. Swedish production, production in 

the countries identified as main exporters to Sweden, and global average production were included. In 

the final assessments, we describe the range of land use and water use for the production regions. We 

also state whether the results are homogenous or heterogeneous, and discuss the reasons. For impact on 

biodiversity and water scarcity, we discuss the products that risk having the largest impact on these 

parameters. 
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3. RESULTS: FOOD CATEGORIES 

This chapter presents a summary of the results of data collection for the different food groups and 

products. More details on individual earlier studies that formed the basis for the climate impact 

assessment can be found in Appendix A1. 

Below, the results from earlier studies and from the assessments performed in the present analysis are 

presented for the impact categories climate impact, land use, biodiversity impact, and water use for all 

six product groups. Lastly, pesticide use is presented separately for all product groups under one 

heading, because only aggregated results are presented in this report. Detailed results for all products 

are presented in Appendix A7. 

3.1. Protein sources 

Note that the environmental impact of dry legumes was modified to be comparable with canned legumes 

and ready-to-eat meat alternatives (see section 2.4). Results that were modified in this way are marked 

with * in diagrams. This means that the protein content in the legume-based product is approximately 

7-8%. For many of the meat replacement products, such as soy-based “meat”, the protein content is 

more similar to that of meat (approximately 20%).  

For ready-made products, the symbol in graphs representing the region of origin shows country of 

processing. This means that soy-based products produced in e.g., Sweden will be listed as Swedish even 

though ingredients are imported. 

3.1.1. Climate impact 

Results for climate impact from earlier studies on plant-based protein sources are presented in Figure 2.  

Most studies on unprocessed beans and peas show a climate impact below 1 kg CO2e per kg product. 

However, there are some exceptions: a study on green peas produced in Australia and transported to 

Sweden (which is unlikely for fresh green peas in practice), and the following data-points, all from the 

databases of ecoinvent (Wernet et al., 2016) and Agri-footprint (Agri-footprint, 2018), where LUC is 

included: yellow peas from Spain, chickpeas from Australia, and several studies on soybeans produced 

in South America (Argentina and Brazil). Australia is the country with the largest export of chickpeas 

and therefore chickpeas from Australia could potentially be relevant for the Swedish market 

(FAOSTAT, 2019). Note that no dry or canned chickpeas from Australia were found in the main 

supermarkets in Sweden during an inventory performed in 2019 (Ekqvist et al., 2019). However, 

soybeans from Brazil and Argentina are interesting to take into consideration, as these countries are 

major producers of soybeans, although they were not identified as countries exporting to Sweden in this 

study. It has been estimated that soybeans produced in South America are rarely used for human 

consumption in the EU, since they are often GM soybeans and therefore unlikely to be used for human 

consumption in the EU (Fraanje & Garnet, 2020). Soybeans have multiple uses, including direct human 

consumption, vegetable oil production for human consumption and biofuel production, and animal feed 

production. It has been estimated that around 6% of total soybean production is used directly for human 

consumption, most of the oil and a small fraction (less than 1%) of the protein press cake (a co-product 

from oil pressing) is used for human consumption, and most of the global soybean production is used 

for animal feed, primarily for poultry and pork production (Fraanje & Garnet, 2020).  
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Dry lentils have a climate impact of between 0.9 and 2.6 kg CO2e per kg product (including transport to 

Sweden) for lentils produced in Australia, Iran, and Canada. Lentils from Australia have the highest 

climate impact, as mainly due to LUC (Agri-footprint, 2018). Data for Iranian and Australian lentils 

were not considered relevant for the Swedish market. The main countries from which Sweden imports 

lentils were found to be Turkey, UK, and Canada (Canada being the largest producer globally, and 

identified as the largest exporter) (FAOSTAT, 2019). Ekqvist et al. (2019) found that most lentils on 

the Swedish market come from Canada. Therefore, data for Canadian lentils were used as the basis for 

the final assessment. 

For canned beans, chickpeas, and lentils, some studies show impacts exceeding 1 kg CO2e per kg 

product. It is unclear from these studies whether metal or cardboard packaging was used, as this has an 

impact on the results. However, the electricity mix in the country where the beans are boiled, and the 

fact that more weight has to be transported to Sweden if the beans are boiled before transport, are clearly 

important for the final climate impact. An assessment of the climate impact of canned beans produced 

in Italy and of dry beans transported and boiled at home in Sweden is presented in Appendix A6. 

Currently, there is no facility in Sweden producing canned beans, and beans grown in Sweden and sold 

as canned beans in Sweden are likely to have been canned in Italy (Tidåker et al., manuscript). 

For ready-made plant-based protein sources, such as soy-based mince, sausages, etc., most studies show 

a climate impact of 1-4 kg CO2e per kg product. However, some studies show an even higher impact. 

One study on dairy-based protein (Broekema & Blonk, 2009) shows a climate impact of just below 6 kg 

CO2e per kg product. This is an animal-based product of a type that is currently not very common on 

the Swedish market. Mixed (especially mixed with eggs) products have very diverse impacts, due to the 

diversity of ingredients in these products. All products that show an impact higher than 4 kg CO2e per 

kg product are products with eggs produced in the USA (Quantis, 2016) and assumed to be transported 

to Sweden. These products are, to our knowledge, not available on the Swedish market.  

Studies on Quorn often report a climate impact of between 2-3 kg CO2e per kg product (Louise 

Needham, Quorn, personal communication 2019). Blonk et al. (2008), Head et al. (2011), Broekema 

and Blonk (2009), and Finnigan et al. (2010) found a higher impact, of around 7 kg CO2e per kg product, 

for Quorn. Finnigan et al. (2010) report a higher impact from processing than e.g., Blonk et al. (2008), 

but the impact from raw materials is similar in the two studies. Later studies on Quorn by the same 

author show a lower impact (Finnigan et al., 2017). The later studies were considered in the 

recommendation in this report, since the company producing Quorn has modified its process to lower 

the climate impact (Louise Needham, personal communication 2017). 

Soy-based products show an impact of 1-3 kg CO2e per kg product. In particular, products partly 

produced in Sweden have a low impact, likely due to the low climate impact of Swedish electricity 

production. Two studies show an impact above 4 kg CO2e per kg product, both for products produced 

in the USA (Quantis, 2016) and transported to Sweden. Tofu and tempeh likely have an impact lower 

than 3 kg CO2e per kg product (range 1-4 kg CO2e per kg product, the higher range of impact was not 

considered in the recommendation due to the large discrepancies with the other studies) (Table 5). Very 

few studies were found on wheat protein-based products. The results in Figure 2 show results from one 

study (Broekema & Blonk, 2009) for wheat protein, and not the finished (ready-to-eat) product. 

No studies were found on processed products produced from Swedish ingredients, such as tempeh made 

from peas or faba beans. Our judgment is that the climate impact is lower than for imported products, 

as transportation is shorter and the Swedish electricity mix has a low climate impact, giving a low impact 

from the processing step.  



 

19 
 

 

Figure 2. Climate impact of plant-based protein sources. Functional unit 1 kg packaged product at a Swedish 

retailer. *Weight of the product modified to equal 1 kg boiled beans and climate impact from cooking added. Note 

that the graph shows the climate impact from all identified earlier studies for this product group, and not only 

those identified as relevant for the Swedish market. The final assessment (see Table 5) was based on relevance for 

the Swedish market. 

  

Table 5. Summary of assessments of the climate impact of plant-based protein sources on the Swedish market 
Product Final assessment 

(kg CO2e per kg 

product in a 

Swedish store) 

No. of 

relevant 

references 

Total no. 

of 

references 

Comment 

 General Sweden    

Green peas 0.8 No data 3 4 Only European produce considered relevant 

Yellow peas 0.5 0.3 7 (5 SW) 8 Only European produce considered relevant, Agri-

footprint data from Spain excluded due to relatively 

high LUC impact. Spain was not identified as one of 

the countries exporting yellow peas to Sweden. 

Dry beans 0.7 0.4 7 (4 SW) 7 All studies considered relevant for the general 

recommendation. Three studies on Swedish beans 

were found, showing an impact below 0.4 kg CO2e per 

kg. 

Faba beans 0.5 0.2 3 (1 SW) 3 All studies considered relevant. The higher impact is 

for faba beans from Australia, dominated by emissions 

from transportation and land use change. Only one 

study was found on Swedish faba beans, so this 

assessment is uncertain. 

Canned 

legumes 

1.7 No data 4 4 All studies considered relevant. No data on Swedish 

canned beans found. Climate impact today is likely to 

be lower, since many beans are sold in cardboard 

containers (Tetra PakTM) and many of the identified 

studies considered tin cans. 

Chickpeas 0.6 No data 3 3 All studies considered relevant. Data for Australian 

chickpeas excluded due to high LUC and questionable 

relevance for the Swedish market. 

Dry lentils 0.6 0.2 2 (1 SW) 3 Data for lentils from Canada, Australia, and Sweden 

considered relevant for the Swedish market. 

Assessments for imported and Swedish lentils are both 
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based on only one reference, so this assessment is 

considered relatively uncertain. 

Soybeans 0.6 No data 4 4 Data for soybeans from Brazil and Argentina excluded 

due to high LUC impact and these countries not being 

identified as important exporters of soybeans for 

human consumption to Sweden. They are important 

producers globally, and it should be noted that 

soybeans can be associated with high LUC impacts. 

Processed      

Mixed 

without 

animal 

products 

2.6 1 4 (1 SW) 5 Data on products produced in Europe and Sweden 

considered relevant. Swedish-produced falafel has an 

impact well below 1 kg CO2e per kg product. Only data 

on products produced in the USA were available for 

production outside Europe, and were considered less 

relevant for the Swedish market. 

Mixed with 

animal 

products 

2.6 1.4 3 (1 SW) 4 Data on products produced in Europe and Sweden 

considered in the assessment. Only data on product 

produced in the USA were available for production 

outside Europe, and were considered less relevant for 

the Swedish market. 

Pea-protein 

products 

2.2 No data 1 1 Only one study of European-produced (German) pea-

protein product was found, so the data should be 

considered uncertain. 

Quorn 2.7 No data 4 5 Data on European Quorn production considered 

relevant. One older study was identified showing a 

significantly higher climate impact per kg product. 

This study was not considered in the assessment, since 

it has been updated with newer studies. 

Soy-based 2.2 2.2 3 (2 SW) 5 

 

Data for soy protein isolates (that cannot be eaten as is 

but is processed into other products) and data on US 

production were considered less relevant for the 

Swedish market. One study showed an impact of 3.1 

kg CO2e per kg. However, this was excluded due to 

deviation from the other identified studies. 

Tofu and 

tempeh 

2.3 No data 4 5 All data considered relevant for the assessment. Most 

studies show a climate impact below 2.3 kg CO2e per 

kg product. One study showed an impact of above 3 kg 

CO2e per kg product. This was not considered in the 

assessment due to its deviation from the other 

identified studies. For Swedish-produced products 

such as tempeh made from peas or faba beans, the 

climate impact is likely to be somewhat lower than for 

similar imported products. 

Wheat 

protein 

1.3 No data 1 1 Only one study was identified, the assessment is 

therefore uncertain. 

 

 

 

 

3.1.2. Land use 

Combined assessment of land use (earlier studies plus own assessment)  

Land use calculated based on import statistics and yield data is shown in Figure 3. Assessments on 

ready-made soy-based meat alternatives were made based on Orklafoods’s products, containing mainly 

soy protein concentrate and rapeseed oil, and the soybeans were assumed to be produced in the USA 

(main exporter to Sweden). Organic produce with yields adjusted according to De Ponti et al. (2012) 

(Appendix A8) was also included. Organic produce was assumed to originate from the same countries 

as the conventional products. 
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Yellow peas, faba beans, soybeans, Quorn (made from wheat-based sugar), and ready-made vegetarian 

meat alternatives based on mainly soy protein concentrate were found to have relatively low land use 

(mainly below 2 m2 per kg product). All literature data-points on soy-based European products are from 

the same study (blonkconsultans, 2017), in which land use values for the products covered are higher 

than the land use calculated here for Swedish products. This can be partly be due to South American 

soybeans being assumed in blonkconsultans (2017), whereas for Swedish ready-made soy-based meat 

alternatives the beans were assumed to come from the USA, which has higher yields (FAOSTAT, 2019). 

However, this cannot explain the whole difference. One identified study (Thrane et al., 2017) looking 

at soy protein isolate production in the US was not included in the assessment, as soy protein isolate has 

a very high protein content and is further processed into products containing much lower protein content. 

Comparison to ready-to-eat products is therefore not relevant.  

Results from existing studies (Figure 3) show that ready-made meat alternatives have higher land use 

than unprocessed legumes per kg. The reason for this is that ready-made products often contain other 

ingredients than legumes, such as oil, seeds, or nuts. Tofu is often produced from soybean, but fractions 

of the bean are removed from the products (in this case fibers and some of the carbohydrates). For 

products such as tofu, the results for land use will depend partly on how the land use is allocated between 

the different fractions in the processing. Quorn, with the primary input of glucose (produced from 

wheat), is an exception, with low land use due to high sugar yield per hectare. Soy-based meat 

alternatives made primarily from soy-protein concentrate also show low land requirements. 

 

 

 

Figure 3. Land use for plant-based protein sources in m2/year per kg ready-to-eat product. Earlier studies and 

own assessments on land use are shown. *Weight of the product modified to equal 1 kg boiled beans. World 

average land use is based on average yield for all countries that produce the crop. 

For reference, land use for all plant-based products (same as in Figure 3) and meat (bone-free meat) is 

presented in Figure 4. Land use data for meat were taken from Röös et al. (2013, 2015). Two data points 

show land use of above 150 m2 per kg beef (Röös et al., 2013), but these were removed from the graph 

to enable more details to be shown. Both beef and pork clearly have a much higher land use than 
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vegetable protein source. Chicken is in the same range as the vegetable protein sources with relatively 

high land use, but more than double the land use of most European soy-based products. 

 

Figure 4. Land use for vegetable protein sources and meat in m2/year per kg product. *Weight of the product 

modified to equal 1 kg boiled beans. Note that land use for beef is to varying extents grazing land, and therefore 

direct comparison to cropland-based products, including plant-based protein sources, pork, and chicken, is 

difficult. 

3.1.3. Biodiversity impact 

Products with relatively high land use and that are imported from countries with high biodiversity such 

as Lebanon (faba beans) have a high impact on biodiversity. Legumes from the south of Europe, e.g., 

lentils from Italy, tend to have a higher impact on biodiversity than Swedish produce.  

Organic produce has a higher biodiversity impact for all crops assessed, due to higher land use. The 

lower factor for lower-intensity agriculture in Chaudhary et al. (2018) does not compensate for the lower 

yield of organic produce. However, Chaudhary et al. (2018) present gross factors, so this should be 

interpreted with great care.  

Biodiversity impact for Quorn, tofu, and tempeh was calculated using land use data from earlier studies 

(Figure 3) and by attributing all that land use to the main ingredient in the respective product (glucose 

from wheat for Quorn, soybeans for tofu and tempeh). 
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Figure 5. Biodiversity impact from land use occupation for plant-based protein production. Results presented in 

PDF (Potentially Disappeared Fraction) per kg product in a store in Sweden. *Weight of the product modified to 

equal 1 kg boiled beans. 

 

For comparison, meat was added, with land use values from Röös et al. (2015) for beef from Sweden, 

Ireland, and Germany, and chicken and pork from Sweden (Figure 6). Since livestock in northern 

European countries are fed domestically grown crops to a large extent, the difference in biodiversity 

impact between meat- and plant-based food is not as large as for land use (Figure 4). This is because 

northern European countries have relatively low biodiversity potential. The arrow in Figure 6 represents 

Swedish beef in comparison with Swedish beans. 

 



 

24 
 

 

Figure 6. Biodiversity impact from land use occupation by vegetable protein production and meat production. 

Results in PDF (Potentially Disappeared Fraction) per kg product. *Weight of the product modified to equal 1 kg 

boiled beans. 

 

Table 6. Range of results for all identified export countries and Swedish produce for land use (m2/year per 

functional unit (FU)) and biodiversity impact (Potentially Disappeared Fraction (PDF) per FU) for plant-based 

protein sources 

Product Land use 

(m2/year per 

FU) 

Biodiversity 

impact (PDF per 

FU) 

Comment 

Green peas 1.1-2.7 2.1E-14-3.1E-13 Green peas from Sweden, the Netherlands, and Italy have land use of around 

2-2.7 m2 per kg. For all other countries assessed and global average, land use 

is below 2 m2 per kg for both conventional and organic. 

Yellow peas 0.9-1.6 1.2E-14-2.7E-14 For all export countries assessed, global average and Swedish production  

land use is below 1.6 m2 per kg. 

Dry beans 1.3-5.4 1.3E-14-6.6E-13 For all export countries assessed except Argentina, land use is below 3 m2 

per kg. World average land use is significantly higher, which indicates a risk 

of higher land use in other export countries. 

Faba beans 1.1-6.5 1.1E-14-1.2E-12 Land use for imports was assessed to be 1.1-6.5 m2 per kg. Production from 

Lebanon (16% of Swedish import) has the highest land use. Swedish 

production has land use of around 1.2-1.4 m2 per kg (lower values for 

conventional and higher for organic). The biodiversity assessment showed a 

risk that faba beans from Lebanon have a high impact on biodiversity from 

land occupation (close to or above 1.22E-12 PDF). 

Beans canned 1.6-4.2 2.3E-14-6.6E-13 According to Swedish import statistics, Sweden imports canned beans 

mainly from Italy, but the beans could have been processed there (most 

likely Italy) and then exported to Sweden, i.e., produced in a different 

country. Beans produced in Italy were assessed to have land use of 2.0-2.3 

m2 per kg products. World average production has a land use of 3.7-4.2 m2 

per kg (lower values for conventional and higher for organic). Due to 

uncertainties in import statistics, other countries could be relevant, some of 

which are included in the assessments of dried beans. Swedish beans are 

likely to have land use of 2.5-2.8 m2 per kg (lower values for conventional 

and higher for organic). 

Chickpeas 2.8-4.3 2.7E-13-4.6-13 Land use in the export countries assessed and world average varies between 

2.8-3.4 (conventional) and 3.2-4.3 (organic) m2 per kg. 
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Lentils 2.2-3.6 3.0E-14-3.9E-13 Land use in the export countries assessed and world average varies between 

2.2-3.2 (conventional) and 2.5-3.6 (organic) m2 per kg. Swedish lentils were 

assessed to have land use of 3.2-3.6 m2 per kg (lower values for conventional 

and higher for organic). 

Soybeans 0.8-1.2 6.4E-14-1.4E-13 Soybeans are likely to have land use of around 1 m2 per kg. 

Ready-made products   

Mixed 0.4-5.2 2.1E-14 Earlier studies on European products show land use of 2.5-5.2 m2 per kg (3 

references). The Swedish product in the graph is falafel (imported 

ingredients) with land use of 0.4 m2 per kg. Biodiversity impact was assessed 

only for falafel where the origin of all ingredients was known. 

Mixed with 

eggs 

2.4-3.4  Earlier studies on European products show land use of 2.4-3.4 m2 per kg (2 

references). 

Pea-protein 

products 

4.9 9.4E-14 Only one study was found, showing land use of 4.9m2 per kg (1 reference). 

Quorn 0.2-1.7 7.1E-15-6.9E-14 Quorn is likely to have land use of 0.4-1.7 m2 per kg. The higher value in the 

graph is from an older study. 

Soy-based 0.6-4.9 4.7E-14-1.2E-13 Land use for soy-based products varies greatly, depending on yield of the 

soybean (country origin) and other ingredients. Swedish-produced products 

are mainly produced from soy protein concentrate from imported 

ingredients. Land use for these products is likely to be around 1-1.5 m2 per 

kg. Similar European products are likely to have similar land use, the higher 

land use in the graph can partly be explained by a different country of origin 

for the soybeans. 

Tofu/tempeh 1.8-3.5 2.3E-14-2.8E-13 Most studies show land use of around 2 m2 per kg. Swedish tempeh was 

estimated to have land use of around 2.5 m2 per kg (4 references). 

Wheat protein 1.6 9.4E-14 Only one study was found showing land use of 1.6 m2 per kg. 

 

3.1.4. Water use 

 

Earlier studies 

Blue water use for the different products is shown in Figure 7, with one study on Quorn (Finnigan et al., 

2010) removed since a more recent study by the same main author shows much lower results (Finnigan 

et al., 2017). In all cases shown, blue water use is below 0.5 m3 per kg product (Figure 7). 
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Figure 7. Blue water use in m3 per kg product from earlier studies. *Weight of the product modified to equal 1 kg 

boiled legumes. 

 

Water footprint, total water use, and AWARE 

Total water use (green, blue, grey) for pulses, ready-made meat alternatives, and animal products is 

shown in Figure 8. Water use for animal products is taken from Mekonnen and Hoekstra (2012) and for 

crops from Mekonnen et al. (2011). Note that soy-based and mixed products shown as Swedish products 

in the graph (Figure 8) are processed in Sweden, but using raw material from outside Sweden. 

Animal products (beef, pork, chicken) have substantially higher total water use. For nearly all products, 

green water use dominates and products with high land use (animal products) use much more green 

water. For world average production, animal products also use significant amounts of blue water. The 

product using the most blue water is irrigated faba beans from Egypt. 

Grey water use, calculated as the amount of water needed to dilute the nitrogen fertilizer load to legally 

acceptable concentrations, is relatively high for legumes, especially dry beans, lentils, chickpeas and 

faba beans (Mekonnen et al., 2011). This is because of the relatively high nitrogen leaching in relation 

to the relatively low yield (M. Mekonnen, personal communication 2018). Naturally fixed nitrogen by 

legumes was not included in the assessment. 
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Figure 8. Green, blue, and grey water use for the protein sources in m3 per kg product in a store in Sweden for 

the identified export countries, and world average water use for comparison. 

Total water use (as in Figure 8) with geographical origin of the vegetarian protein sources is shown in 

Figure 9. 
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Figure 9. Total water use (green + blue + grey) in m3 per kg product in a store in Sweden and world averages.            

*Weight of the product modified to equal 1 kg boiled beans. 

Applying the AWARE method to assess the impact of the use of blue water on local water availability 

showed that many of the products have a water footprint close to zero (Figure 10). This is explained by 

either the products not being irrigated or use of blue water having very little local impact. The product 

with the highest AWARE score was faba beans from Egypt, due to the high blue water use and the 

relatively high AWARE score for Egypt, indicating that use of blue water can have a high local impact. 

 

Figure 10. Water footprint in m3eq per kg product in a store in Sweden, estimated using the water scarcity method 

AWARE (Available Water Remaining). 
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In order to assess animal products using AWARE for comparison, it was assumed that all water use 

takes place in the country of origin, i.e., that all fodder is produced in the same country as the meat, 

which is a simplification. When including the animal products in the assessment using AWARE, world 

average animal products have higher impact than all beans and ready-made vegetarian meat alternatives, 

except for faba beans from Egypt (excluded from the diagram to reveal the differences between the other 

products) (Figure 11). Swedish meat products have lower impact than some pulses and most of the soy-

based meat alternatives (produced in Sweden, but with raw materials from outside Sweden). However, 

the water footprint of Swedish animal products would likely increase if fodder production from outside 

Sweden were included, e.g., soybeans from Brazil. 

 

Figure 11. Water footprint in m3eq per kg product in a store in Sweden and world averages using the water 

scarcity method AWARE (Available Water Remaining), including animal products. Faba beans from Egypt are 

excluded. 

Table 7. Range of results for all identified export countries and Swedish produce for total water use (m3 per 

functional unit (FU)) and AWARE (Available Water Remaining, m3eq per FU) for plant-based protein sources 
Product Total water use 

(m3 per FU) 

AWARE (m3eq 

per FU) 

Commenta 

Green peas 0.3-1.4 0-0.3 Total water use for Swedish production, main export countries, and global 

average. AWARE figures do not include world average, since it differs 

considerably from the values for Swedish production and the identified 

import countries.  

Yellow peas 0.2-0.9 0 Yellow peas from Sweden, Denmark, and Germany are likely to have total 

water use of below 0.3 m3 per kg product, Canadian and world average 

production were assessed to have total water use below 0.9 m3 per kg 

product. The AWARE value is zero for all identified export countries, since 

yellow peas are generally not irrigated in these countries. The AWARE 

figure for global average production is excluded. 

Dry beans 0.3-2.3 0-2.3 Swedish, Dutch, Canadian, Argentinean, Polish, and Turkish production has 

total water use below 1 m3 per kg product. Beans from China, Myanmar and 

world average production have water use above 1 m3 per kg product. 

Faba beans 0.2-1.3 0-72 Total water use for faba bean production is mainly below 1 m3 per kg 

product, including Swedish production. Except for Egyptian production with 

1.3 m3 per kg product. AWARE figures are generally below 4 m3eq, the high 

value (72 m3eq) is for Egypt. 
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Beans canned 0.6-2.3 0-2.6 According to Swedish import statistics, Sweden imports canned beans 

mainly from Italy and Myanmar, but the beans could have been processed 

elsewhere (most likely Italy) and exported to Sweden, i.e., produced in a 

different country. Due to uncertainties in import statistics other countries 

could be relevant, some of which are included in the assessments of dried 

beans. The highest value is for global average production. European 

production from Italy and Sweden has the lowest water use. 

Chickpeas 0.8-1.9 0-4.7 For total water use, the highest value is for global average production. The 

lowest water use is for Italy and Australia. 

Lentils 1.1-3.0 0-11 Canada, the world’s largest producer of lentils, has water use of around 1.7 

m3 per kg product. No data for Swedish lentil production could be found. 

Soybeans 0.5-0.8 1.2-2.2 Water use in the main export countries to Sweden (Italy and USA) is 

relatively similar to world average. 

Ready-made products  Water use for many ready-made products is based on assessments made in 

this study, see Appendix A3. 

Mixed 0.7 0.07 For falafel, water use is approx. 0.7 m3 per kg product. 

Mixed with 

eggs 

  No data. 

Pea-protein 

products 

1.0 0.0002 Water use estimated to be 1 m3 per kg product. 

Quorn 0.4-2.0 0.28  

Soy-based 0.4-1.1 0.1-1.6 Total water use for soy-based products produced in Sweden from mainly 

imported ingredients is 0.4-1.1 m3 per kg product. 

Tofu/tempeh 0.3-1.6 0.1-1.3 Total water use was estimated to be 0.3-1.6 0.4-1.2 m3 per kg product. 

Wheat protein   No data 

aComments included when applicable. 

 

 

3.2. Nuts and seeds 

3.2.1. Climate impact 

Climate impact for nuts and seeds is presented in Figure 12. Most studies show a climate impact of 

below 4 kg CO2e per kg product. The two studies on peanuts that show significantly higher impact (15.6 

and 27.3 kg CO2e per kg products) are on peanuts from Uganda and Sudan, respectively. Most of this 

impact is from LUC (Agri-footprint, 2018). According to Swedish import statistics, Sweden does not 

import peanuts from those two countries (SS, 2018). These two studies were therefore considered to be 

of low relevance for the Swedish market and not included in the final assessment (Table 8). 
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Figure 12. Climate impact of nuts and seeds. Functional unit 1 kg nuts and seeds without shells at a Swedish 

retailer. A green symbol border indicates that land use change (LUC) is included in the climate impact 

assessments. Note that the graph shows the climate impact from all identified earlier studies for this product group, 

and not only those identified as relevant for the Swedish market. The final assessment in Table 8 is based on 

relevance for the Swedish market. 

For almonds, two studies show higher impact than 4 CO2e per kg product, namely the data for the global 

market average and “rest of the world” from the ecoinvent database. This is mainly due to energy use 

for irrigation (Wernet et al., 2016). Sweden mainly imports almonds from the USA (55%), but also from 

Argentina and Spain (SS, 2018). There are several studies on almonds produced in the USA (Kendall & 

Brodt, 2014; Marvinney et al., 2014; Venkat, 2012), all showing a climate impact below 4 kg CO2e per 

kg product (0.9-2.9 kg CO2e per kg product).  

For studies on linseeds, a climate impact lower than 4 kg CO2e per kg product is reported in all but one 

case, Agri-footprint data on linseeds from Italy, where the majority of the impact is from LUC (Agri-

footprint, 2018). Around 9% of the linseeds imported to Sweden are from Italy, while the majority come 

from Denmark (42%). For pistachios, one study on pistachios from Greece reports a higher impact than 

4 kg CO2e per kg product (Bartzas et al., 2017). This could be explained by the functional unit used; in 

that study the functional unit was nuts in shell, which was converted here to shelled nuts without 

allocating any impact to the shells. Further, the yield in the study by Bartzas et al. (2017) was rather 

low. According to trade statistics, Sweden did not import pistachios from Greece during the past five 

years (SS, 2018). The data on pistachios from Volpe et al. (2015) are based on Marvinney et al. (2014), 

and therefore Volpe et al. (2015) was excluded from the recommendation. For peanuts, two studies show 

a higher impact than 4 kg CO2e per kg product, both on peanuts produced in Argentina where direct 

LUC is the most important contributor to the climate change impact (Agri-footprint, 2018; Wernet et 

al., 2016). According to import statistics, Sweden imports 37% of its peanuts from Argentina (SS, 2018). 
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Figure 13. Climate impact of nuts and seeds (excluding peanuts from Sudan and Uganda). Functional unit 1 kg 

packaged nuts and seeds without shell in a store in Sweden. A green symbol border indicates that land use change 

(LUC) is included in the climate impact assessment. Note that the graph shows the climate impact from all 

identified earlier studies for this product group, and not only those identified as relevant for the Swedish market. 

The final assessment in Table 8 is based on relevance for the Swedish market. 

Table 8. Final assessment of climate impact of nuts and seeds on the Swedish market 
Product Final assessment 

(kg CO2e per kg 

product in a 

Swedish store) 

No. of 

relevant 

references 

Total no. 

of 

references 

Comment 

 General Sweden    

Almonds 3.8  10 9 Data on almonds from the USA and Europe 

considered most relevant for the Swedish market. Rest 

of the world data and global market data from 

Ecoinvent not considered in the final assessment.  

Cashew nuts 2.4  3 3 All identified studies considered relevant for the 

Swedish market. 

Chestnuts 1.2  2 2 The recommendation is for European chestnuts. No 

data were found for “rest of the world”. 

Coconut 

(grated) 

2.4  1 1 This study considered relevant for the Swedish 

market. 

Hazelnuts 2.0  3 3 All identified studies considered relevant for the 

Swedish market. The assessment is based on two 

studies on “rest of the world” production and one 

study on European hazelnuts showing a climate 

impact of 0.8 kg CO2e per kg. 

Linseeds 3.4  1 1 European production considered relevant for the 

Swedish market. The differences in the results can 

partly be explained by inclusion of LUC (1 reference) 

Walnuts 3.3  4 4 Two studies are on production in USA, which is 

highly relevant for the Swedish market. The other two 

studies are on “rest of the world” production, i.e., 

country not specified. However, all four studies were 

considered relevant for the Swedish market.  

Pistachios 2.6  2 4 Based on import statistics, pistachio nut production in 

the USA considered most relevant for the Swedish 

market. 
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Peanuts 1.8    Differences in the results can partly be explained by 

inclusion of LUC in some studies. Without LUC, most 

studies show a climate impact below 1.8 kg CO2 per 

kg product. Climate impact, including LUC of peanuts 

from Argentina, Sudan, and Uganda, is likely to be 

above 4 kg CO2eq per kg product. Imports from 

Argentina are relevant for the Swedish market (6 

references). 

Sesame seeds 1.0  1 1 The recommendation is based on only one study and 

is therefore uncertain. 

Sunflower 

seeds 

1.8    Differences in the results can partly be explained by 

inclusion of LUC in some studies. The studies that did 

not include LUC show results below 1.8 kg CO2e per 

kg product. In total, all but one study show a climate 

impact below 2 kg CO2e per kg product, even when 

LUC is included (5 references). 

 

3.2.2. Land use 

Overall, nuts and seeds were found to have higher land use than the other product groups. This is due to 

relatively low yield of shelled nuts and seeds (edible). However, it is important to note that nuts and 

seeds are generally high in energy and valuable macro- and micronutrients. This is not reflected in the 

results when the functional unit 1 kg product is used. See Appendix A4 for a discussion on functional 

unit and the use of nutrient indices. 

Earlier studies 

Earlier studies provide limited data on land use for nuts and seeds, with the exception of sunflower seeds 

and peanuts. The highest land use was found for cashew nuts from production outside Europe (Blonk et 

al., 2008). Peanuts from India also show fairly high land use (Wernet et al., 2016). 

 

Figure 14. Land use for nuts (shelled) and seeds from earlier studies, in m2 per kg product. 
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Calculations of land use 

Land use for almonds imported to Sweden varies greatly, with notably high land use of above 50 m2 per 

kg product for Spanish almonds. Although Spain is a large producer globally, Spanish almond 

production has variable yield, and in dry areas and on smaller farms the yield can be low (FAO, year 

unknown). Around 10% of the almonds imported to Sweden during the past five years came from Spain 

(SS, 2018). Spain is the second largest producer of almonds globally, while the USA is the largest 

producer and dominates the global market for almonds (FAOSTAT, 2019). Almond production in the 

USA (which accounts for around 55% of Swedish imports) has significantly higher yields (almost six-

fold higher than in Spain) (FAOSTAT, 2019). Italy is another European producer of almonds with fairly 

large production globally and Italian yields are 3.6-fold higher than Spanish yields (FAOSTAT, 2019), 

indicating that European almond production does not have to be associated with such high land use as 

Spanish almond production. Almond production in Turkey and Greece produces similar yields to that 

in the USA (FAOSTAT, 2019). 

Cashew nuts from Brazil were estimated to have very high land use (above 300 m2 per kg product). 

Brazil was not identified as one of the main export countries to Sweden, but was added as an extra 

country due to relatively high total exports. The main exporter to Sweden and the main exporter globally 

was found to be Vietnam. Global average land use for cashew nuts is much higher than the land use for 

nuts from Vietnam in the one previous study on cashew nuts that included land use (Blonk et al., 2008). 

The global average yield is around six-fold lower than the yield in Vietnam. This indicates that land use 

for cashews can differ widely depending on country of origin.  

Linseeds from Denmark have land use of around 35 m2 per kg product. Swedish linseed production is 

associated with much lower land use, around 6-7 m2 per kg product (the higher value is for organic 

production). Considering the similarities between the two countries in climate conditions and the 

agricultural sector, this difference in yield is somewhat suspicious. Denmark has rather limited 

production of linseeds, 107 hectares in 2017, no linseed cultivation in 2018, and 831 hectares in 2019 

(StatisticsDenmark, 2020). The linseeds imported from Denmark may therefore originate from other 

countries. Denmark was not considered to be an important producer for the Swedish market in the final 

assessment. 

Notably, only one product has land use below 2 m2 per kg product, namely chestnuts from China. 

Sesame seeds from India, which represent 32% of Swedish imports during the past five years, have land 

use of around 20-25 m2 per kg product. 
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Figure 15. Earlier studies and own assessments on land use for shelled nuts and seeds in m2 per kg product. 

Cashew nuts from Brazil are excluded from the graph, but land use for these was estimated to be 305 and 380 m2 

per kg nuts without shells for conventional and organic production, respectively. 

 

3.2.3. Biodiversity 

In general, impacts on biodiversity are higher for nuts and seeds than for the other food categories 

studied. This is partly due to the relatively high land use (due to low yields per hectare) and partly to 

many of these products being imported from countries with high biodiversity values, i.e., high species 

richness and high degree of indigenous species, such as Indonesia and the Philippines (Pimm et al., 

1995), which were identified as export countries for coconuts. 

The highest biodiversity impacts were found for almonds from Spain, cashews from Brazil, India, and 

Vietnam, coconuts from Philippines and Sri Lanka, walnuts from Mexico, and sesame seeds from India 

(Figure 16). Results for coconut are for grated coconut. 
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Figure 16. Biodiversity impact from land use occupation from nuts and seeds in PDF (Potentially Disappeared 

Fraction) per kg product in a store in Sweden. Cashew nuts from Brazil are excluded from the graph. 

 

Table 9. Range of results for all identified export countries and Swedish produce for land use (m2/year per 

functional unit (FU) and biodiversity impact (Potentially Disappeared Fraction (PDF) per FU) for nuts and seeds 

Product Land use 

(m2/year per 

FU) 

Biodiversity 

impact (PDF per 

FU) 

Comments 

Almonds 5.0-64 5.7E-13-2.3E-12 Almonds from the USA dominate Swedish imports (55%), and their land use 

was assessed to be around 8 m2 per kg. There is a risk of higher land use for 

almonds imported from some countries. Figures for global average 

production show land use of approx. 17-21 m2 per kg (lower values for 

conventional and higher for organic). Spanish production was assessed as 

having particularly high land use of 52-64 m2 per kg (lower values for 

conventional and higher for organic). 

Cashew nuts 11-380 5.8E-12-9.3E-11 There is a risk of high land use for cashew nuts imported from some 

countries. Vietnam is the main exporter to Sweden, with land use of 11-13 

m2 per kg (lower values for conventional and higher for organic). Global 

average land use is high, approx. 68-84 m2 per kg (lower values for 

conventional and higher for organic). Brazilian production shows 

particularly high land use (above 300 m2 per kg). Brazil was added as an 

extra country (see section 2.2). It is unknown why Brazil has such high land 

use and uncertain whether this production is relevant for the Swedish market. 

The highest biodiversity scores were found for Brazil and India. 

Coconut 

(grated) 

9.7-18 1.0E-11-4E-11 Around 2.0-3.7 m2 per kg. Biodiversity scores are relatively high (compared 

with most other products assessed in this product group) for all export 

countries assessed (Philippines, Indonesia, Sri Lanka). 

Chestnuts 1.9-3.8 9.6E-14-9.7E-14 China was identified as the main exporter. Land use was assessed to be 1.9 

m2  per kg for conventional production and 2.3 m2  per kg for organic. Global 

average was estimated to be higher. 

Hazelnuts 15-21 1.8E-12-2.2E-12 Italy and Turkey were identified as main export countries to Sweden. Land 

use in these countries is similar, but somewhat lower than the global average. 

Linseeds 5.2-14.9 5.6E-14-6.6E-13 Land use for imported linseeds varies between 5.2-35.4 (conventional) and 

6.4-44 (organic) m2 per kg. Data on Danish linseeds are questionable due to 

the sharp difference between similar countries such as Sweden and the 

Netherlands, and Denmark was excluded due to low production. Swedish 

linseeds were assessed to have land use of 5.9-7.4 m2 per kg (lower values 

for conventional and higher for organic). 
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Walnuts 2.6-20 5.4E-14-1.0E-11 Land use varies between 2.6 and 20 m2 per kg. The USA was identified as 

the main exporter to Sweden, with land use of 4.5-5.6 m2 per kg (lower 

values for conventional and higher for organic). The highest scores for 

biodiversity impact were found for Mexico, which was added as an extra 

country (see section 2.2). 

Pistachios 7.4-31 5.8E-13-1.9E-12 Pistachios are mainly imported from the USA, with land use estimated to be 

7.4-9.2 m2 per kg (lower values for conventional and higher for organic). 

The highest land use was found for Iran (extra country, see section 2.2). 

Peanuts 3.1-8.4 2.5E-13-1.9E-12 Sweden mainly imports from Argentina and China, with higher yields than 

the global average. 

Sesame seeds 4.7-25 2.0E-12-7.2E-12 Sesame seeds from the largest exporter to Sweden, India, have land use of 

approx. 20-25 m2 per kg (lower values for conventional and higher for 

organic). The highest biodiversity impact was found for Guatemala, which 

was identified as one of the main export countries to Sweden. 

Sunflower 

seeds 

4.9-10 1.0E-13-3.9E-13 Mainly imported to Sweden from European countries. Land use varies 

between 5-8 (conventional) and 6-10 (organic) m2 per kg. 

 

3.2.4. Water use 

Earlier studies 

Figure 17 shows the results for blue water use for nuts and seeds. Almond production is known to be 

water-intensive, which is confirmed by the results from earlier studies. The highest blue water use for 

almonds was found for almonds produced in the USA, 13 m3 per kg almonds (Marvinney et al., 2014), 

but lower water use of around 5.3 m3 per kg almonds is reported in one study on USA production (Fulton 

et al., 2018). The lower values for almonds represent production in China (Wernet et al., 2016). 

 

Figure 17. Blue water use for nuts (shelled) and seeds from earlier studies, in m3 per kg product. 

Water footprint, total water use, and AWARE 

Almonds from Spain and cashew nuts from Brazil have the highest total water use, above 30 m3 per kg 

product. The majority of this water is green water use and can partly be explained by the low yield in 

both cases. The USA was identified as an exporter of nuts to Sweden, particularly almonds, pistachio 

nuts, and walnuts. Walnuts and almonds from the USA seem to have similar water use, while pistachios 
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from the USA have lower total water use. Grey water use for almonds and walnuts produced in the USA 

is notably high, which indicates high nitrogen fertilizer application rates. Sesame seeds from India show 

high green water use. Pistachios from Iran have high total water use (22 m3 per kg product), mostly blue 

water (Mekonnen et al., 2011). Iran is the largest producer globally of pistachios, but is not among the 

main exporters (FAOSTAT, 2019), indicating high domestic consumption. 

 

Figure 18. Total water use, divided into green, blue, and grey water use, for nuts (shelled) and seeds, in m3 per 

kg product in a store in Sweden, for the identified export countries, and world average water use for comparison. 
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Figure 19. Total water use (sum of green, blue, and grey water use) for nuts (shelled) and seeds in m3 per kg 

product in a store in Sweden and world averages. 

Results from the assessment using AWARE are shown in Figure 20. The results for pistachio nuts from 

Iran are removed from the graph, to reveal the details of the other data points. AWARE results for 

pistachios from Iran are much higher than for other countries, due to high use of blue water and high 

AWARE characterization factor for Iran. Almonds from all assessed import countries score relatively 

high when assessed with AWARE, as do walnuts and pistachios from the USA due to high irrigation of 

these crops. Cashews from Brazil have the highest AWARE score, due to use of blue water. Cashews 

from Vietnam are sparsely irrigated compared with other nuts (52 m3 per ton cashews), but world 

average water use for cashews is around 920 m3 per ton (Mekonnen et al., 2011), so the global average 

AWARE score for cashews is higher than that for Vietnam. The hazelnuts with the highest AWARE 

score are hazelnuts from Turkey. 
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Figure 20. Water use for nuts and seeds, assessed with the water scarcity method AWARE (Available Water 

Remaining, m3eq per kg product) in a store in Sweden, and world averages. Pistachio nuts from Iran are excluded 

from the graph, as their AWARE impact is above 1000 m3eq per kg product. 

Table 10. Range of results for all identified export countries and Swedish produce for total water use  (m3 per 

functional unit (FU)) and AWARE (Available Water Remaining, m3eq per FU) for nuts (shelled) and seeds 

Product Total water use 

(m3 per FU) 

AWARE (m3eq 

per FU) 

Commentsa 

Almonds 9-30 78-330 Total water use differs greatly between export countries, global average is 

intermediate. AWARE scores highest for Australia and Chile. 

Cashew nuts 5-38 1-79 Total water use differs greatly between export countries, global average is 

intermediate. AWARE score highest for India. 

Chestnuts 2-3 3-9  

Coconuts 15-20 0-21 Highest AWARE score found for global average production. 

Hazelnuts 10-12 78-110 Total water use in main export countries to Sweden (Italy and Turkey) and 

global average is similar.  

Linseeds 3-6 0.3-14 Not irrigated in the three identified export countries (Denmark, Netherlands, 

Canada), so AWARE scores are generally low. Highest AWARE score 

found for global average production. 

Walnuts 3-19 0-230 The largest exporter to Sweden, USA, was found to have an AWARE score 

of 140 m3eq per kg product. 

Pistachios 3-23 54-1130 The USA, the main export country to Sweden, has water use of 3.7 m3 per 

kg product. Highest AWARE score found for Iran. 

Peanuts 3-6 4-18 Total water use in the main export countries (Argentina, China, India) is 

similar to the global average. 

Sesame seeds 8-18 0-27 Water use in the main export country to Sweden (India) was estimated to be 

higher than the global average water use for sesame seeds.  

Sunflower 

seeds 

4-8 1-9  

aComments included when applicable. 
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3.3. Carbohydrate sources 

3.3.1. Climate impact 

For barley, corn, millet, oats, rye, and wheat, the majority of the literature data show a climate impact 

below 0.7 kg CO2e per kg edible product. A study on Australian corn (Maraseni et al., 2010) was 

considered less relevant for the Swedish market. The identified export countries to the Swedish market 

were France and Poland (SS, 2018), and South Africa was identified as the country with the largest trade 

surplus of corn (FAOSTAT, 2019). Corn from South Africa has the second highest impact, around 0.7 

kg CO2e per kg edible product, primarily due to the longer transport (0.4 kg CO2e per kg from transport). 

Data for primary production of South African corn were taken from Agri-footprint (2018). 

Two studies were found on quinoa, one scientific article (Cancino-Espinoza et al., 2018) and one 

company report (Alter eco, 2012). The highest climate impact for quinoa was found for dark quinoa, 

with around 0.9 kg CO2e per kg edible product (Alter eco, 2012). Rice has a higher climate impact than 

the other cereals, but with large variation in the results. The higher climate impact is mainly due to the 

methane emissions during wet rice cultivation. The large variation in results may be due to actual 

variation in production methods and sites, combined with different methods to estimate methane 

emissions (see e.g., Thanawong et al. (2014)). Data on European rice production were taken from two 

studies (Kägi et al., 2010; Blengini & Busto, 2009).  

All root vegetables have a climate impact below 0.5 kg CO2e per kg product, with the exception of 

beetroot transported from Australia (Maraseni et al., 2010), sweet potato transported from Korea (So et 

al., 2010), and frozen Jerusalem artichoke (lower value for fresh) (Landqvist & Woodhouse, 2015). The 

study by Landqvist and Woodhouse (2015) on fresh and frozen Swedish products (carrots, swedes, 

Jerusalem artichoke, parsnip) showed that processing and freezing doubles the climate impact of these 

root vegetables. When comparing fresh and frozen products, it is important to note that the frozen 

products have been cleaned, blanched, and frozen, which could potentially reduce energy use and waste 

in the household. Further, root vegetables have a low climate impact in both cases (fresh and frozen) 

compared with other products.  
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Figure 21. Climate impact of carbohydrate sources in kg CO2e per kg edible product in a store in Sweden. *Weight 

of the product modified to equal 1 kg edible product, i.e., bread or ready-to-eat pasta or grains excluding the 

emissions caused by energy use from baking and cooking. Note that the graph shows the climate impact from all 

identified earlier studies for this product group, and not only those identified as relevant for the Swedish market. 

Final assessments in Table 11 are based on relevance for the Swedish market. 

 

Figure 22. Climate impact of fresh and frozen root vegetables, from Landqvist and Woodhouse (2015). 

 

 

 

 

Table 11. Final assessment of climate impact of carbohydrate sources on the Swedish market 
Product Final assessment 

(kg CO2e per kg 

product in a 

Swedish store) 

No. of 

relevant 

references 

Total no. 

of 

references 

Comment 

 General Sweden    
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Cereals      

Barley 0.5 0.5 9 (5 SW) 9 Most studies show an impact below 0.5 kg CO2e per 

kg edible product. No clear difference between 

Swedish and European barley. 

Maize 0.5  4 6 European products considered most relevant for the 

Swedish market. 

Millet 0.3  1 1 Only one study was found, the recommendation is 

therefore uncertain. 

Oats 0.5 0.5 8 (4 SW) 8 All identified studies considered relevant for the 

Swedish market. 

Pasta 0.9 0.7 4 (2 SW) 4 All identified studies considered relevant for the 

Swedish market. 

Quinoa 0.9 No data 2 2 Two studies were identified, a scientific article 

showing climate impact of Peruvian quinoa of 0.4 kg 

CO2e per kg edible product (including transport to 

Sweden) (2 references) 

Rice 2.0  14 14 Climate impact in the studies varies between 0.5-2.0 

kg CO2e per kg edible product. All data-points were 

considered relevant for the Swedish market, indicating 

that the climate impact of rice can vary greatly, but 

some studies show that climate impact is likely to be 

approximately 2 kg CO2e per kg edible product. 

European rice may have a lower impact (below 1 kg 

CO2e per kg edible product), but only two studies 

investigated emissions from European rice 

production.  

Rye 0.5 0.5 5 (4 SW) 5 Earlier studies show that climate impact is likely to be 

below 0.5 kg CO2e per kg edible product. No clear 

difference was found between Swedish rye and 

imported rye (from Europe). 

Sorghum 0.5  1 1 Only one study was found, so this is an uncertain 

assessment.  

Wheat 0.6 0.6 12 (11 

SW) 

11 Studies on Swedish and European wheat production 

considered relevant for the Swedish market. No clear 

difference was found for Swedish and European 

wheat. 

Root vegetables     

Beetroot 0.4 0.4 3 (2 SW) 4 European and Swedish production considered relevant 

for the Swedish market. 

Carrots 0.5 0.3 8 (6 SW) 10 European and Swedish production considered most 

relevant for the Swedish market. Climate impact is 

likely to be below 0.5 kg CO2e per kg product. 

Swedish fresh products have lower impact with 

transport added, fresh Swedish carrots have an impact 

below 0.3 kg CO2e per kg product, European products 

have a higher impact with transport added, between 

0.2-0.5 kg CO2e per kg product. 

Potatoes 0.4 0.3 9 (4 SW) 9 European and Swedish production considered relevant 

for the Swedish market.  

Swedes 0.5 0.5 2 (2 SW) 2 Swedish and European production considered relevant 

for the Swedish market. 

Sweet potato 0.8 No data 1 1 Only one study was found, the recommendation is 

uncertain. 

Jerusalem 

artichoke 

and parsnips 

0.6 0.6   The results are based on one study (a report). 

However, due to similarities with other production 

(other root vegetables), climate impact is likely to be 

below 0.6 kg CO2e per kg product. 

 

3.3.2. Land use 

Land use for Swedish production and Swedish imports of carbohydrate sources and root vegetables is 

presented in Figure 23. The results show that millet requires more land than other cereals, due to lower 

yields. Global average land use for millet, quinoa, and sorghum is clearly higher than for Swedish 

imports, due to higher yields in countries found to export to Sweden. The higher values for the global 
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average production can be seen as an indicator that these products may be associated with higher land 

use than the current Swedish imports show.   

Root vegetables all have low land use, below 1 m2 per kg product. For root vegetables, organic 

production was assumed to have slightly higher yields (5%) than conventional. This was based on three 

earlier studies on sweet potato and sugar beet (De Ponti et al., 2012). In this study, 5% higher yield for 

organic was assumed for beetroot, carrots, sweet potato, parsnip, and Jerusalem artichoke. We found no 

statistics on yields of organic and conventional carrot production, or any other root vegetables. Official 

yield statistics for root vegetables in Sweden include both organic and conventional production, but do 

not show them separately. 

For potatoes, organic potato yield in De Ponti et al. (2012) was 70% of the conventional yield. For 

Swedish organic potato production, yield was 50%-68% of the conventional yield in 2013-2018, with 

higher yield toward the end of this period (SBA, 2019). 

When comparing root vegetables with cereals in Figure 23, it is important to note that although the 

cereals were recalculated to edible products, they generally have a lower water content and a higher 

energy content than the raw root vegetables (which were assumed to be edible as-is, or to undergo very 

little change during cooking to edible form). 

Land use for Swedish quinoa production was estimated to be 2.3-2.9 m2 per kg (lower values for 

conventional and higher for organic), based on yield data from Hushållningssällskapet (2013). 

 

Figure 23. Land use for carbohydrate sources in m2 per kg product in a store in Sweden and world averages. 

*Weight of the product modified to equal 1 kg edible product, i.e., bread or ready-to-eat pasta or grains. Energy 

use for cooking was not included. 

3.3.3. Biodiversity 

Impact on biodiversity from land use was generally below 2E-13  PDF per kg product for carbohydrate 

sources (Figure 24). This is primarily due to the relatively low land use, but also to the fact that most of 

these products are either produced in Sweden or imported from northern European countries with quite 

low biodiversity in natural vegetation. Millet from India and quinoa from Peru and Bolivia are clear 
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exceptions, with (for this group) much higher impact than the other products due to low yields and high 

biodiversity in these regions.  

 

Figure 24. Biodiversity impact from land use occupation from carbohydrate sources in PDF (Potentially 

Disappeared Fraction) per kg edible product in a store in Sweden. *Weight of the product modified to equal 1 kg 

edible product, i.e., bread or ready-to-eat pasta or grains. 

 

Table 12. Range of results for all identified export countries and Swedish produce for land use (m2/year per 

functional unit (FU)) and biodiversity impact (Potentially Disappeared Fraction (PDF) per FU) for carbohydrate 

sources 
Product Land use 

(m2/year per 

FU) 

Biodiversity 

impact (PDF per 

FU) 

Commenta 

Cereals    

Barley 0.9-3.0 1.2E-14-6.1E-14 The higher values are for conventional and organic production based on the 

global average, indicating a risk of somewhat higher land use if imports 

come from other countries than those included in this report. Swedish 

produce has land use of 1.3 m2 per kg for conventional and 1.9 m2 per kg 

product for organic. 

Corn 0.6-1.2 1.8E-14-2.8E-13  

Millet 3.2-6.4 6.7E-14-1.1E-12 Biodiversity impact highest for India. 

Oats 1.2-2.1 1.4E-14-2.2E-14  

Pasta 0.9-3.9 1.1E-14-4.2E-13 Swedish pasta has land use of 1.1-1.6 m2 per kg (lower values for 

conventional and higher for organic). The highest land use is in Turkey, 

which was not identified as a main exporter to Sweden, but is the main 

exporter globally of wheat. The highest biodiversity impact was found for 

Italy and Turkey. 

Quinoa 1.5-5.0 1.1E-12-1.6E-12 Bolivia has the highest land use and the highest biodiversity impact. Sweden 

has very limited quinoa production, and land use was estimated to be 2.3-2.9 

m2 per kg (lower values for conventional and higher for organic). 

Rice 0.6-1.0 1.3E-13-2.3E-13 Land use in the main export countries identified (India, Italy, Thailand) is 

similar to the global average. 
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Rye 1.0-2.8 1.6E-14-5.1E-14 Global average similar to that in the main export countries. Land use for 

Swedish production is approximately 1.0-1.3 m2 per kg (lower values for 

conventional and higher for organic). 

Sorghum 1.1-4.0 8.6E-14-1.1E-13 Main export country (USA) has lower land use than the global average. 

Wheat 0.8-3.3 9.1E-15-3.5E-13 Land use for Swedish import varies between 0.8-2.4 (conventional) and 1.0-

3.3 (organic) m2 per kg. Highest land use and biodiversity impact were found 

for Turkey. Land use for Swedish production is approx. 1.0-1.3 m2 per kg 

(lower values for conventional and higher for organic).  

Root vegetables   

Beetroot 0.4 3.2E-15-7.6E-15 Only data on Swedish production. Land use in other countries was assumed 

to be the same as for Swedish production, likely 0.4 m2 per kg. 

Carrots 0.2-0.3 2.0E-15-4.2E-14 Similar land use for Swedish and imported products. 

Potatoes 0.3-0.7 3.5E-15-1.4E-14 Land use is likely to be 0.3-0.7 m2 per kg. Swedish potatoes were assessed 

to have land use of 0.4 m2 per kg. 

Sweet potato 0.4-0.8 3.3E-14-3.4E-14  

Parsnip, 

swedes and 

Jerusalem 

artichoke 

0.5-1.0 3.7E-15-6.7E-15 Only data on Swedish production found. Land use is likely to be around 0.5 

m2 per kg for Swedes and parsnips, and around 1 m2 per kg for Jerusalem 

artichoke. 

 
aComments included when applicable. 

3.3.4. Water use 

Earlier studies 

Water use is rarely included in earlier studies on the climate impact of carbohydrate sources (Figure 25). 

One study on rice shows high blue water use, of around 1.6 m3 per kg rice (Blengini & Busto, 2009). 

Blue water use in carrot production is included in the ecoinvent database (Wernet et al., 2016) and the 

study by Fuentes et al. (2006). Blue water use in carrot production from these data sources varies 

between 0.03-0.12 m3 per kg carrots. 

 

Figure 25. Blue water use from earlier studies on carbohydrate sources. *Weight of the product modified to equal 

1 kg edible product, i.e., bread or ready-to-eat pasta or grains. 
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Water footprint, total water use, and AWARE 

Looking at water use in Mekonnen et al. (2011), divided into green, blue, and grey water (Figure 26) 

and as total water (Figure 27), total water use is highest for quinoa and millet, most likely due to lower 

yields. Blue water use is highest for rice, indicating high irrigation rates in all three identified export 

countries (India, Thailand, Italy) but also for the world average production. 
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Figure 26. Total water use, divided into green, blue, and grey water use, for carbohydrate sources in m3 per kg 

edible product in a store in Sweden for the identified export countries, and world average water use for 

comparison. 
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Figure 27. Total water use (sum of green, blue, and grey water use) for carbohydrate sources in m3 per kg edible 

product in a store in Sweden, and for the world average. *Weight of the product modified to equal 1 kg edible 

product, i.e., bread or ready-to-eat pasta or grains. 

 

When applying the water scarcity indicator AWARE, rice from Italy has a higher impact due to large 

amounts of blue water and high AWARE characterization factors for Italy (Figure 28). Further, global 

average production of rice and wheat uses relatively large amounts of blue water (Mekonnen et al., 

2011) which is the reason behind the higher impacts. In general, both total water use and AWARE 

indicators are low compared with e.g., those for some nuts.  
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Figure 28. Water use for carbohydrate sources assessed with the water scarcity method AWARE (Available Water 

Remaining) in m3eq per kg product in a store in Sweden and the world average. *Weight of the product modified 

to equal 1 kg edible product, i.e., bread or ready-to-eat pasta or grains.  

 

Table 13. Range of results for all identified export countries and Swedish produce for total water use  (m3 per 

functional unit (FU)) and AWARE (Available Water Remaining, m3eq per FU) for carbohydrate sources 

Product Total water 

use (m3 per 

FU) 

AWARE (m3eq 

per FU) 

Comment 

Barley 0.3-0.9 0-2.3 Total water use for Swedish production and Swedish imports is likely 

to be below 0.4 m3 per kg. Global average is 0.9 m3 per kg. For 

Sweden and the main import countries, the AWARE score is 0 m3eq 

(or close to), due to no or very low irrigation rates. The AWARE 

value is higher for world average production. 

Corn 0.4-1.2 0-2.4 Assessed to be below 0.8 m3 per kg for the identified European 

export countries (France and Poland), global average water use is 

also below 0.8 m3 per kg. South Africa and Brazil have total water 

use of 1.2 m3 per kg. South Africa was identified as the main exporter 

globally and Brazil was added as an extra country in the analysis.  

Millet 1.5-2.3 0-1.3  

Oats 0.5-1.5 0-7.0 Water use in the main export countries (Finland and Denmark) and 

in Sweden is likely to be below 0.6 m3 per kg. Global average and 

the largest global exporter (Canada) have higher water use, around 

1.0-1.5 m3 per kg. A higher AWARE score was found for global 

average production. 

Pasta 0.5-1.9 0-12 Italian pasta was assessed to have total water use of around 1 m3 per 

kg. Pasta made of wheat from Turkey (identified as main exporter of 

wheat) or global average wheat was estimated to have the highest 

total water use. Highest AWARE score found for global average 

production. 

Quinoa 1.2-2.0 0.13-0.76  
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Rice 0.6-1.3 1.6-12 Water use varied between 0.6 (Italy) and 1.3 m3 per kg. Proportion 

of blue water in total water is relatively high in all identified export 

countries and in the global average. 

Rye 0.3-1.3 0-0.9 Water use in Sweden, Denmark, and Germany is below or close to 

0.6 m3 per kg. Global average, Finland, and Poland have slightly 

higher water use, of around 1.1-1.3 m3 per kg. For Sweden and the 

main import countries, the AWARE score is 0 m3eq (or close to) due 

to no or very low irrigation rates. A higher AWARE value was found 

for world average production. 

Wheat 0.4-1.6 0-10 Most Swedish imports and Swedish production have water use below 

0.5 m3 per kg. Turkey was identified as the largest exporter globally 

and is the country with the highest water use (of the countries 

assessed) with approx. 1.5 m3 per kg. A higher AWARE value was 

found for world average production. 

Root vegetables   

Beetroot   No data. 

Carrots 0.04-0.4 0-2.2 All export countries assessed, Swedish production, and global 

average show water use below 0.4 m3 per kg. Highest AWARE score 

found for Italian production. Italy was identified as the main exporter 

of carrots to Sweden. 

Potatoes 0.15-0.4 0.1-2.3 All export countries assessed, Swedish production, and global 

average have water use below 0.4 m3 per kg. A higher AWARE value 

was found for world average production. 

Swedes   No data. 

Sweet 

potatoes 

0.5-1.2 0.3-2.9 The largest exporter to Sweden (USA) has water use of 1.2 m3 per 

kg. Global average water use is around 0.5 m3 per kg. A higher 

AWARE score was found for the USA. 

 

3.4. Plant-based drinks and cream 

3.4.1. Climate impact 

Results from earlier studies on plant-based drinks and cream are shown in Figure 29. As earlier studies 

used functional units based on volume (e.g., 1 liter) and based on mass (e.g., 1 kg), it was assumed that 

1 liter plant-based drink equals 1 kg (the functional unit used in the Vego-guide). In general, all drinks 

and plant-based cream alternatives have a climate impact below 1 kg CO2e per kg product. Swedish oat 

drink has the lowest impact, around 0.24-0.34 kg CO2e per kg (Florén et al., 2013), mainly explained 

by the shorter transport.  

For plant-based cream alternatives, climate impact for oat cream is just above 0.5 kg CO2e per kg 

(Nilsson & Florén, 2015). No data on coconut cream and soy-based cream could be found, so the value 

in Table 14 is based on calculations made in this report (see Appendix A3) and climate impact values 

from the ecoinvent database (Wernet et al., 2016). Following the methodology applied in this report, 

transport from North America was added for almond, coconut, and soy drink, since the studies originated 

from the USA or Canada. This means that the data in Figure 29 for many products show the impact of 

transporting mainly water long distances (the drinks typically contain 90-92% water). The climate 

impact will hence be considerably lower if the drinks are produced in Sweden or closer to Sweden, i.e., 

only the raw materials are transported long distances. This is probably the case for products on the 

Swedish market, particularly when the market for plant-based drinks and cream increases. For 

comparison, Figure 29 also shows the climate impact from Swedish dairy milk and cream (Moberg et 

al., 2019; Röös, 2012). 
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Figure 29. Climate impact of plant-based drinks and cream in kg CO2e per kg product in a store in Sweden. Note 

that the graph shows the climate impact from all identified earlier studies for this product group, and not only 

those identified as relevant for the Swedish market. Recommendations in Table 14 are based on relevance for the 

Swedish market. 

 

Table 14. Final assessment of the climate impact of plant-based drinks and cream on the Swedish market 

Product Final assessment 

(kg CO2e per kg 

product in a 

Swedish store) 

No. of 

relevant 

references 

Total no. 

of 

references 

Comment 

 General Sweden    

Almond 

drink 

0.8 

 

 4 4 Likely to have climate impact below 0.8 kg CO2e per 

liter. 

Coconut 

drink 

0.4  1 1 Only one reference was found, assessment uncertain. 

Soy drink 0.7  5 5 Climate impact is likely well below 0.7 kg CO2e per 

kg,  due to lower impact from shorter transport than 

assessed in the studies identified. The shorter transport 

is because the product is likely to be produced in 

Europe, for the European market. 

Oat drink 0.3 0.3 1 1 Only one study was found, showing that oat drink 

produced in Sweden has a climate impact below 0.34 

kg CO2e per kg. However, that study was assessed to 

be of high quality and very relevant for the Swedish 

market. 

Oat cream 0.5 0.5 1 1 Only one study was found, showing that oat cream 

produced in Sweden has a climate impact below 0.52 

kg CO2e per kg. However, that study was assessed to 

be of high quality and very relevant for the Swedish 

market. 

Coconut 

milk 

1.2  Own 

assess-

ment 

 Climate impact was estimated based on climate impact 

of coconuts and yield of coconut milk (see Appendix 

A3). Impacts from land use change were excluded in 

the final assessment. 
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3.4.2. Land use 

Combined assessment of land use (earlier studies plus own assessment) 

Land use and biodiversity impacts for plant-based drinks and cream (Figure 30) were estimated based 

on the raw material ingredients (Appendix A3) and data from earlier studies. Coconut milk (fat content 

17%) was found to have the highest land use. However, the amount of coconut needed to produce 1 kg 

of coconut milk was not known and was estimated based on mass balance (see Appendix A3 and Kool 

et al. (2012)). The results are therefore uncertain. Results from earlier studies (Nilsson & Florén, 2015) 

on oat cream show relatively high land use compared with that based on the ingredients (Appendix A3). 

Rapeseed was found to be most land-demanding for oat cream. Nilsson and Florén (2015) used 

economic allocation to allocate between rapeseed oil and rapeseed cake, while in this report mass 

allocation was used, which could explain the difference in the results. 

 

Figure 30. Land use for plant-based drinks and cream, and dairy milk and cream, in m2 per kg in a store in 

Sweden, and the global average. 

3.4.3. Biodiversity 

Coconut milk has the highest impact as regards biodiversity loss, due to high biodiversity in the areas 

in which coconuts are produced. All other products have a relatively low impact, again because they do 

not contain as much raw material (mainly water).  

Several products that are substitutes for hard cheese contain coconut oil. The largest exporter of coconuts 

to Sweden is the Philippines and the largest producer globally is Indonesia. Both are tropical countries 

with relatively high biodiversity impact factors from land use (Chaudhary et al., 2018), and therefore 

there is a risk that these products are associated with high impact on biodiversity. However, the impact 

from these products was not included in the assessment. 
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Figure 31. Biodiversity impact from land use occupation from plant-based drinks and cream in PDF (Potentially 

Disappeared Fraction) per kg in a store in Sweden. 

 

Table 15 Range of results for all identified export countries and Swedish produce for land use (m2/year per 

functional unit (FU)) and biodiversity impact (Potentially Disappeared Fraction (PDF) per FU) for plant-based 

drinks and cream 
Product Land use 

(m2/year per 

FU) 

Biodiversity 

impact (PDF per 

FU) 

Commenta 

Almond drink 0.1-0.9 1.6E-14-1.5E-13  

Soy drink   Land use for all products assessed was found to be below 0.5 m2 per kg 

product. 

Oat drink 0.6-1.0 5.4E-15-6.3E-15 Land use was assessed to be below 1 m2 per kg product, Swedish products 

likely to have land use below 0.7 m2 per kg product. 

Oat cream 1.0-2.9 9.0E-15-1.1E-14 Assessments in this report found land use of 1.7 m2 per kg product, while an 

earlier study found 2.9 m2 per kg product. 

Coconut milk 2.6-4.9 2.7E-12-1.1E-11 Method for assessing land use was particularly uncertain due to lack of 

information about the production chain. Land use varied between 3 and 5 m2 

per kg product. 
aComments included when applicable. 

 

3.4.4. Water use 

Earlier studies 

Two earlier studies on plant-based drinks and creams include blue water use (Henderson & Unnasch, 

2017; Wernet et al., 2016). Both indicate relatively low blue water use compared with other products 

assessed in this report. Almond production is water-demanding, with around 4.3 m3 of irrigation water 

used to produce 1 kg of almonds in USA. However, since almond drink does not contain much almonds 

(2.3% assumed in this study), blue water use for producing almond drink is substantially lower. 
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Figure 32. Blue water use for plant-based dairy, in m3 per kg in a store in Sweden. 

 

Water footprint, total water use, and AWARE 

Based on the ingredients and the process requirements (Appendix A3), total water use and water use 

using AWARE were calculated. Note that process water requirements were only found (and included) 

for soy and oat drinks and oat cream, and not for the other products. However, process water use is small 

in relation to the amount of water used by the crops. Results for total water use are shown in Figures 33 

and 34 and AWARE scores in Figure 35. 

Global average production of oat drink, oat cream, and coconut drink is based on crops which are  

irrigated to a larger extent than Swedish oat drink and oat cream or coconut drink from the Philippines, 

Sri Lanka, and Indonesia (Mekonnen et al., 2011). This, combined with a higher AWARE score for the 

global average than for Sweden and the Philippines (Boulay et al., 2018), contributed to global average 

production having much higher AWARE scores than Swedish and Philippian production (Figure 33). 

This is especially important in the case of coconut drink, since import statistics on coconut products do 

not specify coconut drink, and therefore coconut imports were used to find likely export country for 

coconut drink. This assumption is uncertain, and global average production therefore provides valuable 

additional information. For oat products, however, the raw material is likely produced in Sweden.   
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Figure 33. Total water use, divided into green, blue, and grey water use, for plant-based drinks and cream, and 

dairy milk and cream, in m3 per kg product in a store in Sweden, and world averages. 

 

Figure 34. Total water use (sum of green, blue, and grey water use) for plant-based dairy and cream, and dairy 

milk and cream, assessed in m3 per kg product in a store in Sweden, and world averages. 
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Figure 35. Water use for plant-based drinks and cream, and dairy milk and cream, assessed with the water scarcity 

method AWARE (Available Water Remaining, m3eq per kg product) in a store in Sweden, and the world average. 

 

Table 16. Range of results for all identified export countries and Swedish produce for total water use (m3 per 

functional unit (FU)) and AWARE (Available Water Remaining, m3eq per FU) for plant-based dairy 

Product Total water use 

(m3 per FU) 

AWARE (m3eq 

per FU) 

Commenta 

Almond drink 0.2-0.7 4-5  

Coconut drink   No data 

Soy drink 0.1-0.3 0.3-0.8 Total water use below 0.25 m3 per kg. Higher total water use and AWARE 

score were found for world average production. 

Oat drink 0.2-0.6 0-2.9 Total water use for Swedish oat drink below 0.2 m3 per kg, global average 

production below 0.6 m3 per kg. A higher AWARE score was found for 

global average production. 

Oat cream 0.6-1.2 0-5.5 Total water use for Swedish oat cream below 0.6 m3 per kg, global average 

production below 1.2 m3 per kg. A higher AWARE score was found for 

global average production. 

Coconut milk 4.1-5.4 0-5.5 Total water use around 5 m3 per kg. A higher AWARE score was found for 

global average production. 
aComments included when applicable. 

3.5. Fruit and berries 

3.5.1. Climate impact 

Results from earlier studies on the climate impact of fruits and berries are presented in Figure 35. In 

general, there is good access to data for this food category compared with other categories. Fruits and 

berries that are transported long distances generally have a higher impact than European and Swedish 

products, due to emissions caused by the transport. All European and Swedish products assessed have a 



 

58 
 

climate impact below 1 kg CO2e per kg product in a Swedish store, with the exception of melons from 

unheated greenhouses (Cellura et al., 2012) and watermelon and raspberries/blueberries from Europe 

(country unspecified) (Audsley et al., 2010). 

In general, emissions from transport are more important for fruits and berries, which generally have a 

low climate impact per kg product from primary production. This is one of the reasons why some studies 

on products from “rest of the world” report climate impact higher than 1 kg CO2e per kg in a Swedish 

store. World average production of dates and organic and non-organic (fresh) dates (Wernet et al., 2016) 

show the highest climate impact, above 4 kg CO2e per kg product (including transport). This is primarily 

due to high emissions of nitrous oxide (N2O) from fertilizer use.  

Some products in this product group are transported to Sweden by air, which causes exceptionally high 

emissions from transport. Airfreighted products include some berries produced outside Europe and some 

exotic fruits with short durability, such as starfruit. Common exotic fruits such as bananas, pineapple, 

and the most common mango type sold in Swedish stores have longer duration times and are generally 

transported by boat, with a lower climate impact (per kg product transported) (SverigesKonsumenter, 

2018). The data in Figure 35 only include one study that considered air transport, for pineapple (Brenton 

et al., 2010), and it was considered less relevant for the Swedish market. For more information on how 

climate impact from air transport was estimated, see section 2.3. 

Strawberries for the Swedish market are primarily sourced from within Europe. According to import 

statistics, around 40% of strawberry imports to Sweden come from Belgium (SS, 2018). Belgium 

strawberry production can be in heated or unheated greenhouses (Proefcentrum, 2019). No earlier study 

was found on Belgian strawberries, and the climate impact and energy use is therefore unknown. Further, 

no data were found on wild blueberries or lingonberries. For raspberries, one study (Foster et al., 2014) 

showed much higher impact than the other studies, but was only presented in a conference abstract and 

provided little information about reasons for the relatively high impact compared with other studies on 

raspberries and other berries.  

 

Figure 36. Climate impact of fruits and berries in kg CO2e per kg product in a store in Sweden. Note that the 

graph shows the climate impact from all identified earlier studies for this product group, and not only those 

identified as relevant for the Swedish market. Final assessments in Table 17 are based on relevance for the Swedish 

market. 
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Table 17. Final assessment of the climate impact of fruits and berries on the Swedish market 
Product Final assessment 

(kg CO2e per kg 

product in a 

Swedish store) 

No. of 

relevant 

references 

Total no. 

of 

references 

Comment 

 General Sweden    

Apples 0.5 0.2 14 (2 SW) 24 European apple production considered relevant for the 

final assessment. Only one study on European apple 

production shows an impact slightly above 1 kg CO2e 

per kg product, for an old low-yielding orchard not 

representative of all orchards. Apples from outside 

Europe are likely to have a climate impact below 1 kg 

CO2e per kg product. 

Apricots 0.7  3 3 European apricot production was considered for the 

general final assessment. There was no difference 

between European production and production outside 

Europe. 

Bananas 1.5  13 13 All studies were considered relevant for the general 

recommendation. Many studies show an impact below 

1 kg CO2e per kg. 

Cherries 0.8  4 4 All studies considered relevant in the general 

recommendation. European cherries likely to have an 

impact below 0.5 kg CO2e per kg. Possibly sometimes 

transported by air, no earlier study was found on air 

transport of cherries. 

Dates 4  2 2 All studies considered relevant for the 

recommendation.  

Figs 0.6  1 1 Only one study was found, the assessment is 

uncertain. 

Grapefruits 

and pomelo 

0.8  1 1 Only one study was  found, the assessment is 

uncertain. 

Grapes 1.3  11 11 All studies considered relevant for the final 

assessment. European grapes are likely to have a 

climate impact below 0.7 kg CO2e per kg grapes (8 

references). 

Guavas and 

mango 

1.9  4 4 All studies considered relevant for the final 

assessment. Possibly sometimes transported by air, no 

earlier study was found on air transport of guavas and 

mango. 

Kiwifruit 1  9 9 All studies considered relevant for the final 

assessment. European production tends to have 

slightly lower impact, but no clear trend. 

Lemons and 

limes 

0.8  5 5 All studies considered relevant for the final 

assessment. No clear difference between European 

products and “rest of the world”. 

Melons 1.9  9 9 All studies considered relevant for the final 

assessment. No clear trend between European 

products and “rest of the world”. Melons are 

sometimes produced in greenhouses, which can 

explain the large variation in results. 

Oranges 0.7  9 9 

 

All studies considered relevant for the final 

assessment. No clear difference between European 

products and “rest of the world”  was found. 

Papayas 1  1 1 Only one study was found, the assessment is 

uncertain. High risk of air transport, no study that 

considered air transport for papaya was found. 

Peaches 0.5  4 8 

 

European production was considered for the final 

assessment. Production outside Europe is likely to 

have an impact below 1.2 kg CO2e per kg peaches. 

Pears 0.8 0.2 7 (1 SW) 9 Only European production was considered for the 

final assessment. “Rest of the world” production is 

likely to have a climate impact below 1 kg CO2e per 

kg pears. Data on Swedish production are only based 

on one study, the assessment is uncertain. 
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Pineapples 0.7  7 9 All studies considered relevant. Most studies (7/9) 

show a climate impact below 0.7 kg CO2e per kg, 

while one study shows an impact close to 2 kg CO2e 

per kg. One study considers pineapples transported by 

air, which was considered less relevant for the 

Swedish market. 

Plums and 

sloes 

0.6  1 1 Only one study was found, the assessment is 

uncertain. 

Tangerines, 

mandarins 

etc. 

0.9  9 9 All considered relevant for the general 

recommendation. European products likely below 0.6 

kg CO2e per kg. 

Watermelon 1.5  1 2 European studies considered most relevant for the 

Swedish market. Only one study on European produce 

was found. Both identified studies showed a climate 

impact below 1.5 kg CO2e per kg. 

Cranberries 1.5  2 2 All studies considered relevant for the final 

assessment. 

Blueberries 0.9  3 3 All studies considered relevant for the general 

recommendation. Two studies were identified on 

European production showing an impact of below 0.7 

kg CO2e per kg. No study was found on Swedish 

cultivated or wild blueberries.  

Raspberries 1.1 0.9 4 (1 SW) 5 European studies was considered most relevant for the 

Swedish market. Data on Swedish production based 

on one study, so the final assessment is uncertain. 

Strawberries 1.5 0.4 13 (2 SW) 19 European studies were considered most relevant for 

the Swedish market. Two studies showed higher 

impact than 1.5 kg CO2e per kg strawberries, but 

considering the amount of studies indicating an impact 

well below 1 kg CO2e per kg, the final assessment was 

set to 1.5 kg CO2e per kg. 

Strawberries from heated greenhouses in Europe are 

likely to have a higher impact, around 3 kg CO2e per 

kg. Two studies were found on Swedish strawberries. 

 

 

3.5.2. Land use 

Land use for fruits is commonly below 2 m2 per kg product, except for cherries and dates, where all the 

data points show higher land use than 2 m2. Berries (cranberries, cultivated blueberries, raspberries, and 

strawberries) tend to have more varied land use, depending on country of origin. This could be due to 

e.g., strawberries being produced in greenhouses or open fields, with large variations in yield. In general, 

land use for world average production seems to be well in line with the identified export countries and 

Swedish production, with the exception of plums and sloes, for which global average land use is higher. 

The Netherlands was identified as one of the countries of origin for cherries. Land use for cherry 

production in the Netherlands was assessed to be 25-35 m2 (higher values for organic production), which 

is very much higher than for the other identified export countries (Chile, Turkey, Germany). However, 

the Netherlands is most likely not the origin of most cherries sold in Sweden, since it is not a significant 

producer of cherries (it produces 1.3% of the level in e.g., Germany, from which Sweden also imports 

cherries). The cherries imported from the Netherlands most likely originate from one of the major 

production countries. 
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Figure 33. Land use for fruit and berries in m2 per kg in a store in Sweden (cherries from the Netherlands 

excluded), and the global average. 

3.5.3. Biodiversity 

Biodiversity impact from land use is generally higher for fruits imported from tropical regions, including 

bananas from Costa Rica, Dominican Republic, and Ecuador, cherries from Chile, guavas and mangoes 

from Mexico, and limes from Mexico. 

 

Figure 348. Biodiversity impact from land use occupation for fruit and berries in PDF (Potentially Disappeared 

Fraction) per kg product in a store in Sweden. 
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Table 18. Range of results for all identified export countries and Swedish produce for land use (m2/year per 

functional unit (FU)) and biodiversity impact (Potentially Disappeared Fraction) (PDF) per FU) for fruits and 

berries 

Product Land use 

(m2/year per 

FU) 

Biodiversity 

impact (PDF per 

FU) 

Commenta 

Fruit    

Apples 0.3-1.0 5.2E-15-4.7E-14  

Apricots 1.0-3.6 2.1E-14-3.0E-13 Turkey, which was added as an extra country (see section 2.2), has the 

highest land use of the countries assessed. The highest biodiversity impact 

was found for Armenia and Turkey. Spain was identified as the largest 

exporter globally.  

Bananas 0.3-1.0 5.0E-13-8.4E-13 Land use varies between 0.3-0.7 (conventional) and 0.4-1.0 (organic) m2 per 

kg. 

Cherries 1.3-4.4 3.6E-14-5.7E-13 Products from the Netherlands excluded from the analysis. The highest 

biodiversity impact was found for Chile (largest exporter globally) and Spain 

(extra country, see section 2.2) 

Dates 2.2-9.1 2.7E-14-1.8E-13  

Grapefruits 

and pomelo 

0.2-0.8 1.0E-14-1.1E-13  

Grapes 1.1-2.3 1.2E-13-3.2E-13 The highest biodiversity impact was found for Spain. 

Guavas and 

mango 

1.6-2.7 2.9E-13-8.6E-13 The highest biodiversity impact was found for Mexican production, Mexico 

was identified as the main exporter globally. 

Kiwifruit 0.4-1.2 6.8E-14-1.7E-13  

Lemons and 

lime 

0.5-1.5 3.5E-14-5.9E-13 The highest biodiversity impact was found for Mexican production, Mexico 

was identified as the main exporter globally. 

Melons 0.3-1.0 5.1E-14-3.9E-13 The highest biodiversity impact was found for Guatemala production, 

Guatemala was identified as the main exporter globally. 

Oranges 0.4-1.1 3.9E-15-9.7E-14  

Papayas 0.3-0.7 8.1E-14-1.5E-13  

Peach 0.6-1.6 2.1E-14-1.1E-13  

Pears 0.3-1.2 5.4E-15-4.4E-14  

Pineapples 0.2-0.8 1.4E-13-5.7E-13  

Plums and 

sloes 

0.6-4.5 9.6E-15-3.6E-13 Global average had the highest land use. South Africa, added as an extra 

country (see section 2.2), was found to have the highest land use. 

Tangerines and 

mandarins 

0.6-2.0 4.0E-14-1.3E-13  

Watermelon 0.2-0.4 4.0E-14-1.3E-13  

Berries    

Cranberries 0.5-3.3 3.3E-14-4.0E-13 The highest biodiversity impact was found for cranberries from Chile, Chile 

was identified as the main exporter globally. 

Blueberries 

(cultivated) 

1.0-6.2 3.8E-14-2.6E-13 Land use for Swedish production was the highest. 

Raspberries 

(cultivated) 

0.4-3.9 9.1E-15-1.9E-13 The highest biodiversity impact was found for Spanish production of 

raspberries. 

Strawberries 0.2-5.4 6.2E-15-5.7E-14 Strawberries from Poland have the highest land use. 

a Comments included when applicable. 
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3.5.4. Water use 

Earlier studies 

Fruit and berry plantations are often irrigated, which can be seen by comparing Figure 27 (water use for 

carbohydrate sources) and Figure 39. The fact that these crops are often irrigated is most likely the 

reason why blue water use is often included in earlier studies. However, information about use of water 

in berry plantations is largely lacking. 

 

Figure 39. Blue water use for fruits and berries from earlier studies, in m3 per kg product. 

 

Water footprint, total water use, and AWARE 

Most fruit and berries from Sweden and the identified export countries have total water use below 2 m3 

per kg. Dates stand out as being particularly water-demanding and irrigated to a large extent (with the 

exception of production from Iraq) (Mekonnen et al., 2011). Cherries from the Netherlands have 

particularly high total water use (see Figure 40), most likely due to the low yield. However, as described 

above, the cherries imported from the Netherlands in the import statistics are likely not grown in the 

Netherlands. 

Looking at the AWARE scores (Figure 42), dates stand out again, due to high irrigation as described 

above, but also relatively high AWARE characterization factors for water scarcity for Iran and Saudi 

Arabia, which were identified as export countries together with Iraq. Cherries from Chile also have a 

relatively high score. 
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Figure 40. Total water use, divided into green, blue and grey water use, for fruit and berries in m3 per kg product 

in a store in Sweden for the identified export countries, and world average water use for comparison. 
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Figure 41. Total water use for fruit and berries in m3 per kg product. 

 

Figure 42. Water use for fruits and berries assessed with the water scarcity method AWARE (Available Water 

Remaining, m3eq per kg product), and the world average. 
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Table 19. Range of results for all identified export countries and Swedish produce for total water use (m3 per 

functional unit (FU)) and AWARE (Available Water Remaining, m3eq per FU) for fruit and berries 

Product Total water use 

(m3 per FU) 

AWARE (m3eq 

per FU) 

Commenta 

Apples 0.2-1.2 0-8.7 Total water use for European production (including Swedish) is likely to be 

0.5 m3 per kg. World average water use is higher, around 1.2 m3 per kg. 

AWARE scores were highest for global average production. 

Apricots 0.8-3.9 0.8-140 Total water use varies. It is highest for two of the extra countries (Armenia 

and Uzbekistan) (see section 2.2), which also showed the highest AWARE 

scores. 

Bananas 0.5-1.1 0.3-24 Highest AWARE score found for the global average, the identified export 

countries had lower scores. 

Cherries 1.1-3.6 0.1-103 The Netherlands was excluded from the analysis. Total water use for 

Swedish production is 1.9 m3 per kg and for the identified export counties 

varies between 1.12-3.6 m3 per kg. Higher AWARE scores were found for 

Spain and Chile. 

Dates 1.0-7.2 0-910 Total water use varies greatly. Iraq, with the largest trade surplus globally, 

has water use of 1 m3 per kg. In other identified export countries it varies 

between 5.5-7.2 m3 per kg. The world average is lower, 3.3 m3 per kg, 

indicating that total water use can be lower than for the identified export 

countries. AWARE scores were found to be high for many of the countries. 

AWARE scores close to zero are due to low irrigation rates. 

Grapefruits 

and pomelo 

0.3-0.7 5.6-16 Total water use for global average and identified export countries was found 

to be similar, 0.3-0.7 m3 per kg. 

Grapes 0.5-1-3 0-10 Total water use for Chile, Greece, and Italy is relatively similar, below 0.6 

m3 per kg. Spanish production has total water use of 1.3 m3 per kg. AWARE 

scores are highest for Greece. 

Guavas and 

mango 

2.3-4.7 7.5-24  

Kiwi fruit 0.5-0.7 1.6-11 Similar water use for the main export countries, Italy and New Zealand (0.5 

m3 per kg). Global average is similar (0.7 m3 per kg). Highest AWARE score 

found for world average production. 

Lemons and 

limes 

0.5-1.2 0.1-15 Total water use varies between 0.4-1.2 m3 per kg. Highest AWARE scores 

found for Mexico and Spain. 

Melons 0.2-0.4 0-6.0 For all identified export countries, total water use was assessed to be below 

0.4 m3 per kg. 

Oranges 0.2-1.2 7.2-82 Spain was identified as the main export country, with total water use of 0.5 

m3 per kg. Highest AWARE score found for Egypt. 

Papayas 0.5-1.7 0.7-3.4 Highest total water use is for produce from Thailand (1.7 m3 per kg), 

Mexican export and global average is lower (0.5-0.7 m3 per kg). 

Peaches 0.5-2.2 0.1-21 European production was assessed to have total water use of 0.5-2.2 m3 per 

kg. The higher water use is for Germany. Highest AWARE score found for 

Spain. 

Pears 0.2-1.3 0-14 Total water use for the two identified European export countries was below 

0.3 m3 per kg, for Swedish production 0.6 m3 per kg. Global average water 

use is higher, indicating a risk of higher water use than the identified export 

countries. Highest AWARE score found for Argentina. 

Pineapples 0.1-0.4 0-1.2 Total water use for all export countries assessed is below 0.4 m3 per kg. 

Plums and 

sloes 

0.5-3.1 0-48 Total water use varies between 0.5-3.1 m3 per kg. Swedish production has 

water use around 1.4 m3 per kg. AWARE scores were highest for South 

Africa, Spain, and Chile. 

Tangerines and 

mandarins 

0.6-1.8 1.8-64 The two highest AWARE scores were found for Pakistan (extra country; see 

section 2.2) and Morocco (main identified export country) 

Watermelon 0.2-0.4 1.6-5.0  

Berries    

Cranberries 0-0.4 0-7.1 The USA was identified as the main export country, with total water use 

estimated at 0.3 m3 per kg, similar to global average. 

Blueberries 

(cultivated) 

0-2.5 0-22 Total water use is highest for Swedish blueberries (2.5 m3 per kg). Global 

average has about half as high water use (1.2 m3 per kg) and Polish around 

0.3 m3 per kg. In general, water use for imported blueberries is likely to be 

below 1.2 m3 per kg. Highest AWARE score found for global average, all 
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other identified export countries and Sweden have AWARE scores below 

0.01 m3eq per kg. 

Raspberries 

(cultivated) 

0.3-1.1 0-23 Swedish and Spanish production have the highest water use, around 1.1 m3 

per kg. Global average is lower, 0.6 m3 per kg. Highest AWARE score found 

for Spain. 

Strawberries 0.1-1.1 0.3-11 Total water use is 0.1-1.1 m3 per kg (only European export countries were 

identified), global average water use is 0.5 m3 per kg. Swedish strawberries 

were assessed to have total water use of 0.7 m3 per kg. Highest AWARE 

score found for Spain. 
aComments included when applicable. 

 

3.6. Vegetables and mushrooms 

3.6.1. Climate impact 

A number of vegetables for the Swedish market are produced in heated greenhouses (LCA results from 

studies on heated greenhouses are marked with a red border in Figure 43). Fossil fuels are often used 

for heating, which explains some of the higher values. Alternatively, greenhouses are heated with waste 

heat or bioenergy, which leads to considerably lower climate impact. Today, Swedish greenhouse 

production uses a large share of renewable energy sources. The latest statistics (for 2017) for 

greenhouses producing tomatoes, cucumbers, and ornamental plants show that 59% of energy use is 

bioenergy and 23% is from other energy sources, such as district heating and electricity. In tomato 

production, the share of bioenergy was around 70% in 2017 (SBA, 2018a). In Sweden, transition to 

renewable energy has happened during recent decades, so older studies on tomatoes (González et al., 

2011; Fuentes et al., 2006; Carlsson-Kanyama, 1998) show considerably higher impacts than newer 

studies (Moberg et al., 2019; Röös & Karlsson, 2013). Newer data are therefore more relevant for 

Swedish greenhouse production. Based on more recent studies on the climate impact of Swedish tomato 

production (Moberg et al., 2019; Röös & Karlsson, 2013) and the statistics on renewable energy use, 

the climate impact of Swedish tomatoes sold in a Swedish store is likely to be below 1 kg CO2e per kg.  

For tomatoes from the Netherlands (61% of imports), all existing studies (Röös & Karlsson, 2013; 

Torrellas et al., 2012b; González et al., 2011; Blonk et al., 2010; Wernet et al., 2016; Hofer, 2009) 

except one study that looked at unheated greenhouses (Hofer, 2009) show a climate impact of 1 kg CO2e 

per kg or above. Unheated greenhouse production was considered less relevant for Dutch exports, as 

further explained below. Similarly to Swedish greenhouse production, the Netherlands is starting to use 

more renewable energy in greenhouse production, e.g., in 2015 the share of renewable energy in the 

sector was above 5%, increasing from around 3% in 2013 (Ruijs, 2017), but it is still low. Therefore, 

we recommend that Dutch tomatoes in a Swedish store are assumed to have a climate impact above 1 

kg CO2e per kg. For Spanish tomatoes (22% of imports), all existing studies (Sanyé-Mengual et al., 

2014; Röös & Karlsson, 2013; Torrellas et al., 2012a; Torrellas et al., 2012b; Wernet et al., 2016; 

Lindenthal et al., 2010; Hofer, 2009) except one (Blonk et al., 2010) show a climate impact below 1 kg 

CO2e per kg in a Swedish store. Based on this, our assessment is that Spanish tomatoes in a Swedish 

store can be considered to have a climate impact of below 1 kg CO2e per kg. 

Similarly to tomatoes, cucumbers for the Swedish market are often produced in greenhouses. The main 

export countries to Sweden were identified as the Netherlands (32%) and Spain (56%) (SS, 2018). Only 

a few studies on cucumber production in Sweden, the Netherlands, and Spain were found (Moberg et 

al., 2019; González et al., 2011; Hofer, 2009). Although bioenergy use in cucumber production in 

Sweden is  similar to that in tomato production (approximately 70%), in cucumber production the 

remaining energy used for heating, close to 30%, comes from fossil fuels (SBA, 2018a). The study 
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considered most relevant for Swedish production was Moberg et al. (2019), due to its use of the most 

recent data for heating.  

Some high data-points for lettuce, pumpkin, and spinach are from a study lacking details of the inventory 

and the results (Audsley et al., 2010), and therefore it is difficult to determine why the figures are much 

higher than in other studies on the same crops. It is likely due to high fossil fuel use in greenhouses, but 

this could not be confirmed. 

Several studies on mushrooms were found (Robinson et al., 2019; Leiva et al., 2015; Ueawiwatsakul et 

al., 2014; Tongpool & Pongpat, 2013; Gunady et al., 2012; Audsley et al., 2010; Blonk et al., 2010; 

Maraseni et al., 2010). These studies focus on different types of mushrooms with large variation in the 

climate impact. One of the most common mushroom types on the Swedish market is Agaricus bisporus 

(Sw: trädgårdsschampinjon), which is the same type  sold as portobello mushrooms (used as a substitute 

for burgers, among other things). No study was found on production of mushrooms in the main exporting 

countries to Sweden, which are Poland and Lithuania (SS, 2018). Three studies from other countries on 

Agaricus bisporus were found (Robinson et al., 2019; Leiva et al., 2015; Gunady et al., 2012), with a 

climate impact at farm gate varying from 2.1-4.4 kg CO2e per kg product. Climate control and the energy 

use for this are important contributors to climate change for this type of production (Robinson et al., 

2019; Leiva et al., 2015), but also transport of substrate (manure and peat) (Gunady et al., 2012). There 

is some commercial production of mushrooms in Sweden. However, no earlier study was found on this 

production and no statistics on yearly production or yield were found. 

 

Figure 43. Climate impact of vegetables and mushrooms in kg CO2e per kg product in a store in Sweden. The 

squares represent earlier studies on products transported by air. Note that the graph shows the climate impact 

from all identified earlier studies for this product group, and not only those identified as relevant for the Swedish 

market. The final assessment in Table 20 is based on relevance for the Swedish market. 

 

Table 20. Summary of recommendations for climate impact of vegetables and mushrooms on the Swedish market 
Product Final assessment 

(kg CO2e per kg 

product in a 

Swedish store) 

No. of 

relevant 

references 

Total no. 

of 

references 

Comment 

 General Sweden    
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Artichoke 0.6  1 1 European production considered most relevant for 

the Swedish market. Only one study was found, so 

the assessment is uncertain. 

Asparagus 2.1  5 8 Final assessment is for European production. Three 

studies show an impact below 1 kg CO2e per kg. 

Import from the rest of the world carries a high risk 

of air transport. Earlier studies show that the impact 

can be as high as approx. 14 kg CO2e per kg product 

(3 references). 

Avocado 1.6  6 6 All identified studies considered relevant. 

Broccoli 1.3 0.6 5 (2 SW) 8 

 

Broccoli on the Swedish market is likely to originate 

from southern Europe. Most studies show an impact 

below or close to 1 kg CO2e per kg. However, two 

studies show an impact above 1 kg CO2e per kg for 

Spanish production, which is highly relevant for the 

Swedish market. Climate impact for broccoli is 

therefore likely to be below 1.3 kg CO2e per kg for 

European production. Two studies were found on 

Swedish production. 

Cabbage 0.6 0.3 4 (3 SW) 7 European produce considered most relevant for the 

Swedish market.  

Capsicums/ 

peppers 

1.5  2 7 Sweden imports come mainly from the Netherlands 

and Spain, but no data were found for these 

countries. Studies on European produce (Italian and 

Swiss) were used for the final assessment.  

Cauliflower 

 

0.7 0.4 3 (1 SW) 6 European production considered relevant for the 

final assessment. One study on European production 

shows an impact above 2 kg CO2e per kg. However, 

not enough detail is presented in that study to explain 

the higher climate impact compared with other 

studies, so it was not considered. Only one study was 

found on Swedish production, this assessment is 

uncertain. 

Celery 0.6  0 3 European production considered most relevant for 

the Swedish market. No study on European 

production of celery was found. Considering the 

LCA data found and the shorter transportation 

distance, we estimated climate impact of celery for 

the Swedish market based on production impact 

from “rest of the world” (Australia, the USA and a 

global average production) and general impact for 

transport within Europe.  

Cucumber 2.3 0.7 6 (2SW) 10 Often produced in heated greenhouses for the 

Swedish market. Data on European production vary 

greatly, mainly due to differences between heating 

source for the greenhouses. Overall recommendation 

based on earlier studies: European produce likely to 

have a climate impact below 2 kg CO2e per kg, but 

the impact can be lower, around 0.5 kg CO2e per kg, 

depending mainly on greenhouse production or not, 

and heating source. Products from outside Europe 

are considered less relevant for the Swedish market. 

Two relevant studies were found for the Swedish 

market. This assessment is not valid for open field-

produced cucumbers grown in Sweden, such as 

“västeråsgurka”. 

Eggplant 1.7  2 6 European production considered relevant. The 

higher impact is due to heated greenhouse. 

Fennel 0.8  1 2 European production considered most relevant. 

Garlic 0.8  2 3 European production considered most relevant. Only 

one study was found on “rest of the world” 

production, showing an impact of around 0.9 kg 

CO2e per kg product. 

Ginger 1.0  1 1 Only one study identified, the assessment is 

uncertain. 
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Lettuce 0.7 0.4 7 (3 SW) 14 European production considered most relevant for 

the final assessment. Assessment based on open field 

production for iceberg lettuce, for both European and 

Swedish production. Fresh lettuce sold in pots can be 

cultivated in heated greenhouses and therefore 

associated with substantially higher climate impact. 

Green beans 0.8  2 5 European production considered most relevant. This 

assessment included one study on frozen green 

beans. One study on European green beans was not 

considered, since it showed much higher climate 

impact than the other studies and did not explain the 

processes in detail. Further, canned green beans were 

considered less relevant for the Swedish market. For 

green beans imported from outside Europe, there is 

a risk of air transport. One earlier study was found 

on green beans transported from Kenya and Uganda 

with a total climate impact of 9.7-10.1 kg CO2e per 

kg product. 

Olives 1.0  4 5 European production considered most relevant. One 

study on European olives was excluded, due to much 

higher climate impact and insufficient data in the 

report to evaluate the figure. 

Onions 1.0 0.3 8 (4 SW) 8 All studies considered relevant. European 

production likely below 0.8 kg CO2e per kg onions 

(6 references). 

Pumpkins 

and squash 

0.13  1 3 European studies considered most relevant for the 

Swedish market. One study on European production 

was excluded due to much higher climate impact and 

insufficient amount of data in the report to evaluate 

the figure. The assessment is based on one study, and 

is therefore uncertain. 

Spinach 0.5  1 5 European studies considered most relevant for the 

Swedish market. One study on European production 

was excluded. One study on European spinach was 

excluded due to much higher climate impact and 

insufficient data to evaluate the figure. The 

assessment is based on one study and is therefore 

uncertain. However, this study has a result similar to 

the studies on “rest of the world” production. 

Tomatoes 2.3 0.9 17 (2 SW) 28 Fresh tomatoes on the Swedish market are likely to 

originate from within Europe. Climate impact varies 

greatly, the main reason being the heating source for 

the greenhouses. The most recent study on Swedish 

tomatoes shows a climate impact of around 0.9 kg 

CO2e per kg. Data for European production varies 

greatly. Clearly many of the data-points are below 1 

kg CO2e per kg. Some show impacts of around 6 kg 

CO2e per kg, but often older studies, and the energy 

mix for heating has changed greatly in Sweden over 

time. In summary, earlier studies show that tomatoes 

produced in Europe are likely to have a climate 

impact below 2.3 kg CO2e per kg or in many cases 

much lower. However, the climate impact can be 

higher, depending on heating source for heating the 

greenhouses. Sweden mostly imports tomatoes from 

Spain and the Netherlands. Spanish tomatoes are 

likely to have climate impact below 1 kg CO2e per 

kg, Dutch tomatoes are likely to have climate impact 

below 2.3 kg CO2e per kg in a store in Sweden. 

Mushrooms 4.7  3 8 Sweden imports mushrooms mainly from Europe. 

No study on production of Agaricus bisporus (Sw: 

trädgårdsschampinjon) from the identified export 

countries was found. Studies on Agaricus bisporus 

show a climate impact of 2.5-4.7 kg CO2e per kg 

product. Climate impact is therefore considered to be 

below 4.7 kg CO2e per kg product. Earlier studies 

indicate that climate control and the energy source 
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for this can be important (similar to greenhouse 

production) (3 references) 

 

 

3.6.2. Land use 

For most vegetables, land use was assessed to be below 2 m2 per kg product. Artichokes, asparagus, and 

avocados can be associated with higher land use than 2 m2 (Figure 44). Olives from all countries of 

origin assessed had higher land use, 4-9 m2 (global average), due to low yields.  

The biodiversity assessment (Figure 45) showed that asparagus from Mexico, avocados from Mexico 

and Peru, and peppers from Mexico and olives from Greece and Spain risk having a higher impact on 

biodiversity than the other products in the vegetables and mushrooms category. 

 

 

Figure 44. Land use for vegetables and mushrooms in m2 per kg in a store in Sweden, and the global average. 

 

3.6.3. Biodiversity 

In this product group, biodiversity impact was highest for avocados, olives, and asparagus from Mexico 

and Peru, and peppers from Mexico, due to high land use for these products in combination with high 

biodiversity in the areas where they are produced. 

 



 

72 
 

 

Figure 35. Biodiversity impact from land use occupation from vegetables in PDF (Potentially Disappeared 

Fraction) per kg product in a store in Sweden. 

 

Table 21. Range of results for all identified export countries and Swedish produce for land use (m2/year per 

functional unit (FU)) and biodiversity impact (Potentially Disappeared Fraction (PDF) per FU) for vegetables 

and mushrooms 
Product Land use 

(m2/year per 

FU) 

Biodiversity 

impact (PDF per 

FU) 

Commenta 

Artichoke 0.9-2.8 8.2E-14-1.8E-13 Highest land use for French production. 

Asparagus 0.6-3.8 3.3E-14-5.5E-13 Highest land use for production in Hungary (extra country, see section 

2.2). highest biodiversity impact for Mexico (identified as the largest 

exporter globally) and Peru (extra country). 

Avocados 1.4-4.2 4.0E-13-7.9E-13 All identified export countries have relatively high biodiversity impact, 

compared with other vegetables. 

Broccoli and 

cauliflower 

0.4-1.2 7.4E-15-1.1E-13 Swedish production has the highest land use. 

Cabbage 0.2-0.5 2.2E-15-6.1E-14  

Capsicums/peppers 0.04-1.2 7.4E-16-4.6E-13 Highest land use and biodiversity impact found for Mexican 

production, Mexico was identified as the main exporter globally. 

Celery   No data available in FAOSTAT 

Cucumber 0.02-0.5 2.9E-16-1.8E-13 Highest land use and biodiversity impact  found for Mexican 

production. Mexico was identified as the main exporter globally, but 

not considered to be an exporter to Sweden of fresh cucumber due to 

the distance. 

Eggplant 0.02-0.5 4.0E-16-3.3E-14  

Garlic 0.4-1.6 2.7E-14-2.2E-13  

Ginger 0.8-2.2 6.3E-14-8.2E-14  

Green beans 0.5-1.2 1.8E-14-5.1E-14 Land use varies between 0.5- 1.1 (conventional) and 0.6-1.2 (organic) 

m2 per kg. 

Lettuce 0.4-0.7 4.5E-15-6.7E-14 Swedish production has land use of 0.6 (conventional) and 0.7 (organic) 

m2 per kg.  
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Olives 4.0-9.3 5.3E-13-7.5E-13 Higher land use value for both conventional and organic production is 

global average. 

Onions 0.1-1.2 2.0E-15-1.6E-13 Swedish production has land use of 0.2 (conventional) and 0.3 (organic) 

m2 per kg. 

Pumpkins and 

squash 

0.2-1.0 3.2E-15-2.6E-13 Highest biodiversity impact for Mexican production, Mexico was 

identified as the main exporter globally. 

Spinach 0.4-1.7 1.0E-14-1.2E-13 Swedish production has land use of 1.3 (conventional) and 1.7 (organic) 

m2 per kg. 

Tomatoes 0.02-0.5 3.2E-16-1.9E-13 Swedish production has land use of 0.03 (conventional) and 0.04 

(organic) m2 per kg. Highest biodiversity impact found for Mexican 

production, Mexico was identified as the main exporter globally. 

Highest biodiversity impact for European production found for Spanish 

production. 

Mushrooms 0.04-0.06 5.3E-16-8.7E-16  

a Comments included when applicable. 

 

3.6.4. Water use 

Earlier studies 

Blue water use is included in several earlier studies on vegetables (Appendix A1). The highest water 

use is reported for asparagus and avocados. 

 

 

Figure 46. Blue water use in earlier studies for vegetables and mushrooms. 

 

Own assessment 

Olives, ginger (world average production), asparagus, avocados, and artichokes are the crops within the 

category ‘Vegetables and mushrooms’ that have the highest total water use (Figures 47 and 48). 

Generally, the use of irrigation (blue water) is also high for these crops (Mekonnen et al., 2011). World 

average production and the selected export countries have similar water use for all crops except ginger, 
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where world average production has much higher water use than Chinese production. Assessed with the 

water scarcity method AWARE, avocados from Chile and olives from Spain were found to have a higher 

score for this product group, with scores above 50 m3eq per kg product. 

 

Figure 47. Total water use, divided into green, blue and grey water use, for vegetables in m3 per kg product in a 

store in Sweden for the identified export countries, and world average water use for comparison. 
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Figure 48. Total water use for vegetables in m3 per kg product. 

 

Figure 49. Water use for vegetables and mushrooms assessed with the water scarcity method AWARE (Available 

Water Remaining, m3eq per kg product) in a store in Sweden, and world average. 

 

Table 22. Range of results for all identified export countries and Swedish produce for total water use  (m3 per 

functional unit (FU)) and AWARE (Available Water Remaining, m3eq per FU) for vegetables and mushrooms 
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Product Total water 

use (m3 per 

FU) 

AWARE (m3eq 

per FU) 

Commentsa 

Artichokes 0.7-1.7 2.9-16 Highest AWARE score found for Spanish production. 

Asparagus 1.0-5.2 0.5-39 Highest AWARE score found for Mexico, the country identified as the 

main exporter globally, but not to Sweden (not appearing in import 

statistics). 

Avocados 1.7-2.9 14-100 Mexico, Peru, and world average production have similar water use, 

below 1.8 m3. Avocados from Chile were assessed to have water use of 

around 2.9 m3 per kg product. Chile also has the highest AWARE score 

for avocado production. 

Broccoli and 

cauliflower 

0.2-0.4 0-10 Water use for identified export countries, Swedish production and world 

average production is similar, total water use for these crops is likely to 

be below 0.4 m3. Highest AWARE score found for Spanish production. 

Cabbage 0.1-0.4 0.02-8.3 Highest AWARE score found for Spain. 

Capsicums/peppers 0.02-0.5 0-4.4  

Celery 0.1-0.3 0.1-8.6 Highest AWARE score found for Spain. 

Cucumber 0.1-0.5 0-3.0 Highest AWARE score found for Spain. 

Eggplant 0.01-0.5 0-10 Highest AWARE score found for Spain. 

Garlic 0.1-1.1 0-27 Spanish and world average production had total water use of 1 m3. 

Highest AWARE scores found for Argentina (extra country) and Spain 

(one of the identified export countries). 

Ginger 0.6-2.4 0.8-2.6 China was identified as the main exporter, with water use of 0.6 m3. 

World average production has much higher water use, 2.4 m3, indicating 

a risk of higher water use than the main export country.  

Lettuce 0.2-0.3 0-6.9 Highest AWARE score found for Spain. 

Olives 1.8-4.3 18-51 Total water use in the main exporting country (Spain with 54% of 

Swedish imports) was estimated to be 3.3 m3. World average production 

4.3 m3. AWARE scores were found to be relatively high. 

Onions 0.1-0.6 0.01-6.8 Total water use for Swedish production was assessed to be 0.1 m3. 

Imported onions from European countries generally have water use 

below 0.2 m3. India (identified as one of the export countries and the 

largest exporter globally) has the highest total water use and highest 

AWARE score for onions. 

Pumpkins and 

squash 

0.1-0.5 0-3.1 The Netherlands and Spain were identified as main export countries in 

Europe, total water use was assessed to be below 0.14 m3. Mexico is the 

largest exporter globally, with water use similar to the global average, 

below 0.5 m3. Highest AWARE score found for Spain. 

Spinach 0.2-0.4 1.0-11 Spain, Italy, and world average have similar total water use of below 0.4 

m3. Highest AWARE score found for Spain. 

Tomatoes 0.01-0.3 0-4.6 Sweden and the Netherlands have similar water use for tomato 

production, approx. 0.01 m3. Spanish production uses around 0.1 m3 and 

Mexican production and world average production 0.3 m3.  

Mushrooms   No data 

a Comments included when applicable. 
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4. RESULTS GENERAL 

This chapter presents general results on pesticide use, the final assessment of climate impact for different 

food groups, results for products assumed to be transported by air and the climate impact of this, and 

finally recommendations on climate impact estimates for conventional and organic products. 

4.1. Pesticide use 

Results for individual products are presented in Appendix A7. 

For European produce, the EU report from 2007 was used (EUROSTAT, 2007). Data were collected for 

each country identified as an exporter to Sweden, and the general figures for “cereals”, “fruits”, etc. 

were used for the different products. Table A94 in Appendix A7 presents data for each product. Based 

on general data for European production (Figure 50), production of fruits and vegetables generally uses 

more pesticides than production cereals, maize, and oilseeds (including soybean). The group “other 

vegetables” used most pesticides per hectare. Unfortunately, it is not clear from the report (EUROSTAT, 

2007) what this group includes, but it is likely to include bell peppers, root and tuber vegetables 

(including carrots, turnips, and sweet potato), pulses (legumes), but also cropping in kitchen gardens. 

The use in the category “other plant protection products” (yellow bars in Figure 50) is particularly high 

for this group. The most commonly used pesticide in this category is the nematocide 1,3-

dichloropropane (see Table 2.4.8 in EUROSTAT (2007)). 

 

Figure 50. Use of plant protection products in different crops in all European countries, 1999-2003, presented as 

kg active substance (AS) per hectare (ha) (data from EUROSTAT, 2007). 

Use of plant protection products in Sweden in active substance per hectare is shown in Figure 51. Carrots 

and onions stand out as having particularly high per-hectare doses. 
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Figure 51. Use of plant protection products in different crops in Sweden, 2017 (data from SBA, 2018). 

4.1.1. Organic and conventional production 

It was assumed that no or very low rates of chemical pesticides are used in organic production.  

In general, organic produce has much lower rates of plant protection residues in the products, expressed 

as quantified residues below and above the maximum residue level (MRL), for all plant-based foods and 

especially for fruits and nuts, vegetables, and cereals (EFSA, 2018). 

4.2. Estimated climate impact of the Swedish market for the 

different product groups 

Figure 52 shows the climate impact of the different product groups. Only studies considered relevant 

for the Swedish market are included in the diagram. 
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Figure 52. Climate impact in kg CO2e per kg product from studies relevant for the Swedish market for different 

product categories. Each dot represents a data-point taken from a previous study. 

4.3. Air transport 

The consumer organization Sveriges konsumenter recently listed food products that are likely to be 

transported by air to Sweden. These products include some seafood, some fruits, vegetables such as 

asparagus (especially from Peru), fresh peas and beans (from Kenya and other African countries), fresh 

berries (from e.g., Egypt, Ethiopia, Mexico, USA, and Canada), and exotic unusual fruit such as starfruit 

(SverigesKonsumenter, 2018). Similarly, Axfood (a food retailer) presents a list of food products that 

are transported by air, at least part of the year, including (the relevant products for the Vego-guide) 

asparagus, haricoverts, sugar-snap peas and papaya (all fresh products) (Axfood, 2019). For these 

products and for products identified in communication with food importers (see section 2), emissions 

from air transport were added to the climate impact. Table 23 shows the estimates made from the 

information gathered. 

 

 

Table 23. Products assumed to be transported by air to  

Sweden (when production is located outside Europe) 
Product 
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Asparagus 

 

Table 24 presents climate impact of air transport of 1 kg from five different countries (from each 

country’s capital to Stockholm). The climate impact was calculated using NTMCalc and additional 

climate impact from emitting greenhouse gases at high altitudes is not taken into account (NTM, 2019), 

but could double  the climate impact caused by the emissions. 

Table 24. Climate impact of air transport from relevant countries 
Country of origin kg CO2e per kg  

transported to Sweden 

Canada 4.0 

Chile 8.0 

Egypt 2.5 

Ethiopia 3.8 

Guatemala 6.0 

Honduras 5.9 

India 3.6 

Kenya 4.2 

Mexico 5.9 

Morocco 2.3 

New Zealand 10.6 

Peru 7.1 

South Africa 5.9 

Thailand 5.2 

Turkey 2.1 

USA 4.2 

 

Earlier studies sometimes include air transport of fresh vegetables. For example, i Canals et al. (2008) 

assessed the climate impact of fresh green beans transported by air from Kenya and Uganda to the UK, 

and found it to be 10.7-10.9 kg CO2e per kg product. 

4.4. Climate impact of conventional and organic products 

 

There are numerous LCA studies of both conventional and organic production systems. When reviewing 

earlier studies on climate impact and energy use, we did not differentiate between these two systems, 

but analyzed these studies jointly. Previous studies show that organic systems have similar climate 

impact to organic systems (Clark & Tilman, 2017). 
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5. DISCUSSION 

5.1. Data availability 

Rapid product development for plant-based ready-made protein sources is underway, but studies on the 

environmental impact are not available for all such products. As more products are introduced, it is 

likely that more studies on their environmental impact will emerge in the near future. There might 

therefore be a need to update the underlying data for the Vego-guide in coming years, to include new 

studies on the products included, but also to include a wider variety of products. For example, in this 

report an attempt is made to include plant-based cheese and deli meat. However, previous studies on the 

environmental impact of these products are very scarce. 

Assessments on the likely climate impact of different products on the Swedish market were based on 

earlier studies and an assessment made by the authors on which of these are most representative for the 

Swedish market. For several products there are few studies, and in several cases no studies, on 

production in the identified export countries. In these situations, the final assessment was based on the 

available data and it was noted that the assessment was made with little access to representative data.  

To determine common country of origin of the products, trade statistics were used. A well-known issue 

with trade statistics is that the country of origin is not always the country of primary production, as the 

countries listed as export countries in the statistics sometimes does not have any primary production of 

the product. For example, the Netherlands appears often as an export country, since it is a trade hub. In 

addition to the use of trade statistics, we tried to retrieve data on country of origin from wholesalers that 

primarily import fruits and vegetables. However, we were unable to verify our import data through 

information from wholesalers (Lundmark, 2019). 

Data on pesticide use are particularly scarce, as is access to relevant and reliable indicators on ecotoxicity 

of pesticide use. The data used for European production are relatively old (from 2007), but no more 

recent data could be found. EUROSTAT includes data on pesticide use in the different countries, but 

we could not find a way to link this use to specific crops. In order to evaluate pesticide use, there is a 

need for better data which can be linked to different crops. 

5.2. Methodological discussion 

While emissions of greenhouse gases have the same impact on the climate no matter where they are 

emitted, the use of land in different regions of the world will have different impacts on biodiversity and 

the use of water will have different impacts on regional water availability. For the biodiversity impact 

assessment method (Chaudhary et al., 2018) and water scarcity method (Boulay et al., 2018), country 

average characterization methods were used, although both of these methods provide characterization 

factors for smaller regions than countries. The primary reason for using country average characterization 

factors was that import statistics do not report the region/s of a country in which products are produced. 

The assessment of products from large countries was likely to have been particularly affected by this, 

e.g., almonds from Spain and the USA. Almonds produced in the USA are likely to originate from 

California, which has a higher characterization factor for biodiversity loss due to land use than the 

average for agricultural land in USA. This means that growing almonds in California is likely to be 

associated with higher biodiversity loss than growing them on an average field in the USA. However, 

we used the characterization factor for the whole USA, to be consistent with using country average 

characterization factors for all imported products. Our results show that almonds from Spain are 
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associated with higher biodiversity loss due to land occupation than almonds from USA. This is due to 

Spanish production being associated with higher land use, but also to the characterization factor for 

Spain being higher than that for the USA. In this comparison, a smaller country like Spain has a higher 

factor since most of the country has a more tropical climate than the overall USA. 

Total water use was assumed to be the same for organic and conventional produce. Total water use 

information was retrieved from the water footprint network (Mekonnen et al., 2011), where green, blue, 

and grey water use in an area is distributed over the yield of that area, based on FAO statistics. 

Considering that conventional agriculture is likely to be the dominant form of agriculture in most 

countries, the average FAOSTAT yield is likely to be more representative of conventional production. 

Assuming that water use is the same for conventional and organic production therefore risks 

underestimation of the water use for organic production, as it is often associated with lower yields. The 

lower yields in organic agriculture were accounted for in our land use and biodiversity assessments. 
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Appendix A1. Literature review 

Results from earlier studies 

Appendix A1 presents the results from previous studies, together with the system boundaries used. When 

possible, the results were later modified to fit the system boundary of the Vego-guide, i.e., from cradle 

to a retailer in Sweden. These results are presented in the main report. 

Data from the two databases ecoinvent (Wernet et al., 2016; Agri-footprint, 2018) are included in the 

figures in the main report, but not presented in the tables in the appendices. For all products where such 

data were included in the background data, this is noted in the text below. 

Protein sources 

Green peas fresh 

Earlier studies on green peas (Table A1) mainly focused on climate impact, with the exception of 

Sonesson et al. (2007), which included pesticide use, eutrophication, acidification, and energy use. The 

two studies on Swedish peas (Landquist, 2012; Sonesson et al., 2007) included cultivation of the peas 

and transport to the factory gate, which involves cooling using ice during transport. The process in the 

factory and packaging material were not included. Landqvist and Woodhouse (2015) studied the climate 

impact of 10 different products (root vegetables, vegetables, herbs) processed in a factory in Sweden, 

and estimated the climate impact from washing, cutting, blanching, cooling, and freezing to be 0.25 kg 

CO2e per kg product leaving the factory. If this were added to the climate impact for Swedish peas 

(Table A1), the total impact would be 0.57 and 0.70 (organic) kg CO2e per kg peas leaving the factory.  

Table A1. Results for 1 kg green peas at farm gate (SB1), retailer (SB2) and consumer (SB3) from earlier 

studies (F: fresh) 
Country Climate impact 

(kg CO2e) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

UK (F) 0.3  SB1 Audsley et al. (2009) 

Australia (F) 2.5  SB1 Maraseni et al. (2010) 

Sweden (F) 0.3/0.45a  SB1 Landquist (2012) 

Sweden (F) 0.3 2.2 SB1 Sonesson et al. (2007) 
aConventional/organic. 

Peas dried 

The background data also included data from the databases ecoinvent (Wernet et al. 2016) and Agri-

footprint (2018). 

Table A2. Results for 1 kg dry peas at farm gate/regional distribution center (SB1), retailer (SB2), and 

consumer (SB3) from earlier studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary  

Reference 

France 0.5  3.54   SB1 Meul et al. (2012) 

World 

average 

0.2     SB1 Audsley et al. (2009) 

UK 0.5     SB1 Audsley et al. (2009) 

        

Sweden 0.5    3.5 SB2 González et al. 

(2011) 

Sweden 0.2    5.9 SB3 Fuentes et al. (2006) 

Sweden 0.2    5.8 SB3 Fuentes et al. (2006) 
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Sweden 0.2     SB1 Tidåker et al. (2020) 

Manuscript 

Sweden 0.2     SB1 Tidåker et al. (2020) 

(organic) Manuscript 

Sweden 0.6  2.5   SB2 Moberg et al. (2020) 

 

Beans dried 

The background data also included data from the database Agri-footprint (2018). 

All studies on dry beans showed a lower climate impact than 1 kg CO2e per kg (Table A3), with the 

exception of Agri-footprint (2018) data for Dutch beans, which was primarily due to higher nitrogen 

fertilizer application, with related dinitrogen monoxide emissions. 

Table A3. Results for 1 kg dry beans at farm gate/regional distribution center (SB1), retailer (SB2), 

and consumer (SB3) from earlier studies  

Country/region Climate 

impact (kg 

CO2e) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Greece 0.3    SB1 Abeliotis et al. 

(2013) 

Greece 0.4    SB1 Abeliotis et al. 

(2013) 

Greece 0.4    SB1 Abeliotis et al. 

(2013) (organic) 

USA 0.7   10 SB3 Fuentes et al. (2006) 

Greece 0.2 3.7   SB1 Abeliotis et al. 

(2013) 

Greece 0.3 3.57   SB1 Abeliotis et al. 

(2013) 

Greece 0.4 3.19   SB1 Abeliotis et al. 

(2013) (organic) 

The Netherlands 0.6   7.9 SB3 Fuentes et al. (2006) 

EU 0.6    SB1 Audsley et al. (2009) 

Sweden 0.7  7.4  SB2 González et al. 

(2011) 

Sweden 0.3   7.25 SB3 Fuentes et al. (2006) 

Sweden 0.4   7.50 SB3 Fuentes et al. (2006) 

Sweden 0.4    SB1 Tidåker et al. (2020) 

manuscript 

Sweden 0.8 7.6   SB2 Moberg et al. (2020)  

 

 

 

Faba beans dried 

The background data also included data from the databases ecoinvent (Wernet et al., 2016) and Agri-

footprint (2018). 

Table A4. Results for 1 kg dry faba beans at farm gate/regional distribution center (SB1), retailer (SB2), 

and consumer (SB3) from earlier studies 

Country Climate impact 

(kg CO2e) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 
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Sweden 0.2    SB1 Tidåker et al. (2020) 

Manuscript 

Sweden 0.2    SB1 Tidåker et al. (2020) 

(organic) Manuscript 

 

Beans canned 

Canned beans have higher climate impact and higher energy use than dried beans. This difference is 

even greater when comparing beans purchased dried and boiled at home, and comparing beans on the 

basis of wet or ready-to-eat weight (main report). However, two of the earlier studies assessed metal 

cans (Tesco, 2012; Fuentes et al., 2006) and one considered glass jars (Blonk et al., 2008). Canned beans 

in Sweden today are often sold in cardboard containers with plastic film (i.e., Tetra Pak™). 

Table A5. Results for 1 kg canned or boiled beans at farm gate/regional distribution center (SB1), 

retailer (SB2), and consumer (SB3) from earlier studies 

Country Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

UK 1.4    SB3 Tesco (2012) 

The 

Netherlands 

1.1   14.2 SB3 Fuentes et al. (2006) 

Italy 1.4   18.5 SB3 Fuentes et al. (2006) 

The 

Netherlands 

0.9   12.2 SB3 Fuentes et al. (2006) 

Italy 1.2   16.5 SB3 Fuentes et al. (2006) 

The 

Netherlands 

1.7 3.5   SB2 Blonk et al. (2008) 

 

Chickpeas dried 

The background data also included data from the database Agri-footprint (2018). 

Table A6. Results for 1 kg dry chickpeas at farm gate/regional distribution center (SB1), retailer (SB2), 

and consumer (SB3) from earlier studies 
Country Climate 

impact (kg 

CO2e) 

Land 

use (m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

USA 1.1   6.45 SB3 Fuentes et al. (2006) 

UK (rest of 

Europe) 

0.77    SB1 Audsley et al. (2009) 

UK (rest of 

the world) 

0.8    SB1 Audsley et al. (2009) 

 

 

 

Lentils canned 

Table A7. Results for 1 kg canned lentils at farm gate/regional distribution center (SB1), retailer (SB2), 

and consumer (SB3) from earlier studies 

Country Climate impact 

(kg CO2e) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 
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Australia 1.0    SB2 Eady et al. (2011) 

UK 1.1    SB1 Audsley et al. (2009) 

Sweden 0.2    SB1 Tidåker et al. (2020) 

(organic) Manuscript 

 

Lentils dried 

Only one scientific study was found on dry lentils. Several environmental impact categories were 

included in the study (Elhami et al., 2017), but none (except climate change) was relevant. The high 

climate impact is due to a relatively high nitrogen fertilizer application (135 kg N/ha). According to 

trade statistics (SS, 2018), Sweden import lentils from Turkey, the UK, and Canada, with Canada being 

the largest exporter of lentils globally. According to Canadian and American fertilizer recommendations, 

little (<55 kg/ha) or no nitrogen fertilizer is needed in lentil cultivation (GovermentofSaskatchewan, 

2017; Mahler, 2015). Therefore the applicability of the study by Elhami et al. (2017) can be considered 

limited for the Swedish market.  

The background data also included data from the database Agri-footprint (2018) for Australian and 

Canadian lentils.  

Table A8. Results for 1 kg dry lentils at farm gate/regional distribution center (SB1), retailer (SB2), and 

consumer (SB3) from earlier studies 

Country Climate impact 

(kg CO2e) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Iran 3.6    SB1 Elhami et al. (2017) 

 

Soybeans dried 

The background data also included data from the databases ecoinvent (Wernet et al., 2016) and Agri-

footprint (2018). 

The high impact from Brazilian and Argentinian soybeans is due to deforestation (Wernet et al., 2016). 

Table A9. Results for 1 kg dry soybeans at farm gate/regional distribution center (SB1), retailer (SB2), 

and consumer (SB3) from earlier studies 

Country Climate 

impact (kg 

CO2e) 

Land 

use (m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Brazil 0.4   4.0 SB2 González et al. (2011) 

USA 0.5   6.8 SB2 González et al. (2011) 

Brazil 0.5 2.07  7.0 SB2 Da Silva et al. (2010) 

Brazil 1.0 1.89  12.6 SB2 Da Silva et al. (2010) 

 

Ready-made meat alternatives 

Dairy-based 

Table A10. Results for 1 kg product at factory gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies on dairy-based meat alternatives 

Product Country Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use (fossil) 

(MJ) 

System 

boundary 

Reference 

Dairy-based 

meat 

alternative 

Germany 4.7 3.4 53.9 SB3 Smetana et al. (2015) 
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Milk protein The 

Netherlands 

5.6 4.4 36.0 SB2 Broekema and Blonk 

(2009) 

 

Mixed (bean burgers and falafel) 

This category contains a wide variety of products, including falafel, schnitzel, and bean burgers. All 

results from the study by Quantis (2016) include cooking in the USA, and this had a rather high impact 

on the results. With cooking and transport home, the climate impact was found to be 5.8 kg CO2e per 

kg, while the same product had an impact of 3.1 kg CO2e per kg up to the retailer (Quantis, 2016). 

Table A11. Results for 1 kg product at factory gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies on mixed products (bean burgers and falafel) (F: fresh, FZ: frozen) 

Product Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use (fossil) 

(MJ) 

System 

boundary 

Reference 

Schnitzel (F) The 

Netherlands 

2.2  4.5 25 SB2 Broekema and 

Blonk (2009) 

“Meatballs” 

(F) 

The 

Netherlands 

2.1  3.6 25 SB2 Broekema and 

Blonk (2009) 

Chick-pea 

patties (FZ) 

USA 5.8 0.04   SB3 Quantis (2016) 

Falafel (FZ) The 

Netherlands 

2.5  2.5  SB2 Head et al. (2011) 

Burger The 

Netherlands 

3.5 0.05 5.2  SB3 Consultants (2017) 

Burger The 

Netherlands 

3.0 0.05 4  SB3 Consultants (2017) 

Falafel (FZ) Sweden 0.7    SB1 Orklafoods (L. 

Lundahl, 2018) 

 

 

Mixed with eggs (or cheese) 

Some vegetarian products include eggs or other products of animal origin. It is interesting to note that 

Dutch and Swedish products seem to have a climate impact in the same range (1.5-2.5 kg CO2e per kg 

product). Again, the products from the study by Quantis (2016) show a high impact, and cooking is a 

substantial part of this, with impact including cooking (excluding cooking) of: 9.2 (6.9), 6.9 (5.8), and 

11.3 (6.9) kg CO2e per kg product. Impact up to retailer (i.e., excluding cooking) is still substantially 

higher for these products. They generally have long ingredients lists containing wheat protein, soy 

protein, etc. (Quantis, 2016). 

Table A12. Results for 1 kg product at factory gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies on mixed with eggs (F: fresh, FZ: frozen) 

Product Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 
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Sausage (F) The 

Netherlands 

1.5  2.8 24  SB2 Broekema and 

Blonk (2009) 

Burger (F) The 

Netherlands 

2.1  2.5 22.5  SB2 Broekema and 

Blonk (2009) 

Grilled 

pieces (F) 

The 

Netherlands 

2.2  3.4 27  SB2 Broekema and 

Blonk (2009) 

“Meatballs” 

(F) 

The 

Netherlands 

2.5  2.4 22.5  SB2 Broekema and 

Blonk (2009) 

Bean burger 

(FZ) 

USA 9.2 0.04    SB3 Quantis (2016) 

Bean burger 

(FZ) 

USA 6.9 0.03    SB3 Quantis (2016) 

Sausage 

patties (FZ) 

USA 11.3 0.04    SB3 Quantis (2016) 

“Carrotballs

” (FZ) 

Sweden 2.0     SB1 Orklafoods (L. 

Lundahl, 2018) 

Burger (FZ) Sweden 1.7     SB1 Orklafoods (L. 

Lundahl, 2018) 

 

Pea-protein 

Table A13. Results for 1 kg product at factory gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies on pea protein based products (F: fresh, FZ: frozen) 

Product Country Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Pea protein 

(FZ) 

Sweden 3.1 4.9 57 SB2 Nilsson and Florén 

(2017) 

 

 

Quorn - Mycoprotein 

Results for mycoprotein (generally known as Quorn) seem to vary greatly. One reason could be that the 

process for growing mycoprotein is quite energy-demanding, so the energy source will be important. 

Two studies show higher impact than the others (Smetana et al., 2015; Finnigan et al., 2010). The latter 

study was later updated to report significantly lower impact (Finnigan et al., 2017). Smetana et al. (2015) 

included cooking, which accounted for approximately 25% of the impact. Energy use in the process of 

producing mycoprotein was another important contributor. Smetana et al. (2015) only report weighted 

results for process contribution, and information on the importance of cooking for climate impact and 

energy used could therefore not be retrieved.   

Table A14. Results for 1 kg product at factory gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies on Quorn (assumption that all is frozen) 

Product Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 
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Quorn The 

Netherlands 

2.5  1.1   SB2 Blonk et al. 

(2008) 

Quorn Germany 5.9  0.8 68.4  SB3 Smetana et al. 

(2015) 

Quorn mince UK 6.8 2.9 5.3 50.6  SB1 Finnigan et al. 

(2010) 

Quorn The 

Netherlands 

2.4  0.4   SB2 Head et al. 

(2011) 

Quorn The 

Netherlands 

2.6  1.7 36.0  SB2 Broekema and 

Blonk (2009) 

Quorn mince UK 2.3 0.06 4   SB2 Quorn foods 

(2018) 

Quorn pieces UK 2.3 0.06 3   SB2 Quorn foods 

(2018) 

 

Soy-based 

We found six earlier LCA studies on soy-based meat replacement products. Two of these studies focused 

on soy protein isolate (SPI) (90% protein) (Thrane et al., 2017; Berardy et al., 2015), which is one 

ingredient in soy-based meat alternatives (another being soy protein concentrate with approx. 70% 

protein). The others focused on ready-made products such as soy burgers or minced meat.  

The products in Table A15 marked with SB3 (system boundary three) involve cooking. Smetana et al. 

(2015) identified cooking by the consumer as the main activity that contributed to the overall 

environmental impact of soybean meal-based meat alternatives (more than 50%), but did not specify the 

energy use for frying. Consultants (2017) specify the energy use for cooking at the consumer to be 0.22 

(or 0.79 MJ) kWh/kg prepared product (calculated from Table 4 in that study). Using the Dutch 

electricity mix, the climate impact from cooking would then be 0.14 kg CO2e per kg ready-to-eat product 

(the study by Consultants (2017) is based on Dutch conditions). Using Swedish electricity mix, the 

climate impact would be 0.01 kg CO2e per ready-to-eat product (environmental impact of electricity 

production taken from Wernet et al. (2016)). 

The study by Berardy et al. (2015) was a conference paper with some inconsistencies in the results, e.g., 

energy use was found to be low, while climate impact was found to be high. Most of the climate impact 

was reported to come from heating in the process, but this is not consistent with the low energy use. 

Therefore, this study was not included in the summary. Further, the functional unit in the study was 1 

kg soy protein isolate (90% protein). This is not used directly for human consumption, but is added to 

ready-made products (comprising around 25%). 

Table A15. Results for 1 kg product at factory gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies on soy-based ready-made alternatives to meat (F: fresh, FZ: frozen) 

Product Country Climate 

impact (kg 

CO2e) 

Blue water 

use (m3) 

Land use 

(m2) 

System 

boundary 

Reference 

Soy protein 

isolate (F) 

USA 6.8/2.7a 0.04/0.23 a 6.7/8.9 a SB1 Thrane et al. 

(2017) 

Soy burger 

(F) 

The 

Netherlands 

- 0.16 - SB1 Ercin et al. 

(2012) 

Soy burger 

(F) 

The 

Netherlands 

3.0 0.05 4.0 SB3 Consultants 

(2017) 
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Soy meal 

based (F) 

Germany 

 

2.7 - 1.3 SB3 Smetana et al. 

(2015) 

Soy minced 

meat 1 

(frozen) (F) 

The 

Netherlands 

2.2 0.05 3.0 SB3 Consultants 

(2017) 

Soy minced 

meat 2 

(frozen) (F) 

The 

Netherlands 

2.7 0.06 4.9 SB3 Consultants 

(2017) 

Soy minced 

meat (FZ) 

USA 6.0 (2.7) 0.03 (0.02) - SB3 (SB1) Quantis (2016) 

Soy burger 

(FZ) 

USA 7.4 (4.6) 0.02 (0.01) - SB3 (SB1) Quantis (2016) 

Soy burger 

(FZ) 

The 

Netherlands 

3.5 0.06 4 SB3 Consultants 

(2017) 

Soy 

“chicken 

pieces” 1 

(FZ) 

The 

Netherlands 

1.5 0.03 8 SB3 Consultants 

(2017) 

Soy 

“chicken 

pieces” 2 

(FZ) 

The 

Netherlands 

2.5 0.06 4.2 SB3 Consultants 

(2017) 

Soy-based 

products 

(FZ) 

Sweden 1.4-2.2 

(average: 1.6)b 

   Orklafoods (L. 

Lundahl, 2018) 

aAttributional/consequential modelling.  
bEleven different soy-based products. 

 

Tofu and tempeh 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A16. Results for 1 kg product at factory gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies on tofu and tempeh 
Product Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Tofu USA 1.0     SB1 Mejia et al. 

(2018) 

Tofu The 

Netherlands 

2.0  2.0 27.5  SB2 Broekema and 

Blonk (2009) 

Tofu The 

Netherlands 

2.2  2.8 28.0  SB2 Broekema and 

Blonk (2009) 

Tofu The 

Netherlands 

3.1  2.16   SB2 Head et al. 

(2011) 

Tofu The 

Netherlands 

2.3  3.5   SB2 Blonk et al. 

(2008) 

Tempeh The 

Netherlands 

1.3  2   SB2 Blonk et al. 

(2008) 

 

Nuts and seeds 

Almonds 
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The majority of global almond production is in California, USA. Most of the earlier studies identified 

in this assessment estimated the climate impact for American almonds, and all found values below 4 kg 

CO2e per kg (Kendall et al., 2015; Kendall & Brodt, 2014; Marvinney et al., 2014; Venkat, 2012). 

Bartzas et al. (2017) estimated the climate impact to be approximately 2 kg CO2e per kg for Greek 

almonds in shell, with irrigation (pumping groundwater) and fertilizer production having the greatest 

impact on the result. In that assessment (Bartzas et al., 2017), it was assumed that about 1.7 kg almonds 

in shell are required for 1 kg shelled almonds, which results in an impact of 3.4 kgCO2e  per kg almonds. 

The data in Volpe et al. (2015) for primary production were based on Marvinney et al. (2014), and 

therefore Volpe et al. (2015) was excluded from the recommendation. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A17. Results for 1 kg almonds at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

USA 0.5      SB1 Kendall and Brodt 

(2014) 

World 1.2      SB1 Nemecek et al. 

(2012) 

USA 1.9 12.9     SB1 Marvinney et al. 

(2014) 

USA 2.5/3.8a      SB1 Venkat (2012) 

Greece 3.4b 2.4    47.7 SB1 Bartzas et al. (2017) 

USA 0.9/1.5c     29/33c SB1 Kendall et al. (2015)  

USA 

(California) 

 539 10.2    SB1 Fulton et al. (2018) 

Italy 1.9      SB1 Volpe et al. (2015) 

Rest of 

world 

0.9      SB1  Audsley et al. (2009) 

aConventional/organic. 
bAssuming that about 1.7 kg almonds in shells are required for 1 kg almonds. 
cSystem expansion/economic allocation. 

 

 

 

 

Cashew nuts 

Table A18. Results for 1 kg cashew nuts at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Rest of 

Europe 

1.2     SB1  Audsley et al. (2009) 

Brazil 1.4/1.5a     SB1 de Figueirêdo et al. 

(2014) 

Netherlands 2.3  18.0   SB2 Blonk et al. (2008) 
aTraditional practice/observed field notes. 

Chestnuts 
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Table A19. Results for 1 kg chestnuts at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact (kg 

CO2e) 

Total 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Rest of 

Europe 

0.4     SB1  Audsley et al. 

(2009) 

Portugal 0.9/0.4a   11.0/4.0  SB1 Rosa et al. (2017) 
aTwo different producers: producer 1/producer 2. 

Coconuts 

Only one earlier study was found on coconuts (Audsley et al., 2009), which focused solely on climate 

impact. The results included transportation to a regional distribution center in the UK from rest of the 

world. The background data also included data from the database Agri-footprint (2018). 

Table A20. Results for 1 kg coconuts at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Rest of the worlda 1.8     SB1  Audsley et al. 

(2009) 
aIncluding copra (coconut flesh). 

Groundnuts/peanuts 

The background data also included data from the databases ecoinvent (Wernet et al., 2016) and Agri-

footprint (2018). 

Table A21. Results for 1 kg groundnuts/peanuts at farm gate (SB1), retailer (SB2), and consumer (SB3) 

from earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Netherlands 1.5  3.90   SB2 Blonk et al. (2008) 

USA 0.8a     SB1 Mccarty et al. (2012) 

USA 1.7b     SB2 Mccarty et al. (2012) 

UK 0.9     SB1 Audsley et al. (2009) 

USA 1.1     SB1 Nemecek et al. (2012) 
aIncluding four different irrigation scenarios. 
bPeanut butter. 

 

 

 

 

Hazelnuts 

Table A22. Results for 1 kg hazelnuts at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 
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Rest of 

Europe 

0.4     SB1  Audsley et al. (2009) 

World 1.5     SB1 Nemecek et al. (2012) 

Italy 0.5     SB1 Volpe et al. (2015) 

 

Walnuts 

In some of the identified studies, the walnuts were assumed to be shelled (Venkat, 2012; Audsley et al., 

2010; Blonk et al., 2008). In the main report, data for all nuts were recalculated to show the results for 

shelled product. 

Table A23. Results for 1 kg walnuts at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Netherlands 2.1   4.0   SB2 Blonk et al. (2008) 

USA 

(organic) 

2.9      SB1 Venkat (2012) 

Rest of 

world 

0.9      SB1  Audsley et al. (2009) 

USA 0.9 3.9     SB1 Marvinney et al. 

(2014) 

 

Pistachios 

Looking at the results for shelled nuts, Bartzas et al. (2017) had the highest impact (main report). 

Assuming that 2.01 kg pistachios in shell are required for 1 kg shelled pistachios (Marvinney et al., 

2014), climate impact for the Bartzas et al. (2017) assessment would be 4.3 kg CO2e per kg pistachios. 

This is much higher than in the other studies (Table A24). Using the functional unit “1 kg nuts in shell” 

as in Bartzas et al. (2017), none of the impact is allocated to the shells (which can potentially be used as 

e.g., an energy source). Another factor that could explain the higher impact in Bartzas et al. (2017) is 

that the yield was much lower than for Marvinney et al. (2014). The data in Volpe et al. (2015) for 

primary production were based on Marvinney et al. (2014), and therefore Volpe et al. (2015) was 

excluded from the recommendation. 

 

Table A24. Results for 1 kg pistachios at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

UK 0.9      SB1  Audsley et al. (2009) 

USA 2.2 3.8     SB1 Marvinney et al. 

(2014) 

Greecea 2.1 1.8    27 SB1 Bartzas et al. (2017) 

Italy 1.74      SB1 Volpe et al. (2015) 
aNuts in shell. 

Linseeds 

The background data were based on data from Agri-footprint (2018). 

Sesame seeds 
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Table A25. Results for 1 kg sesame seed at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact (kg 

CO2e) 

Total 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

UK 0.9     SB1  Audsley et al. (2009) 

 

Sunflower seeds 

The background data also included data from the databases ecoinvent (Wernet et al., 2016) and Agri-

footprint (2018). For the data from ecoinvent, the sunflower seeds were assumed to be peeled. 

Table A26. Results for 1 kg sunflower seed at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Rest of 

world 

1.4      SB1  Audsley et al. 

(2009) 

Portugal 0.6/0.8a      SB1 Figueiredo et al. 

(2012) 

Chile 0.9  0.16   7.00 SB1 Iriarte et al. (2010) 
aNon-irrigated/irrigated 

 

Carbohydrate sources 

Barley 

The background data also included data from the database Agri-footprint (2018). 

Table A27. Results for 1 kg barley at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Land 

use (m2) 

Energy use 

(fossil) (MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

EU 0.5  

 

 SB1 Tuomisto et al. 

(2014) 

Sweden 0.3  1.1  SB1 Tidåker et al. (2005) 

Sweden 0.3  1.5  SB1 Tidåker et al. (2005) 

UK and EU 0.3    SB1  Audsley et al. (2009) 

France 0.4    SB1 Meul et al. (2012) 

Sweden 0.4   2.6 SB2  González et al. 

(2011) 

Norway 0.8    SB1 Roer et al. (2012) 

Sweden 0.6    SB2 Tynelius (2008) 

Sweden 1.0 2.9   SB2 Moberg et al. (2020) 

 

Maize 

One of the identified studies was on sweetcorn (Maraseni et al., 2010), this study was excluded from 

the analysis. 

The background data also included data from the database Agri-footprint (2018). 

Table A28. Results for 1 kg maize at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 



 

100 
 

Country Climate 

impact 

(kg CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

France 0.4      SB1 Meul et al. (2012) 

Spain 0.4 0.33 0.37    SB1 Torres et al. (2014) 

EU 0.5      SB1  Audsley et al. 

(2009) 

USA 0.7     6.1 SB1  González et al. 

(2011) 

Australiaa 1.4      SB1 Maraseni et al. 

(2010) 
aMaize sweetcorn. 

Oats 

The background data also included data from the database Agri-footprint (2018). 

Table A29. Results for 1 kg oats at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate impact 

(kg CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

EU 0.1     SB1  Audsley et al. (2009) 

UK 0.4     SB1  Audsley et al. (2009) 

Sweden 0.5    2.9 SB1  González et al. 

(2011) 

Norway 0.8     SB1 Roer et al. (2012) 

Sweden 0.5  0.03  3.3 SB1 Lantmännen personal 

communication 

(2019) 

Sweden 1.0 0.0 3.6   SB2 Moberg et al. (2020) 

 

Pasta 

The study by Recchia et al. (2019) showed that a large part of the climate impact and  energy use (fossil) 

can come from cooking at the consumer. Climate impact was 1.5 kg CO2e per kg pasta at the factory 

gate and energy use (fossil) 10.3 MJ primary energy per kg pasta. 

Table A30. Results for 1 kg pasta at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

Sweden 0.5     SB2 Röös et al. (2011) 

Swedish 

market 

1.8 0.0 2.7   SB2 Moberg et al. (2020) 

Sweden 1.3 0.0 2.7   SB2 Moberg et al. (2020) 

Italy 0.8     SB2 Ruini et al. (2013) 

Italy 2.7   33  SB3 Recchia et al. (2019) 

 

Quinoa 

There are few earlier studies LCA studies on quinoa, only two were identified here. Compared with 

other carbohydrates (except rice), quinoa showed higher climate impact according to these two studies. 

This is likely due to the low yield obtained in quinoa cultivation, which leads to higher estimated results 
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for quinoa (Cancino-Espinoza et al., 2018). Additionally, the postharvest process where quinoa is dried 

and treated contributes to greenhouse gas emissions, as does transport through mountainous areas to the 

port in Lima (Cancino-Espinoza et al., 2018). 

Table A31. Results for 1 kg quinoa at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

South America 0.9     SB1 Alter eco (2012) 

South Americaa 2.7     SB1 Alter eco (2012) 

Perub 0.9      SB1 Cancino-Espinoza et 

al. (2018) 
aDark quinoa. 
bOrganic. 

Rice 

Earlier studies show that rice is associated with higher climate impact than other carbohydrate sources. 

Field emissions (CH4 and N2O) were the largest contributor to global warming potential in several 

studies where the fields were irrigated or flooded (Brodt et al., 2014; Thanawong et al., 2014; Kägi et 

al., 2010; Blengini & Busto, 2009; Hokazono et al., 2009). For example, emissions of CH4 from paddy 

fields made up more than half of the total emissions estimated in Hokazono et al. (2009). The study on 

upland Swiss rice cultivation (Kägi et al., 2010), where flooding was not used, showed lower emissions 

of CH4. Switzerland is not a significant producer of rice globally and the study is therefore considered 

less relevant for the Swedish market. The system boundary in Kägi et al. (2010) is up to a Swiss retailer, 

which means that the emissions from transport to Switzerland are included in the result for American 

rice. 

Thanawong et al. (2014) estimated the climate impact to be 3.1-5.6 kg CO2e per kg rice, depending on 

whether the field was rain-fed or irrigated and if it was wet season or dry season. These values are in the 

upper range of results reported for rice. This could be because the study used higher values for CH4 

emissions compared with those suggested in IPCC (2006). In addition, rice yield is relatively low in 

north-east Thailand, which could have contributed to the higher climate impact (Thanawong et al., 

2014). Berners-Lee et al. (2012) estimated the climate impact for several foods, but do not provide 

details of the inventory, so the higher climate impact is difficult to explain. 

The background data also included data from the database Agri-footprint (2018). 

Table A32. Results for 1 kg rice at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Lan

d use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundar

y 

Reference 

Japan 1.2     7.4 SB2  González et al. 

(2011) 

USA 1.1     6.6 SB2 González et al. 

(2011) 

Japan 1.3-1.6a      SB1 Hokazono et al. 

(2009) 

USA 1.5-3.7b      SB1 Brodt et al. (2014) 

Switzerland 1.7      SB2  Kägi et al. (2010) 

USA 2.8      SB2  Kägi et al. (2010) 

USA 2.1      SB1 Loijos (2008) 
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Italyd 2.8/2.9 4.9 8.0/8.

2 

 14.6/ 

16.6 

15.7/ 

17.8 

SB2 Blengini and Busto 

(2009) 

Thailande 3.1-5.6  2.7-

3.3 

4.2-

4.6 

 7.3-9.5 SB1 Thanawong et al. 

(2014) 

Rest of the 

world 

3.5      SB1 Audsley et al. (2009) 

UK 5.7      SB2 Berners-Lee et al. 

(2012) 

Rest of the 

world 

3.6 0.7 4.5     Moberg et al. (2020) 

aSustainable system (low value), conventional system (in between value), environmentally friendly (high value). 
bUsing GWP100 (low value), GWP20 (in between value), and IPCC tier 1 (high value). 
cConventional/organic. 
dLocal distribution/exported rice. 
eRain-fed (low value), wet-season irrigated (in between value), dry-season irrigated (high value). 

 

Rye 

The background data also included data from the database Agri-footprint (2018). 

Table A33. Results for 1 kg rye at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

Sweden 0.4    2.10 SB2 González et al. 

(2011) 

EU 0.5     SB1  Audsley et al. (2009) 

UK 0.9     SB1  Audsley et al. (2009) 

Sweden 0.4     SB1 Woodhouse (2017) 

Sweden 0.9  2.33    Moberg et al. (2020) 

 

Sorghum 

The background data also included data from the database Agri-footprint (2018). 

Table A34. Results for 1 kg sorghum at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

 

Country 

Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

UK 0.9     SB1  Audsley et al. (2009) 

 

Wheat 

Most of the earlier assessments on climate impact of wheat production showed an impact below 1 kg 

CO2e per kg wheat. 

The background data also included data from the database Agri-footprint (2018). 
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Table A35. Results for 1 kg wheat at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 
Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Switzerland 0.6/0.7/0.6a    2.31/3.45/3

.30 

SB1 Nemecek et al. 

(2010) 

Germany 0.6    3.49 SB1 Nemecek et al.  

(2010) 

USA 0.6    4.63 SB1 Nemecek et al. 

(2010) 

France 0.6    3.58 SB1 Nemecek et al. 

(2010) 

Spain 0.8    6.42 SB1 Nemecek et al. 

(2010) 

Italy  0.3     SB1 Knudsen et al. (2014) 

Germany 0.4     SB1 Knudsen et al. (2014) 

Canada  0.4     SB1 Knudsen et al. (2014) 

Sweden 0.5     SB1 Knudsen et al. (2014) 

USA 0.5     SB1 Knudsen et al. (2014) 

Romania 0.5     SB1 Knudsen et al. (2014) 

Russia 0.5     SB1 Knudsen et al. (2014) 

Sweden 0.4    2.00 SB2 González et al. 

(2011) 

USA 0.8    8.90 SB2 González et al. 

(2011) 

Sweden 0.4-0.6     SB2 Röös et al. (2011) 

France 0.5  1.07   SB1 Meul et al. (2012) 

UK (wheat 

flour) 

0.5     SB2  Espinoza-Orias et al. 

(2011) 

UK 0.5     SB1  Audsley et al. (2009) 

EU 0.6     SB1  Audsley et al. (2009) 

World 0.7     SB1 Audsley et al. (2009) 

UK 0.7/0.8b  0.14/0.4

1 

 2.40/2.00 SB1 Williams et al. (2010) 

World 1.1     SB2 Michaelowa and 

Dransfeld (2008) 

Norway 0.7     SB1 Roer et al. (2012) 

Sweden 0.4     SB1 Woodhouse (2017) 

Sweden 1.1 0.0 2.26   SB2 Moberg et al. (2020) 
aOrganic/extensive/integrated production. 
bConventional/organic. 

Carrots 

The background data also included data from the database Agri-footprint (2018). 

Table A36. Results for 1 kg carrots at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 

(organic) 

0.04  0.23 0.38  SB1 Cederberg et al. 

(2005) 

Sweden 0.1/0.3a  0.22/0.26 2.38/7.60  SB2 Fuentes et al. (2006) 

Netherlands 0.2  0.18 4.00  SB2 Fuentes et al. (2006) 

Switzerland 0.1    1.70 SB2 González et al. 

(2011) 
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Sweden 0.1    0.97 SB2 González et al. 

(2011) 

Sweden 0.1   1.50  SB2 Röös and Karlsson 

(2013) 

Netherlands 0.2   2.80  SB2 Röös and Karlsson 

(2013) 

Italy 0.3   4.10  SB2 Röös and Karlsson 

(2013) 

Australia 0.2  0.21   SB1 Maraseni et al. 

(2010) 

Switzerland 0.5 0.42 0.09   SB2 Stoessel et al. (2012) 

UK 0.4     SB1  Audsley et al. (2009) 

Sweden 

(small 

carrot) 

0.1/0.4a     SB1 Landqvist and 

Woodhouse (2015) 

Sweden (big 

carrot) 

0.1/0.3a     SB1 Landqvist and 

Woodhouse (2015) 

Sweden 0.2/0.4b     SB1 Landqvist and 

Woodhouse (2015) 

Sweden 0.27 0.20 0.0   SB2 Moberg et al. (2020) 

Swedish 

market 

0.3 0.21 0.0   SB2 Moberg et al. (2020) 

aFresh/frozen. 
bParsnips fresh/frozen. 

Potatoes 

The background data also included data from the database Agri-footprint (2018). 

Table A37. Results for 1 kg potatoes at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.1a   0.53/0.57a  SB1 Cederberg et al. 

(2005) 

Denmark 0.1    0.80 SB2 González et al. 

(2011) 

Switzerland 0.1    1.50 SB2 González et al. 

(2011) 

Sweden 0.2    1.50 SB2 González et al. 

(2011) 

USA 0.4    4.30 SB2 González et al. 

(2011) 

Sweden 0.1-0.2     SB2 Röös et al. (2010) 

World 0.1    1.72 SB1 Nemecek (2010) 

Austria 0.2a     SB2 Lindenthal et al. 

(2010) 

Switzerland 0.2     SB2  Stoessel et al. (2012) 

UK 0.2a  0.02/0.06a  1.40/1.6

0a 

SB1 Williams et al. (2010) 

UK 0.3     SB1 Audsley et al. (2009) 

Germany 0.1     SB2 Gruber et al. (2016) 

UK 0.4     SB2  Berners-Lee et al. 

(2012) 

Sweden 0.3 0.01 0.46   SB2 Moberg et al. (2020) 

Swedish 

market 

0.4 0.01 0.46   SB2 Moberg et al. (2020) 

Koreab 0.4     SB1 So et al. (2010) 
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aEither conventional and organic or conventional/organic. 
bSweet potato. 

 

Swedes (rutabaga) 

Table A38. Results for 1 kg swedes at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg  

CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Switzerland 0.3     - Svanes (2008) 

Sweden 0.1/0.4a     SB1 Landqvist and 

Woodhouse (2015) 
aFresh/frozen 

Beetroots 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A39. Results for 1 kg beetroots at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.1   1.10  SB2 González et al. 

(2011) 

Australia 0.2  1.75   SB1 Maraseni et al. 

(2010) 

Sweden 0.2/0.4a     SB1 Landqvist and 

Woodhouse (2015) 
 

Jerusalem artichokes 

Table A40. Results for 1 kg Jerusalem artichokes at farm gate (SB1), retailer (SB2), and consumer (SB3) 

from earlier studies 
Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.3/0.6a     SB1 Landqvist and 

Woodhouse (2015) 
aFresh/frozen. 

Fruits and vegetables 

Apples 

The earlier LCA studies on apples mainly focused on climate impact, but some also included other 

categories such as water use, energy use, and land use. The results in Table A41 generally show results 

for climate impact equal to or below 0.9 kg CO2e per kg apples, regardless of where they are produced. 

According to González et al. (2011), Swedish and French apples have a low impact, 0.1 kg CO2e per kg 

apple. Apples produced in New Zealand and then imported to a distribution center in Gothenburg, 

Sweden, have a higher impact, 0.5 kg CO2e per kg apple, most likely due to the transportation between 

the countries. The highest climate impact was found by Audsley et al. (2009), approx. 0.9 kg CO2e per 

kg apple, for apples imported to a regional distribution center in the UK from “rest of the world”. The 
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emissions that arise from transport could be a reason for the relatively high climate impact. The system 

boundary in Yoshikawa et al. (2008) included stages such as production, shipping, cooking etc., but 

only the stages up to retailing were accounted for here, which can be seen in Table A41. The system 

boundary in Blonk et al. (2010) is up to a farm gate in the Netherlands. 

According to trade statistics (SS, 2018), Sweden does not import apples from Switzerland and Peru, and 

according to FAOSTAT these countries import more apples than they export. The applicability of the 

studies by Stoessel et al. (2012) and Bartl et al. (2012) was therefore considered to be limited for the 

Swedish market. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A41. Results for 1 kg apples at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

New Zealand 0.04-0.1a   0.41-0.71a  SB1 i Canals et al. 

(2006) 

New Zealand 0.1     0.95 SB1  Saunders et al. 

(2006) 

UK 0.3    5.0  SB1 Saunders et al. 

(2006) 

Italy 0.2b     SB1 Cerutti et al. 

(2013) 

Italy 0.2 0.06 0.000

5 

1.75 

(calculated) 

 SB2 Assomela (2012) 

Sweden 0.1    0.63 SB2  González et al. 

(2011) 

France 0.1    1.60 SB2 González et al. 

(2011)  

New Zealand 0.5    6.10 SB2 González et al. 

(2011) 

Italy 0.2     SB2 Sessa et al. (2014) 

France 0.1 0.05   0.24 

(calc.) 

1.12  SB1 Basset-Mens et al. 

(2014) 

Netherlands 0.2     SB1 Blonk et al. (2010) 

New Zealand 0.4     SB1  Blonk et al. (2010) 

USA 0.1/0.2c     SB1 Venkat (2012) 

Switzerland 0.3  0.02 0.3   SB2  Stoessel et al. 

(2012) 

UK 0.3     SB1  Audsley et al. 

(2009) 

Rest of 

Europe 

0.4     SB1  Audsley et al. 

(2009) 

Rest of the 

world 

0.9     SB1 Audsley et al. 

(2009) 

USA 0.5   8.0  SB2  Renz et al. (2014)  

France 0.1d   0.9-1.2d  SB1  Alaphilippe et al. 

(2014) 

Greece 0.1 0.1   1.2 SB1 Bartzas et al. 

(2017) 

New Zealand 0.1      SB1 McLaren et al. 

(2010) 

UK 0.6     SB2 Berners-Lee et al. 

(2012) 

USA 0.8     SB1 Loijos (2008) 
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Japan  0.6     SB2  Yoshikawa et al. 

(2008) 

China 0.2     SB1 Yan et al. (2016) 

Italy 0.1    1.2 SB1 Tamburini et al. 

(2015) 

Peru 0.4     SB1 Bartl et al. (2012) 

Belgium 

(conven-

tional) 

0.1e     SB1 Goossens et al. 

(2017) 

Belgium 

(integrated) 

0.1e     SB1 Goossens et al. 

(2017) 

Belgium 

(organic) 

0.1-0.8e     SB1 Goossens et al. 

(2017) 

Swedish 

market 

0.4 0.03 0.6   SB2 Moberg et al. 

(2020) 

Sweden 0.2 0.0 0.7   SB2 Moberg et al. 

(2020) 
aIncluding four scenarios. 
bIncluding four scenarios. 
cConventional/organic. 
dIncluding two scenarios: north and south of France and extensive/semi-extensive. 
eIncluding young and old low productive trees and full production. Highest impact in organic orchards corresponds to young 

productive trees, where the high impact is because of low yield. 
 

Apricots 

Only two earlier LCA studies were found on apricots, namely Audsley et al. (2009) and Pergola et al. 

(2017). Audsley et al. (2009) showed that apricots imported from rest of Europe have a climate impact 

of 0.4 kg CO2e per kg apricots. Pergola et al. (2017) showed that climate impact for three orchard 

systems in Italy (including integrated and biodynamic system) ranged between 0.3-0.4 kg CO2e per kg 

apricot, where the highest value corresponded to the biodynamic system. Other values for apricots and 

their climate impact were taken from ecoinvent (Wernet et al., 2016), which all showed results below 

0.4 kg CO2e per kg apricot. 

Table A42. Results for 1 kg apricots at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Europe 0.4     SB1  Audsley et al. 

(2009) 

Italy 0.3-0.4a     SB1 Pergola et al. 

(2017) 
aThree orchard systems, including two cultivation systems: integrated (lower value) and biodynamic which is similar to 

organic farming (higher value). 

 

Bananas 

Several earlier LCA studies were found on bananas, mainly focusing on the climate impact of bananas 

from Ecuador, Costa Rica, Colombia, China, and Spain. All earlier studies included overseas transport 

from Ecuador, Costa Rica, or Colombia to a European country or to USA, except those by Yan et al. 

(2016) and Aguilera et al. (2015). The particularly high value given in Svanes and Aronsson (2013), 

1.4 kg CO2e per kg banana, may be due to several reasons, e.g., the assumptions of using small ships 

(i.e., higher fuel usage per unit of banana transported) and empty return. In addition, the transport 
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distance from Costa Rica to Norway, which is accounted for in Svanes and Aronsson (2013), is greater 

than the distance to e.g., a German retailer. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A43. Results for 1 kg bananas at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Ecuador 0.5/1.0a     SB2  Iriarte et al. (2014) 

Ecuador 0.5     SB1  Blonk et al. (2010) 

Switzerland 

(origin 

Colombia) 

0.5 0.08 0.2   SB2  Stoessel et al. 

(2012) 

USA (origin 

Costa Rica) 

0.5   5.5  SB2  Renz et al. (2014) 

EU (imported) 0.6     SB2 Lescot (2012) 

EU (imported) 0.7     SB2  Lescot (2012) 

EU (imported) 0.9     SB2  Lescot (2012) 

EU (imported) 1.1     SB2  Lescot (2012) 

UK (origin 

probably Costa 

Rica or 

Ecuador) 

0.7     SB2  Berners-Lee et al. 

(2012) 

Ecuador 0.8     SB2  Roibás et al. (2016) 

Ecuador 1.1  0.2 

(calcul

ated) 

  SB2  Luske (2010) 

Costa Rica 1.4  0.2 

(calcul

ated) 

  SB2  Svanes and 

Aronsson (2013) 

Rest of the 

world 

1.3     SB1  Audsley et al. 

(2009) 

Rest of the 

worldb 

1.3     SB1  Audsley et al. 

(2009) 

China 0.3     SB1 Yan et al. (2016) 

Spain 0.05/0.6c     SB1 Aguilera et al. 

(2015) 

Swedish market 0.7 0.004 0.5   SB2 Moberg et al. 

(2020) 
aMean value of best case - ships do not return empty/ mean value of worst case - ships return empty. 
bPlantain.  
cOrganic/conventional. 

 

Cherries 

Four LCA studies were identified on cherries. González et al. (2011) calculated a climate impact for 

Swedish cherries of around 0.3 kg CO2e per kg and for cherries from USA a higher impact, around 0.5 

kg CO2e per kg (transport to Sweden from the USA included). Audsley et al. (2009) reported similar 

results, 0.3 kg CO2e per kg for cherries grown in the UK and 0.4 kg CO2e per kg cherries grown outside 

the UK, but in Europe and transported to the UK. In the same study (Audsley et al., 2010), climate 

impact for cherries produced outside Europe was around 0.9 kg CO2e per kg transported to the UK. The 

study by Tassielli et al. (2018) showed a climate impact of 0.2 kg CO2e per kg for Italian cherries. Bravo 

et al. (2017) calculated a climate impact of 0.4 kg CO2e per kg for cherries from Chile. In the last two 

studies mentioned, fuel and fertilizers had the greatest impact. 
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Table A44. Results for 1 kg cherries at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.3    3.0 SB2  González et al. (2011) 

USA 0.5    5.0 SB2  González et al. (2011) 

UK 0.3     SB2  Audsley et al. (2009) 

Rest of 

Europe 

0.4     SB1  Audsley et al. (2009) 

Imported (rest 

of the world) 

0.9     SB1  Audsley et al. (2009) 

Italy 0.2     SB1 Tassielli et al. (2018) 

Chile 0.4     SB1 Bravo et al. (2017) 

 

Citrus fruit 

Nine earlier LCA studies were found on citrus fruit, which all showed a climate impact of equal to or 

below 0.7 kg CO2e per kg product. According to trade statistics (SS, 2018) Sweden does not import 

from Japan, and according to FAOSTAT Japan imports more than it exports. Therefore, the applicability 

of the study by Yoshikawa et al. (2008) could be considered to be limited for the Swedish market. 

Table A45. Results for 1 kg citrus at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 
Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Italy 0.3 0.06  0.3    SB2  Stoessel et al. (2012) 

Rest of 

Europe 

0.5a     SB1  Audsley et al. (2009) 

Morocco 0.3 0.3 0.5 

(calcula

ted) 

3.3  SB1  Basset-Mens et al. 

(2014) 

Japan 0.4b     SB2  Yoshikawa et al. 

(2008) 

Spain 0.08/0.14c     SB1 Aguilera et al. (2015)  

Spain 0.1/0.3c     SB1 Ribal et al. (2017) 

Peru 0.6     SB1 Bartl et al. (2012) 

China 

(tangerine) 

0.2     SB1 Yue et al. (2017) 

China (citrus) 0.3     SB1 Yue et al. (2017) 

Morocco 0.2-0.7d     SB1 Bessou et al. (2016) 
aBoth citrus fruit, misc. and tangerines, mandarins etc. 
bMandarin orange (small citrus). 
cCitrus (incl. mandarins and oranges) organic/conventional. 
dIncluding five scenarios that correspond to different years. The highest value corresponded to a year with low yield (leading 

to a higher result) and the lowest value to a year with high yield (leading to a lower result). 

 

Dates 

One earlier study was found on dates (Audsley et al., 2009). This study included transportation to the 

UK. Data from ecoinvent were also found (Wernet et al., 2016). 
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Table A46. Results for 1 kg dates at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 
Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Rest of the 

world 

0.9     SB1  Audsley et al. (2009) 

 

Figs 

The study by Audsley et al. (2009) includes little detail about the individual processes behind the results. 

The results are therefore difficult to verify, so recommendations on climate impact based solely on 

Audsley et al. (2010) should be interpreted with caution. 

Table A47. Results for 1 kg figs at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Rest of 

Europe 

0.4     SB1  Audsley et al. (2009) 

 

Grapefruit and pomelo 

The study by Audsley et al. (2009) provides little detail about the individual processes behind the results. 

The results are therefore difficult to verify, so recommendations on climate impact based solely on 

Audsley et al. (2010) should be interpreted with caution. 

Table A48. Results for 1 kg grapefruit and pomelo at farm gate (SB1), retailer (SB2), and consumer 

(SB3) from earlier studies 
Country Climate 

impact 

(kg CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

Rest of 

Europe 

0.5     SB1  Audsley et al. (2009) 

Rest of the 

world 

0.7     SB1  Audsley et al. (2009) 

 

Grapes 

According to trade statistics (SS, 2018), Sweden does not import grapes from Switzerland, Japan, the 

USA, or Canada. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A49. Results for 1 kg grapes at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Spain 0.2 0.2 0.2    SB1 Torres et al. (2014) 



 

111 
 

Switzerland 

(origin 

Spain) 

0.3 0.2  0.3   SB2  Stoessel et al. 

(2012) 

Japan 0.9      SB2  Yoshikawa et al. 

(2008) 

USA 0.21/0.24a      SB1 Venkat (2012) 

Rest of 

Europe 

0.4      SB1  Audsley et al. 

(2009) 

Rest of the 

world 

0.8      SB1  Audsley et al. 

(2009) 

Canada 0.6b     5.6 SB1 Point et al. (2012) 

Spain 0.1/0.2a      SB1 Aguilera et al. 

(2015) 

Italy 0.1b      SB1 Cichelli et al. 

(2016) 

Italy 0.3-0.5b      SB1 Bartocci et al. 

(2017) 

Italy 0.3b      SB1 Falcone et al. 

(2016) 

Swedish 

market 

0.7 0.08  1.4 

 

  SB2 Moberg et al. 

(2020) 
aWine grapes: organic/conventional. 
bWine grapes, may include several types. 

 

Mangoes 

Four studies were found on mangoes. Carneiro et al. (2018), Basset-Mens et al. (2014) and Graefe et al. 

(2013) estimated the climate impact to be equal to or below 0.1 kg CO2e per kg for mangoes at farm 

gate grown in either Brazil or Colombia. If emissions from transport to Sweden and packaging were 

taken into account, the climate impact would be approximately 0.5 kg CO2e per kg mangoes. However, 

Audsley et al. (2009) estimated the climate impact to be much higher, 1.8 kg CO2e per kg for mangoes 

grown in other parts of the world than Europe and then imported to UK. It is not clear why this result is 

particularly higher compared with other results, but one reason could be the emissions that occur from 

transporting mangoes to the UK. 

Table A50. Results for 1 kg mangoes at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Rest of the 

worlda 

1.8     SB1  Audsley et al. 

(2009) 

Brazil 0.1 0.4    SB1 Carneiro et al. 

(2019) 

Brazil 0.1 0.2  1.5  SB1 Basset-Mens et al. 

(2014) 

Colombia 0.05     SB1 Graefe et al. (2013) 
aGuavas and mangoes. 

Kiwi fruit 

New Zealand did not show up in trade statistics (SS, 2018). However, New Zealand exports large 

amounts of kiwi fruit (FAOSTAT, 2019) and exports most kiwi fruit to Sweden via other European 

countries. The applicability of the study by Nikkhah et al. (2016) was considered to be limited for the 

Swedish market, since Iran did not show up in trade statistics (SS, 2018) and Iran imports more kiwi 

fruit than it exports according to FAOSTAT (2019). 
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The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A51. Results for 1 kg kiwi fruit at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy use 

(fossil) (MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

New Zealand 0.1-0.2a     SB1  Müller et al. (2015) 

Rest of Europe 0.4     SB1  Audsley et al. 

(2009) 

Rest of world 0.9     SB1  Audsley et al. 

(2009) 

New Zealand 0.3b     SB1  McLaren et al. 

(2010) 

Switzerland 

(origin Italy) 

0.7 0.1 0.3   SB2 Stoessel et al. 

(2012) 

Greece 0.7 0.4 0.7 11.1 12.4 SB1 ZEUS (2011) 

New Zealand 0.3      Mithraratne (2010) 

Italy 0.1   2.7  SB1 Baudino et al. 

(2017) 

Iran 0.2     SB1 Nikkhah et al. 

(2016) 
aFour scenarios, including two kiwifruit cultivars (green and gold kiwi) and two management systems (integrated and organic 

system). 
bIntegrated production. 
 

Lemons 

Three earlier studies were found on lemons. The study by Pergola et al. (2013) showed low results for 

lemons grown in Sicily, varying between 0.04 and 0.1 kg CO2e per kg for organic and conventional 

farming up to farm gate, respectively. Likewise, the study by Bell et al. (2018) showed low climate 

impact for lemons grown in USA, 0.2 kg CO2e per kg. The study by Audsley et al. (2009) showed higher 

climate impact, for lemons and limes grown in Europe and then imported to a regional distribution center 

in the UK. This is most likely due to the inclusion of transport to Europe. According to Bell et al. (2018), 

variations in the results between these studies can also be due to differences in climate, production 

practices, and yields. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A52. Results for 1 kg lemons at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Sicily 0.04/0.1a    2.10/2.9a SB1 Pergola et al. 

(2013a) 

Rest of 

Europe 

0.5b     SB1  Audsley et al. 

(2009) 

USA 0.2 0.2  2.9  SB1 Bell et al. (2018) 

Swedish 

market 

0.5 0.2 0.7   SB2 Moberg et al. (2020) 

aOrganic/conventional. 
bLemons and limes. 
 

Melons (including melons, watermelons, rockmelons etc.) 
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Eight earlier studies were found on melons, which showed various results depending on whether they 

were grown in a greenhouse or not. A few studies showed climate impacts equal to or less than 0.5 kg 

CO2e per kg (Stoessel et al., 2012; Renz et al., 2014; Maraseni et al., 2010). 

Cellura et al. (2012) estimated the climate impact for Italian melons grown in a greenhouse to be either 

1.2 or 1.5 kg CO2e per kg depending on whether tunnels or a pavilion tent was used. A relatively high 

result for climate impact was also shown in Audsley et al. (2009), 1.7 kg CO2e per kg for unspecified 

melons imported to UK from rest of the world. However, the results in Audsley et al. are difficult to 

verify, since little information about the studied system is presented in that paper. According to Brito de 

Figueirêdo et al. (2013), variations in these results may be due to differences in the production systems 

(grown in open field or in a greenhouse, for example).  

 

Table A53. Results for 1 kg melons at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

France 

(Switzerland) 

0.3 0.33 0.07   SB2  Stoessel et al. (2012) 

USA 0.3   4.75  SB2 Renz et al. (2014) 

Brazil 0.7     SB2  de Figueirêdo et al. 

(2013) 

Italy (G) 1.2/1.5a 0.14a    SB2  Cellura et al. (2012)  

Australiab 0.3  0.39   SB1 Maraseni et al. 

(2010) 

Australiab 0.4  0.32   SB1 Maraseni et al. 

(2010) 

Rest of 

Europec 

1.3      SB1  Audsley et al. 

(2009) 

Rest of worldc 1.3      SB1  Audsley et al. 

(2009) 

Rest of 

Europed 

1.6     SB1  Audsley et al. 

(2009) 

Rest of the 

worldd 

1.7     SB1  Audsley et al. 

(2009) 

Costa Rica 0.7e  0.71-

0.73e 

  SB1  Flysjö and Ohlsson 

(2006) 

Brazil 0.8     SB1 de Lima Santos et al. 

(2018) 
aGreenhouse, tunnel/pavilion tent. 
bRockmelon/cantaloupe. 
cWatermelons. 
dOther melons.  
eIncluding two scenarios. 

 

Oranges 

Eight earlier studies were found on oranges. The highest climate impact, 0.5 kg CO2e per kg oranges, 

was found in Audsley et al. (2009), while the climate impact were lower in the other studies (Pergola et 

al., 2013; Knudesen et al., 2011; Jungbluth et al., 2013; Dwivedi et al., 2012; Beccali et al., 2009; 

González et al., 2011; Yan et al., 2016). 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 
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Table A54. Results for 1 kg oranges at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy use 

(fossil) (MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Sicily 0.04/0.1a    2.38/2.87a SB1 Pergola et al. 

(2013a) 

Brazil 0.1b  0.55 

& 

0.44/

0.50b 

 

0.764 & 

0.954/1.265b 

 SB1 Knudsen et al. 

(2011) 

Brazil  0.1c     SB1 Doublet et al. 

(2013) 

Spain  0.2d     SB1 Doublet et al. 

(2013) 

USA  0.3     SB1 Doublet et al. 

(2013) 

USA 0.3     SB1  Dwivedi et al. 

(2012) 

Rest of 

Europe  

0.5     SB1  Audsley et al. 

(2009) 

Italy 0.1     SB1 Beccali et al. 

(2009) 

USA 0.3    3.7 SB2  González et al. 

(2011) 

China 0.1     SB1 Yan et al. (2016) 

Swedish 

market 

0.7 0.17 0.68   SB2 Moberg et al. 

(2020) 
aOrganic/conventional. 
bThree scenarios; organic small vs. large scale/conventional small scale. 
cTwo scenarios that include organic small and large scale.  
dIntegrated production. 
eFour scenarios: organic and integrated. 

 

Papaya 

The study by Audsley et al. (2009) provides little detail about the individual processes behind the results. 

The results are therefore difficult to verify, so recommendations on climate impact based solely on 

Audsley et al. (2010) should be interpreted with caution. 

Table A55. Results for 1 kg papaya at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Rest of the 

world 

0.9     SB1  Audsley et al. (2009) 

 

Peaches and nectarines 

Eight earlier studies were found on peaches and nectarines, which showed climate impact equal to or 

below 0.9 kg CO2e per kg product. The highest climate impact, again, was estimated by Audsley et al. 

(2009), where transport from the rest of the world to UK was included in the result. The lowest climate 

impact was estimated by Vinyes et al. (2015), who studied a 15-year period (the results are the average 
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for these years). The study by Vinyes et al. (2015) excluded the nursery stage due to lack of data. 

Storage, processing, and packaging were also excluded from the study. 

Japan does not show up in trade statistics (SS, 2018), and according to FAOSTAT the country has very 

little export of peaches. The applicability of the study by Yoshikawa et al. (2008) could therefore be 

considered to be limited for the Swedish market. 

The background data also included data from the databases ecoinvent (Wernet et al., 2016). 

Table A56. Results for 1 kg of peaches and nectarines at farm gate (SB1), retailer (SB2), and consumer 

(SB3) from earlier studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Japana 

 

0.8      SB2  Yoshikawa et al. 

(2008) 

Spainb 0.4 0.1 0.1    SB1 Torres et al. (2014) 

Rest of 

Europe 

0.4      SB1  Audsley et al. 

(2009) 

Rest of 

the world 

0.9      SB1 Audsley et al. 

(2009) 

Francea 0.2 0.3   2.5  SB1 Basset-Mens et al. 

(2014) 

Spainc 0.1-0.3    1.1-2.5  SB1 Vinyes et al. (2015) 

Chinaa 0.4      SB1 Yan et al. (2016) 

Perua 0.6      SB1 Bartl et al. (2012) 

Irana 0.2      SB1 Nikkhah et al. 

(2016) 
aOnly peach. 
bOnly nectarine. 
cOnly peach, but four scenarios, where the lowest value corresponds to the high yield scenario and the highest value to the 

growth period. 

 

Pears and quinces 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A57. Results for 1 kg pears and quinces at farm gate (SB1), retailer (SB2), and consumer (SB3) 

from earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use (m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

China 

(Beijing 

suburb) 

0.2/0.4a   2.4-

2.6/2.1a 

 SB1 Liu et al. (2010) 

China 

(Liaoning 

province) 

0.1/0.3b   1.1/1.3b  SB1 Liu et al. (2010) 

UK 0.6c     SB2 Berners-Lee et al. (2012) 

Switzerland 0.3 0.03 0.4   SB2  Stoessel et al. (2012) 

UK 0.3     SB1  Audsley et al. (2009) 

Rest of 

Europe 

0.4     SB1  Audsley et al. (2009) 

Rest of 

world 

0.9     SB1  Audsley et al. (2009) 

China 0.2     SB1 Yan et al. (2016) 
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Portugal 0.1     SB1 de Figueirêdo et al. 

(2013) 

Italy 0.4    6.7 SB1 Tamburini et al. (2015) 

Swedish 

market 

0.4 0.002 0.5   SB2 Moberg et al. (2020) 

Sweden 0.2 0 0.8   SB2 Moberg et al. (2020) 
aOrganic (incl. 2 scenarios)/conventional (only pears). 
bOrganic/conventional (only pears). 
cOnly pears. 
 

Pineapples 

Seven earlier LCA studies were found on pineapple production, three of which (Ingwersen, 2012; 

Stoessel et al., 2012; Blonk et al., 2010) estimated the climate impact for pineapples grown in Costa 

Rica to be equal to or below 0.5 kg CO2e per kg. The system boundary in Blonk et al. (2010) and Stoessel 

et al. (2012) included transport from Costa Rica to Europe. The system boundary in Ingwersen (2012) 

was from cradle to shelf in the USA, but only the results for the farming stage in Costa Rica are shown 

here (Table A58).  

The higher climate impact from Audsley et al. (2009) is difficult to explain, since the study gives little 

detail on the underlying processes. Usubharatana and Phungrassami (2017), de Ramos and Taboada 

(2018), and Graefe et al. (2013) estimated the climate impact to be equal to or below 0.2 kg CO2e per 

kg pineapple, where mainly fertilization contributed to the emissions. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A58. Results for 1 kg pineapples at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use 

(m3) 

Total 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Costa 

Rica 

0.4 0.02  0.2   SB2  Stoessel et al. 

(2012) 

Costa 

Rica 

0.5a      SB1  Blonk et al. 

(2010) 

Costa 

Rica 

0.2  0.1  1.9  SB2  Ingwersen (2012) 

Rest of 

the world 

1.8      SB1  Audsley et al. 

(2009) 

Thailand 0.2-0.3b      SB1 Usubharatana and 

Phungrassami 

(2017) 

Philip-

pines 

0.2    0.9  SB1 De Ramos et al. 

(2018) 

Colom-

bia 

0.1      SB1 Graefe et al. 

(2013) 
aIncluding organic and conventional farming. 
bIncluding three farms, where the smallest farm had the highest value and the largest farm the lowest value. 

 

Plums and sloes 

The study by Audsley et al. (2009) provides little detail about the individual processes behind the results. 

The results are therefore difficult to verify, so recommendations on climate impact based solely on 

Audsley et al. (2010) should be interpreted with caution. 



 

117 
 

Table A59. Results for 1 kg plums and sloes at farm gate (SB1), retailer (SB2), and consumer (SB3) 

from earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

UK 0.3     SB1  Audsley et al. 

(2009) 

Rest of 

Europe 

0.4     SB1  Audsley et al. 

(2009) 

Rest of 

the world 

0.9     SB1  Audsley et al. 

(2009) 

 

 

 

Artichokes 

The study by Audsley et al. (2009) provides little detail about the individual processes behind the results. 

The results are therefore difficult to verify, so recommendations on climate impact based solely on 

Audsley et al. (2010) should be interpreted with caution. 

Table A60. Results for 1 kg artichokes at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy use 

(fossil) (MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Rest of 

Europe 

0.5     SB1  Audsley et al. 

(2009) 
 

Asparagus (including green and white) 

Hofer (2009), Schäfer et al. (2014), and Stoessel et al. (2012) studied asparagus production in European 

countries and reported climate impact equal to or below 1 kg CO2e per kg. However, Jungbluth et al. 

(2016) estimated the climate impact for green asparagus cultivated in Switzerland to be 1.9 kg CO2e per 

kg, where the relatively high result could be because of low yield per hectare compared with other 

vegetables.  

Air transportation can explain the relatively high climate impact figures in Table A61. For example, 

asparagus transported by air from Peru to Europe has a climate impact of about 12 kg CO2e per kg 

(Hofer, 2009; Jungbluth et al., 2014; Stoessel et al., 2012). According to Jungbluth et al. (2016) Peruvian 

asparagus transported via airfreight has a climate impact of 24.9 kg CO2e per kg, which is much higher 

than the result presented in Jungbluth et al. (2014). This is possibly due to use of radiative forcing index 

(RFI) (N. Jungbluth, personal communication 2019). The RFI factor is multiplied by emissions from 

aircraft to calculate the total global warming potential of high-altitude emissions. 

The system boundary in Hofer (2009) was not completely clear, so it was assumed to be from cradle to 

a Swiss retailer. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A61. Results for 1 kg asparagus at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 
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Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Switzerland 0.6a     SB2  Hofer (2009) 

Spain 0.8/1a     SB2  Hofer (2009) 

USA 0.8/1a     SB2  Hofer (2009) 

Peru 0.9/1.1a     SB2  Hofer (2009) 

Mexico 0.9/1.2a     SB2  Hofer (2009) 

Switzerland 0.4/0.5b     SB2  Hofer (2009) 

Germany 0.5/0.6b     SB2  Hofer (2009) 

Slovenia 0.7/0.8b     SB2  Hofer (2009) 

Spain 0.8/1b     SB2 Hofer (2009) 

Peru 0.8/1b     SB2  Hofer (2009) 

Maldives 1.5/1.6b     SB2  Hofer (2009) 

Peru 12,3h     SB2  Hofer (2009) 

USA 11f     SB2  Hofer (2009) 

Peru 12.4 f     SB2  Hofer (2009) 

Mexico 12.6 f     SB2  Hofer (2009) 

Germany 0.5  1.42   SB2  Schäfer et al. (2014) 

Peru 2.4/7.6c     SB2  Schäfer et al. (2014) 

Switzerland 1.5      SB2  Jungbluth et al. (2014) 

Spain 1.7      SB2  Jungbluth et al. (2014) 

Peru 12.8g     SB2  Jungbluth et al. (2014) 

USA 9.7g     SB2  Jungbluth et al. (2014) 

Australia 2.5  2.32   SB1 Maraseni et al. (2010) 

UK 1.9     SB1  Audsley et al. (2009) 

Rest of 

Europe 

2.2     SB1  Audsley et al. (2009) 

Rest of the 

world 

2.4     SB1  Audsley et al. (2009) 

Peru 1.1/12.2c     SB2  Stoessel et al. (2012) 

Switzerland 0.4/0.5d  2/3.33
d 

  SB2  Stoessel et al. (2012) 

Slovenia 1.0e     SB2  Stoessel et al. (2012) 

Mexico 13.5f     SB2 Stoessel et al. (2012) 

Morocco 1.9e     SB2  Stoessel et al. (2012) 

Peru 0.9     SB1 Bartl et al. (2012) 

Switzerland 1.9     SB2  Jungbluth et al. (2016) 

Spain 2.1     SB2  Jungbluth et al. (2016) 

Mexicog 22.7     SB2 Jungbluth et al. (2016) 

Perug 24.9     SB2  Jungbluth et al. (2016) 

USAg 18.7     SB2  Jungbluth et al. (2016) 
aGreen organic/green integrated production. 
bWhite organic/white integrated production. 
cShip/air freight to a European retailer. 
dWhite/green asparagus. 
eWhite, by truck to a Swiss retailer. 
fGreen integrated, transported by air freight to a European retailer. 
gTransported by air freight to a European retailer. 
hWhite integrated, transported by air freight. 

 

Avocado 

The climate impact estimated in Bell et al. (2018) is lower than the result for avocados from the rest of 

the world given in Audsley et al. (2009) and Stoessel et al. (2012). According to Bell et al. (2018), the 

variations in the results may be due to differences in yield, climate, and agricultural production practices. 

In addition, the study by Bell et al. (2018) excluded some material inputs, which can have led to the 

lower climate impact. Most importantly, Audsley et al. (2009) also included emissions from transport 
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when importing avocados to a regional distribution center in the UK, and Stoessel et al. (2012) included 

transport distance between Israel and Switzerland, likely explaining the higher impacts estimated in 

these studies.  

Use of blue water (irrigation water), estimated by Bell et al. (2018) and Stoessel et al. (2012) to be 0.60 

and 0.93 m3/kg, respectively, is in line with the California average use (0.62 m3/kg) and the country 

average use in Israel (0.70 m3/kg) for avocado (Mekonnen et al., 2011). However, according to trade 

statistics (SS, 2018), Sweden does not import avocados from USA, and the USA imports more avocados 

than it exports. Therefore, the applicability of the study by Bell et al. (2018) can be considered limited 

for the Swedish market. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A62. Results for 1 kg avocado at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Rest of 

Europe 

0.4     SB2  Audsley et al. (2009) 

Rest of the 

world 

0.9     SB2 Audsley et al. (2009) 

Israel 1.3 0.93 1.0   SB2  Stoessel et al. (2012) 

USA 0.5 0.60  6.70  SB1 Bell et al. (2018) 

Peru 0.5     SB1 Bartl et al. (2012) 

Colombia 0.2     SB1 Graefe et al. (2013) 
aOrganic/conventional. 

 

Broccoli 

Seven earlier LCA studies were found on broccoli. González et al. (2011) studied broccoli from Sweden, 

showing a climate impact of 0.4 kg CO2e per kg, while Moberg et al. (2020) estimated a slightly higher 

climate impact. Similar results were shown for broccoli from UK, Switzerland, and USA (Stoessel et 

al., 2012; Venkat, 2012; i Canals et al., 2008). Jungbluth et al. (2016) estimated higher climate impacts 

of 0.6, 0.7 and 0.9 kg CO2e per kg for broccoli grown in Switzerland, Italy, and Spain, respectively, 

where transport to a Swiss retailer was included.  

Maraseni et al. (2010) estimated the highest climate impact for broccoli, 1.7 kg CO2e per kg. However, 

according to trade statistics (SS, 2018), Sweden does not import broccoli from Australia. Furthermore, 

Australia imports more broccoli than it exports (FAOSTAT, 2019). Therefore, the applicability of the 

study by Maraseni et al. (2010) can be considered limited for the Swedish market. 

The system boundary in i Canals et al. (2008) is from cradle to grave, but the retail to grave phase is 

excluded in the results shown in Table A63. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A63. Results for 1 kg broccoli at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg CO2e) 

Blue 

water 

use (m3) 

Land 

use (m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.4    3.60 SB2  González et al. (2011) 
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UKa 0.4-0.5  0.50-

0.63 

 5.50-

6.00 

SB3  i Canals et al. (2008) 

Spaina 0.7-1.1 0.11-

0.25 

0.01-

0.04 

 13.00-

17.00 

SB3  i Canals et al. (2008) 

Switzerland 0.5 0.03 0.10   SB2  Stoessel et al. (2012) 

USA 0.4b     SB1 Venkat (2012) 

Switzerland 0.6     SB2  Jungbluth et al. 

(2016) 

Italy 0.7     SB2  Jungbluth et al. 

(2016) 

Spain 0.9     SB2  Jungbluth et al. 

(2016) 

Switzerland 

(F)c 

0.66     SB2  Jungbluth et al. 

(2016) 

Australia 1.7  1.55   SB1 Maraseni et al. (2010) 

Swedish 

market 

0.6     SB2 Moberg et al. (2020) 

Sweden 0.6 0.01 1.4   SB2 Moberg et al. (2020) 
aIncluding four scenarios. 
bIncluding organic and conventional broccoli. 
cDeep frozen. 

 

Cabbage 

Three earlier studies estimated climate impact for cabbage or kale grown in Sweden, which was 

estimated to be equal to or below 0.3 kg CO2e per kg (Moberg et al., 2020; Landqvist & Woodhouse, 

2015; González et al., 2011). Audsley et al. (2009) estimated the highest climate impact for imported 

cabbage to the UK from rest of the world, where emissions from transport probably play a significant 

role. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A64. Results for 1 kg cabbage at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact 

(kg CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

Sweden 0.1    1.10 SB2  González et al. (2011) 

Australia 0.2  0.25   SB1 Maraseni et al. (2010) 

Japan 0.4     SB2  Yoshikawa et al. 

(2008) 

UK 0.2     SB1  Audsley et al (2009) 

Rest of 

Europe 

0.5     SB1  Audsley et al. (2009) 

Rest of the 

world 

0.6     SB1  Audsley et al. (2009) 

Swedish 

market 

0.4 0.03 0.71   SB2 Moberg et al. (2020) 

Sweden 0.3 0.01 0.3   SB2 Moberg et al. (2020) 

Swedena 0.2     SB1 Landqvist et al. (2014) 

China 0.1     SB1 Yue et al. (2017) 
 aKale. 

 

Capsicums/peppers 

Seven earlier LCA studies were found on capsicums/peppers. Yoshikawa et al. (2008) estimated the 

highest climate impact, for green peppers grown in a greenhouse. The heat source was not specified in 



 

121 
 

the study. According to the same study, green peppers grown in the open field have a climate impact of 

0.7 kg CO2e per kg. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A65. Results for 1 kg capsicums/peppers at farm gate (SB1), retailer (SB2), and consumer (SB3) 

from earlier studies (G: greenhouse) 

Country Climate 

impact 

(kg 

CO2e) 

Blue water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Australia 0.2  0.38   SB1 Maraseni et al. (2010) 

Japan 0.7     SB2  Yoshikawa et al. 

(2008) 

Japan (G) 3.8     SB2  Yoshikawa et al. 

(2008) 

Rest of the 

world 

0.9     SB1 Audsley et al. (2009) 

Greece  0.16/0.09a 0.40/

0.25a 

   Chatzisymeon et al. 

(2017) 

Switzerlandb (G) 0.9 0.04 0.06   SB2  Stoessel et al. (2012) 

Italy (G) 1.1/1.2c 0.11/0.10d    SB2 Cellura et al. (2012) 

China 0.2     SB1 Yue et al. (2017) 
aOrganic/conventional. 
bGreenhouse, fuel heating oil. 
cGreenhouse tunnel/pavilion tent.  

 

Cauliflower  

Results from the study by Audsley et al. (2009) showed much higher climate impact than other studies. 

However, that study presents little information about the underlying processes, and the difference is 

therefore difficult to explain. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A66. Results for 1 kg cauliflowers at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Netherlands 0.34/0.28a     SB1 Blonk et al. (2010) 

Australia 0.4  0.51   SB1 Maraseni et al. 

(2010) 

Switzerland 0.4 0.03 0.11   SB2  Stoessel et al. 

(2012) 

UKb 1.9     SB1  Audsley et al. 

(2009) 

Rest of Europeb 2.2     SB1  Audsley et al. 

(2009) 

Rest of the 

worldb 

2.4     SB1  Audsley et al. 

(2009) 

China 0.1     SB1 Yue et al. (2017) 

Swedish market 0.5 0.05 0.68   SB2 Moberg et al. 

(2020) 

Sweden 0.4 0.7 0.01   SB2 Moberg et al. 

(2020) 
aOrganic/conventional. 
bCauliflowers and broccoli. 
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Celery 

Only two earlier LCA studies were found on celery (Bell et al., 2018; Maraseni et al., 2010), which 

estimated the climate impact to be below 0.2 kg CO2e per kg. The background data also included data 

from the database ecoinvent (Wernet et al.. 2016), which showed somewhat higher results. 

Table A67. Results for 1 kg celery at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

USA 0.1 0.10  1.70  SB1 Bell et al. 

(2018) 

Australia 0.2  0.20   SB1 Maraseni et al. 

(2009) 

 

Chillies 

Table A68. Results for 1 kg chillies at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Australia 0.7 0.98   SB1 Maraseni et al. (2010) 

Rest of Europe  1.3a    SB1  Audsley et al. (2009) 
aChillies and peppers, dry. 

 

Cucumbers and gherkins 

Results from Marton et al. (2010) show that cucumbers grown in greenhouses heated with fuel oil can 

have a much higher climate impact (in this study around 1.7 kg CO2e per kg cucumber) than when grown 

in greenhouses heated with waste heat where no fossil fuel is used (0.2 kg CO2e per kg cucumber). 

Cucumbers grown in open fields in Sweden have a climate impact of 0.1 kg CO2e per kg, according to 

González et al. (2011). According to the same study, cucumbers grown in greenhouses have a much 

higher impact if the greenhouse is heated with fuel oil instead of electricity. 

The system boundary in Hofer (2009) was assumed to be up to a Swiss retailer. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A69. Results for 1 kg cucumber and gherkins (only cucumbers if not specified) at farm gate (SB1), 

retailer (SB2), and consumer (SB3) from earlier studies (G: greenhouse) 
Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.1     SB2  González et al. (2011) 

Australia 0.1  0.14   SB1 Maraseni et al. (2010) 

Austria 0.2a     SB2 Lindenthal et al. (2010) 

Switzerland (G) 0.2b     SB2 Marton et al. (2010) 

Switzerland (G) 1.3c     SB2  Stoessel et al. (2012) 

Sweden (G) 2.6d    35 SB2  González et al. (2011) 
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Sweden (G) 0.75g    41 SB2  González et al. (2011) 

Switzerland (G) 1.7d     SB2 Marton et al. (2010) 

UK (G) 3.8c     SB1  Audsley et al. (2009) 

Switzerland 0.1/0.2e     SB2  Hofer (2009) 

Belgium 0.2/0.3e     SB2  Hofer (2009) 

Netherlands 0.2/0.3e     SB2  Hofer (2009) 

Spain 0.3     SB2  Hofer (2009) 

Switzerland (G) 2f     SB2  Hofer (2009) 

Belgium (G) 2.1f     SB2  Hofer (2009) 

Netherlands (G) 2.1f     SB2  Hofer (2009) 

China 0.1/0.2h     SB1 Yue et al. (2017) 

Sweden 0.7 0.02 0.1   SB2 Moberg et al. (2020) 

Swedish market 0.7 0.01 0.1   SB2 Moberg et al. (2020) 
aOrganic and conventional. 
bGreenhouse heated from waste heat. 
cGreenhouse, heat not specified. 
dPlastic greenhouse heated with fuel oil. 
eGherkins, organic/conventional. 
fGherkins, greenhouse, integrated production, unspecified heated greenhouse. 
gGreenhouse, electricity heating. 
hGreenhouse/open field. 

 

Eggplants (aubergines) 

The studies showing a higher impact (Wernet et al., 2016; Stoessel et al., 2012) studied production in 

heated greenhouses. There was not sufficient background information in Audsley et al. (2009) to explain 

the results. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A70. Results for 1 kg eggplants (aubergines) at farm gate (SB1), retailer (SB2), and consumer 

(SB3) from earlier studies (G: greenhouse) 
Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Rest of Europe  1.3     SB1  Audsley et al. (2009) 

Switzerland (G)a 1.4 0.05 0.06   SB2  Stoessel et al. (2012) 

China 0.2/0.3c     SB1 Yue et al. (2017) 
aGreenhouse heated. 
bOpen field/greenhouse. 

Fennel 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A71. Results for 1 kg fennel at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Switzerland 0.5 0.05 0.14   SB2  Stoessel et al. (2012) 

 

Garlic 
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Earlier studies show that garlic likely has a climate impact below 1 kg CO2e per kg. For example, garlic 

from Iran has an impact of 0.4 kg CO2e per kg (Khoshnevisan & Rafiee, 2014). However, if packaging 

and transport to Sweden were added, the climate impact would be 0.9 kg CO2e per kg. European 

production was considered most relevant for the Swedish market. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A72. Results for 1 kg garlic at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Land 

use 

(m2) 

Energy use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

UK 0.6    SB1 Audsley et al. (2009) 

Rest of Europe  0.7    SB1  Audsley et al. (2009) 

Czech Republic 0.2/0.4a    SB1 Moudrý jr et al. (2016) 

Iran 0.4    SB1 Khoshnevisan and Rafiee 

(2014) 
aOrganic/conventional. 

Ginger 

The study by Audsley et al. (2009) provides little detail about the individual processes behind the results. 

The results are therefore difficult to verify, so recommendations on climate impact based solely on 

Audsley et al. (2010) should be interpreted with caution. 

Table A73. Results for 1 kg ginger at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Land 

use 

(m2) 

Energy use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Rest of the 

world 

0.9    SB1 Audsley et al. (2009) 

 

Green beans 

Sweden has no significant production of green beans for the retailer market, and no earlier study could 

be found on green beans produced in Sweden. 

Table A74. Results for 1 kg green beans at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies (F: fresh, FZ: frozen, C: canned) 
Country Climate 

impact (kg 

CO2e) 

Land 

use 

(m2) 

Energy use 

(fossil) (MJ) 

Energy use 

(total) (MJ) 

System 

boundary 

Reference 

Spain (F) 0.1-0.3a    SB1 Romero-Gámez et al. 

(2012) 

The 

Netherlands 

(C) 

1.3-1.6b    SB2 Blonk et al. (2010) 

UK (F) 1.6    SB1 Audsley et al. (2009) 

UK (F)c 0.08-0.13 0.08-

0.13 

1.21 20.1-22.4 SB3 i Canals et al. (2008) 

UK (FZ) 0.1 0.10 1.14 27.7 SB3 i Canals et al. (2008) 

Kenya (F)d 10.7 0.16 0.48 158.2 SB3 i Canals et al. (2008) 

Uganda (F)d 10.9 0.09 0.82 158.2 SB3 i Canals et al. (2008) 

Australia (F) 1.4  1.73  SB1 Maraseni et al. (2010) 
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aSix scenarios for three treatment over two years. Data presented as average for the two years. One year for one treatment 

(greenhouse with misting) resulted in much higher climate impact than the other scenarios due to very low yield that year. 
bTwo scenarios, one canned in glass jar (higher value) and one in tin can (lower value), 
cTwo scenarios for UK. 
dTransported by air to UK. 

 

Lettuce 

The particularly high climate impact estimated by i Canals et al. (2008) corresponded to lettuce grown 

in a greenhouse year-round heated with natural gas. Lettuce in open fields showed lower climate impact, 

equal to or below 0.6 kg CO2e per kg. It is unclear why the climate impact from the study by Audsley 

et al. (2009) (rest of the world) is so much higher, but a likely explanation is use of heated greenhouse 

and possibly high waste rates when traded from outside Europe. For the Swedish market, European 

production was considered most relevant. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A75. Results for 1 kg lettuce at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies (G: greenhouse) 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.1    1.40 SB2  González et al. (2011) 

Holland 0.1    1.30 SB2  González et al. (2011) 

USA 0.3    3.90 SB2  González et al. (2011) 

UKa 0.2-0.5 0.04-

0.10 

0.25-

0.44 

 5-11 SB2 i Canals et al. (2008) 

Spainb 0.4-0.6 0.04-

0.13 

0.20-

0.24 

 10-11 SB2 i Canals et al. (2008) 

UK (G)c 1.3 0.01 0.08  31 SB2 i Canals et al. (2008) 

UK (G)d 4.7 0.05 0.08  105 SB2 i Canals et al. (2008) 

Australia 0.3  0.37   SB1 Maraseni et al. (2010) 

UK 0.3     SB1  Hospido et al. (2009) 

Spain 0.3     SB1 Hospido et al. (2009) 

UK (G)d 1.5-3.7     SB1 Hospido et al. (2009) 

USA 0.3/0.2e     SB1 Venkat (2012) 

Sweden 0.4     SB2 Strid and Eriksson 

(2014) 

Switzerland (G) 0.5/4.5f     SB2 Marton et al. (2010) 

Japan 0.6     SB2  Yoshikawa et al. (2008) 

UKg 1.2     SB1  Audsley et al. (2009) 

Rest of Europeg 1     SB1  Audsley et al. (2009) 

Rest of the 

worldg 

10     SB1  Audsley et al. (2009) 

Australia 3.6     SB2 Gunady et al. (2012) 

Italyh 0.3    4.12 SB1 Tamburini et al. (2015) 

Swedish market 0.3 0.01 0.48   SB2 Moberg et al. (2020) 

Sweden 0.3 0.5 0.02   SB2 Moberg et al. (2020) 
aIncluding five scenarios (different farms). 
bIncluding four scenarios (different farms). 
cBoth indoor and outdoor growing (glass greenhouse with natural gas heating). 
dGlass greenhouse year round with natural gas heating. 
eOrganic/conventional. 
fGreenhouse from waste heat/plastic greenhouse with fuel heating oil. 
gLettuce and chicory.  
hLettuce and chicory. 
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Olives 

The background data also included data from the database ecoinvent (Wernet et al. 2016). 

Table A76. Results for 1 kg olives at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

Italy 0.1a    4.43/2.80a SB1 Pergola et al. 

(2013b) 

Italy 0.5/0.7b 0.18/0.

23b 

   SB1 De Gennaro et al. 

(2012) 

Rest of Europe  3.7     SB1  Audsley et al. 

(2009) 

Spain 0.3     SB1 Aguilera et al. 

(2015) 
aSustainable/conventional system. 
bHigh density (common in Italy)/super high density (less common, require special technical conditions) (De Gennaro et al., 

2012). 
 

Onions 

Eight earlier LCA studies were found on onions. Four of them included studies on Swedish onions, 

which all showed a climate impact of 0.3 kg CO2e per (Moberg et al., 2020; González et al., 2011; 

Fuentes et al., 2006; Cederberg et al., 2005). 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A77. Results for 1 kg onion at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.1    0.47 SB1 Cederberg et al. 

(2005) 

Sweden 0.1 0.02 0.19  1.91 SB2  Fuentes et al. 

(2006) 

Denmark 0.1 0.01 0.29  3.01 SB2  Fuentes et al. 

(2006) 

UK 0.2    3.76 SB1 Saunders et al. 

(2006) 

New Zealand 0.1    0.82 SB1 Saunders et al. 

(2006) 

Sweden 0.1    1.00 SB2  González et al. 

(2011) 

Australia 0.2  0.22   SB1 Maraseni et al. 

(2010) 

Japan 0.3     SB2 Yoshikawa et al. 

(2008) 

UK 0.4     SB1  Audsley et al. 

(2009) 

Rest of Europe 0.5     SB1  Audsley et al. 

(2009) 

Swedish market 0.4 0.03 0.31   SB2 Moberg et al. 

(2020) 
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Sweden 0.3 0.03 0.25   SB2 Moberg et al. 

(2020) 
 

Pumpkins 

The system boundary in Schäfer and Blanke (2012) is up to a German retailer, so emissions from 

transport between Argentina and Germany are accounted for in the result. Data from Audsley et al. 

(2009) were difficult to verify due to limited background information in the report. 

Table A78. Results for 1 kg pumpkin at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Germany 0.04a     SB2 Schäfer and 

Blanke (2012) 

Argentina 0.1     SB2  Schäfer and 

Blanke (2012) 

Australia 0.3  0.58   SB1 Maraseni et 

al. (2010) 

Rest of Europe 2.2b     SB1  Audsley et al. 

(2009) 
aIncluding organic and integrated production, where organic production had a slightly higher impact than integrated. 
bPumpkins, squash and gourds. 

Spinach 

Data from Audsley et al. (2009) were difficult to verify due to limited background information in the 

report. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A79. Results for 1 kg spinach at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Switzerland 0.2 0.01 0.04   SB2  Stoessel et al. 

(2012) 

Japan 0.9     SB2  Yoshikawa et 

al. (2008) 

Rest of Europe 2.2      SB1  Audsley et al. 

(2009) 

 

Tomatoes 

Many LCA studies were found on tomatoes, as listed in Table A80. Regarding tomato production in 

Sweden, the data from Moberg et al. (2020) were considered most relevant, because the energy sources 

for heating greenhouses have changed in recent years. In general, heating source for heating greenhouses 

is important for the climate impact results. For tomatoes produced in unheated greenhouses, the transport 

distance or materials such as plastic for covering the greenhouse can be more important for the climate 

impact (Röös & Karlsson, 2013). 
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The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A80. Results for 1 kg tomatoes at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies (G: greenhouse) 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use (total) 

(MJ) 

System 

boundary 

Reference 

World 0.2     SB3  Andersson 

(2000) 

Switzerland  0.3/0.2a     SB2  Hofer (2009) 

Belgium 0.4/0.3a     SB2  Hofer (2009) 

Netherlands 0.4/0.3a     SB2  Hofer (2009) 

Spain 0.4/0.4a     SB2 Hofer (2009) 

Maldives 0.5/0.5a     SB2  Hofer (2009) 

Belgium (G) 1b     SB2  Hofer (2009) 

Switzerland (G) 1.1b     SB2  Hofer (2009) 

Australia 0.2  0.25   SB1 Maraseni et al. 

(2010) 

Sweden 0.2  0.09 3.30  SB2 Röös and 

Karlsson (2013) 

Sweden (G) 0.3c  0.02 6.80  SB2 Röös and 

Karlsson (2013) 

Sweden (origin 

Netherlands (G)) 

1.0d   0.02 16  SB2 Röös and 

Karlsson (2013) 

Sweden (origin 

Spain) 

0.5   0.08 8.60  SB2 Röös and 

Karlsson (2013) 

USA 0.3    3.70 SB2  González et al. 

(2011) 

Spain 0.4    3 SB2  González et al. 

(2011) 

Netherlands (G) 2.8    49 SB2  González et al. 

(2011) 

Sweden (G) 3.7     51 SB2  González et al. 

(2011) 

Austria 0.2/0.2a     SB2 Lindenthal et al. 

(2010) 

Spain 0.2-0.3e    2.9-4.8e 

(CED) 

SB1 Sanyé-Mengual 

et al. (2014) 

Morocco  0.2   3.61  SB1 Payen et al. 

(2015) 

France (origin 

Morocco) 

0.6   9.13  SB1  Payen et al. 

(2015) 

Spain 0.3f    4 (CED) SB1 Torrellas et al. 

(2012a)  

Spainf (G) 0.3    4 (CED) SB1 Torrellas et al. 

(2012b) 

Hungaryg (G) 0.4    6.9 (CED) SB1 Torrellas et al. 

(2012b) 

Netherlandsh (G) 0.8    12 (CED) SB1 Torrellas et al. 

(2012b) 

Netherlandsi (G) 2.0    31 SB1 Torrellas et al. 

(2012b) 

Hungaryj (G) 5.0    87 SB1 Torrellas et al. 

(2012b) 

Australia (G) 0.4/1.9k 0.04/0

0.02k 

   SB1 Page et al. 

(2012) 

Australia 0.3 0.05    SB1 Page et al. 

(2012) 
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Australia (G) 1.7l 0.04l    SB1 Page et al. 

(2012) 

USA 0.5   7.05  SB2 Renz et al. 

(2014) 

France 0.5m     SB1 Boulard et al. 

(2011) 

France (G) 1.6-2.4n     SB1 Boulard et al. 

(2011) 

Switzerland 0.7 0.03 0.02   SB2  Stoessel et al. 

(2012) 

Japan 0.8     SB2  Yoshikawa et al. 

(2008) 

Spain (G) 1o     SB1  Blonk et al. 

(2010) 

Netherlands (G) 1.1o     SB1  Blonk et al. 

(2010) 

Netherlands (G) 2.2o 

(organic) 

    SB1  Blonk et al. 

(2010) 

Sweden (G) 2.7p 0.02 0.02  51 SB2  Fuentes et al. 

(2006) 

Netherlands (G) 2.9p    53.40 SB2  Fuentes et al. 

(2006) 

Denmark (G) 3.7p 0.02 0.02  61.91 SB2  Fuentes et al. 

(2006) 

Sweden (G) 3.3p    42 SB2 Carlsson-

Kanyama (1998) 

UK (G)  3.8     SB1  Audsley et al. 

(2009) 

UK (G) 6.1 

(unspecified 

heated) 

    SB2 Berners-Lee et 

al. (2012) 

UK (G) 2.2q 0.02 0.02  36 SB1  Williams et al. 

(2008) 

UK (G) 5.1r 0.06 0.04  83 SB1  Williams et al. 

(2008) 

UK (G) 5.9s 0.07 0.05  95 SB1  Williams et al. 

(2008) 

Italy (organic) 0.1    0.87 SB1 Tamburini et al. 

(2015) 

China 0.1/0.2t     SB1 Yue et al. (2017) 

Swedish market 1.4 0.01 0.08   SB2 Moberg et al. 

(2020) 

Sweden 0.9 0.03 0.002   SB2 Moberg et al. 

(2020) 
aOrganic/integrated production. 
bHeated greenhouse (GH) (heat not specified), integrated production.  
cHeated GH using mostly renewable energy. 
dHeated GH using mostly natural gas. 
eRooftop GH, no auxiliary heat. Including three scenarios. 
fMulti-tunnel GH. 
gVenlo GH with no auxiliary heating (thermal energy). 
hVenlo GH with avoided electricity at combined heat and power plant (CHP). 
iVenlo GH with energy allocation at CHP. 
jVenlo GH with natural gas. 
kGH “low tech summer” with no auxiliary heating systems/GH “high tech year” with natural gas and coal. 
lGH “mid tech year” with coal. 
mTunnel GH with no auxiliary heating systems. 
nEight scenarios, including plastic and glass greenhouse and tunnel, highest value corresponds to “Plastic North vine” with 

mainly natural gas.  
oGH, natural gas heating. 
pSweden and Netherlands: fuel heating oil. Denmark: LPG and electricity heating. 
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qHeated GH for classic loose tomato, using a natural gas boiler-heater. 
rHeated GH for classic vine tomato, using a natural gas boiler-heater. 
sHeated GH for baby plum tomato, using a natural gas boiler-heater.  
tOpen field/greenhouse. 

 

Zucchini/button squash  

The system boundary in the study by Jungbluth et al. (2016) is not clear, but was assumed to be from 

cradle to a Swiss retailer (including packing). 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A81. Results for 1 kg zucchini at farm gate (SB1), retailer (SB2), and consumer (SB3) from earlier 

studies (G: greenhouse) 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Sweden 0.1    0.96 SB2  González et al. 

(2011) 

Austria 0.18/0.22a     SB2 Lindenthal et al. 

(2010) 

Australia  1.2  1.03   SB1 Maraseni et al. 

(2010) 

Italy (G) 1.6/1.9b 0.16/0.15
b 

   SB2  Cellura et al. (2012) 

Switzerland 0.6     SB2 Jungbluth et al. 

(2016) 

Switzerland 

(G) 

3.9c     SB2 Jungbluth et al. 

(2016) 

Spain 0.9     SB2 Jungbluth et al. 

(2016) 

Italy 0.7     SB2 Jungbluth et al. 

(2016) 

Morocco 1.0     SB2 Jungbluth et al. 

(2016) 
aOrganic/conventional. 
bGreenhouse, tunnel/pavilion with no auxiliary heating systems. 
cGreenhouse heated with fuel oil. 

 

Blueberries  

No earlier studies were found on wild berries. All data included are for cultivated blueberries. 

Table A82. Results for 1 kg blueberries at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

USA 0.7/0.8a    SB1 Venkat (2012) 

Rest of the 

world 

1.4    SB1  Audsley et al. (2009) 

Italy 0.2  3.55  SB2 Girgenti et al. (2013) 

Italy 0.4  8.98  SB2 Peano et al. (2015) 

Chile 0.3-0.7b    SB1 Cordes et al. (2016) 
aOrganic/conventional. 
bOrganic, including results for five different orchards with varying fertilizer application. 
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Currants and gooseberries 

The study by Audsley et al. (2009) provides little detail about the individual processes behind the results. 

The results are therefore difficult to verify, so recommendations on climate impact based solely on 

Audsley et al. (2010) should be interpreted with caution. 

Table A83. Results for 1 kg currants and gooseberries at farm gate (SB1), retailer (SB2), and consumer 

(SB3) from earlier studies 
Country Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

UK 0.8    SB1  Audsley et al. (2009) 
 

Raspberries 

Foster et al. (2014) report particularly high climate impact, but in a short conference contribution 

providing little background information on underlying processes and the reasons why the climate impact 

was estimated to be so much higher. Therefore, the results were not considered in the final assessment. 

Table A84. Results for 1 kg raspberries at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies (FZ: frozen) 

Country Climate 

impact 

(kg 

CO2e) 

Blue 

water 

use (m3) 

Land 

use 

(m2) 

Energy 

use (fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

UK 0.8     SB1  Audsley et al. 

(2009) 

Rest of 

Europe 

1.0     SB1  Audsley et al. 

(2009) 

Rest of the 

world 

1.4     SB1  Audsley et al. 

(2009) 

Italy 0.4   8.6  SB2 Girgenti et al. 

(2013) 

Spaina 7.3 2.7 1.1   SB2 Foster et al. 

(2014) 

UKb 7.4 1.3 1.2   SB2 Foster et al. 

(2014) 

UK (FZ)b 7.7 1.3 1.2   SB2 Foster et al. 

(2014) 

Swedish 

market 

0.8 0.01 2.4   SB2 Moberg et al. 

(2020) 

Sweden 0.9 0.0 3.6   SB2 Moberg et al. 

(2020) 
aGreenhouse, polytunnels in Spain, fresh in July. 
bGreenhouse, polytunnels, fresh in May. 

Strawberries 

Several earlier LCA studies were found on strawberry production. The variation in the results can be 

explained mainly by the use of heated greenhouses or open field production. 

Lillywhite (2008) presents the result per hectare, which was recalculated to the functional unit of 1 kg 

strawberries based on yield information from Mordini et al. (2009). Tabatabaie and Murthy (2016) 

estimated the climate impact for strawberries grown in plasticulture (in raised rows covered with black 

plastic) to be 1.8-5.5 kg CO2e per kg, depending on location in the USA. California had the lowest value 

thanks to the high yield, while North Carolina had the highest impact. The main contributor to climate 
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impact was the input of materials (mainly the plastic) (Tabatabaie & Murthy, 2016). European 

production was considered most relevant for the Swedish market. 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A85. Results for 1 kg strawberries at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact (kg 

CO2e) 

Blue 

water 

use 

(m3) 

Land 

use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Austria 0.2/0.3a     SB2 Lindenthal et al. (2010) 

Sweden 0.2    2.80 SB2 González et al. (2011) 

USA 0.6    5.40 SB2 González et al (2011) 

Switzerland 0.3 0.01 0.40   SB2 Stoessel et al. (2012) 

USA 0.2/0.5a     SB1 Venkat (2012) 

Spain 0.3     SB1 REWE Grupo (2009) 

Iran 0.6/0.7b     SB1 Khoshnevisan and 

Rafiee (2014) 

UK 0.8     SB1 Audsley et al. (2009) 

Rest of 

Europe 

1.1     SB1  Audsley et al. (2009) 

Rest of the 

world 

1.4     SB1  Audsley et al. (2009) 

UK 0.9 0.11 0.05  13 SB1 Williams et al. (2008) 

Spain 0.4 0.13 0.03  8.3 SB1 Williams et al. (2008) 

UK 1.2 0.13    SB1 Lillywhite (2008) 

Netherlands 

(open field) 

0.9      SB1 Blonk et al. (2010) 

Japan (G) 5.2     SB2 Yoshikawa et al. 

(2008) 

Australia 3.8      Gunady et al. (2012) 

USA 0.6 0.10  12  SB1 Bell et al. (2018) 

Italy 0.6   14.8  SB2 Peano et al. (2015) 

USA 1.8-5.5c     SB1 Tabatabaie and Murthy 

(2016) 

Italy 0.2     SB1 Valiante et al. (2019) 

Switzerland 1.9     SB1 Valiante et al. (2019) 

Peru 0.3     SB1 Bartl et al. (2012) 

UK 0.8 0.11   12.9 SB1 Webb et al. (2013) 

Spain 0.3 0.13   8.3 SB1 Webb et al. (2013)  

Swedish 

market 

0.7 0.09 1.43   SB2 Moberg et al. (2020) 

Sweden 0.4 0.12 1.8   SB2 Moberg et al. (2020) 
aOrganic/conventional. 
bOpen field/greenhouse, curved roof plastic greenhouses with electric heating. 
cIncluding California, Florida, North Carolina, and Oregon. California has the lowest impact due to high yield, and North 

Carolina had the highest due to low yield. 

 

 

Mushrooms 

Three studies examined the same type of mushroom (Agaricus bisporus), grown in Australia, Spain, and 

USA (Robinson et al., 2019; Leiva et al., 2015; Gunady et al., 2012). These studies showed a climate 

impact of 2.1-4.4 kg CO2e per kg mushrooms. Transport of raw materials (such as peat, compost, and 

spawn) made the highest contribution to greenhouse gas emissions in mushroom production according 

to Gunady et al. (2012). The highest emissions in Leiva et al. (2015) were found in the growing phase. 
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In the study by Robinson et al. (2019), the use of electricity, compost, and fuels made the highest 

contribution. Ueawiwatsakul et al. (2014) and Tongpool and Pongpat (2013) performed LCA for oyster 

mushrooms and Shiitake mushrooms, respectively. The climate impact was found to be higher for oyster 

mushrooms than for shiitake. Transport of planting materials had a great impact on the results in both 

studies.   

Audsley et al. (2009) and Maraseni et al. (2010) present climate impact results for unspecified 

mushrooms, showing lower impact compared with other studies. However, not enough detail is provided 

in these studies to explain the lower climate impact compared with other studies, so these studies were 

not considered in the recommendation. 

Mushroom imports to Sweden are mainly from Poland and Lithuania, but no studies were found for 

mushrooms from these countries. The relevance of earlier studies from Australia, Thailand, USA, and 

Spain could therefore be considered to be limited for the Swedish market. A small amount of Swedish 

mushroom imports comes from the Netherlands (7%). Only one study was found on mushrooms from 

the Netherlands, which showed 1.9 kg CO2e per kg for mushrooms grown in a greenhouse (Blonk et al. 

2010), but type of mushrooms considered was not specified. 

Table A86. Results for 1 kg mushrooms at farm gate (SB1), retailer (SB2), and consumer (SB3) from 

earlier studies 

Country Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

Australia 0.1 0.4   SB1 Maraseni et al. (2010) 

Netherlands (G) 1.9    SB1 Blonk et al. (2010) 

UK 1d    SB1  Audsley et al. (2009) 

Rest of Europe 1.1d    SB1  Audsley et al. (2009) 

Australia 2.8b    SB2 Gunady et al. (2012) 

Thailand 3-5a    SB1 Ueawiwatsakul et al. 

(2014) 

USA 2.1b  28.8 29.1 SB1 Robinson et al. (2019) 

Spain 4.4b    SB1 Leiva et al. (2015) 

Thailand 1.9c    SB1 Tongpool and Pongpat 

(2013) 
aSajor-caju/oyster mushroom: three farms of different sizes, highest impact for the medium farm where more fuel is used in 

sterilization and more material is needed for the substrate preparation, plastic bag cultivation. 
bAgaricus bisporus (known as portobello mushroom when mature, and as common or champignon mushroom when white 

and immature), growing in climate controlled chambers (Leiva et al., 2015; Robinson et al., 2019).  
cShiitake mushroom, plastic bag cultivation. 
dMushrooms and truffles. 

 

 

Plant-based drinks and cream 

The background data also included data from the database ecoinvent (Wernet et al., 2016). 

Table A87. Results for 1 kg or 1 liter plant-based drinks and cream at factory gate (SB1), retailer (SB2), 

and consumer (SB3) from earlier studies 

Country 

(product) 

Climate 

impact (kg 

CO2e) 

Land use 

(m2) 

Energy 

use 

(fossil) 

(MJ) 

Energy 

use 

(total) 

(MJ) 

System 

boundary 

Reference 

USA (almond 

drink) 

0.06   0.7 SB1 Feraldi et al. (2012) 
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USA (almond 

drink) 

0.4    SB1a Henderson and Unnasch 

(2017) 

USA (almond 

drink) 

0.2   5.0 SB2 Grant and Hicks (2018) 

USA (almond 

drink) 

0.4    SB1 Ho et al. (2016) 

USA market 

(coconut drink) 

0.05   1.0 SB1 Feraldi et al. (2012) 

USA (soy drink) 0.3   1.9 SB1 Feraldi et al. (2012) 

UK market (soy 

drink) 

0.7-1.4     Tesco (2012) 

Dutch market 

(soy drink) 

0.6 0.5    Blonk et al. (2008) 

USA (soy drink) 0.2   6.7 SB2 Grant and Hicks (2018) 

USA market 

(soy drink) 

0.4    SB1a Henderson and Unnasch 

(2017) 

Sweden (oat 

drink)b 

0.4 0.6  7.7 SB3 Florén et al. (2013) 

Sweden (oat 

drink)c 

0.5 0.6  9.2 SB3 Florén et al. (2013) 

Sweden(oat 

cream) 

0.5 2.9  7.0 SB1 Nilsson and Florén 

(2015) 

(pea drink) 0.4    SB1a Henderson and Unnasch 

(2017) 
aIncluding packing and packing disposal. 
bAseptic oat drink. 
cFresh oat drink. 
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Appendix A2. Method for ready-made meat 
alternatives 

Data collection for ready-made meat alternatives 

In addition to the literature review on raw food commodities, data on the climate impact of ready-made 

meat alternatives for 11 soy-based meat alternatives and three mixed products (one mixed without 

animal products and two mixed with eggs) were obtained from two different companies. One of these 

companies buys soybeans from mainly North America (and to some extent Europe) and the other from 

central Europe. 

To estimate land use, biodiversity impact, and water use, the amount of raw commodity ingredients in 

these products needed to be determined. Amount of soy protein concentrate or soy flour is often stated 

on the packaging (anamma.eu and foodforprogress.com). For all soy-based products from Orklafoods, 

soy flour or soy protein concentrate was the second ingredient after water. Based on the ingredients list 

showing their quantities in the product (in descending order) and the nutrition information on the 

package, the amounts of different ingredients were estimated. All fat was assumed to be rapeseed oil 

(since this is the only ingredient in most Orklafoods products that contains any substantial amounts of 

fat). Rapeseed oil was assumed to come from Germany (Lars Lundahl, Orklafoods, personal 

communication). For the ingredients that followed oil (e.g., onion) the amount was estimated based on 

the position in the ingredient list. For example, for a product with the ingredient list: Water, soy protein 

concentrate (23%), rapeseed oil, onion, salt, etc., and for which the nutritional information stated fat 

content (rapeseed) of 9.6% and salt content of 0.8%, the onion content was estimated to be around 5% 

(i.e., between the values stated for rapeseed oil and salt). These calculations were performed for 13 well-

established products on the Swedish market (Table A88), mainly soy-based products and one falafel. 

The column “quantity needed at factory gate” in Table A88 gives the calculated amounts in the 

respective products. Losses for all products up to entering the processing factory were accounted for 

according to Gustavsson et al. (2011). Water use for processing was included for all soy-based and 

mixed products and assumed to be 0.015 m3/kg ready-made product (Quantis, 2016). All water use for 

processing was assumed to be in Sweden. 

There is much product development underway, with new products made from Swedish ingredients 

appearing on the market, e.g., tempeh made from yellow peas or faba beans can be found in regular 

Swedish stores. However, no studies were found on these products. It was assumed that land use for 

tempeh made with yellow peas or faba beans grown in Sweden is similar to that assessed for tempeh 

made from soybeans (Blonk et al., 2008), since yield for soybeans (global average) and yield for yellow 

peas and faba beans are within the same range (FAOSTAT, 2018). However, due to the uncertainty in 

this assumption, land use for Swedish produce was increased by 20% from the value reported in Blonk 

et al. (2008). 

Estimating the amount of soybeans needed for producing soy protein products 

The soy-based ready-made meat alternatives included in this study contained 15-32% soybean protein 

concentrate or soy flour. Protein content in the different soy products was used to estimate the amount 

of soybeans needed to produce soy flour and soy protein concentrate, assuming that soybeans, soy flour, 

soy protein concentrate, and soy protein isolate contain 36%, 52%, 70%, and 90% protein, respectively 

(Thrane et al., 2017). Losses during processing were assumed to be 5%. Allocation of environmental 

impact between soy flour and soy oil was based on mass; 16% on the oil and 84% on the flour (Dalgaard 

et al., 2008). 
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It was calculated that, at the factory gate, 1.25 kg soybeans are needed to produce 1 kg soy flour and 

2.04 kg soybeans to produce 1 kg soy protein concentrate. Using this method, land use for producing 

soy protein concentrate (70%) using beans from USA was estimated to be 5.9 m2 per kg. This can be 

compared to land use for soy protein as estimated by Broekema and Blonk (2009) of 7.5 m2 per kg. The 

higher land use in that study can be explained by the higher land use for soybeans (4.5 m2 per kg beans) 

compared with this report (3.4 m2 per kg beans, based on FAOSTAT, yield data for USA).  

Table A88. Ingredients in ready-made soy-based and mixed products 

Food type Ingredient 

Country of 

origin 

Yield 

2007-

2016 

(kg/ha) Reference yield 

m2/kg 

product 

harvested 

product 

Harvested 

kg 

Losses 

post 

harvest 

Factor 

Quantity 

needed at 

factory 

gate 

m2/ 

ingredient 

RESULT 

m2/kg 

product 

Anamma 

formbar färs Soy beans USA 2565 FAOSTAT 3.9 0.4 1.0 0.4 1.5  

 Rape seed Germany 3895 FAOSTAT 2.6 0.1 1.0 0.1 0.3  

 Onion 

Largest 

export 16055 FAOSTAT 0.6 0.1 0.9 0.1 0.0 1.8 

Anamma 

pulled vego 

BBQ Soy beans USA 2565 FAOSTAT 3.9 0.3 1.0 0.3 1.1  

 Rape seed Germany 3895 FAOSTAT 2.6 0.0 1.0 0.0 0.1  

 Onion 

Largest 

export 16055 FAOSTAT 0.6 0.0 0.9 0.0 0.0 1.3 

Anamma 

vegobitar Soy beans USA 2565 FAOSTAT 3.9 0.3 1.0 0.3 1.0 1.0 

 

Anamma 

vegobullar Soy beans USA 2565 FAOSTAT 3.9 0.4 1.0 0.4 1.5  

 Rape seed Germany 3895 FAOSTAT 2.6 0.1 1.0 0.1 0.3  

 Onion 

Largest 

export 16055 FAOSTAT 0.6 0.1 0.9 0.1 0.0 1.8 

Anamma 

vegoburgare Soy beans USA 2565 FAOSTAT 3.9 0.4 1.0 0.4 1.4  

 Rape seed Germany 3895 FAOSTAT 2.6 0.1 1.0 0.1 0.2  

 Onion 

Largest 

export 16055 FAOSTAT 0.6 0.1 0.9 0.1 0.0 1.7 

Anamma 

vegochorizo Soy beans USA 2565 FAOSTAT 3.9 0.3 1.0 0.3 1.1  

 Rape seed Germany 3895 FAOSTAT 2.6 0.1 1.0 0.1 0.3  

 Paprika Mexico 16703 FAOSTAT 0.6 0.1 0.9 0.1 0.0 1.5 

Anamma 

vegofärs Soy beans USA 2565 FAOSTAT 3.9 0.5 1.0 0.4 1.8  

 Rape seed Germany 3895 FAOSTAT 2.6 0.1 0.9 0.1 0.3 2.0 

Anamma 

vegofärs eko Soy beans USA 2565 FAOSTAT 3.9 0.4 1.0 0.4 1.6  

 Rape seed Germany 3895 FAOSTAT 2.6 0.1 0.9 0.1 0.3 1.9 

Anamma 

vego kebab Soy beans USA 2565 FAOSTAT 3.9 0.3 1.0 0.3 1.2  

 Rape seed Germany 3895 FAOSTAT 2.6 0.0 0.9 0.0 0.1 1.3 

Anamma 

vegokorv Soy beans USA 2565 FAOSTAT 3.9 0.3 1.0 0.3 1.1  

 Rape seed Germany 3895 FAOSTAT 2.6 0.1 0.9 0.1 0.3 1.5 

Anamma 

vegoschnitzel Soy beans USA 3895 FAOSTAT 2.6 0.3 1.0 0.3 0.7  

 Rape seed Germany 2565 FAOSTAT 3.9 0.1 0.9 0.1 0.5  

 Wheat 

Largest 

export USA 3137 Jordbruksverket 3.2 0.2 1.0 0.2 0.6  

 Onion 

Largest 

export 16055 FAOSTAT 0.6 0.0 0.9 0.0 0.0 1.7 

Hälsanskök 

pulled beans Soybeans 

USA 

(assumed 

largest 

export) 2565 FAOSTAT 3.9 0.6 1.0 0.6 2.5 2.5 

Anamma 

falafel Chickpeas 

Largest 

exporter 1346 FAOSTAT 7.4 0.3 1.0 0.3 0.3  

 Rapeseed Germany 2565 FAOSTAT 3.9 0.1 0.9 0.1 0.1  

 Parsley 

Largest 

export 2000 guess 5.0 0.0 0.9 0.0 0.0  

 Onion 

Largest 

export 16055 FAOSTAT 0.6 0.0 0.9 0.0 0.0 0.4 
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Method for calculating water use and land use (biodiversity impact) 

Land use was estimated from the ingredients (described above). Country of origin was based on producer 

information or assumed to be the largest exporter globally (FAOSTAT, 2019), information used to 

calculate biodiversity impact. Biodiversity impact was also calculated for the products from earlier 

studies where land use was given. Country of origin was either provided by the producer or assumed to 

be the largest exporter globally (FAOSTAT, 2019).  

Water use was estimated from the ingredients. Water use for processing was estimated based on Quantis 

(2016) for soy-based products including tofu and tempeh. For Quorn, it was based on producer 

information (Louise Needham, Quorn, personal communication 2019). Blue water use for production 

was assumed to be in the country of processing. 
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Appendix A3. Methods for plant-based drinks and 
cream 

Almond drink 

Almond drink was assumed to contain 2.3% almonds and 2.4% sugar, in accordance with one of the 

main producers in Sweden (Alpro) (see Figure A1).  

 

Figure A1. Illustration of ingredients information provided by Alpro (Sweden) for its almond milk 

product. 

Oat drink  

Oat drink was assumed to contain 200 g oats and 0.8 g rapeseed oil (Florén et al., 2013).  

Soy drink 

Soy drink was assumed to contain 70 g soybeans. 25 g sugar and 0.3 g corn (Ercin et al., 2012). 

Coconut milk (used for cooking, with fat content 17%) 

Coconut milk is produced from the copra (coconut flesh). One ton of coconut contains approx. 239 kg 

copra, with around 144 kg fat (Van Zeist et al., 2012). The amount of coconut milk that can be produced 

from 1 ton (dehusked coconut) was calculated assuming that coconut milk contains 17% fat 

(Kungmarkatta 17% fat, Santa maria 17% fat, Santa maria organic 18% fat), so 847 kg coconut milk 



 

139 
 

can potentially be produced from 1 ton coconut. This was assumed to be reasonable, since coconut milk 

contains much water. Losses were assumed to be 10%, resulting in a yield of 762 kg coconut milk/kg 

dehusked coconut. 

 

Water footprint calculations 

Water use was calculated based on raw material ingredients. Process water use for oat and soy drinks 

and oat cream was estimated from the literature. 

AWARE scores were calculated for each ingredient, for the respective production countries, and the 

process was assumed to take place in the country from which the main ingredient originated. 
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Appendix A4. Nutrient index 

Background 

To estimate the environmental impact in LCA, a functional unit has to be defined. This functional unit 

should reflect the actual function of the product and serve as a basis for the calculations. For the Vego-

guide, the functional unit was defined as 1 kg of a food product delivered to a retailer in Sweden. 

Choosing a mass-based functional unit (kg) is common when estimating the environmental impact of 

different foods (Sonesson et al., 2019). This unit is easy for the public to understand, as e.g., the price 

is given per kilogram in the grocery store. Other units based on specific content in the food, such as its 

protein (kg protein) or energy (kilocalorie) content, can also be used.  

The problem with choosing a functional unit when performing LCA on food is that foods from different 

food groups have different functions. Use of a mass-based unit or other unit such as kilocalories in LCA 

of food would be beneficial for some products (those with high energy content), while it would be a 

disadvantage for other products (those with low energy content). For example, fruit and vegetables have 

a low calorie content but contain many nutrients, while some nuts have a high calorie content and at the 

same time contain important nutrients. When comparing these products from different food categories, 

it would be somewhat unfair to use kilocalories as the functional unit, since the health benefits of fruit 

and vegetables would not be fully captured. The same applies to the use of kilograms, which because of 

its simplicity has nevertheless become a widely used unit when assessing the environmental impact of 

food. 

One way to address the issue with using only one functional unit for different food types is to employ a 

nutrition index (Hallström et al., 2018). A nutrition index takes into account the overall nutritional 

quality of the food and covers both the climate impact and the health aspects. Analyzing the 

environmental impact of a food in combination with its nutritional value is a fast-growing research area, 

and there are now several methods available to calculate nutrition index (Hallström et al. 2018). Some 

of the methods involve awarding points to foods depending on whether their content meets specific 

criteria. However, the majority of the methods are based on a ratio between the product’s nutrient content 

and a reference intake level (Hallström et al., 2018). 

Here, we select a number of products for closer examination of the climate impact in combination with 

their  nutrition index. Products that differed in their function were selected, e.g., where the nutrient 

content varied greatly. The selected products were peas, chickpeas, almonds, walnuts, Quorn, bananas, 

apples, tomatoes, cucumber, avocado, asparagus, celery, broccoli, blueberries, strawberries, quinoa, 

wheat, rice, and potatoes.  

Method 

A nutrition index adapted to Swedish conditions is the Swedish Nutrient Index (SNI) (Andersson, 2017), 

version SNI1 of which was used in this report. This method is based on existing nutrient profiling 

methods, but is adjusted with respect to food consumption, requirements, and recommendations for the 

Swedish population. SNI1 includes 18 nutrients to encourage in the diet (nutrienti), such as protein, 

fiber, and different vitamins, and three nutrients to limit (nutrientj), which are sodium, saturated fat, and 

sugar. The nutrients to limit should only be consumed in smaller amounts. The SNI1 for a particular 

food product is calculated by subtracting the sum of the nutrients to limit (j) from the sum of nutrients 

to encourage (i) as follows: 
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𝑆𝑁𝐼1 = ∑
𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑖  ∙  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖  𝑝𝑒𝑟 100 𝑘𝑐𝑎𝑙

𝑅𝐷𝐼𝑖
⁄

𝑖=18

𝑖

−   ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑗  ∙  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗  𝑝𝑒𝑟 100 𝑔 𝑀𝑅𝑉𝑗⁄

𝑗=3

𝑗

 

where the weighting factor (further explained below) for nutrients to encourage and nutrients to limit is 

multiplied by the nutrient content in 100 kcal and in 100 g of the product, respectively, and then divided 

by the reference value, which is the Recommended Daily Intake (RDI) for nutrients to encourage and 

the Maximum Recommended Value (MRV) for nutrients to limit. Values for RDI and MRV were taken 

from Andersson (2017) and information regarding the nutrient content of foods was retrieved from the 

food database provided by the Swedish Food Agency (SFA, 2019). 

Some methods, including SNI1, perform weighting, which means that different weights are given to 

nutrients depending on how important they are in a person’s diet. The calculation of the weighting 

factors varies for nutrients to encourage and nutrients to limit, and must be interpreted differently. For 

the nutrients to encourage, the weighting factor is the ratio of RDV and the mean intake of the nutrient 

i, while for the nutrients to limit it is the ratio of the mean intake of nutrient j and MRV. A weighting 

factor above one for the nutrients to encourage thus means that the Swedish population does not eat 

enough of this nutrient, while a value below one means that people are consuming enough of it according 

to Swedish recommendations. For the nutrients to limit, however, a value above one means that people 

are eating too much of it, and consumption should decrease. A value below one means that people are 

keeping consumption below the threshold of concern. Additionally, the nutrients are capped if 100 g of 

food contain more than the RDI, in order to avoid crediting over-consumption of nutrients. The inclusion 

of capping, and weighting, can vary between methods, see Andersson (2017) for more details. 

The choice of reference amount varies between methods and can be e.g., per mass unit (100 g), per 

energy content (100 kcal) or per serving size (Hallström et al. 2018). For the method SNI1, nutrients to 

encourage (nutrienti) are calculated per 100 kcal whereas nutrients to limit (nutrientj) are calculated per 

100 g. The choice of not using per 100 g as a reference unit for both was to prevent energy-dense 

products (that are often eaten in smaller amounts) from receiving unmerited low scores indicating that 

the products are healthy. See Andersson (2017) for more details behind this method choice.  

The climate impact values of the food products assessed were thereafter normalized to fit the scale 0.0-

1, where a value of 1 corresponds to the highest climate impact value among the foods assessed. 

Similarly, the SNI1 values were normalized. The climate impact can be related to SNI in several ways, 

depending on the method, by division, multiplication or addition, for example. Here, the total score was 

obtained by multiplication of the climate impact and the nutrition index, resulting in “SNI-adjusted 

GWP/kg”. 

Results and discussion 

The climate impact of different foods, their nutrient indices, and the climate impact in combination with 

the nutrient indices, all normalized to fit the scale 0.0-1, are shown in Table A89. 

 

 

 

 

Table A89. Normalized values of climate impact (CI), Swedish Nutrient Index (SNI1), and the combined 

score (CI x SNI1) to fit the scale 0.0-1. The higher the value of CI, the higher the climate impact, while 
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a low value of SNI1 means that the food is healthy according to the SNI1 index. A high value of the 

combined value (CI x SNI1) thus means that the product has a high carbon footprint among the foods 

assessed or is less healthy according to Swedish nutritional recommendations  

 Product Climate 

impact (kg 

CO2e/kg) 

Climate 

norm. 

SNI 

norm. 

CI x 

SNI 

Peas 0.8 0.2 0.50 0.12 

Chickpeas canned 1.7 0.4 0.67 0.35 

Almonds 3.8 1.0 0.84 0.96 

Walnuts 3.3 0.9 1.00 1.00 

Quorn 2.2 0.6 0.45 0.30 

Banana 1.5 0.4 0.80 0.36 

Apple 0.5 0.1 0.88 0.13 

Tomato 2.3 0.6 0.31 0.22 

Cucumber 2.3 0.6 0.40 0.28 

Avocado 1.6 0.4 0.82 0.40 

Asparagus 2.1 0.6 0.10 0.06 

Celery 0.6 0.2 0.18 0.03 

Broccoli 1.3 0.3 0.10 0.04 

Blueberries 0.9 0.2 0.75 0.20 

Strawberries 1.5 0.4 0.36 0.16 

Quinoa 0.9 0.2 0.75 0.20 

Wheat 0.6 0.2 0.95 0.17 

Rice 2.0 0.5 0.95 0.57 

Potato 0.4 0.1 0.71 0.09 

 

As the results in Table A89 show, certain foodstuffs are significantly affected when including the 

nutritional index of the products. Products that had the highest impact on the climate of the food 

examined did not necessarily have the greatest impact when their nutrition index was included. For 

example, the normalized value of the mean climate impact for asparagus received one of the highest 

scores of the products assessed. This is because the impact from airfreight was taken into account. 

However, the combined score (CI x SNI1, Table A89) was quite low when the nutrient index was taken 

into account. This is because asparagus is high in nutrients such as vitamin A, vitamin C, and folate 

which, despite the higher environmental impact, resulted in a low value when the environmental impact 

was combined with the nutrition index.  

Almonds and walnuts have a higher climate impact than fruits, for example. Nuts contain many nutrients 

that are considered healthy for the human body. However, nuts are also quite high in saturated fat, which 

gives an adverse effect on the total score. Furthermore, the weighting factor for saturated fat is >1, 

indicating that the mean intake of saturated fat in Sweden is greater than recommended, which also 

affects the result. In addition, nuts are energy-dense, which means that nuts will be heavily affected by 

using 100 kcal instead of 100 g as a reference unit for the nutrients to encourage (nutrienti). This, together 

with the earlier reasoning, explains why the total score (CI x SNI1) for nuts is relatively high compared 

with that for other products such as vegetables. 

The mean climate impact for tomato and cucumber is higher than for other vegetables such as avocado 

and celery. This is because the impact from greenhouse cultivation is accounted for, which has a 

relatively large impact on the average climate impact for these products. When the climate impact of 

these foods was combined with their nutrition index, the combined score was relatively low, which 

indicates that cucumber and tomato are nutritious and at the same time have a relatively low climate 
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impact. The same applies for broccoli, which thanks to its content of vitamin A, vitamin C, folate, iron, 

calcium, potassium, etc. received a low score when the climate impact was combined with the nutrient 

index. Additionally, the nutrients to limit are low for broccoli compared with the nutrients to encourage 

(sodium, saturated fat and sugar), which contributed to the low combined score. Avocado did not get a 

remarkably low score when the nutrition index was applied, which could be due to the amount of 

saturated fat. The weighting factor for saturated fat shows that Swedes generally eat too much. 

The only nutrient to limit that is significant for fruits is sugar. This is probably the main reason why 

banana, which despite its health benefits (high in vitamin C, potassium, etc.) did not receive a lower 

score when its nutrition index was included. Unlike salt and saturated fat, Swedes eat within 

recommended limit when it comes to sugar. If this were not the case, however, the total score would 

have been even higher for sugar-rich fruits. Berries such as strawberries contain low amounts of sugar. 

They are also high in nutrients to encourage, such as folate, which is beneficial for the total score since 

the weighting factor shows that Swedes eat too little folate. This contributed to the lower score obtained 

for strawberries when the nutrient index was applied.  

Potatoes had the lowest climate impact and one of the lowest combined impact values when the nutrition 

index was taken into account. This is because potatoes have a low climate impact to begin with, 0.4 kg 

CO2e per kg, and contain many of the nutrients considered healthy. In addition, the less healthy nutrients 

that should be eaten in small amounts are not as significant in comparison with the beneficial nutrients. 

Other nutrient indices 

The method used in this report is only one among many existing methods to calculate nutrient index for 

food. Other methods include different method choices, which affect the final score in different ways. To 

address this, five additional methods were chosen for evaluation. First, three variations of SNI were 

chosen, here called SNI2, SNI3, and SNI4. Second, NRF9 and NRF9.3 (Nutrient-Rich Food index) were 

chosen for further evaluation. These methods, as well as SNI1, are based on existing nutrient profiling 

methods, but are adapted with respect to food consumption, requirements, and recommendations for the 

Swedish population. All 18 nutrients in SNI1 are included in SNI2, SNI3, and SNI4, but they vary in 

their choice of reference amount (per 100 g or 100 kcal), and also if they are divided by the number of 

nutrients included or not, see the following equations: 

𝑆𝑁𝐼2 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 ∙ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖  𝑝𝑒𝑟 100 𝑘𝑐𝑎𝑙 𝑅𝐷𝐼𝑖 18⁄⁄

𝑖=18

𝑖

−   ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑗  ∙  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗  𝑝𝑒𝑟 100 𝑔 𝑀𝑅𝑉𝑗⁄ 3⁄

𝑗=3

𝑗

 

 

𝑆𝑁𝐼3 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 ∙ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖  𝑝𝑒𝑟 100 𝑔 𝑅𝐷𝐼𝑖⁄

𝑖=18

𝑖

−   ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑗 ∙  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗  𝑝𝑒𝑟 100 𝑔 𝑀𝑅𝑉𝑗⁄

𝑗=3

𝑗

 

 

𝑆𝑁𝐼4 = ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 ∙ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖  𝑝𝑒𝑟 100 𝑔 𝑅𝐷𝐼𝑖 18⁄⁄

𝑖=18

𝑖

−   ∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑗  ∙  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗  𝑝𝑒𝑟 100 𝑔 𝑀𝑅𝑉𝑗⁄ 3⁄

𝑗=3

𝑗
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NRF9 and NRF9.3 were used, where the latter is an updated version of the former (Fulgoni III et al., 

2009). NRF9.3 is one of few published, fully validated methods available (Andersson, 2017). For the 

NRF indices, the following nine nutrients are included: protein, fiber, vitamin A, vitamin E, vitamin C, 

iron, calcium, potassium, and magnesium. NRF9.3 also includes three disqualifying nutrients: sodium, 

saturated fat, and sugar. NRF9 and NRF9.3 are calculated according to the following equations (note 

that a weighting factor is not included): 

 

𝑁𝑅𝐹9 = ∑ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖  𝑝𝑒𝑟 100 𝑔 𝑅𝐷𝐼𝑖⁄

𝑖=9

𝑖

 

𝑁𝑅𝐹9.3 = ∑ 𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑖  𝑝𝑒𝑟 100 𝑔 𝑅𝐷𝐼𝑖⁄ −   ∑  𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑗  𝑝𝑒𝑟 100 𝑔 𝑀𝑅𝑉𝑗⁄

𝑗=3

𝑗

𝑖=9

𝑖

 

 

The normalized values (scale from 0.0-1) of the SNI and the NRF values were plotted in a chart in order 

to show how they vary among the foods assessed (Figure A2). A value close to zero indicates that the 

food product is healthy for the average Swedish person.  

 

 

Figure A2. Normalized values (scale 0.0-1) of nutrient indices derived from different methods, where a 

low value indicates that the product is healthy according to Swedish conditions. 

As can be seen, the outcomes of the methods vary greatly for different foods. The methods point at 

similar results for products such as Quorn, apple, celery, broccoli, blueberries, strawberries, and wheat, 

while the results differ for products such as almonds, walnuts, avocado, asparagus, and rice. This means 

that choice of method has a great impact on the nutrient index, which in turn affects the final score (CI 

x NI). 

The SNI1 and SNI2 methods gave similar results for the foodstuffs examined, because these methods 

differ only in the division by number of nutrients in method SNI2. The results from SNI3, SNI4, NRF9, 
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and NRF9.3 vary among the food products assessed, but follow the same pattern in general (Figure A2). 

This is because the calculations in these methods are based on the same reference value (per 100 g). 

However, the methods account for different numbers of nutrients and some do not include weighting, 

which may be a reason for the minor variations in the results. 

Using SNI1 and SNI2 appears to be less favorable for energy-dense products such as nuts, avocado, and 

rice, while using SNI3, SNI4, NRF9, or NRF9.3 seems to be more favorable for these products. 

Similarly, low-energy fruit and vegetables seem to be favored by the SNI1 and SNI2 methods, while the 

other methods seem less favorable. One likely reason behind the various results among the methods 

assessed is the choice of reference unit (100 g or 100 kcal, or a mix of them), which seems to influence 

the result greatly.  

Limitations 

Designing a nutrition index means several subjective choices that affect the end result. For example, a 

decision is needed on how many and which nutrients to include. This is challenging, as a healthy food 

products can vary depending on the individual; a product that is healthy for one person is not necessarily 

healthy for another. A decision is also needed concerning the unit on which the calculations on nutrients 

to encourage/limit should be based, e.g., grams, kcal, or portion size. Furthermore, a decision is needed 

on whether weighting should be included or not. It is important to emphasize that weighting factors need 

to be updated from time to time because people’s eating habits change, which will affect the factors. If 

weighting is not applied, equal weight will be given to the final score from all the nutrients included. 

The combination of the climate impact and nutrition index can also be obtained in different ways, which 

will affect the total score. 

Conclusions 

Designing a nutrient index involves many choices, which may limit the credibility of the results. Despite 

the limitations in the design of nutrition index, it can nevertheless be used to broaden the knowledge and  

understanding of the sustainability of foods. The combined measure can thus be useful and contribute 

an understanding of how climate footprint relates to nutrition, but should be interpreted and applied with 

caution as the method involves several subjective choices. 
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Appendix A5. Food losses, waste, and conversion 
factors 

Table A90. Factors for calculating losses in post-harvest handling and storage, processing and packing, 

and distribution: supermarket retail (Gustavsson et al., 2011)  
Postharvest handling and 

storage 

Processing and 

packing 

Distribution: 

supermarket retail 

Europe incl. Russia  
Cereals 

 

4% 

 

10.50% 

 

 

Roots and tubers 9% 15% 7% 

Oilseeds and pulses 1% 5% 1% 

Fruit and vegetables 5% 2% 10%     

North America and Oceania 
   

Cereals 2% 10.50% 2% 

Roots and tubers 10% 15% 7% 

Oilseeds and pulses 0% 5% 1% 

Fruit and vegetables 4% 2% 12%     

Industrialized Asia 
  

 

Cereals 10% 10.50% 2% 

Roots and tubers 7% 15% 9% 

Oilseeds and pulses 3% 5% 1% 

Fruit and vegetables 8% 2% 8%     

Sub-Saharan Africa 
   

Cereals 8% 3.50% 2% 

Roots and tubers 18% 15% 5% 

Oilseeds and pulses 8% 8% 2% 

Fruit and vegetables 9% 25% 17%     

North Africa, West and 

Central Asia 

   

Cereals 8% 9% 4% 

Roots and tubers 10% 12% 4% 

Oilseeds and pulses 6% 8% 2% 

Fruit and vegetables 10% 20% 15%     

South and Southeast Asia 
   

Cereals 7% 3.50% 2% 

Roots and tubers 19% 10% 11% 

Oilseeds and pulses 12% 8% 2% 

Fruit and vegetables 9% 25% 10%     

Latin America 
  

 

Cereals 4% 9% 4% 

Roots and tubers 14% 12% 3% 

Oilseeds and pulses 3% 8% 2% 

Fruit and vegetables 10% 20% 12%     

AVERAGE Postharvest handling and 

storage 

Processing and 

packing 

Distribution: supermarket 

retail 

Cereals 6% 8% 3% 
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Roots and tubers 12% 13% 7% 

Oilseeds and pulses 5% 7% 2% 

Fruit and vegetables 8% 14% 12% 

 

Conversion factors for nuts from in-shell to shelled 

Table A91. Conversion factors for converting in-shell products to shelled products, showing the fraction 

of edible nut in 1 kg nuts in shell  

Product Factor Reference 

Almonds 0.59 Bartzas et al. (2017) 

Cashew nuts 0.25 FAO (1994) 

Hazelnuts 0.50 FAO (1994) 

Peanuts 0.83 Mccarty et al. (2012) 

Pistachios 0.50 Marvinney et al. (2014) 

Walnuts 0.53 FAO (1994) 

 

Conversion factors for carbohydrate sources 

Table A92. Conversion factors for converting dried carbohydrate sources to edible products 
Product Factor Reference 

Soft whole grain bread 2.0 RAC 

Bread rye 1.8 RAC 

White bread 
 

1.8 RAC 

Pasta 
 

2.1 Bognár (2002) 

Wheat whole boiled 1.8 Bognár (2002) 

Average for 

common grainsa 

 
1.9 

 

Rice 
 

3.0 Bognár (2002) 

Millet 
 

2.4 Bognár (2002) 

Quinoa 
 

3.4 Bognár (2002) 
aUsed for barley, corn, oat, pasta, rye, sorghum and wheat. 

Conversion factors for protein sources 

Table A93. Conversion factors for converting dried grain legumes to edible products 
Product Factor Reference 

Beans and peasa 
 

2.5 Bognár (2002) 

Lentils 2.3 SFA (2019)b 

Soybeans  3.1 SFA (2019)b 

Chickpeas  2.5  
aUsed for dried beans, kidney beans, faba beans, and dried peas. 
bCalculated based on protein content in dried and edible product. 
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Appendix A6. Canned beans or boiling at home? 

Grain legumes can either be bought dry and boiled at home or bought already cooked in a can or in a 

cardboard carton (Tetra PakTM). Earlier studies have examined both canned and dry legumes. Fuentes et 

al. (2006) found that cooking beans at home is more energy-efficient than buying canned beans, and 

thus has a lower climate impact. However, due to cooked beans being commonly sold in cardboard 

cartons, we calculated the climate impact from transport, packing, and boiling for two different 

scenarios: 1) Import of beans from Italy and boiling at home in Sweden; and 2) boiling of beans in Italy 

(industrially) and import of cooked beans in Tetra PakTM cartons. Assumptions and data used for the 

calculation are presented in Figure A3. 

   

Figure A3. Calculation example of dried beans transported from Italy and boiled in Sweden and canned 

beans, boiled and canned in Italy and transported to Sweden. CI: climate impact. Note: climate impact 

for transport, cooking and packaging only. 

Energy use for boiling legumes at home (after soaking) was assumed to be 4.6 MJ per kg output and for 

boiling beans in industry 4 MJ per kg output (Carlsson-Kanyama & Faist, 2000). Climate impact from 

electricity production was assumed to be the electricity mix in Sweden (0.012 kg CO2e per kWh) and in 

Italy (0.11 kg CO2e per kWh) (Wernet et al., 2016). Climate impact from packaging was taken from 

Tetra Pak (2018) and for packing materials for dry beans from Moberg et al. (2019).  

The results showed that boiling at home has a considerably lower climate impact (Figure A3). This is 

not primarily due to the packaging, but due to the electricity mix in Italy where the beans were assumed 

to be boiled, and the transport of packaged cooked beans to Sweden, which has a higher impact because 

of the higher weight during this transport (boiled beans are heavier than dry beans). If the beans were to 

be boiled and packaged in Sweden instead, the total climate impact from packaging, transport, and 

boiling would be 0.19 kg CO2e per kg legumes, which is similar to boiling at home. 

 

 

 

 

0.4 kg  

Packaging 0.4 
kg beans. CI: 
0.02 kg CO2e 

Transport 
from Italy 
0.4 kg beans 
CI: 0.092 kg 
CO2e 

Retailer 0.4 
kg beans 

Transport 
0.4 kg beans 

Boil at home (SE) 
0.4 kg dry =1kg boiled  
CI: 0.057 kg CO2e 

Boil 0.4 kg in industry. 0.4 kg 
beans = 1 kg boiled beans 
CI: 0.46 kg CO2e 
Packaging (Tetra Pak): CI: 0.047 
kg CO2e 

Transport 1 kg 
beans from 
Italy. CI: 0.23 
kg CO2e 

Transport 1 kg 
beans 

Retailer1 kg 
beans 

1 kg ready to eat 
beans at home. 
Total impact: 
0.73kg CO2e/kg 
bean 

1 kg ready to eat 
beans at home. 
Total impact: 
0.17kg CO2e/kg 
beans 
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Appendix A7. Pesticide use results for individual 
products 

Table A94. Pesticide for individual products in kg active substance (AS) per hectare and g AS per kg 

product (OE: outside Europe, ND: no data)  
Product Country Comments 

pesticides  

Pesticide 

use (kg 

AS/ha) 

Pesticide 

use (g 

AS/kg) 

Total 

pesticide for 

combined 

products 

References 

Peas fresh  Belgium Other arable crops 0.25 0.04   EUROSTAT 
(2007) 

  
The Netherlands No data for other 

arable crops 
ND ND   EUROSTAT 

(2007) 

  France (largest 
trade surplus) 

Other arable crops 0.10 0.01   EUROSTAT 
(2007) 

  World average OE ND ND     

Peas canned Belgium Other arable crops 0.25 0.04   EUROSTAT 

(2007)  
Italy No data for other 

arable crops 
ND ND   EUROSTAT 

(2007) 

  Germany Other arable crops 0.13 0.02   EUROSTAT 

(2007) 

  France (largest 

trade surplus) 

Other arable crops 0.10 0.01   EUROSTAT 

(2007) 

  World average OE ND ND     

Peas fresh (frozen) 

Sweden 

Sweden  Green peas 1.10 0.25   SBA (2018) 

Peas dried  Denmark Other arable crops 0.08 0.01   EUROSTAT 

(2007) 

  The Netherlands No data for other 

arable crops 

ND ND     

  Germany Other arable crops 0.13 0.02   EUROSTAT 
(2007) 

  Canada (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden Peas dried 0.99 0.13   SBA (2018) 

Beans dried  Turkey OE ND ND     

  The Netherlands No data for other 

arable crops 

ND ND     

  Myanmar 

(largest trade 

surplus) 

OE ND ND     

  Argentina (extra 

country) 

OE ND ND     

  Poland (extra 

country) 

No data for other 

arable crops 

ND ND     

 Canada OE ND ND     

 China OE ND ND     

  World average OE ND ND     
 

Sweden Data for faba 

beans 

1.01 0.25   SBA (2018) 

 Faba beans dried Egypt OE ND ND     

  Lebanon OE ND ND     

  Turkey OE ND ND     

  Germany Other arable crops 0.13 0.01   EUROSTAT 

(2007) 

  Australia 

(largest trade 

surplus) 

OE ND ND     

  UK (extra 

country) 

Other arable crops 2.60 0.29   EUROSTAT 

(2007) 

  France (extra 
country) 

Other arable crops 0.10 0.01   EUROSTAT 
(2007) 
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  World average OE ND ND     
 

Sweden Faba beans 1.01 0.12   SBA (2018) 

Beans canned Italy No data for other 
arable crops 

ND ND     

  Myanmar 

(largest trade 
surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden Data for faba 

beans 

1.01 0.25   SBA (2018) 

Chickpeas dried  Turkey OE ND ND     

  Italy No data for other 
arable crops 

ND ND     

  Australia 

(largest trade 
surplus) 

OE ND ND     

  World average OE ND ND     

Lentils dried Turkey OE ND ND     

  UK No data for other 

arable crops 

ND ND     

  Canada (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden Data for faba 

beans 

1.01 0.32   SBA (2018) 

Soybeans dried Italy Data for oil crops 0.34 0.03   EUROSTAT 

(2007) 

  USA (largest 
trade surplus) 

OE ND ND     

  World average OE ND ND     

Soy-based 

products 

USA (soybeans)   ND ND     

Tofu/tempeh USA   ND ND     

Faba beans or peas 

(tofu/tempeh) 

Sweden   1.01 0.24   SBA (2018) 

Quorn UK Cereals (wheat) 3.18 0.35   EUROSTAT 

(2007) 

Pea-protein based Germany Data for other 

arable crops 

0.13 0.06   EUROSTAT 

(2007) 

Almonds USA OE ND ND     

  Australia OE ND ND     

  Spain No data ND ND     

  USA (largest 

trade surplus) 

OE ND ND     

  Chile (extra 

country) 

OE ND ND     

  Italy (extra 
European 

country) 

No data ND ND     

  World average OE ND ND     

Cashew nuts  Vietnam (largest 
trade surplus) 

OE ND ND     

  Extra India OE ND ND     

  Brazil (extra 

country) 

OE ND ND     

  World average OE ND ND     

Chestnuts  China (largest 
trade surplus) 

OE ND ND     

  World average OE ND ND     

Coconut Philippines 

(largest trade 

surplus) 

OE ND ND     

  Indonesia (extra 

country) 

OE ND ND     

  Sri Lanka (extra 
country) 

OE ND ND     

  World average OE ND ND     

Hazelnuts Italy No data ND ND     
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  Turkey (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Peanuts Argentina OE ND ND     

  China OE ND ND     

  India (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Pistachios USA (largest 
trade surplus) 

OE ND ND     

  Iran (extra 

country) 

OE ND ND     

  Turkey (extra 

country) 

No data ND ND     

  Greece (extra 
country) 

No data ND ND     

  World average OE ND ND     

Walnuts  USA (largest 

trade surplus) 

OE ND ND     

  Ukraine (extra 

country) 

No data ND ND     

  Mexico (extra 
country) 

OE ND ND     

  Republic of 

Moldova (extra 
country) 

No data ND ND     

  World average OE ND ND     

Sesame seeds India OE ND ND     

  Guatemala OE ND ND     

  Ethiopia (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Linseeds Denmark Oilseeds 0.26 0.92   EUROSTAT 

(2007) 

  Canada OE ND ND     

  The Netherlands Oil crops 2.84 3.39   EUROSTAT 

(2007) 

  World average OE ND ND     
 

Sweden Oil crops 0.48 0.28   EUROSTAT 

(2007) 

Sunflower seeds Bulgaria No data ND ND     

  Russia OE ND ND     

  Romania 
(largest trade 

surplus) 

no data ND ND     

  World average OE ND ND     

Barley Denmark  Cereals 0.92 0.10   EUROSTAT 
(2007) 

  Finland Cereals 0.56 0.10   EUROSTAT 

(2007) 

  UK & Northern 

Ireland 

Cereals 3.18 0.33   EUROSTAT 

(2007) 

  France (largest 
trade surplus) 

Cereals 2.58 0.24   EUROSTAT 
(2007) 

  World average OE ND ND     
 

Sweden Barley (average 

winter and spring) 

0.50 0.06   SBA (2018) 

Maize France Maize 2.16 0.15   EUROSTAT 

(2007) 

  Poland Maize 1.10 0.10   EUROSTAT 
(2007) 

  South Africa 

(largest trade 
surplus) 

OE ND ND     

  Brazil (extra 

country) 

OE ND ND     

  Argentina (extra 

country) 

OE ND ND     

  World average OE ND ND     
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Millet  India (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Oats Denmark Cereals 0.92 0.11   EUROSTAT 
(2007) 

  Finland  Cereals 0.56 0.10   EUROSTAT 

(2007) 

  Canada OE ND ND     

  World average OE ND ND     
 

Sweden Oats 0.37 0.05   SBA (2018) 

Pasta Denmark  Cereals 0.92 0.09   EUROSTAT 

(2007) 

  Finland Cereals 0.56 0.10   EUROSTAT 

(2007) 

  Germany Cereals 2.16 0.19   EUROSTAT 
(2007) 

  Turkey (largest 
trade surplus) 

OE ND ND     

  World average OE ND ND     

 Italy cereals 0.48 0.08   EUROSTAT 

(2007) 

 Sweden Wheat (average 
spring and winter) 

0.50 0.06   SBA (2018) 

Quinoa Peru OE ND ND     
 

Bolivia OE ND ND     

  World average OE ND ND     
 

Sweden Assumption, no 

accepted value for 

quinoa in Sweden 

0.00 0.00     

Rice India OE ND ND     

  Italy Cereals 0.48 0.05   EUROSTAT 

(2007) 

  Thailand OE ND ND     

  India (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Rye Denmark Cereals 0.92 0.09   EUROSTAT 
(2007) 

  Finland Cereals 0.56 0.12   EUROSTAT 

(2007) 

  Poland Cereals 0.70 0.15   EUROSTAT 

(2007) 

  Germany Cereals 2.16 0.23   EUROSTAT 
(2007) 

  World average OE ND ND     
 

Sweden Rye 1.16 0.12   SBA (2018) 

Sorghum  USA (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Wheat Denmark  Cereals 0.92 0.08   EUROSTAT 
(2007) 

  Finland Cereals 0.56 0.09   EUROSTAT 

(2007) 

  Germany Cereals 2.16 0.16   EUROSTAT 

(2007) 

  Turkey (largest 
trade surplus) 

OE ND ND     

  UK (extra for 

Quorn) 

Cereals 3.18 0.48   EUROSTAT 

(2007) 

  World average OE ND ND     
 

Sweden Wheat (average 

spring and winter) 

0.50 0.05   SBA (2018) 

Beetroot The Netherlands Vegetables 2.74 0.10   EUROSTAT 
(2007) 

  Denmark Vegetables 14.36 0.53   EUROSTAT 

(2007) 

  Germany Vegetables 2.16 0.08   EUROSTAT 

(2007) 

  Not available in 
FAOSTAT 

  ND ND     
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  World average OE ND ND     
 

Sweden Vegetables 2.20 0.08    SBA (2018) 

Carrots Italy Vegetables 7.04 0.21   EUROSTAT 
(2007) 

  The Netherlands Vegetables 2.74 0.06   EUROSTAT 

(2007) 

  China (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden carrots 15.60 0.36   SBA (2018) 

Potatoes Denmark Potatoes 6.94 0.23   EUROSTAT 

(2007) 

  Finland  Potatoes 3.48 0.18   EUROSTAT 

(2007) 

  France (largest 
trade surplus) 

Potatoes 17.26 0.54   EUROSTAT 
(2007) 

  World average OE ND ND     
 

Sweden Potatoes 2.91 0.12   SBA (2018) 

Swede (rutabaga) Sweden Vegetables 2.20 0.10   SBA (2018) 

Sweet potato USA (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Parsnip  Not available in 
import statistics 

  ND ND     

 
Sweden Vegetables 2.20 0.12   SBA (2018) 

Jerusalem 

artichoke 

Sweden Vegetables 2.20 0.22   SBA (2018) 

Almond milk 1 USA (almonds) OE ND ND ND   

  Brazil (sugar) OE ND ND ND   

Almond milk 2 Australia 

(almonds) 

OE ND ND ND   

  Brazil (sugar) OE ND ND ND   

Almond milk 3 Spain (almonds) No data ND ND ND   

  Brazil (sugar) OE ND ND ND   

Almond milk 4 World average 
(almonds) 

OE ND ND ND   

  Brazil (largest 

producer) 
(sugar) 

OE ND ND ND   

Soy milk 1 

(sweetened) 

Italy (soybeans) Oil seeds 0.34 0.01 0.007131 EUROSTAT 

(2007) 

  Brazil (sugar) OE ND ND     

  France (corn) Maize 2.16 0.00   EUROSTAT 
(2007) 

Soy milk 2 

(sweetened) 

USA (soybeans) OE ND ND 8.5E-05   

  Brazil (sugar) OE ND ND     

  France (corn) Maize 2.16 0.00   EUROSTAT 

(2007) 

Soy milk 3 

(sweetened) 

World average 
(soymilk) 

OE ND ND ND   

  Brazil (sugar) OE ND ND ND   

  World average 

(corn) 

OE ND ND ND   

Oat milk 1 Sweden (oats) Oat 0.37 0.02 0.022187 SBA (2018) 

  Sweden 
(rapeseed oil) 

Average winter 
and spring rape 

0.60 0.00     

Oat milk 2 World average 

(oats) 

OE ND ND ND   

  World average 

(rapeseed oil) 

OE ND ND     

Oat cream 1 Sweden (oats) Oat 0.37 0.02 0.046366 SBA (2018) 

  Sweden 
(rapeseed oil) 

Average winter 
and spring rape 

0.60 0.03     

Oat cream 2 World average 

(oats) 

OE ND ND ND   

  World average 

(rapeseed oil) 

OE ND ND     
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Coconut milk 1 Philippines OE ND ND ND   

Coconut milk 2 Indonesia (extra 

country) 

OE ND ND ND   

Coconut milk 3 Sri Lanka (extra 
country) 

OE ND ND ND   

Coconut milk 4 World average OE ND ND ND   

Apples  Italy Fruit trees 14.64 0.42   EUROSTAT 

(2007) 

  Poland (largest 
trade surplus) 

Fruit trees 2.38 0.17   EUROSTAT 
(2007)  

France (extra 

country) 

Fruit trees 16.38 0.49   EUROSTAT 

(2007) 

  World average OE ND ND     
 

Sweden Apples 4.22 0.28   SBA (2018) 

Apricots  France Fruit trees 16.38 1.65   EUROSTAT 
(2007) 

  Italy Fruit trees 14.64 1.45   EUROSTAT 
(2007) 

  Spain Fruit trees 2.76 0.45   EUROSTAT 

(2007) 

  Germany Fruit trees 16.20 4.25   EUROSTAT 

(2007) 

  Spain (largest 
exporter) 

Fruit trees 2.76 0.45   EUROSTAT 
(2007) 

  Turkey (extra 

country) 

No data ND ND     

  Uzbekistan 

(extra country) 

OE ND ND     

  Armenia (extra 
country) 

OE ND ND     

  World average OE ND ND     

Bananas  Costa Rica OE ND ND     

  Dominican 

Republic 

OE ND ND     

  Ecuador (largest 
exporter) 

OE ND ND     

  World average OE ND ND     

Cherries  Denmark (Chile) OE ND ND     

  The Netherlands Fruit trees 16.78 42.06   EUROSTAT 

(2007) 

  Turkey OE ND ND     

  Germany Fruit trees 15.80 3.51   EUROSTAT 

(2007) 

  Chile (largest 

exporter) 

OE ND ND     

  USA (extra 
country) 

OE ND ND     

  Spain (extra 
country) 

Fruit trees 2.76 0.83   EUROSTAT 
(2007) 

  World average OE ND ND     

Dates  Iran OE ND ND     

  Saudi Arabia OE ND ND     

  Iraq (largest 
trade surplus) 

OE ND ND     

  Pakistan (extra 

country) 

OE ND ND     

  Tunisia (extra 

country) 

OE ND ND     

  World average OE ND ND     

Grapefruit and 

pomelo  

South Africa 
(largest trade 

surplus) 

OE ND ND     

  World average OE ND ND     

Grapes Chile (largest 

exporter) 

OE ND ND     

  Greece Grapes/vines 44.58 4.77   EUROSTAT 

(2007) 

  Italy Grapes/vines 32.24 3.42   EUROSTAT 
(2007) 
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  The Netherlands 

(Chile) 

OE ND ND     

  Spain Grapes/vines 10.48 1.90   EUROSTAT 
(2007) 

  World average OE ND ND     

Guavas and mango Mexico (largest 

exporter) 

OE ND ND     

  India (extra 

country) 

OE ND ND     

  Thailand (extra 
country) 

OE ND ND     

  World average OE ND ND     

Kiwi fruit  New Zealand 

(largest trade 
surplus) 

OE ND ND     

  Italy Fruit trees 14.64 0.87   EUROSTAT 

(2007) 

  World average OE ND ND     

Lemons and limes  Mexico (largest 
trade surplus) 

OE ND ND     

  Spain Citrus 8.40 0.43   EUROSTAT 

(2007) 

  Turkey (extra 

country) 

No data ND ND     

  Argentina (extra 
country) 

OE ND ND     

  World average OE ND ND     

Melons Guatemala 

(largest trade 
surplus) 

OE ND ND     

  Spain Fruit and 

vegetables total 

8.38 0.31   EUROSTAT 

(2007) 

  
 

OE ND ND     

  Honduras (extra 
country) 

OE ND ND     

  Turkey (extra 

country) 

No data ND ND     

  Greece (extra 

country) 

Fruits and 

vegetables total 

16.54 0.87   EUROSTAT 

(2007) 

  World average OE ND ND     
 

Sweden   ND ND     

Oranges  Spain (largest 

trade surplus) 

Citrus 8.40 0.43   EUROSTAT 

(2007) 

  South Africa 

(extra country) 

OE ND ND     

  Egypt (extra 

country) 

OE ND ND     

  Greece (extra 

country) 

Citrus 1.88 0.08   EUROSTAT 

(2007) 

  World average OE ND ND     

Papayas  Mexico (largest 

trade surplus) 

OE ND ND     

  Thailand OE ND ND     

  World average OE ND ND     

Peach Italy Fruit trees 14.64 0.91   EUROSTAT 

(2007) 

  Germany Fruit trees 16.20 2.07   EUROSTAT 

(2007) 

  Spain (largest 
trade surplus) 

Fruit trees 2.76 0.18   EUROSTAT 
(2007) 

  World average OE ND ND   EUROSTAT 

(2007) 

Pears Belgium Fruit trees 19.80 0.66   EUROSTAT 

(2007) 

  The Netherlands Fruit trees 16.78 0.53   EUROSTAT 
(2007) 

  Argentina 

(largest 
exporter) 

OE ND ND     

  World average OE ND ND     
 

Sweden Fruit 4.15 0.38   SBA (2018) 
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Pineapples  Costa Rica 

(largest trade 

surplus) 

OE ND ND     

  Philippines 

(extra country) 

OE ND ND     

  Mexico (extra 
country) 

OE ND ND     

  World average OE ND ND     

Plums and sloes  Denmark Fruit trees 11.82 2.49   EUROSTAT 

(2007) 

  Italy Fruit trees 14.64 1.09   EUROSTAT 

(2007) 

  The Netherlands Fruit trees 16.78 0.93   EUROSTAT 
(2007) 

  Germany Fruit trees 16.20 1.76   EUROSTAT 

(2007) 

  Spain (largest 

trade surplus) 

Fruit trees 2.76 0.27   EUROSTAT 

(2007) 

  Chile (extra 
country) 

OE ND ND     

  South Africa 

(extra country) 

OE ND ND     

  World average OE ND ND     

Tangerines 

mandarins etc. 

Morocco OE ND ND     

  Spain (largest 
trade surplus) 

Citrus 8.40 0.50   EUROSTAT 
(2007) 

  China (extra 

country) 

OE ND ND     

  Turkey (extra 

country) 

OE ND ND     

  Pakistan (extra 
country) 

OE ND ND     

  World average OE ND ND     

Watermelon Mexico (largest 

trade surplus) 

OE ND ND     

  Spain Fruit and 
vegetables total 

8.38 0.18   EUROSTAT 
(2007) 

  World average OE ND ND     

Artichokes  France Vegetables 7.82 1.66   EUROSTAT 

(2007) 

  Italy Vegetables 7.04 0.86   EUROSTAT 

(2007) 

  Spain (largest 
trade surplus) 

Vegetables 15.92 1.36   EUROSTAT 
(2007) 

  World average OE ND ND     

Asparagus  Italy Vegetables 7.04 1.19   EUROSTAT 

(2007) 

  The Netherlands Vegetables 2.74 0.52   EUROSTAT 

(2007) 

  Germany Vegetables 2.16 0.45   EUROSTAT 
(2007) 

  Mexico (largest 

trade surplus) 

OE ND ND     

  Thailand (extra 

country) 

OE ND ND     

  Hungary (extra 
country) 

Vegetables 1.75 0.51   EUROSTAT 
(2007) 

  World average OE ND ND     

Avocados  Mexico (largest 

trade surplus) 

OE ND ND     

  Peru (extra 
country) 

OE ND ND     

  Chile (extra 

country) 

OE ND ND     

  World average OE ND ND     

Broccoli  France Vegetables 7.82 0.54   EUROSTAT 

(2007) 

  Italy Vegetables 7.04 0.34   EUROSTAT 
(2007) 

  The Netherlands Vegetables 2.74 0.23   EUROSTAT 

(2007) 
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  Spain (largest 

trade surplus) 

Vegetables 15.92 1.01   EUROSTAT 

(2007) 

  World average OE ND ND     
 

Sweden Vegetables 2.20 0.21   SBA (2018) 

Cabbage Spain Vegetables 15.92 0.55   EUROSTAT 

(2007) 

  Germany Vegetables 2.16 0.04   EUROSTAT 

(2007) 

  China (largest 
trade surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden Vegetables 2.20 0.06   SBA (2018) 

Capsicums/peppers  The Netherlands Vegetables 2.74 0.01   EUROSTAT 

(2007) 

  Spain Vegetables 15.92 0.32   EUROSTAT 
(2007) 

  Mexico (largest 
trade surplus) 

OE ND ND     

  World average OE ND ND     

Celery The Netherlands   ND ND     

  Spain   ND ND     

  Germany   ND ND     

  USA 
(assumption) 

  ND ND     

  World average   ND ND     

Cucumbers The Netherlands Vegetables 2.74 0.00   EUROSTAT 

(2007) 

  Spain Vegetables 15.92 0.22   EUROSTAT 
(2007) 

  Mexico (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden Vegetables 2.20 0.02   SBA (2018) 

Eggplant The Netherlands Vegetables 2.74 0.01   EUROSTAT 
(2007) 

  Spain (largest 

trade surplus) 

Vegetables 15.92 0.30   EUROSTAT 

(2007) 

  World average OE ND ND     

Garlic The Netherlands Vegetables 2.74 0.00   EUROSTAT 

(2007) 

  Spain Vegetables 15.92 2.01   EUROSTAT 
(2007) 

  China (largest 

trade surplus) 

OE ND ND     

  Argentina (extra 

country) 

OE ND ND     

  World average OE ND ND     
 

Sweden   ND ND     

Beans fresh 

(haricoverts)  

Belgium Vegetables 6.84 0.60   EUROSTAT 

(2007) 

  The Netherlands Vegetables 2.74 0.29   EUROSTAT 

(2007) 

  Morocco 
(largest trade 

surplus) 

OE ND ND     

 
Kenya (extra 
country) 

OE ND ND     

 
Peru (extra 

country) 

OE ND ND     

  World average OE ND ND     

Ginger China (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     

Lettuce Spain (largest 

trade surplus) 

Vegetables 15.92 0.68   EUROSTAT 

(2007) 

  Germany Vegetables 2.16 0.10   EUROSTAT 

(2007) 

  World average OE ND ND     
 

Sweden Vegetables 2.20 0.13   SBA (2018) 
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Olives  Greece Fruit and 

vegetables total 

16.54 6.57   EUROSTAT 

(2007) 

  Spain(largest 
trade surplus) 

Fruit and 
vegetables total 

8.38 3.73   EUROSTAT 
(2007) 

  World average OE ND ND     

Onions Denmark Vegetables 14.36 0.39   EUROSTAT 

(2007) 

  India (largest 

trade surplus) 

OE ND ND     

  The Netherlands Vegetables 2.74 0.07   EUROSTAT 
(2007) 

  Germany Vegetables 2.16 0.05   EUROSTAT 

(2007) 

  USA OE ND ND     

  World average OE ND ND     
 

Sweden Onion 10.20 0.25   SBA (2018) 

Pumpkins and 

squash 

The Netherlands Vegetables 2.74 0.05   EUROSTAT 
(2007) 

  Spain Vegetables 15.92 0.39   EUROSTAT 

(2007) 

  Mexico (largest 

trade surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden Vegetables 2.20 0.00   SBA (2018) 

Spinach Spain (largest 

trade surplus) 

Vegetables 15.92 1.06   EUROSTAT 

(2007) 

  Italy Vegetables 7.04 0.56   EUROSTAT 

(2007) 

  World average OE ND ND     
 

Sweden Vegetables 2.20 0.29   SBA (2018) 

Tomatoes The Netherlands Vegetables 2.74 0.01   EUROSTAT 

(2007) 

  Spain Vegetables 15.92 0.23   EUROSTAT 

(2007) 

  Mexico (largest 
trade surplus) 

OE ND ND     

  World average OE ND ND     
 

Sweden Vegetables 2.20 0.01   SBA (2018) 

              

Cranberries Finland   ND ND     

  The Netherlands   ND ND     

  Chile (largest 

trade surplus) 

  ND ND     

 
USA (extra 

country) 

  ND ND     

  World average   ND ND     

Blueberries Poland   ND ND     

  Spain   ND ND     

  Morocco   ND ND     

  World average   ND ND     
 

Sweden Home-grown 2.44 1.17   SBA (2018)  

Raspberries and 

other berries  

Belgium   ND ND     

  The Netherlands   ND ND     

  Spain   ND ND     

  Poland (largest 

trade surplus) 

  ND ND     

  World average   ND ND     
 

Sweden Home-grown 2.44 0.70    SBA (2018) 

Strawberries Belgium   ND ND     

  The Netherlands   ND ND     

  Spain (largest 

trade surplus) 

  ND ND     

  World average   ND ND     

  Poland   ND ND     
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Sweden   2.59 0.40   SBA (2018) 

Mushrooms Poland   ND ND     

  Lithuania   ND ND     

  World average   ND ND     
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Appendix A8. Factors for calculating organic yield 

Table A95. Factors for estimating organic yield from conventional yields, taken from De Ponti et al. 

(2012) 

Product Factor 

Peas 85% 

Pulses 88% 

Soybeans 92% 

Other pulses (used for peanuts, green beans) 91% 

Barley 69% 

Corn 89% 

Oats 85% 

Wheat 73% 

Rice 94% 

Rye 76% 

Average cereals (used for millet, quinoa, sorghum) 79% 

Carrot 89% 

Potatoes 70% 

Apples 69% 

Other fruits (used for apricots, grapes, kiwi, melons, 

peach and watermelon, cranberries, blueberries, 

raspberries)  

78% 

Average fruits (used for bananas, cherries, dates, grape 

fruit, guava and mango, lemons and lime, oranges, 

papaya, pineapples, plums and mandarins) 

72% 

Other vegetables (used for artichokes, asparagus, 

broccoli, cabbage, peppers, cucumbers, eggplants, 

garlic, ginger, onions, pumpkins, spinach)   

77% 

Lettuce 86% 

Tomatoes 81% 

Strawberries 59% 

Average for all crops (used for nuts, avocados, olives, 

mushrooms) 

80% 
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