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Abstract
This thesis summarizes and discusses results of three studies in which biochemical and molecular 
techniques were used to study the genetic variation in Pinus pinaster. In particular, the investigation 
focused on: (i) the within- and among-population genetic diversity in the region hypothesised as a 
putative refugium for the species during the last glaciation; (ii) the comparison of nuclear and 
cytoplasmic estimates of diversity within and between two regions of the species; and (iii) the design 
of a test for provenance identification using knowledge about the levels of genetic variation between 
the two regions.
The distribution of the genetic variation of P. pinaster in Portugal, as revealed by chloroplast 
microsatellites (cpSSR), indicated that there are low levels of differentiation among populations and 
that the diversity is found mainly within populations. No discernible geographic pattern was found. 
Evidences of strong anthropogenic influence associated with extensive gene flow could explain these 
findings. Fossil, charcoal and palynological records supported the presence of the species in Portugal 
before and during the last glaciation: therefore, the hypothesis of a putative refugium in this country 
cannot be excluded.
The genetic variation of 24 populations from France and Portugal was investigated with amplified 
fragments length polymorphisms (AFLPs) and cpSSRs. Both types of markers could discriminate 
between the two provenances and the diversity of the French provenance was higher compared with 
that from Portugal. Similar differentiation estimates were found with nuclear and cytoplasmic 
markers. Extensive gene flow could account for this result, but higher mutation rates and homoplasy 
at cpSSR loci are not to be excluded. Despite the different modes of inheritance, a high correlation 
was found between the genetic distance matrices with both types of markers, which suggests that 
migration surpassed genetic drift in moulding the genetic structure of this species in the regions 
studied.
A provenance diagnostic test was designed, based on cpSSRs, to screen the putative origin of stands 
of P. pinaster in southwestern France and compared with the currently used terpene-based test. Five 
stands of unknown origin were diagnosed with both tests. The cpSSR-based test proved to be faster 
and more accurate to determine if stands were of French or northwest Iberian (Portugal and Galicia) 
origin. The result obtained was probably due to the higher capability of the DNA-based markers to 
discriminate between both provenances, compared to that of the terpene markers.
Key words: cpSSR, AFLP, terpenes, genetic variation, provenance identification, Pinus pinaster.
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In memory of my father 
to my daughter Filipa 

and my mother

SEXTO ID.DINIS

Na noite escreve um seu Cantar de Amigo 
O plantador de naus a haver,
E ouve um silencio murmuro consigo:
E o rumor dos pinhais que, como um trigo 
De Império, ondulam sem se poder ver.

Arroio, esse cantar, jovem e puro,
Busca o océano por achar;
E a fala dos pinhais, marulho obscuro,
E o som presente desse mar futuro,
E a voz da térra ansiando pelo mar.

Fernando Pessoa 
in Menssagem



Abstract
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Doctoral dissertation.
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This thesis summarizes and discusses results of three studies in which biochemical and 
molecular techniques were used to study the genetic variation in Pinus pinaster. In 
particular, the investigation focused on: (i) the within- and among-population genetic 
diversity in the region hypothesised as a putative refugium for the species during the last 
glaciation; (ii) the comparison of nuclear and cytoplasmic estimates of diversity within and 
between two regions of the species; and (iiii) the design of a test for provenance 
identification using knowledge about the levels of genetic variation between the two 
regions.

The distribution of the genetic variation o f P. pinaster in Portugal, as revealed by 
chloroplast microsatellites (cpSSR), indicated that there are low levels o f differentiation 
among populations and that the diversity is found mainly within populations. No 
discernable geographic pattern was found. Evidences of strong anthropogenic influence 
associated with extensive gene flow could explain these findings. Fossil, charcoal and 
palynological records supported the presence of the species in Portugal before and during 
the last glaciation; therefore, the hypothesis of a putative refugium in this country cannot 
be excluded.

The genetic variation of 24 populations from France and Portugal was investigated with 
amplified fragments length polymorphisms (AFLPs) and cpSSRs. Both types of markers 
could discriminate between the two provenances and the diversity o f the French 
provenance was higher compared with that from Portugal. Similar differentiation estimates 
were found with nuclear and cytoplasmic markers. Extensive gene flow could account for 
this result, but higher mutation rates and homoplasy at cpSSR loci are not to be excluded. 
Despite the different modes of inheritance, a high correlation was found between the 
genetic distances matrices with both types of markers, which suggests that migration 
surpassed genetic drift in moulding the genetic structure of this species in the regions 
studied.

A provenance diagnostic test was designed, based on cpSSRs, to screen the putative origin 
of stands of P. pinaster in southwestern France and compared with the currently used 
terpene-based test. Five stands of unknown origin were diagnosed with both tests. The 
cpSSR-based test proved to be faster and more accurate to determine if stands were of 
French or northwest Iberian (Portugal and Galicia) origin. The result obtained was 
probably due to the higher capability of the DNA-based markers to discriminate between 
both provenances, compared to that of the terpene markers.

Key words: cpSSR, AFLP, terpenes, genetic variation, provenance identification, Pinus 
pinaster.

A u thor’s address: M aria M argarida Ribeiro, Escola Superior Agraria de Castelo Branco, 
6000 Castelo Branco, Portugal. E-mail: M aria.Ribeiro@ genfys.slu.se

mailto:Maria.Ribeiro@genfys.slu.se


Contents
Introduction, 7
An insight into population genetics, 7
Pinus pinaster Ainton: origin, taxonomy and biology, 9
Distribution area, 10
Migration pathways of Pinus pinaster in Europe, 11 
Human impact in the Mediterranean region forests, 14 
Seed certification, 16
Objectives, 18
Methods, 19
Terpenes, 20 
PCR-based markers, 21 

Dominant markers, 21 
Microsatellite markers, 24

Summary of the results, 27
Genetic variation of Pinus pinaster, 27 

Variation within populations, 27 
Variation among populations, 28 
Nuclear versus cytoplasmic genetic variation, 29 

Reproductive material identification and certification, 31
Closing remarks, 32 
References, 34
Acknowledgments, 45



Appendix
This thesis is based on studies reported in the following papers, which will be 
referred to in the text by the corresponding Roman numerals:

I. Ribeiro M.M., Plomion C, Petit R, Vendramin G.G. & Szmidt A.E. (2001) 
Variation of chloroplast simple-sequence repeats in Portuguese maritime pine 
(Pinus pinaster Ait.). Theoretical and Applied Genetics. 102(1):97-103.

II. Ribeiro M.M.*, Mariette S.*, Vendramin G.G., Szmidt A.E., Plomion C. & 
Kremer A. (2001) Comparison of maritime pine (Pinus pinaster Ait.) 
diversity estimates using SSRcp and AFLP data. (Manuscript)

III. Ribeiro M.M.*, LeProvost G.\ Gerber S., Vendramin G.G., Anzidei, M., 
Decroocq S., Marpeau A., Mariette S., & Plomion C. (2001) Origin 
identification of maritime pine stands in France using chloroplast simple- 
sequence repeats. Annals of Forest Science. (Accepted)

Paper I, figures 3 and 4 are reproduced with permission from the publishers.

To be considered as joint first authors



Introduction
Pithys, a Greek nymph had two lovers, Boreas and 
Pan. Boreas became jealous and threw Pitys against a 
rock ledge. She turned instantly into a pine, and resin 
drops are her tears... ”Greek Myth ”

An insight into population genetics
Population genetics, which studies the consequences of genetic information 
transmission, requires information about changes in the frequencies of genes 
within and among populations, and aims at understanding the influence and 
interaction of different factors of evolution in shaping genetic variation. Among 
the candidate explanations are a balance between natural selection, mutation, 
gene flow and drift (Steams and Hoekstra 2000).
Population refers to a group of organisms of the same species living within a 
restricted geographical area where random mating is potentially possible. A 
precise definition of the term is difficult and varies from species to species due to 
the usual non-random pattern in the spatial distribution of the individuals, i.e., 
due to genetic geographical structure. Population subdivision can be caused by 
environmental patchiness. Therefore, local interbreeding units are defined as 
local populations, sub-populations or denies, and they constitute the units of 
population genetics. The level of genetic differentiation existing among local 
populations measures the genetic structure (or population subdivision) of a 
species, i.e., the frequencies of the alleles may differ from one local population to 
the next (Hard and Clark 1997).
In any population, the genotype frequencies are determined largely by the 
patterns in which genotypes of the previous generation come together to form 
mating pairs. In random mating, genotypes form mating pairs in the proportions 
expected by chance alone. The expectations of genotype frequencies under 
random mating are described by the Hardy-Weinberg equilibrium (HWE). This 
equilibrium can be disturbed by a number of factors such as selection, mutation, 
migration and genetic drift, then allele frequencies will change over time (see e.g. 
Weir (1996) for details).
Several processes create new types of genetic variation or allow the 
reorganization of the previously existing variation either within genomes or 
among populations. The ultimate source of genetic variation is mutation, that is 
any heritable change in the genetic material. It includes a change in the nucleotide 
sequence or a chromosome rearrangement, such as an inversion or translocation. 
This process provides, by itself, a very weak possibility for changing allele 
frequencies. Mutation is a rare event (104 to 106 per gene and per generation for
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wild-type genes), but in a large population there are many genes at risk of 
mutation. Recombination brings mutations of different parts of the genome 
together or conversely, splits portions of the chromosome that were previously 
together. Gene flow  is the introduction of genes from one population to another 
by mating or migration. Like mutation, this process introduces new genetic 
variants into local populations. Gene flow enables mutations to spread among 
populations and sets the limit of genetic divergence among populations; 
moreover, it can prevent local differentiation if selection is weak and the distance 
that genes move in each generation is large (Stearns and Hoekstra 2000). Gene 
flow levels vary greatly among species, populations and seasons, but the isolation 
by distance is frequently not enough to prevent its homogenizing effect against 
genetic drift and diversifying selection (Ellstrand 1992). Nevertheless, a small 
amount of gene flow is usually not sufficient to disperse rare alleles among 
populations; therefore, rare alleles are often unique to one or few populations 
(Hartl and Clark 1997).
The random fluctuation of allelic frequencies in finite populations due to non
representative sampling of genes from one generation to another is called random 
genetic drift. This phenomenon changes the distribution of genetic variation in 
two ways: (i) the decrease of variation within populations (loss of heterozigosity 
and eventual fixation of alleles), and (ii) the increase of differentiation among 
populations. The effect of this process increases with decreasing population size 
and depends on allele frequencies of the parental populations (Ellstrand and Elam 
1993). Wright (1931) predicted that genetic drift would substantially alter the 
organization of genetic variation of populations when it is much greater then 
mutation rate and selection. Populations founded by few individuals do not 
contain a representative sample of genes in the parental population {founder 
effect). Some alleles that may be completely absent or rare in the parental 
population can reach high frequencies in the new population simply because they 
were present in the founders. Similarly, if the composition of the population 
changes dramatically as it passes through a genetic bottleneck, many alleles are 
lost and others rise to high frequency (reviewed by Barrett and Kohn 1991).
According to the neutral theory (Kimura 1968) many mutations have so little 
effect on the organism that their influence in survival and reproduction is 
negligible. The frequencies of neutral alleles are not influenced by natural 
selection, but by genetic drift. Therefore, they have no particular role in the 
adaptation to new environments, which makes them particularly suitable to trace 
the geographical genetic structure of populations among other purposes.
The major questions of population genetics are: how to measure the genetic 
variation in populations and how much it affects individual reproductive success. 
In the middle sixties, molecular methods started to be used and they increased the 
possibility to obtain estimates of genetic variation at previously “invisible” loci. 
The amount of genetic variation is measured by genetic diversity or 
“heterozygosity”, defined as the probability that two alleles chosen at random at a 
locus in the population are different. Molecular methods do not solve the problem



of deducting the genetic variation from observed phenotypic variability: they 
circumvent the problem. They tell us how much genetic variation is present in a 
particular part of the genome, but they do not tell us how this genetic variation 
affects phenotypic variation (Stearns and Hoekstra 2000).

Pinus pinaster Ainton: origin, taxonomy and biology
Pines belong to an old genus -  the oldest in the whole family of Pinaceae -  
which, originated in the middle Mesozoic (190-136 My BP, million years before 
present) in middle latitudes. During the Cretaceous (136-65 My BP), the genus 
was already differentiated into two subgenera, and pines were widely distributed 
throughout the Northern Hemisphere. In general, pine populations were 
fragmented and displaced during the Eocene due to major climate changes (54-34 
My BP). In the terminal Eocene, temperature and humidity decreased drastically 
leading to angiosperm taxa extirpation and expansion of pines and other cool and 
dry adapted taxa in middle-latitude locations. Fossil records indicate that pines 
rose in abundance throughout middle latitudes in North America, Europe and 
Asia in the Miocene (26-7 My BP); the direct ancestors of many modern pines can 
be traced to Miocene pines (Millar 1998 and references therein). There are 
indications that Mediterranean pines migrated to the region from eastern Asia 
along the mountain ranges that once extended north of and parallel to the 
Himalayas (Mirov 1967).
Pinus contains more species than any other genus of conifers (Little and 
Critchfield 1969), and they all share uniformity in chromosome number (2n = 24) 
(Sax and Sax 1933). More than 40 different classification systems have been 
proposed for this genus (Millar 1993) depending on the criteria used (e.g., Shaw 
1914; Mirov 1967; Little and Critchfield 1969; Farjon 1984). This genus is 
usually divided into two subgenera Strobus (= Haploxylon, soft pines) and Pinus 
(= Diploxylon, hard pines), which are further divided into sections and sub
sections (Little and Critchfield 1969; Farjon 1984). According to Little and 
Critchfield (1969), Pinus pinaster belongs to the Pinus subgenus, subsection 
Sylvestris.
The evolution of the genus Pinus has been studied recently using different 
approaches, in particular molecular markers (e.g., Strauss and Doerksen 1990; 
Wang and Szmidt 1993; Farjon 1996; Wang et al. 1999; Wang et al. 2000). 
According to a study based on sequence divergence of chloroplast regions made 
with Eurasian pines (Wang et al. 1999), the Mediterranean pines formed one 
strongly supported clade within the subgenus Pinus, and within that clade, P. 
pinaster grouped with P. canariensis and P. pinea, but with a weak bootstrap 
support.
Pinus pinaster reaches a height of about 35 m. The needles are thick, rigid and 
shiny grey-green, with conspicuous rows of stomata on all sides. They are 
grouped in pairs, 15-20 cm long, with a smooth surface, and a half-circular cross
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section. Male strobili develop on the lower part of the new shoots, whereas 
female strobili form in the whorl around terminal buds. The cones are 10-20 cm 
long and remain in the branches for several years. Young trees 6-7 years old can 
start to produce cones on upper shoots. The seeds are about 1 cm long, with a 2-3 
cm long wing (Farjon 1984).

Figure 1. Natural distribution of P. pinaster. (After Baradat and M arpeau-Bezard 1988)

Distribution area
Some studies have shown that climatic changes during the Quaternary (2.4 My to 
present) in Europe have played a major role in shaping the phylogeography of 
European plant and tree species by contracting and expanding their natural ranges 
(Bennett et al. 1991; Flewitt 1996; Hewitt 2000). The successive glacial- 
interglacial oscillations of the Pleistocene (2.4-0.01 My BP) have moulded the 
range of plant species, by isolating refugia, which subsequently provided the 
source for new colonization (Comes and Kadereit 1998; Taberlet et al. 1998). By 
compiling several data sets available for various European tree species, Taberlet 
et al. (1998) were able to identify some general trends according to the location 
of their refugia in southern Europe, but they concluded that each species would 
exhibit a particular phylogeographic pattern. In the case of P. pinaster, it has been 
hypothesised that the actual distribution of this species is the result of events that 
occurred during the last glaciation (0.7-0.01 My BP) (Baradat and Marpeau- 
Bezard 1988). Nevertheless, the distribution of P. pinaster has also been greatly 
modified by human activities during historic times throughout the Mediterranean 
Basin until the recent expansion of its cultivated range (Barbero et al. 1998; Le 
Maitre 1998).
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According to Scott (1962) and Farjon (1984) Pinus pinaster occurs naturally in 
southwest Europe and northwest Africa between latitude 31° and 46° N and 
longitude 9° and 13° E; from southwest Morocco to the mouth of the Gironde in 
France, and from the west coast of Portugal to the west coast of Italy. In France, 
Algeria, Tunisia and Italy the distribution is mainly coastal, but in Portugal, 
Spain, Morocco and Corsica this species grows from near the coast to far inland 
and high into the mountains This species is distributed throughout its range area 
in a discontinuous way, due to geographic isolation of populations and to the 
ancient human impact in the Mediterranean Basin (Fig. 1). The areas occupied by 
the species in different countries are shown in Fig. 2. Pinus pinaster has been 
planted in many other places in Europe and it has often become well established 
outside its natural range, especially in coastal regions. Pinus pinaster is also 
found in Australia, South Africa and New Zealand as an exotic species, where it 
constitutes extensive and successful stands.

Algeria |

Tunisia |

Marocco H  

Italy 

Portugal 

Spain 

France

0 200 400 600 800 1000 1200 1400

Figure 2. Areas occupied with P. pinaster  in the countries of its natural range (x 1000 ha). 
(http://pinus.dgf.min-agricultura.pt/estatistica/invent.htm; Alia et al. 1996; Deroy 2000)

Migration pathways of Pinus pinaster in Europe
Tree species show different patterns in the distribution of genetic diversity within 
and among populations (Hamrick et al. 1981). As discussed earlier, several 
factors are responsible for moulding the genetic variation patterns: gene flow, 
selection, genetic drift, human activities and climatic changes. However, the 
relative significance of these factors is likely to vary greatly among populations 
and species (Stearns and Hoekstra 2000).
The genetic variation of P. pinaster has been studied using various ways. 
Intraspecific variation in the species has been investigated in numerous 
provenance trials established in different countries (Harfouche and Kremer 2000
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and references therein), and these experiments showed that morphological and 
adaptive traits vary significantly among provenances. Several range-wide 
diversity studies have focused on terpenes, isozymes, denatured proteins and 
chloroplast microsatellites (Baradat and Marpeau-Bezard 1988; Bahrman et al. 
1994; Petit et al. 1995; Vendramin et al. 1998). Some other studies have been 
undertaken at a regional level using isozymes, AFLPs (amplified fragment length 
polymorphisms) and nuclear microsatellite markers (Castro 1989; Salvador et al. 
2000; Gonzalez-Martinez et al. 2001; Mariette et al. 2001b).
Based on terpene markers, palynological and paleoclimatological records, 
Baradat and Marpeau-Bezard (1988) discriminated three major groups of P. 
pinaster populations: the Atlantic group, comprising populations from 
southwestern France, Portugal, and Galicia in Spain; the Mediterranean group, 
extending from central Spain to the Ligurian coast in Italy; and finally the North 
African group that includes stands from Morocco, Algeria and Tunisia. In another 
study, Bahrman et al. (1994) included eastern Spain in the Atlantic group. Using 
mitochondrial DNA markers, C. Burban (unpublished manuscript) discriminated 
three groups: the Moroccan (Rif and Atlas), the Occidental (Iberian Peninsula and 
southwestern France) and the Oriental group (southeastern France, Corsica, 
Sardine, Italy, Pantelleria, Tunisia and Algeria).
The typically scattered distribution of this species may have prevented or limited 
gene flow among the different groups of populations, causing high genetic 
divergence among populations due to genetic drift (Baradat and Marpeau-Bezard 
1988; Bahrman et al. 1994; Petit et al. 1995; Vendramin et al. 1998). 
Nevertheless, gene flow and human activity were probably responsible for the 
low differentiation found at a fine geographic scale (Castro 1989; Mariette et al. 
2001b).
The presence of a centre of origin of P. pinaster in the southwest of the Iberian 
Peninsula at the end of the Pliocene (3 My BP) was hypothesised by Baradat and 
Marpeau-Bezard (1988) and supported by fossil findings (Teixeira 1945). The 
authors drew a different picture for the migration pathways of the species before 
and after the last glaciation. The preglacial hypothesis supposes the presence of 
three distinct pathways towards the north of Portugal, Spain and France, towards 
the south of Spain, France and Italy, and towards the north of Africa (Fig. 3). The 
postglacial hypothesis assumes that migration occurred only along the first two 
pathways. Moreover, the authors claim that the successive ice ages during the 
Pleistocene had several times stopped the northerly advance of P. pinaster, and 
eventually diminished its presence to scattered refugia in the south of the Iberian 
Peninsula, particularly during the Pleniglacial (0.35 My BP).
According to the study made by Vendramin et al. (1998) based on chloroplast 
microsatellites, a more complex picture of the possible migration pathways was 
drawn. Two main reservoirs of haplotypic diversity (Landes and Pantelleria) were 
identified (Fig. 3). The Pantelleria population (or North of Africa populations) 
might have represented a starting point of the migration process. Pantelleria could
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represent an ancient population originating in the preglacial period from réfugia 
located in the central part of North Africa, from which the migration took place 
towards West and East. The French area might have represented réfugia from 
which the migration towards Italy began. Conversely, low levels of within- 
population diversity were observed in the Portuguese populations (Alcâcer and 
Monçâo) with characteristics of recent establishment (possible founder effects). 
Such a reduction in genetic diversity with increasing distance from a refugium is 
a general phenomenon to be expected from repeated population bottlenecks at the 
advancing edge of a range in any species during postglacial expansion (Hewitt 
1996).

Figure 3. The three major groups of populations and preglacial migration pathways 
hypothesis considered for P. pinaster. ALC=Alcacer, LEI=Leiria, M ON=M on£ao, 
LAN=Landes, PAN=Panteleria, LIG=Liguria, TUS=Tuscania, COR=Corsica, 
SAR=Sardinia, M OR=Morocco. (Courtesy of Vendramin et al. 1998)

The Iberian Peninsula has been reported as glacial refugium for numerous plant 
species, (Hewitt 1996; Comes and Kadereit 1998)) and it is one of the most 
important native areas of P. pinaster. Salvador et al. (2000) observed a generally 
higher level of allozyme diversity in the Spanish populations than the Portuguese 
population included in their study, and hypothesised a migration pathway from 
Spain to Portugal. The authors used six other populations from Portugal from 
another study (Castro 1989) and recomputed the data by using the same loci. 
Afterwards, Salvador et al. (2000) concluded that the idea of refugia in Portugal 
could not be supported because no special variants were detected. In conclusion,
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the authors suggested the disappearance of P. pinaster from that area during the 
last glaciation.
The phylogenetic analysis made with allozyme markers by Gonzalez-Martinez et 
al. (2001) showed a high geographical structure in the Iberian Peninsula. The 
northwestern populations form a cluster and the southeastern populations another, 
in accordance with the study made by Baradat and Marpeau-Bezard (1988). The 
authors observed the highest levels of diversity in the eastern and the southern 
populations and an important reduction of gene diversity in the northwestern 
range of the species in the Peninsula. Nevertheless, a putative refugium in 
Portugal was not excluded, because P. pinaster could have survived during the 
last glaciation in sheltered areas at low altitude close to the Atlantic Ocean in 
Portugal, as suggested by Figueiral (1995) based on charcoal records.

Human impact in the Mediterranean region forests
The Mediterranean Basin is characterized by traditional human impacts on the 
forest (Thirgood 1981) and the modification of genetic diversity of species by 
human activity (Ledig 1992). The land use by humans over millennia has played 
a dramatic role in shaping the region’s vegetation. In no other part of the natural 
range of pines has there been such a complex interplay between this genus and 
humans. The effects, however, have not been the same throughout the entire 
Mediterranean range, being more important in coastal areas and fertile soils. 
Various ecological factors, such as forest fires, drought, soils, etc., also played a 
major role in the adaptation of P. pinaster, in the isolation between stands, and, to 
some extent, in the genetic variation of the species (Barbero et al. 1998).
People and pines have had a long association. The first evidence of hominid 
habitation within the natural range of Pinus has been dated to about 1.4 My BP on 
the Eastern Shore of the Mediterranean Sea (Wood and Turner 1995). According 
to Le Maitre (1998) and references therein, by the time hominids encountered 
pines, the different species occupied most of their current range. Mediterranean- 
type climates, with their dry summers and recurrent fires, were also well 
established. Key events between humans and pines took place: the marked 
climatic fluctuations during the Pleistocene and Holocene (10 000 BP until 
present); the increasing use of fire that is essential for maintaining pine 
populations and reducing competition from hardwood species; the population 
growth that followed the domestication of agricultural crops; the copper and iron 
smelting that requires large amounts of wood; and the forest clearing necessary to 
produce open fields for agriculture and pasture (Fig. 4). Although population 
densities were low, human impacts during the prehistoric period were substantial 
and could have altered the abundance of pines, particularly in the Mediterranean 
Basin (Barbero et al. 1998).
The use of timber for the sea-borne trade and military protection further increased 
during the Graeco-Roman period. Also, the rapid population growth, particularly
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around cities, caused higher wood demands for housing, domestic use, bridges 
and roadways (Fig. 4). The emergence of agriculture and biological sciences with 
higher control over plant cultivation accelerated forest depletion, but regulation of 
forest cutting was common both for wood conservation and religious purposes 
(Thirgood 1981; Le Maitre 1998). The earliest evidence of humans altering the 
distributions of pine species through cultivation dates from the Graeco-Roman 
period. Palynological studies suggest that pine populations expanded locally in 
degraded areas during that period, but humans also spread them, P. pinaster being 
a paradigmatic case (Willis 1992; Klaus 1989).
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Growing concerns about forest depletion led to the first recorded large-scale 
reforestation. Natural forests in Portugal had suffered intense use before the 14th 
century due to fire, agriculture, grazing, mineral exploitation, wood consumption 
and shipbuilding; therefore, in 1310, King Don Dinis issued a law to protect pine 
forests (Scott 1962; Buting and Rego 1988). In the 13th century Cistercian monks 
established the “Leiria’s pineyard” to stabilise the sand dunes, but many others 
were established elsewhere for soil protection and to fight desertification of the 
country (Mattoso and Sousa 1993). From the 15th century onwards, the naval and 
merchant fleets of Portugal, Spain, France and Great Britain also consumed large 
quantities of wood (Thirgood 1981). According to Le Maitre (1998), global timber 
trade increased significantly in the 18th century and sawmill industry expanded, 
encouraging forest harvesting. Forest nurseries were established for large-scale 
planting in Portugal and by the end of the 18th century and the beginning of the 
19th century, P. pinaster was clearly expanding its presence and supplanting other 
species or invading non-cultivated areas (N. Devy-Vareta, personal
communication). In France, attempts at reforestation were made as early as 1500, 
and P. pinaster was used to stabilise the dunes near Bordeaux in 1713. 
Reforestation of the sandy coastal plains of Landes in southwestern France 
continued until a significant area of the region was covered (Scott 1962).
In Europe, the two World Wars were critical and devastating periods for the 
forests, but the development of petroleum-based synthetics has, to a great extent, 
replaced wood-based products. Nevertheless, paper consumption increased 
notably with the growing information demands of the 20lh century. In the 
Mediterranean Basin, the primary concern has been the protection of soil and 
reforestation of degraded areas (Thirgood 1981). For example, in Portugal, about 
400 000 ha of P. pinaster had been planted between 1900 and the 1960s (Devy- 
Vareta 1993).
A particular feature of P. pinaster is its ability to grow well on very poor sandy 
soils, low in nutrients, while tolerating summer drought, winter flooding, and sea 
winds. Under favourable climate, such soils give a good yield of wood for lumber 
or pulp, and also resin (Scott 1962; Farjon 1984). Those characteristics played a 
central role in its preferential use for reforestation. Therefore, since at least the 
20th century, reforestation programmes in the P. pinaster range area have notably 
spread this species. The present situation, therefore, is a complex of indigenous 
populations and planted forests of unknown origin (Devy-Vareta 1993; Alia et al. 
1996; Barbero et al. 1998; Salvador et al. 2000).

Seed certification
Human settlement and action over the centuries have influenced forests in Europe, 
particularly in the Mediterranean area as discussed in the preceding paragraphs, 
and planted forests constitute a major part of the resource of some countries. The
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concern about the deterioration of forests throughout Europe led to an increasing 
awareness of their economic, ecological, social and cultural value.
Human impact on forests alters the genetic structure of tree species in several 
ways; an important example concerns the introduction of seeds from other regions. 
Because introduced seeds produce, in general, less adapted stands than native 
ones, introductions may provoke economical losses and further affect the 
productivity of autochthonous stands. The origin of an indigenous stand is 
defined as the place in which the trees are growing and the origin of a non- 
indigenous stand is the place from which the reproductive material was originally 
introduced. Reproductive material may comprise fruits, seeds, pollen, scions or 
tissues for tissue culture. Planting non-indigenous reproductive material may alter 
local patterns of variation by influencing adjacent indigenous stands due to pollen 
and seed dissemination. The consequences are expected to be more important 
where intensive plantings were made by using reproductive material from regions 
with very different environmental characteristics from those at the site of material 
introduction (Jones and Burley 1973).
According to Zobel and Taberlet (1984), seed certification has been a concern that 
started as early as the beginning of the 20th century in Japan with Cryptomeria 
japónica. There are many meanings for seed certification, and different methods 
for the collection and handling of seeds from forest trees. Some authors regard 
certification as the correct labelling in which the seed size, purity, germination 
and other information about the seed is given, others consider that the information 
about where the seed was obtained, source certification, should also be included 
(Barber et al. 1962; Zobel and Taberlet 1984). According to Jones and Burley 
(1973), seed certification is an official statement that a seed lot conforms to 
certain standards, which may include specific identity, origin, genetic characters 
and seed purity. For forestry, seed certification systems have been developed 
largely to provide labels and records that give officially authenticated details of 
identification of the seeds, which involves the step of identifying its origin, and 
also its quality, meaning the genetic superiority, when that information is 
available. Therefore, reproductive material identification and certification in 
forestry has become a relevant issue (Barber et al. 1962; Matthews 1964; Jones 
and Burley 1973).
Morphological data and biochemical markers (terpenes, isozymes and denatured 
proteins) have all been used for provenance identification and seed certification in 
forest trees (e.g., Falkenhagen 1985, Boisseaux 1986, Bahrman et al. 1994, 
Espinel et al. 1995). Molecular markers based on nuclear and organelle DNA 
analysis have also been used lately for those purposes (e.g., Szmidt et al. 1988, 
Aragonés et al. 1997, Sinclair et al. 1998, Bucci and Vendramin 2000). For 
example, in France, a law under the supervision of the Ministère d’Agriculture et 
Forêts regulates the collection of commercial P. pinaster seed-lots in the 
Aquitaine region (Réglement technique récolte pin maritime, Arrête du 8 février 
1990). Candidate stands for seed collection in the Aquitaine region must have 
their origin certified using a diagnostic test developed by Baradat and Marpeau-
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Bezard (1988), based on a discriminant analysis of terpene profiles. The term 
provenance has different meanings, reviewed by Jones and Burley (1973); in this 
study, it refers to the original geographical source of a given lot of plant 
reproductive material.
Recently, consensus on reproductive material certification in forestry is under 
discussion in Europe, allowing regional differences and specificities. The Third 
Pan-European Ministerial Conference on the Protection of Forests in Europe, held 
in Lisbon, 2-4 June 1998, adopted criteria for sustainable forest management, one 
of them being the maintenance, conservation and appropriate enhancement of 
biological diversity in forest ecosystems. This resolution involves the 
establishment of standards for forest reproductive material certification. For 
reforestation, indigenous species and local provenances that are well adapted to 
site conditions should be preferred. Introduced species or provenances should be 
used only after the evaluation of the impacts on the ecosystem and on the genetic 
integrity of indigenous species or provenances. For further details the following 
web page should be consulted: http://www.pefc.org/content.htm.

Objectives
The purpose of this thesis was to study the genetic structure of P. pinaster at a 
regional level. In particular, the investigation focused on a practical application to 
be used in the forest management of this species.
The main objectives of the three studies included in this thesis were: (1) to assess 
the distribution of genetic diversity within and among populations of P. pinaster 
in the region hypothesised as a putative refugium for the species during the last 
glaciation; (2) to compare nuclear and cytoplasmic estimates of diversity within 
and between two regions of the species; and (3) to design a test in order to identify 
the origin of the stands in one region.
In studies reported in Papers I and II, cpSSR (chloroplast microsatellites) and 
AFLP (amplified restriction fragment polymorphism) markers were used to 
provide information on the level and distribution of genetic variation among and 
within populations of P. pinaster at the regional level. Two different approaches 
were used: the first involved analysis of chloroplast repetitive simple-sequence 
repeats (cpSSR) (Paper I) and the second involved a comparative analysis 
between the cpSSR and AFLP markers (Paper II). In the analysis described in 
Paper III, a cpSSR-based test was developed in order to determine the putative 
origin of maritime pine stands in the Aquitaine region (southwest of France) and 
to compare the cpSSR-based test with the test based on terpene profile analysis.
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Methods
Knowledge about the genetic structure of a species can be obtained from 
polymorphic markers that allow the determination of gene and/or genotypic 
frequencies. Genetic variation of forest trees can also be inferred using the 
traditional quantitative analysis of morphological traits, but due to the 
environmental influence, the polygenic character of some traits, and the time and 
cost to retrieve the information, other methods have been sought to obtain the 
same type of information (Wang and Szmidt 2000). The differences among 
individuals can be traced using secondary compounds, such as terpenes and 
flavonoids, but they also fail to be good candidates due to difficulties of inferring 
the genotype from phenotypes and to a possible environmental influence 
(Crawford 1983; Hanover 1992). In the last decades, methods that look at protein 
polymorphisms (Strauss et al. 1992) and the direct analysis of polymorphisms at 
the DNA level have provided a diverse array of molecular tools for genetic 
analysis in forest tree populations (reviewed by Morgante et al. 1996; Wang and 
Szmidt 2000).
A molecular marker can be defined as a sequence of DNA or a protein which can 
be readily detected and whose inheritance can be monitored. It is the 
polymorphism of molecular markers that can be used to study genetic diversity. 
Polymorphism in proteins has been studied, e.g., through allozymes, i.e., different 
molecular forms of an enzyme coded by different alleles at one gene locus. 
Polymorphism can be identified in different types of DNA: nuclear and 
cytoplasmic or organellar DNA (in the chloroplast, cpDNA and in the 
mitochondria, mtDNA) (Mitton 1994; Vekemans and Jacquemart 1997; Parker et 
al. 1998).
The desirable properties of a marker are: polymorphic expression; codominant 
inheritance (the different forms of a marker should be detectable in diploid 
organisms to allow discrimination of homozygotes and heterozygotes); even 
distribution throughout the genome; easy, fast and inexpensive detection; and 
reproducibility within and between laboratories. No single molecular marker 
meets all those criteria; the choice of a particular molecular marker will therefore 
depend on the objectives of the study (reviewed by Karp and Edwards 1997; 
Parker et al. 1998; Szmidt and Wang 2000).
DNA-based markers have a great advantage over terpenes or isozymes, for they 
provide pure genetic information, since they are not the products of transcription 
or translation. Other advantages of these markers are the large variety of scales on 
which evolutionary processes can be studied and their great potential for
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detecting variation in all kinds of organisms, in both living and dead tissues 
(Parker et al. 1998).
Markers mostly employed in the current studies are described in the following 
paragraphs.

Terpenes
Monoterpenes (C]0 hydrocarbons) and sesquiterpenes (C15 hydrocarbons) are two 
classes of isoprenoid derivatives, which are elaborated from pyrophosphorylated 
precursors: respectively, gerandyl (C10) and farnesyl (C15) diphosphates. These 
compounds are found in conifers, in particular in the genus Pinus, where they 
accumulate in the resin ducts of different tissues (needles, primary cortex, and 
conducting tissues). Terpenes constitute 20% or more of the volatile fraction of 
oleoresin (Baradat et al. 1995). Terpenoid biosynthesis and metabolism were 
further reviewed by Chappell (1995).
In the genus Pinus, single-gene inheritance of monoterpenes has been 
demonstrated in several species (Baradat et al. 1995 and references therein), 
including P. pinaster (Baradat et al. 1972). Marpeau et al. (1975) also 
demonstrated single-gene inheritance of sesquiterpenes in P. pinaster. The use of 
terpenes as markers may present difficulties, as their expression can be affected 
by the age of the tree and the sample source (position of the sample in the tree 
and type of tissue used) (Bernard-Dagan et al. 1971). In P. pinaster the cortex of 
young but completely lignified shoots, the oleoresin composition remains 
unchanged (Baradat et al. 1972), therefore such plant material is appropriate for 
extraction of terpenic compounds for analysis. Moreover, the terpenic 
composition in the cortex of that plant material remains stable as soon as the tree 
achieves 7-10 years of age (Baradat et al. 1991).
Terpene markers have been used to study geographical genetic differentiation in 
conifers, as reviewed by Mtiller-Starck et al. (1992) and Strauss et al. (1992), but 
they can also be used to study mating patterns, to assess the geographic origin of 
stands and to study seed orchard pollen contamination (Baradat et al. 1991; 
Coppen et al. 1993; Schiller and Genizi 1993; Baradat et al. 1995). Nevertheless, 
terpeniod composition, while strongly inherited, probably plays a role in tree’s 
disease and insect resistance, and is thus undoubtedly subject to natural selection 
(Hanover 1992). Some terpenes, in particular, are believed to be involved in the 
resistance to the caterpillar Dioryctria spendidela that attacks the bark of P. 
pinaster (Baradat and Marpeau-Bezard 1988). Besides, for terpenoids, only 
genetic changes that substantially alter gene expression or biosyntetic enzyme 
activity will be detected; thus, products of many different mutational events will 
be confounded or undetected (Strauss et al. 1992).
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PCR-based markers
Dominant markers
In past years, a new generation of markers, based on the polymerase chain 
reaction (PCR), has been developed. PCR is a technique to amplify specific DNA 
sequences by primer extension of complementary strands of DNA with the action 
of the thermostable DNA polymerase (Mullis and Faloona 1987; Saiki et al. 
1988). This technique is very powerful for amplifying tiny amounts of DNA 
sequences several million times over only in a few hours, involving several cycles 
of heating and cooling, each time the newly synthesised strand becoming a 
template for the subsequent replication. Theoretically, the cycling of temperatures 
increases in an exponential way the amount of the specified sequence (Fig. 5).
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Figure 5. Diagrammatic representation of the PCR principle. A: In the denaturing step, the 
heat opens the double strand. B: In the annealing step, the cooling allows the primers (in 
grey and black) to bind the complementary regions. C: In the elongation step, the DNA 
polymerase synthesises complementary strands. D and E: The cycles o f heating and 
cooling are repeated, each time the newly synthesised strand becoming a template for the 
subsequent replication.

In 1990, the use of short primers (usually 10 base-long) of arbitrary sequence was 
initiated to generate PCR amplification products, in low stringency conditions, 
from genomic DNA (Williams et al. 1990; Welsh and McClelland 1990). 
Depending on the specific conditions of the amplification or product separation 
and detection, different methods were termed: RAPD (Random Amplified 
Polymorphic DNA, Williams et al. 1990); AP-PCR (Arbitrary Primer PCR, 
Welsh and McClelland 1990); or, DAF (DNA Amplification Fingerprinting, 
Caetano-Annolés et al. 1991). RAPD analysis is performed at a low annealing
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temperature (stringency), implying that the binding of the primer to the genomic 
DNA is partly non-specific. Therefore, in order to obtain reproducible results, the 
reaction conditions must be kept strictly constant and the analysis must be made 
in the same laboratory (Penner et al. 1993; Hallden et al. 1996; Jones et al. 1997; 
Rafalski 1997). Nevertheless, the method’s speed, sensitivity and versatility make 
it suitable to survey large number of samples in population genetics of forest trees 
(e.g., Bucci and Menozzi 1995; Nesbitt et al. 1995; Schierenbeck et al. 1997; 
Gallois et al. 1998; Wu et al. 1999). RAPD markers usually show dominant 
Mendelian inheritance; amplification either occurs at a locus or not, leading to 
scores of band presence/absence. This means that the heterozygotes and 
homozygotes for the presence of the band cannot be distinguished (Isabel et al. 
1995; Lu et al. 1995). Moreover, the amplified regions may represent both coding 
and non-coding sequences (Kazan et al. 1993; Lu et al. 1997).

Amplified Restriction Fragment Polymorphism (AFLP) is a powerful method for 
detecting polymorphism throughout the genome, based on a two-step 
amplification strategy that combines restriction enzymes and PCR (Zabeau and 
Vos 1993). This highly reproducible technique allows the simultaneous screening 
of a large number of molecular markers, randomly distributed throughout the 
genome (Vos et al. 1995; Zhu et al. 1998).
The genomic DNA is digested with two restriction enzymes, a frequent cutter and 
a rare cutter (in Fig. 6 Msel and FcoRI). Afterwards, two adapters with 3’ ends 
complementary to the sequences recognised by the enzymes are ligated to the 
DNA fragments, to provide known sequences for the first PCR amplification. In 
the pre-amplification step, primers with the 5’ ends complementary to the 
adapters, but extended with one to several nucleotides at the 3’ ends (two 
nucleotides in Fig. 6), are used to amplify a subset of the restricted fragments 
(PCR I). In the selective PCR amplification step, primers with the 5’ ends, 
complementary to the adapters but extended with one to several nucleotides at the 
3’ ends (referred as selective nucleotides), are used to amplify the selected subset 
of restricted fragments (PCR II). Polymorphisms are detected by differences in 
the length of the amplified fragments by polyacrylamide electrophoresis. The 
amplified fragments are resolved in a sequencing gel and visualised by 
radioactivity, fluorescence or silver staining.
The AFLP method generates a large number of bands in a single reaction (Vos et 
al. 1995; Powell et al. 1996) and gives higher reproducibility compared with the 
RAPD method (Jones et al. 1997). The AFLP technique has been used for a wide 
range of purposes in tree species, among others, the investigation of genetic 
diversity (e.g., Winfield et al. 1998; Lerceteau and Szmidt 1999; Cervera et al. 
2000; Mariette et al. 2001b), the generation of linkage maps, and the 
identification of molecular markers linked to phenotypic traits and/or genetic loci 
(Cervera et al. 1996; Marques et al. 1998; Travis et al. 1998; Cato et al. 1999; 
Marques et al. 1999; Remington et al. 1999; Arcade et al. 2000; Costa et al.
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2000; Lerceteau et al. 2000; Sewell et al. 2000). Similarly to RAPD markers, 
AFLP markers show predominantly dominant Mendelian inheritance (Paglia and 
Morgante 1998; Lerceteau and Szmidt 1999; Nikaido et al. 1999) and they detect 
variation in anonymous nuclear sequences.
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Figure 6. A diagrammatic representation of the AFLP procedure reported in this thesis. 
See text for explanation.

Only recently has this method been used in conifers because of the large size of 
their genome, which was responsible for the complicated band pattern, therefore 
the protocol had to be adapted in order to decrease the number of bands obtained 
per primer combination. The number of generated fragments can be restricted by 
changing the nucleotide extensions and/or the type of enzymes used in the 
digestion of the DNA (methylation sensitive or insensitive) (e.g., Paglia and 
Morgante 1998; Lerceteau and Szmidt 1999; Cervera et al. 2000; Costa et al. 
2000). AFLPs are more technically demanding than RAPDs, but their automation

23



and the availability of kits (e.g., Lerceteau and Szmidt 1999) made possible their 
use on a larger scale.
PCR-based methods such as RAPD and AFLP markers are more easily obtained 
than most non-PCR alternatives and their analysis does not require sequence 
information or laborious cloning. However, since most of these markers are 
dominant, the genotypes are not unambiguously traced, therefore biases are 
introduced in the estimation of population-genetic parameters (Lynch and 
Milligan 1994; Isabel et al. 1995; Szmidt et al. 1996; Isabel et al. 1999; 
Krutovskii et al. 1999; Zhivotovsky 1999). According to Lynch and Milligan 
(1994), dominant markers can be used to estimate unbiased population genetics 
parameters, provided that the loci with low frequency of the null allele are pruned 
from the analysis. Also Zhivotovsky (1999) developed a new approach to 
overcome the dominance situation for these markers. Isabel et al. (1999) refers 
that the reliability of RAPDs fingerprints in estimating population structure can 
be improved if prior knowledge exists of the matting system and levels of 
populations structuring, and if the fragments meet some polymorphism criterion 
(Lynch and Milligan 1994).

Microsatellite markers
A new type of marker, know as simple-sequence repeat (SSR) or microsatellite 
has been developed based on DNA sequence variation. This marker is based on 
tandem DNA repeats characterised by short motifs (1 to 6 bp), repeated from two 
to many thousands of times (Tautz 1989). A different allele occurs at a SSR locus 
as a result of changes in the number of times a core element is repeated, altering 
the length of the repeated region. Differences in length at a SSR locus are 
detected with DNA amplification by PCR using two oligonucleotide primers that 
complement unique sequence flanking at the SSR locus. Polymorphism is 
detected by electrophoretic separation of fragment sizes that can differ by as few 
as two base pairs.
Current research suggests that the length variation between alleles at a SSR locus 
are created by slippage of DNA polymerase during the replication of tandem 
repeats followed by failure of DNA mismatch repair to restore the original 
sequences (Strand et al. 1993). Microsatellites are very useful because they are 
codominant and highly-polymorphic markers, but their identification is a very 
expensive and time-consuming process, which generally requires the construction 
and screening of a genomic library. Known primers are not likely to amplify the 
same locus across related taxa, unless the flanking regions were priming sites are 
located are highly conserved (Ellegren 1992), which happens, usually in closely 
related species (Kijas et al. 1995). Therefore, the success of cross-amplification 
diminishes with increasing species divergence (Whitton et al. 1997).
Single-locus SSR markers have been identified in conifers (Lefort et al. 1999 and 
references therein), but due to their large genome size, this task has proven to be 
difficult. Moreover, only a small fraction of SSR clones selected from genomic
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libraries can be converted into informative SSR markers (e.g., Echt and 
Maymarquardt 1997; Pfeiffer et al. 1997; Mariette et al. 2001a). One strategy to 
increase the efficiency of the identification of microsatellite regions is to transfer 
SSR markers across genera. Nevertheless, the SSR information generally does not 
transfer across Pinus species (Echt and Maymarquardt 1997; Echt et al. 1999), 
e.g., 47 SSRs primer pairs developed in three Pinus species were tested in P. 
pinaster, but only one amplified at a single polymorphic locus (Mariette et al. 
2001a). The SSR primer pair that cross-amplified was identified in P. halepensis, 
which is from the same subgenus Pinus and belongs to a strong support clade 
with P. pinaster, according to (Wang et al. 1999).
The availability of the entire chloroplast sequence of P. thunbergii (Wakasugi et 
al. 1994) allowed the identification of chloroplast simple-sequence repeats 
(cpSSR). Primers flanking a mononucleotide repeat located in the intergenic 
region between the trnK and pbsA genes were used to detect variation in different 
pine species (Powell et al. 1995b; Vendramin et al. 1996).
The evolution rate of cpDNA genes is estimated to be several times slower than 
of the nuclear genes (Wolfe et al. 1987), with a low average level of sequence 
variation (Clegg and Zurawski 1992). The genetic information contained in the 
chloroplast genomes of plants, including the arrangements of genes and 
intergenic sequences, is very conservative compared with the nuclear and 
mitochondrial genomes, which contain vast amounts of DNA of no apparent 
function (Birky 1988). Those properties confer to the cpSSR markers primer 
binding sites a high degree of conservation (Powell et al. 1995a), therefore the 
designed primers ought to work across taxa.
The high degree of conservation of sequences in the chloroplast genome of 
conifers and the universality of the primers was confirmed by several recent 
studies in conifers (Powell et al. 1995b; Vendramin et al. 1996; Vendramin and 
Ziegenhagen 1997; Sperisen et al. 1998). Moreover, the primers have been used 
with success in 110 different conifer species belonging to different taxa, in 
particular, Pinaceae, Cupressaceae and Taxodiaceae (G.G. Vendramin, 
unpublished results). The universality of cpSSRs allows the transfer of primers 
across taxa alleviating the cost involved in their identification for each species. 
The use of automated DNA sequencing apparatus and adequate software can 
increase the efficiency and allows obtaining a large set of data in a relatively 
short period of time.
The use of cpSSRs has allowed the investigation of the distribution of chloroplast 
haplotypes and haplotypic diversity in different conifers at the range level of the 
species (Lefort et al. 1999 and references therein), including P. pinaster 
(Vendramin et al. 1998), and that evidence appears to be associated with the 
migration processes from glacial refugia that occurred in the most recent 
postglacial period.
In contrast to nuclear genomes, plant organelle genomes are haploid and 
uniparentally inherited. For most angiosperms the chloroplast genome is
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maternally transmitted, but in conifers it is generally paternally inherited (Neale 
et al. 1986; Szmidt et al. 1987; Neale and Sederoff 1989; Wagner et al. 1989; 
Stine and Keathley 1990; Dong et al. 1992; Ziegenhagen et al. 1995; Cato and 
Richardson 1996; Vendramin and Ziegenhagen 1997; Stoehr et al. 1998) 
including in P. pinaster (Plomion et al. 2001). Due to the uniparental mode of 
inheritance, the chloroplast genome behaves as a haploid single-locus and does 
not undergo recombination (Chiu and Sears 1985). Except for occasional 
mutations, this molecule is inherited unaltered with linked associated loci, 
therefore the sequences are a source of evolutionary history information.
Due to the uniparental inheritance and to the smaller effective population size, 
organelle genomes are more sensitive than nuclear DNA to severe reductions in 
the number of individuals in a population; they are expected to show different 
population dynamics and may be more sensitive to population subdivision (Birky 
et al. 1989). Studies in conifers have shown that cytoplasmic markers generally 
display higher values of differentiation compared with nuclear makers (e.g., Hong 
et al. 1993; Petit et al. 1993; Strauss et al. 1993; Ennos 1994; Wang and Szmidt 
1994; Hong et al. 1995).
Patterns of population subdivision in conifers may be influenced by the 
contrasting mode of cpDNA and mtDNA inheritance (Hu and Ennos 1999). Gene 
flow of organelle genes distributed only through seed (e.g., maternal inheritance 
for mtDNA in pines) can be significantly less among wind-pollinated tree species 
compared to organelle genes distributed by pollen and by seed (e.g., paternal 
inheritance for cpDNA in pines). As a consequence, in wind-pollinated 
outcrossers such as pines, population subdivision can be weaker when cpDNA 
markers are used compared with mtDNA, because the wind-dispersed pollen is 
the main agent of gene flow (Dong and Wagner 1994; Ennos 1994; Latta and 
Mitton 1997).
Mutation rates are generally ignored because they are considered to be much 
lower than the migration rates, but this might not always be valid. Recent data 
show that mutation rates are higher at the cpSSR loci than substitution rates 
elsewhere in the chloroplast genome, and generally higher than in the nuclear 
genome sequences, except for the nuclear SSRs (Provan et al. 1999) and 
references therein), and in this case higher mutation rates could reduce population 
subdivision. Another possibility is size homoplasy, which has been observed at 
chloroplast microsatellites (Doyle et al. 1998). This could also lead to 
underestimates of differentiation when cpSSRs are used, by erasing some of the 
differences in haploytypes that have arisen in the past. Comparisons to other 
markers are needed to test whether or not those novel markers detect reliable 
estimates of genetic diversity and differentiation.
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Summary of the results
Genetic variation of Pinus pinaster
Studies presented in Papers I and II provide information on the level and 
distribution of genetic variation among and within populations of P. pinaster at 
chloroplast and nuclear loci.

Variation within populations
In Paper I, some Portuguese populations of P. pinaster showed high within- 
population haplotypic diversity. The scattered distribution of P. pinaster in 
Portugal in ancient times, with different populations evolving separately and later 
mixed by human activity, could have been a source of haplotypic diversity. An 
additional hypothesis is the possible migration pathway originating from putative 
refugia in southeastern Spain, as defended by Salvador et al. (2000). When 
allozyme markers were used, Salvador et al. (2000) found higher values of 
within-population diversity of P. pinaster in the eastern region of the Iberian 
Peninsula than in the Atlantic region (which includes Portugal). Vendramin et al. 
(1998) also detected relatively low values of diversity in two of the populations 
from Portugal in their range-wide study of cpSSR variation in P. pinaster. The 
earlier hypothesis of Baradat and Marpeau-Bezard (1988), that Portugal was a 
refuge for the species during the last glaciation, was rejected by Vendramin et al. 
(1998) due to the low values for within-population diversity found in some of the 
Portuguese populations of P. pinaster. Those populations included in Vendramin 
et al. (1998) study were probably of very recent origin and experienced a severe 
reduction in population size, with consequent founder effect. Moreover, further 
comparisons (Paper I) based on a subset of common loci proved one population 
of Portuguese origin (Leiria) to be the most polymorphic of those used by 
Vendramin et al. (1998) and in Paper I.
Fossil, charcoal and palynological records indicate that P. pinaster was present in 
Portugal during the Middle Wiirm glaciation (55 000-25 000 BP), the late 
Plenigacial (25 000-15 000 BP) and terminal Pleistocene (12 000-11 000 BP) 
(Mateus and Queiroz 1993; Figueiral 1995 and references therein). In addition, 
pollen analyses have also indicated the presence of P. pinaster forests in the 
coastal area south of Lisbon, during the Atlantic period (7 580-6 550 BP). This 
species was probably able to survive the latest glaciation in Portugal in sheltered 
areas close to the Atlantic Ocean (Figueiral 1995), in contrast to what is 
suggested by Salvador et al. (2000). In their study, the latter also suggested the 
disappearance of P. pinaster in Portugal during the last glaciation. According to 
Bennett et al. (1991), the influence of the Atlantic Ocean causes western Europe 
to be anomalously warm for its latitude, and various evidence of southern 
European climate and topography from 18 000 BP suggest that sites within this
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region should have been suitable for tree survival throughout the last glaciation, 
perhaps even at densities too low to disperse a detectable pollen rain.
In Paper II, the diversity of the French populations computed with cpSSRs and 
AFLPs (pruning those loci that showed less than 4 null homozygotes, as 
recommended by Lynch and Milligan 1994) was higher than the diversity of the 
Portuguese populations. This supports the trend found by Vendramin et al. 
(1998), i.e., a higher diversity in the French compared with the Portuguese 
populations, and the authors concluded that French populations represent one 
reservoir of haplotypic diversity in the range of the species. This finding does not 
exclude the possibility of a putative refugium in Portugal, and conclusions about 
the migration history of the species should be drawn in the context of historical, 
fossil and palynological information, due to the known human impacts 
experienced by this species in its range, as discussed in the foregoing and in 
Paper I. In particular, due to the intensive reforestation of this species in the 
southwest of France (Scott 1962), the high diversity found in the P. pinaster 
populations of that region could be a result of the mix of plant material coming 
from different places, representing a “melting pot” rather than a natural centre of 
diversity. It should be recognized that anthropogenic influences could have erased 
the fingerprints of migration pathways for P. pinaster, particularly in those 
regions where these effects were more intense, which was the case for Portugal 
and southwestern France.

Variation among populations
According to El-Kassaby (1991) and references therein, the majority of genetic 
variation for pine species is found within populations, with a small but significant 
component among populations. In contrast, in P. pinaster a high intraspecific 
variation and genetic differentiation has been found among populations across the 
range using different types of markers (phenotypic traits, terpenes, denatured 
proteins, allozymes and chloroplast microsatelites) (Baradat and Marpeau-Bezard 
1988; Bahrman et al. 1994; Alia et al. 1995; Petit et al. 1995; Vendramin et al. 
1998). The geographical isolation and the possibility of scattered refugia during 
the last glaciation have been offered as possible explanations for this pattern of 
differentiation (Baradat and Marpeau-Bezard 1988; Vendramin et al. 1998).
In studies I and II, both the Portuguese and French populations of P. pinaster 
showed a low level of among-population diversity. Nevertheless, those studies 
were made at a fine geographical scale, and both natural gene flow and human 
activities could have erased the differences among populations at a regional level. 
Castro (1989) using allozymes and Mariette et al. (2001b) using AFLP and 
nuclear microsatellites, both obtained a similar pattern of differentiation in 
groups of Portuguese and French populations. Results obtained with allozymes by 
Salvador et al. (2000) and Gonzalez-Martinez et al. (2001) showed clinal trends 
of genetic variation and fine-scale spatial structure in the Iberian Peninsula, but 
orientation of the main mountain ranges and the scattered distribution of P.
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pinaster in Spain constituted natural barriers preventing the genetic 
homogenizing effect of gene flow. Interestingly, one of the few stands that 
showed to be divergent from the others in Paper I is situated in a very isolated 
part of Portugal and is surrounded by a high range of mountains.
In Portugal, it was common in P. pinaster planting programmes since at least the 
beginning of the 20th century to use seeds from different parts of the country and 
even from abroad. The fact that no discernible geographical genetic pattern was 
found in study I reflects this practice and strong anthropogenic influences are 
confirmed by historical records (Devy-Vareta 1993). Good agreement was found 
between the results presented in Paper I and those obtained by Salvador et al. 
(2000), Gonzalez-Martinez et al. (2001) and Burban et al. (1999). In the former 
two studies, the authors observed a lack of relationship between geographic and 
genetic distances among the northwestern populations of the Iberian Peninsula, in 
a set of populations from the Iberian Peninsula, using isozyme markers. In the 
latter study, the authors found a blurred geographic pattern for a specific pest of 
maritime pine, the bast scale Matsucocus feytaudi, in Portugal.
In southwestern France, the human impact through reforestation with P. pinaster 
in that region, which started as early as the 18th century and continued until a 
significant area was covered (Scott 1962), should also be taken in consideration. 
The low differentiation exhibited by cpSSRs and AFLPs of the French 
populations detected in Paper II is strong evidence of the probable influence of 
this factor, together with gene flow, in obscuring the divergence among 
populations within this region.
In study II, the differentiation obtained with all populations considered together 
(Portuguese and French) was higher than within each provenance separately, and 
both provenances could clearly be distinguished with both types of markers 
(AFLP and cpSSR). Several earlier studies at the range level of the species and 
using different type of markers (terpenes and denatured proteins) showed that 
populations from southwestern France and Portugal clustered together (Baradat 
and Marpeau-Bezard 1988; Bahrman et al. 1994). In a more recent study the two 
provenances were discriminated with the results obtained using cpSSR 
(Vendramin et al. 1998).

Nuclear versus cytoplasmic genetic variation
In Paper II, the AFLPs revealed much lower within-population diversity than the 
cpSSRs. This could be explained by the nature of microsatellites that are usually 
highly polymorphic markers (Lefort et al. 1999 and references therein), and the 
cpSSR used in the study II were already known to show polymorphism in P. 
pinaster (Vendramin et al. 1998 and Paper I). Nevertheless, the same trend was 
found with both markers, i.e., a lower diversity in the Portuguese compared with 
the French provenance, after the AFLP loci with less than 4 null homozygotes 
were pruned from the analysis, as suggested by Lynch and Milligan (1994) (LM 
restriction).
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The AFLP markers used in study II exhibited similar levels of among-population 
diversity compared with the cpSSR markers, within both the French and 
Portuguese provenances, when the LM restriction was used. In the absence of 
extensive gene flow, uniparentally inherited markers show, in general, less 
variation within populations and more among populations, than nuclear 
biparentally inherited markers, due to a lower effective number of genes and to 
differences in seed and pollen migration (Birky et al. 1983; Petit et al. 1993; 
Wad ee ta l. 1994).
In pines, population subdivision can be weaker when cpDNA markers are used 
compared with mtDNA, because the wind-dispersed pollen is the main agent of 
gene flow (Dong and Wagner 1994; Mitton et al. 2000). Allozymes and cpDNA 
revealed little population structure in P. flexilis, whereas mtDNA showed high 
population differentiation (Latta and Mitton 1997). Additionally, use of the 
Mantel test in Paper II showed that the genetic distance matrix calculated with 
AFLP loci was highly correlated with that calculated with cpSSRs. Despite the 
fact that both types of markers have different modes of inheritance, it appears that 
the effect of gene flow through pollen surpasses the effect of genetic drift in 
shaping the genetic variation of the species, at least at the geographical scale 
studied in Paper II.
In Paper I, using cpSSR the results indicated that there is little or no geographic 
genetic pattern in Portuguese populations, due not only to the effect of human 
activity, but also to extensive gene flow among populations, as described in the 
previous paragraph. Extensive gene flow could also explain similar 
differentiation values found for both nuclear and cytoplasmic markers within the 
Portuguese provenance, by smoothing differences due to differences in effective 
population sizes and genetic drift. Moreover, in study II the genetic 
differentiation among the Portuguese populations with AFLP (after LM 
restriction) and cpSSR data that are similar to that reported by Castro (1989) 
using allozyme markers (GST = 0.020) in six populations of P. pinaster widely 
spaced across Portugal.
The differentiation estimates obtained with the cpSSR and LM-restricted AFLP 
data in Paper II for the French provenance are also similar to the estimate 
obtained with nuclear microsatellite markers in a study made by Mariette et al. 
(2001b), in the same group of populations. Again, the low differentiation showed 
with different type of markers is a strong evidence of the genetic homogenising 
effect among populations due to extensive gene flow.
Studies in conifers that report lower population subdivision with nuclear makers 
compared with cytoplasmic markers have not included chloroplast microsatellites 
(e.g., Birky 1988, Petit et al. 1993; Dong and Wagner 1994; Ennos 1994), with 
the exception of a study in P. leucodermis with cpSSR and allozymes reported by 
Powell et al. (1995b). Recent data showed that mutation rates are higher at the 
cpSSR loci than substitution rates elsewhere in the chloroplast and nuclear 
genome, except for the nuclear SSRs (Provan et al. 1999 and references therein),
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and in this case higher mutation rates could decrease population subdivision. 
Another argument to be considered is the size homoplasy observable at cpSSR 
loci (Doyle et al. 1998 and references therein). Since cpSSRs are generated by 
mutations at a limited number of hotspots, they are prone to suffer identical 
mutations occurring independently in different populations, which, in turn, biases 
the estimates of differentiation downward by erasing the differences in 
haplotypes the populations would otherwise possess.

Reproductive material identification and certification
Following World War II, during which large areas of forest were burned, 
reforestation programs were undertaken in the southwest of France (the Aquitaine 
region) with P. pinaster seeds of northwestern Iberian origin (Portugal and 
Galicia), and the stands they formed suffered considerable frost damage 
(Boisseaux 1986). To overcome this problem, and to avoid further damage, a 
terpene-based test was developed to test the putative origin of adult stands in 
Aquitaine, before seeds could be distributed for commercial purposes in France 
(Baradat and Marpeau-Bezard 1988). In Paper III, we describe a new test 
employing cpSSRs, based on randomisation tests to facilitate identification of 
stand origin of stands and seed-lots of P. pinaster in the Aquitaine region in 
France, and thus providing an alternative to the former terpene-based test for 
reproductive material identification and certification.
The origin of five stands of unknown origin was determined with both the cpSSR 
and biochemical (terpene profile analysis) tests. The results obtained with 
terpenes proved to be less efficient than those obtained with the cpSSRs. The 
terpene test was initially inconclusive for two out of the five tested stands and it 
had to be repeated before a reliable answer was obtained. Thus, use of the terpene 
test risks the need for repetitions, increasing the amount of plant material, costs 
and time needed to get the same information as obtained from one cpSSR test.
The results obtained in Paper III can be partially explained by the fact the terpene 
markers discriminate less the Portuguese from the French provenances as 
indicated by the range-wide P. pinaster study that employed terpene analysis 
(Baradat and Marpeau-Bezard 1988). Chloroplast microsatellites revealed high 
levels of genetic differentiation among populations across the range due to 
differences in allele size (Vendramin et al. 1998), compared with the other 
markers (Bahrman et al. 1994; Petit et al. 1995). The cpSSRs data were used to 
design the test, due to the fact that they showed a homogeneous distribution of 
the polymorphism within groups and clear differentiation between the two groups 
of populations (French and Portuguese). Therefore, the cpSSR markers used in 
the Paper III were suitable for the principal purpose of that study, the design of a 
test to determine the putative origin of P. pinaster stands in the Aquitaine region 
of France.
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Closing remarks
Studies I and II presented in this thesis illustrate the patterns of population 
genetic structure of the investigated populations of P. pinaster. Paper I presents 
strong evidence of Man’s influence in shaping the genetic structure of a species 
and how the mixing of genetic material of unknown origin can affect the genetic 
resources. Little or no geographic genetic pattern was found in Portuguese 
populations of P. pinaster due to human activities during the last century, and to 
the extensive associated gene flow among populations. As a consequence of the 
blurred pattern found in the Portuguese populations of P. pinaster, the 
interpretation of the history of this species in this area may prove difficult if not 
impossible. In Paper II a similar population structure was observed in the 
southwestern region of France. The low levels of differentiation found among 
populations of that region was probably due to intense gene flow, but the reported 
human influence in the region’s forest building is not to be excluded.
In future research, it is recommended to perform a range-wide study with a denser 
sampling of P. pinaster populations, to confirm the hypothesis drawn by 
Vendramin et al. (1998) to explain the history and pathways of the species since 
the last glaciation. The use of other markers is suggested, such as mtDNA 
markers, due to the lower scale dispersal of the seeds compared with the pollen in 
pine species. Gene flow through pollen could have blurred the information 
retrieved by paternally inherited chloroplast markers. Unfortunately, the 
polymorphism found so far with mtDNA markers (C. Burban, unpublished 
results) is very low, and further research needs to be pursued. Additionally, 
conclusions about the migration history of the species should also be presented in 
the context of historical, fossil and palynological information, due to the known 
anthropogenic influence in the forests of the Mediterranean Basin.
Similar levels of differentiation were found with AFLPs and cpSSRs markers, 
when the LM restriction was applied, in the two regions studied in Paper II. 
Moreover, the differentiation they exhibited was similar to that computed with 
codominant markers (nuclear microsatellites and allozymes) for the same regions. 
Despite the fact that the two kinds of markers have different modes of 
inheritance, the trends found with the genetic distances computed with both types 
of markers were similar. This observation supports the hypothesis that the effect 
of gene flow through pollen surpassed the effect of genetic drift in shaping the 
genetic variation of the species at the geographical scale studied.
In the genus Pinus, pollen flow among adjacent populations is generally high and 
lowers population subdivision, which may have smoothed the differences found 
here between estimates of differentiation by nuclear and chloroplast markers. 
However, it is likely that species that show low levels of differentiation on a
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regional scale may reveal very high differentiation on a macro-scale. Pinus 
pinaster seems to be a good example of this kind of behaviour.
The test for provenance identification designed in Paper III can easily be applied 
to other commercial species, provided that there is a homogeneous distribution of 
the polymorphism within groups and clear differentiation among groups of 
populations. In particular, the cpSSR primers have already been shown to cross- 
amplify sequences from several species, which could be very advantageous given 
the long time and high costs involved in identifying markers (Powell et al. 1995b, 
Vendramin et al. 1996). The availability of reliable tests for identifying the 
origins of reproductive material will be very valuable for providing solutions to 
seed certification problems and also in the context of gene conservation.
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