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Abstract
A new sampling strategy for design-based environmental monitoring is pro-
posed. It has the potential to produce superior estimators for totals of envi-
ronmental variables and their changes over time. In the strategy, we combine
two concepts known as spatially balanced sampling and coordination of sam-
ples. Spatially balanced sampling can provide superior estimators of totals, while
coordination of samples over time is often used to improve estimators of change.
Compared with reference strategies, we show that the new strategy can improve
the precision of the estimators of totals and their change simultaneously. A forest
inventory application is used to illustrate the new strategy and the results can be
summarized as (i) using auxiliary information to spread the sample can improve
the estimators of totals; (ii) a positive coordination of the samples reduced the
variance of the estimator of change by more than 37% compared with inde-
pendent samples; and (iii) a high overlap between successive samples does not
guarantee a good estimator of change. The presented strategy can be used to
develop more efficient environmental monitoring programs.
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1 INTRODUCTION

Environmental monitoring is defined as the observation and study of the environment (Awange, 2012, ch. 1). The
approach for environmental monitoring is to collect and analyze a subset that represents the environment in space and
time (Artiola, Pepper, & Brusseau, 2004, ch. 2). In the whole process, sampling is usually employed as a tool to select
a representative portion from the population in order to do the analysis. As an important component of environmental
monitoring, it provides the foundation of data required for assessments of environmental variables.

In this article, we propose a design-based sampling strategy for monitoring totals of environmental variables. Two
concepts are combined in the strategy, spatially balanced sampling and coordination of samples over time. Spatially bal-
anced sampling designs can provide representative samples, and sample coordination is a method to statistically control
the overlap of successive samples. Spatially correlated Poisson sampling (SCPS) and sample coordination based on per-
manent random numbers (PRNs), introduced by Brewer, Early, and Joyce (1972), are used in the algorithm for the new
strategy. SCPS was first presented by Grafström (2012) as a spatial sampling method for selecting well-spread samples
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from finite populations. We show how sample coordination can be applied within a continuous population framework
by using a double (two-phase) sampling approach. Auxiliary information is derived for a very large first-phase sample,
and from the finite first-phase sample we select well-spread and positively coordinated samples using SCPS with the aid
of the auxiliary variables.

Two common objectives of environmental monitoring are to characterize the current state of some resource as
well as the change or trend in the state over time and space (Marker & Stevens Jr., 2009). Here, we consider only
states that can be expressed as totals of environmental variables. Good estimators of such states can be achieved by
using representative samples of the population at different time occasions, which means that states are generally best
detected by updating the samples according to the current population. A high degree of overlap level between succes-
sive samples can produce more precise estimators of change over time (see Qualité & Tillé, 2008; Sen, 1973). Permanent
samples have traditionally been used to address this issue. The samples are then often systematically distributed over the
landscape (Scott, 1998).

Huge amount of financial resources are spent on environmental monitoring all over the world and it is very important
to apply more efficient sampling strategies that can increase the quality of estimates while potentially saving a con-
siderable amount of costs. McDonald (2003) provided a very detailed review of different survey designs for large-scale
environmental monitoring programs, and the split panel designs proposed by Kish (1983, 1986) were recommended
among many other designs.

One feature of environmental populations is that they exist in a spatial context. Commonly, the responses of nearby
locations tend to be more similar than the responses of locations which are farther apart. Thus, the spatial distribution
of these populations can be used as important information when designing the sample. Several efficient spatial sampling
methods have recently been developed for sampling from georeferenced populations. One of the first and the most widely
used method is called Generalized Random Tessellation Stratified (GRTS) design proposed by Stevens and Olsen (2004).
This method uses a random mapping to map the two-dimensional locations into one dimension while preserving some
spatial relationship. Then the systematic 𝜋ps sampling is applied and the sample is mapped back to the two-dimensional
original space. Using this design the samples can be spread evenly over the geographical space. Robertson, Brown,
McDonald, and Jaksons (2013) extended the idea of GRTS to a new design called balanced acceptance sampling (BAS). To
select a spatially balanced sample using BAS, we need first to specify a d-dimensional hyperrectangular box that encloses
the population. For example, it could be a rectangle that encloses a two-dimensional geographical study area. Then a
two-dimensional random start Halton sequence with uniformly spread points in the rectangle is generated. The first n
points that are observed in the study area will constitute the sample of size n. An alternative design to BAS which is called
Halton iterative partitioning (HIP) was introduced by Robertson, McDonald, Price, and Brown (2018) to overcome some
drawbacks of BAS for finite populations.

Another feature of environmental population is that there are often some auxiliary information (other than geograph-
ical coordinates) available. Nowadays, there is a wealth of remotely sensed information available from satellite, aerial
photography, or laser scanning that can be used to efficiently distribute the sample units. Therefore, we shall take the full
advantage of the available auxiliary information and the properties of the environmental populations when we derive the
sampling strategies. The local pivotal method (LPM) and SCPS proposed by Grafström (2012) and Grafström, Lundström,
and Schelin (2012) are two spatial sampling designs that employ auxiliary variables (often including geographical coor-
dinates plus several other attribute variables) to spread the samples based on distances. By adding more variables that are
related to the target variables when spreading the samples, we may get more representative samples and then improve
the precision of the estimators. Since the samples are spread in all of the auxiliary variables, they will also provide a good
basis for model-based inference.

Grafström (2012) and Benedetti, Piersimoni, and Postiglione (2015, ch. 7) showed that SCPS was more efficient than
GRTS when the auxiliary variables were only the geographical coordinates. Robertson et al. (2013) argued that the sta-
tistical performance of BAS was comparable with LPM and SCPS when we only spread the samples in the geographical
space. Compared with GRTS and BAS (HIP), the biggest advantage of the LPM and SCPS designs is that they can be used
with any type and any number of auxiliary variables. Different from BAS (HIP), the selections are based on distances. By
applying LPM and SCPS, we can spread the samples in the auxiliary variables even if they do not constitute dimensions
of the population (Grafström & Matei, 2018a).

For environmental monitoring programs that cover large areas, many target variables usually vary rapidly over the
landscape with respect to the low sampling intensity (Dobbie, Henderson, & Stevens, 2008). This means that geograph-
ically spread samples over the landscape may not optimally capture the distribution of the target variables (Grafström,
Zhao, Nylander, & Petersson, 2017). A sample which is well spread in auxiliary variables implies that the sample has the
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potential to be well spread also for the target variables that are related to the auxiliary variables. Moreover, a sampling
design that uses auxiliary variables to spread the sample is particularly useful for multipurpose monitoring programs
(Grafström & Schelin, 2014). To avoid misunderstanding, we would like to clarify that a well-spread sample in this article
means that the sample is well spread in the auxiliary variables.

Various sampling strategies have been developed based on sample coordination (e.g., Ernst, 1999; Keyfitz, 1951;
Kish & Scott, 1971; Patterson, 1950). There are two kinds of coordination: positive coordination and negative coordina-
tion. They intend to maximize or minimize the overlap of two or more samples, respectively. We will focus only on positive
coordination in order to produce good estimators of change.

Consider sampling from a dynamic population, the coordinated samples selected at different time occasions are
dependent. The degree of coordination is measured by the expected size of the overlap between samples. In essence,
the positive coordination method based on PRNs consists of assigning a uniformly distributed random number on
the interval [0,1] to each unit in the frame. The numbers assigned remain with the units over time, and such a
number is called a PRN. These PRNs are used to decide the sampling outcomes (inclusions or exclusions) at each
time point.

As the population changes over time, there is a need to update the sample to account for the changes in the auxiliary
variables. If we use independent well-spread samples at different time occasions, we can have good estimators of states.
However, since the variance of the estimator of change equals the summation of the variances for the two state estima-
tors minus two times their covariance, the estimator of change may not be the best as the covariance between the state
estimators will be zero. A permanent sample has a major drawback, as new auxiliary information cannot be entered into
the design. A sample that matches the distribution for “today” will be unlikely to match the distribution for “tomorrow.”
This is because the developments of the sample and the population may be different over time. Thus, if we select a sam-
ple that is good at the time of selection, the quality of such a sample is likely to deteriorate over time, which impacts both
state and change estimators. Therefore, we need to have an adaptive design that update the sample to maintain the rep-
resentativeness of the changing population. When a new sample is selected, we want to have overlap (common units)
between the new and the previous samples, so that we also improve estimators of change.

Compared with four reference strategies, (i) a strategy that uses permanent geographical-spread samples; (ii) a strategy
that employs permanent well-spread samples; (iii) a strategy with independent well-spread samples; (iv) a strategy that
applies a split-panel design), the superiority of the new strategy is illustrated by a forest inventory application. By using
Monte-Carlo simulations, we show that the new strategy can outperform the reference strategies for both state and change
estimators.

This article is mainly intended for those with a solid background in statistics and those who work with survey designs
related to environmental monitoring. The rest of the article is organized as follows. In Section 2, a continuous sampling
framework and the double sampling approach are introduced, sample coordination for a finite population is explained,
and spatial balance is defined. Details about the new strategy are presented in Section 3. In Section 4, we use a simulation
study to compare the new strategy against the four reference strategies. Conclusions and comments are given in Section 5.

2 SAMPLING FRAMEWORK

Let F denote the continuous population that we sample from, and F is assumed to be a bounded open subset of the
Euclidean plane R2, with surface area 𝓁(F). The set F is considered to be fixed over time. The response of a target variable
for a point x ∈ F at time t is denoted as yt(x). The population total of the response for the target variable at time t can hence
be expressed as Y (t) = ∫Fyt(x) dx. The sampling design of size n(t) on F at time t is specified by a joint distribution of n(t)
random variables x1,… , xn(t). The sampling intensity at time t is given by 𝜋t(x) =

∑nt
i=1 fti(x), where fti(x) is the marginal

probability density function of xi at time t. We have ∫F𝜋t(x) dx = n(t).

2.1 Double sampling approach

To use auxiliary information in the sampling design, a double sampling approach can be employed for the continu-
ous population. In the first-phase sample, a large number N of locations are selected independently using a constant
sampling intensity, 𝜋(x) = N∕𝓁(F). We let U be the indexes of the geographical locations, U = {1,… , i,… ,N}. Then U
serve as a dynamic (but permanent with respect to locations and indexes) frame over time. Auxiliary information is then
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derived for each unit from U at different time occasions. According to the Glivenko–Cantelli theorem and its multivariate
generalizations, the empirical distribution of the auxiliary variables in the first-phase sample converges uniformly almost
surely to the population distribution as the size of the sample increases (see Dehardt, 1971; Wolfowitz, 1954). Because of
the large sample size, the empirical distribution of any variable in the first-phase sample U will closely match the popula-
tion distribution. The realization of the first-phase sample of size N can be treated as a permanent frame over all repeated
surveys. Then, we select the second-phase samples S(t) at different time occasions, S(t) ⊂ U. Denote the first-phase sam-
ple of N random locations as S = {x1,… , xN}. Conditioned on S, the inclusion probability of unit i ∈ U to be included in
S(t) is denoted as 𝜋i(t). We define the target variable as yi(t) = yt(xi)∕𝜋(xi), for i ∈ U. Then, the total of the target variable
in the first-phase sample at time t can be written as YU (t) =

∑
i∈U yi(t). Moreover, let Ii(t) denote the inclusion indicator

for unit i at time t, so that Ii(t) = 1 if i ∈ S(t) and Ii(t) = 0 otherwise.
To preserve the relationship between the auxiliary variables and the target variables, we define the response of the

auxiliary variables as zi(t) =
(

z1i(t),… , zhti(t)
)T ∈ Rht , and zi(t) = zt(xi)∕𝜋(xi), where zt(xi) is the auxiliary response for

the point xi at time t. The target responses are observed for the locations in the second-phase sample in order to estimate
the state Y(t). The unbiased Horvitz–Thompson (HT) estimator is then defined as

Ŷ (t) =
∑

i∈S(t)

yi(t)
𝜋i(t)

=
∑

i∈S(t)

yt(xi)
𝜋t(xi)

, (1)

where 𝜋t(xi) = 𝜋(xi) ⋅ 𝜋i(t). The estimator Ŷ (t) is conditionally unbiased for YU(t) and unconditionally unbiased
for Y(t).

As N is supposed to be much larger than the sample sizes, we allow ourself to do estimation and variance estimation
conditioned on the first-phase sample. In that case, the variance of the HT-estimator (1) can be expressed as

var(Ŷ (t)) =
N∑

i=1

N∑
j=1

(
𝜋ij(t) − 𝜋i(t)𝜋j(t)

) yi(t)
𝜋i(t)

yj(t)
𝜋j(t)

, (2)

where 𝜋ij(t) = Pr (i ∈ S(t), j ∈ S(t)) is the second-order inclusion probability for a pair of points (i, j) at time t. An estimator
of (2) is

v̂ar(Ŷ (t)) =
N∑

i=1

N∑
j=1

(
𝜋ij(t) − 𝜋i(t)𝜋j(t)

) yi(t)
𝜋i(t)

yj(t)
𝜋j(t)

Ii(t)Ij(t)
𝜋ij(t)

. (3)

The estimator (3) is unbiased for (2) provided that all second-order inclusion probabilities are strictly
positive.

We define the change of the states between two time points as ΔY (1, 2) = Y(2) − Y(1) and its estimator as Δ̂Y (1, 2) =
Ŷ (2) − Ŷ (1). Since Ŷ (t) is unbiased at any time t, the estimator of change is unbiased as well. When estimating the variance
of change from one time occasion to another time occasion, say Occasion 1 and 2, we are also interested in estimating the
covariance cov(Ŷ (1), Ŷ (2)). The variance of the change estimator is

var
(
Δ̂Y (1, 2)

)
= var

(
Ŷ (2)

)
+ var

(
Ŷ (1)

)
− 2 cov

(
Ŷ (1), Ŷ (2)

)
. (4)

The covariance term in (4) is given by

cov(Ŷ (1), Ŷ (2)) =
N∑

i=1

N∑
j=1

(
𝜋ij(1, 2) − 𝜋i(1)𝜋j(2)

) yi(1)
𝜋i(1)

yj(2)
𝜋j(2)

, (5)

where 𝜋ij(1, 2) = Pr (i ∈ S(1), j ∈ S(2)). It is possible to construct the HT-estimator of (5) based on the two samples, that is,

ĉov(Ŷ (1), Ŷ (2)) =
N∑

i=1

N∑
j=1

(
𝜋ij(1, 2) − 𝜋i(1)𝜋j(2)

) yi(1)
𝜋i(1)

yj(2)
𝜋j(2)

Ii(1)Ij(2)
𝜋ij(1, 2)

. (6)

The estimator (6) is unbiased for (5) provided that the 𝜋ij(1, 2) are strictly positive for all i, j.
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F I G U R E 1 The general
framework of the strategy for two time
occasions. F is the continuous
population frame. U stands for the
first-phase sample with N = 10, 000. S(1)
and S(2) represent the positively
coordinated second-phase samples,
n(1) = n(2) = 100. The overlapped
sample points are marked with solid
circles, and the points that are on
different locations are marked with
triangles and crosses for S(1) and S(2),
respectively

2.2 Sample coordination for a finite population

The general framework of sample coordination was summarized by Grafström and Matei (2015). Here, we only consider
the situation where we select samples from the same population U at different time occasions. Consider only two time
occasions, that is, Occasion 1 and 2, the overall sampling design p is defined on U × U, with marginal designs p1 and
p2. A random sample of n(1) locations selected at time Point 1 is denoted by S(1), and a random sample of size n(2)
selected at time Point 2 is denoted by S(2). The overall sampling design is said to be coordinated if the joint probability
of selection of two samples is not equal to the product of the probabilities of selecting each separate sample, that is, if
p (s(1), s(2)) ≠ p1 (s(1)) p2 (s(2)) (see Cotton & Hesse, 1992; Mach, Reiss, & Şchiopu-Kratina, 2006).

Our aim of coordination is to maximize the overlap between several samples drawn successively from U. There-
fore, the selection of a new sample will depend on the samples previously drawn. In order to obtain a larger or a
smaller overlap of the samples, a dependence between the samples must be introduced. This dependence will deter-
mine the expected number of common units in the selected samples. Let  denote the random variable “size of
the overlap,”  =

∑
i∈U Ii(1)Ii(2). The coordination degree between two samples is measured by the expected size of

the overlap

E() = ∑
i∈U

E (Ii(1)Ii(2)) =
∑
i∈U

𝜋i(1, 2), (7)

where 𝜋i(1, 2) = Pr (i ∈ S(1) ∩ S(2)) is the probability for unit i to be included in both S(1) and S(2). According to
Mach et al. (2006), the expected size of the overlap may also have impact on the precision of the change estima-
tors between two occasions. Figure 1 is an illustration of how we construct the finite framework from F and how we
select positively coordinated samples from U for two time occasions. In this example, percentage of overlap of the two
samples is 74%.

2.3 Spatial balance

Spatial balance is a measure to check the spread of a spatial sample. It is often used when the auxiliary space is multi-
dimensional. The measure is based on Voronoi polytopes (Stevens & Olsen, 2004). For a sample of size n(t), we need to
construct n(t) polytopes. For each i ∈ s(t), the polytope 𝜌i(t) includes all units in the population closer to i than to any other
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sample unit j ∈ s(t), j ≠ i. The distance used when we construct the polytopes is the Euclidean distance on standardized
variables. Spatial balance of a sample at time occasion t can be measured by

B(t) = 1
n(t)

∑
i∈s(t)

(vi(t) − 1)2, (8)

where vi(t) =
∑

j∈𝜌i(t)
𝜋j(t) is the total probability mass within the polytope at time occasion t. Spatial balance can be inter-

preted as a measure of the variance of the total probability mass within the polytopes. A small value of B(t) indicates the
sample is well spread at time t. If the sample is spread perfectly, the total probability mass within 𝜌i(t) equals to 1. To
measure how well a design succeeds in selecting spatially balanced samples, simulation to find the expected value of B(t)
under the design is needed.

3 SAMPLE COORDINATION FOR SPATIALLY BALANCED SAMPLES

By using well-spread samples at each point in time, we are likely to reduce the variances of the state estimators. Increas-
ing the expected size of the overlap between the samples, by a coordinated sample selection, may lead to a higher
positive covariance between the state estimators. As Duncan and Kalton (1987) said, the reason for the increased
covariance is that many sample units are the same in the two samples and their values tend to be similar at the two
time occasions. Thus, by also introducing coordination, we will most likely achieve a smaller variance of the change
estimator.

Under our framework of coordination for two (or more) samples, the first time occasion sample S(1) and the second
time occasion sample S(2) have fixed sample sizes n(1) and n(2), respectively. The sample overlap S(1, 2) = S(1) ∩ S(2)
contains n(1, 2) units and n(1, 2) is not fixed. We would like to achieve a high degree of overlap without loosing the spatial
balance compared with independent selection of samples.

3.1 Spatially correlated Poisson sampling

With the aid of the auxiliary variables derived from the first-phase sample at time occasion t, we select a second-phase
sample S(t) of size n(t) from the large first-phase sample. We would like to select a second-phase sample whose
distribution of the auxiliary variables matches the distribution of the first-phase sample, and thus also match the pop-
ulation distribution at time t. Assuming the dependence between sampling units decrease as the distance between
them increase, to minimize the sampling variance, we should select the sampling units so that we maximize the
distance between them (Benedetti et al., 2015, ch. 7). In other words, the sample should be well spread over the
auxiliary variables.

SCPS is a list-sequential sampling method of selecting well-spread samples. The method was first derived as a spa-
tial application of correlated Poisson sampling, proposed by Bondesson and Thorburn (2008). It is a fixed size 𝜋ps
design that achieves a good spread of the selected samples by using the auxiliary variables. The main idea of SCPS is
motivated by a generalization of Tobler's first law of geography. According to that law, geographically nearby locations
tend to have more similar properties than locations farther apart. As the distance measure applied in SCPS's algorithm
is the standardized Euclidean distance in the space of the auxiliary variables, we can call it “law of auxiliary vari-
ables” instead. If the auxiliary variables have high explanatory power for the target variables, then two units with a
small distance in the auxiliary space will tend to have more similar values on the target variables than two units far-
ther apart. Generally, in SCPS, the selection of nearby units is avoided to the furthest extent possible, which creates
well-spread samples. This is guaranteed by creating a strong negative correlation between the inclusion indicators of
nearby units.

3.2 Algorithm of SCPS

It is assumed that we have a list U of the units to be sampled. The sampling outcome is first decided for the first unit in
the list and then for the second, and so forth. After each sampling decision, the inclusion probabilities for the remaining
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units in the list are updated. Denote the prescribed inclusion probability of each unit i at time t as 𝜋i(t), i = 1, 2,… ,N, with∑N
i=1 𝜋i(t) = n(t). Then, we have a starting vector of inclusion probabilities (𝜋1(t),… , 𝜋N(t)). In the end of the algorithm,

we will get a vector of inclusion indicators by gradually updating the vector of inclusion probabilities in maximum of N
steps. The updating can be illustrated as

𝝅(0)(t) ∶ 𝜋1(t) 𝜋2(t) 𝜋3(t) 𝜋4(t) … 𝜋N(t)
𝝅(1)(t) ∶ I1(t) 𝜋

(1)
2 (t) 𝜋(1)

3 (t) 𝜋(1)
4 (t) … 𝜋

(1)
N (t)

𝝅(2)(t) ∶ I1(t) I2(t) 𝜋
(2)
3 (t) 𝜋(2)

4 (t) … 𝜋
(2)
N (t)

𝝅(3)(t) ∶ I1(t) I2(t) I3(t) 𝜋
(3)
4 (t) … 𝜋

(3)
N (t)

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝝅(N)(t) ∶ I1(t) I2(t) I3(t) I4(t) … IN(t)

. (9)

The first unit is included with probability𝜋(0)
1 (t) = 𝜋1(t) at time occasion t. If the first unit was included, we set I1(t) = 1,

otherwise I1(t) = 0. The sampling outcome at each step is decided by comparing the inclusion probability of the step unit
with a random number associated with the unit. Denote the random number associated with the unit i ∈ U at time t as
ri(t), with r1(t), r2(t),… , rN(t) i.i.d. U(0, 1). When the values for I1(t),… , Ij−1(t) have been decided for the first j − 1 units
in the list at time occasion t, the step unit j is included in the sample S(t) at time t, that is, Ij(t) = 1, if rj(t) < 𝜋

(j−1)
j (t), and

Ij(t) = 0 otherwise. The inclusion probabilities for the rest of the units in the list are updated according to

𝜋
(j)
i (t) = 𝜋

(j−1)
i (t) −

(
Ij(t) − 𝜋

(j−1)
j (t)

)
w(j)

i (t), (10)

where i = j + 1,… ,N and i ≥ 2, 𝜋(0)
i (t) = 𝜋i(t), w(j)

i (t) is the weight received by unit i from the step unit j at time t,∑N
i=j+1 w(j)

i (t) = 1. The weight w(j)
i (t) depends on the sampling outcomes of the first j − 1 units. To make sure that 0 ≤

𝜋
(j)
i (t) ≤ 1 holds, the weights need to satisfy the following restrictions

−min
⎛⎜⎜⎝

1 − 𝜋
(j−1)
i (t)

1 − 𝜋
(j−1)
j (t)

,
𝜋
(j−1)
i (t)

𝜋
(j−1)
j (t)

⎞⎟⎟⎠ ≤ w(j)
i (t) ≤ min

⎛⎜⎜⎝
𝜋
(j−1)
i (t)

1 − 𝜋
(j−1)
j (t)

,
1 − 𝜋

(j−1)
i (t)

𝜋
(j−1)
j (t)

⎞⎟⎟⎠ . (11)

In the SCPS, the decision (include or not) is always made for the step unit j, that is, the outcome of Ij(t) is decided
in step j. From Equation (11), we can see that it is possible for the weights to be negative. However, to achieve spatial
balance, the weights need to be positive. When updating the inclusion probability for unit i, the weight it receives depends
on the distance between i and the step unit j. If the inclusion indicator for the step unit is 1, then based on the inclusion
probability in step j − 1, the unit j needs to “steal” more probability from its nearby units. The closer the unit to the step
unit, the more probability mass will be “stolen" by the step unit until the updated inclusion probability of the step unit
becomes 1, that is, the nearest unit to j will receive as much weight as possible from j, then as much as possible weight
will received by the second nearest unit from j, and so forth. By contrast, if the step unit has an inclusion indicator equal
to 0, it will give away all its probability mass to its neighbors in a similar way. The above strategy is called maximal weight
strategy. Thus, with the restriction of the maximum weight of each unit and the sum of the weights equal to 1, we will
have a sample of a fixed size. The algorithm as well as an example of updating the inclusion probabilities of the SCPS can
be found in Grafström (2012).

3.3 Positive coordination under SCPS

Coordination of well spread samples using the SCPS was introduced for finite populations by Grafström and Matei
(2018b). A coordination method based on PRN is used in the algorithm, where the random number associated
with each unit in the algorithm of SCPS remains over time, that is, ri(1) = ri(2) = ri for two time occasions. Posi-
tive coordination is achieved by using the same comparison rule for all time occasions at each step, that is, Ij(t) = 1,
if rj < 𝜋

(j−1)
j (t), and Ij(t) = 0 otherwise. The implementation of positive coordination using SCPS can be found in

the R package “BalancedSampling” (Grafström & Lisic, 2019). The algorithm for two time occasions is illustrated
in Example 1.
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Unit zi(1) zi(2) 𝝅i(t) ri

1 5 5 3/4 0.9821

2 3 1 1/2 0.6782

3 6 7 1/2 0.8060

4 8 2 1/4 0.6342

Note: zi(t) is the value of the auxiliary variable of unit i at time t.
𝜋i(t) represents the prescribed inclusion probability of unit i at
time t, it does not change from Time 1 to Time 2 in this example.
ri is the permanent random number associated with unit i.

T A B L E 1 Auxiliary variables, prescribed inclusion probabilities, as well as
the random numbers associated with the units for two time occasions in
Example 1

F I G U R E 2 The distances between units of the auxiliary
variable for two time occasions in Example 1

Example 1. Suppose we have a population of size N = 4, we want to select two positively coordinated samples of
size n = 2 using SCPS at two time occasions. Table 1 presents the auxiliary value, prescribed inclusion probabil-
ity as well as the random number associated with each unit at two time occasions. Besides the random number,
the prescribed inclusion probability for each unit is also same at each time. According to Table 1, the distances
between different units at both time occasions can be calculated, and they are illustrated by Figure 2. At each
time occasion, the distance between units is calculated by comparing the value of the auxiliary variable for each
unit. The smaller the differences for the values, the closer the units will be. The visiting order is chosen to be
1, 2, 3, 4, the decision is made for each unit according to the same order at both time occasions. The updating
of inclusion probabilities for the units at both time occasions for positive coordination of SCPS is illustrated by
Figure 3. The maximum weight and the updated inclusion probability for each unit at each step is calculated by
using (10) and (11) at both time occasions. According to Figure 3, the overlap for the selected samples is 50% in
the example.

When it comes to estimation under positively coordinated samples selected with SCPS, we may use the unbiased
HT-estimator (1). However, for designs that produce well-spread samples, many of the second-order inclusion probabil-
ities may be zero. Hence, it is not possible to have a design-based unbiased variance estimator. Based on squared local
deviations, Grafström and Schelin (2014) derived an approximate variance estimator for the HT-estimator, under spatially
balanced sampling. It can be expressed as

v̂ar(Ŷ (t)) = 1
2

∑
i∈S(t)

(
yi(t)
𝜋i(t)

−
yi′ (t)
𝜋i′ (t)

)2

, (12)

where i′ is the nearest neighbor to i in S(t) at time t. The distance measure we apply to find i′ is the same as we used when
selecting the sample.

Estimation of the covariance between successive state estimators is difficult. The estimator (6) is only unbiased
for (5) provided the 𝜋ij(1, 2) are strictly positive for all i, j. However, that requirement does not hold in general
for positively coordinated and spatially balanced samples. The reason is that it is likely that inclusion of a unit i
at Time 1 often imply inclusion of unit i at Time 2 and hence also exclusion of neighboring units at Time 2. In
such a case, the 𝜋ij(1, 2) cannot be guaranteed to be strictly positive for all i, j. Finding a suitable estimator for
the covariance (5) under positively coordinated and spatially balanced samples remains a challenging problem for
the future.
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F I G U R E 3 Sampling procedure
for positively coordinated samples
selected using spatially correlated
Poisson sampling in Example 1. At each
time and step, the order for updating the
inclusion probabilities for the remaining
units is decided by the distance between
the step unit and the remaining units.
The distances are measured in auxiliary
variables

4 A FOREST INVENTORY APPLICATION

In forest inventories, we usually sample circular plots or clusters of circular plots. The field inventories are based on the
samples selected. Before each survey, the field staff need to find the center of the plots (clusters), then survey each plot
with a fixed radius (survey each cluster with a fixed configuration). Since we lack a list frame for the individual objects,
the continuous sampling framework can be applied in forest inventories (see e.g. Mandallaz, 2007, ch. 4; Grafström,
Schnell, Saarela, Hubbell, & Condit, 2017). Suppose we have a finite population U(t) of objects (e.g., trees) at time t,
U(t) = {1,… ,N(t)}. The number of objects can be different at different time occasions because there will be births and
deaths. As the finite population cannot be partitioned into circular plots, it is impractical to sample the objects directly.
Thus, we need to construct a continuous framework from the original finite framework, then do the sample selections
based on the continuous framework.

In this section, the new strategy is compared with four reference strategies by a Swedish National Forest Inventory
(NFI) example using simulation. The new sampling strategy as well as the four reference strategies are listed here.

• Strategy 1: The new strategy, which employs well-spread and positively coordinated samples selected by SCPS over
time.

• Strategy 2: The first reference strategy. Use a permanent geographical-spread sample over time.
• Strategy 3: The second reference strategy. A sampling strategy that uses a permanent sample selected by SCPS, which

is well spread at the first time occasion.
• Strategy 4: The third reference strategy, which uses independent well-spread samples selected by SCPS over time

without sample coordination.
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• Strategy 5: The last reference strategy. Use split-panel designs to split the sample into two parts: a panel with a perma-
nent geographical-spread sample and a panel with well-spread samples. This strategy is similar to the current strategy
of the Swedish NFI.

A region in the middle of Sweden is selected as our study region. In this region, each cluster consists of 12 circular
plots of 7-m radius. Plots in a cluster are placed along a square formation with a side-length of 1,500 m and with 500 m
between plots. Denote the response of target at time t as 𝜉i(t), then the population total at time occasion t can be expressed
as Y (t) =

∑
i∈U(t)𝜉i(t). When sampling clusters with a given configuration and a fixed orientation over time, the inclusion

zone for an object i on location xi is the collection of potential sample points, which lead to inclusions of the object.
Mathematically, it can be denoted by Ki ⊂ F, Ki = K(xi) = {x ∈ F ∶ xi ∈ (x)}, and (x) is the cluster centered on x. Any
cluster (x) with its cluster center x within Ki includes the object in one of its plots. Details about inclusion zone and
the cluster configuration of the study region can be found in Grafström, Zhao, et al. (2017). Different formulations for
the density function of the target variable have been discussed by Grafström, Schnell, et al. (2017). For constructing the
continuous framework of the NFI application, the density function at time t can be expressed as

yt(x) =
∑
i∈Ut

Iti(x)𝜉i(t)
𝓁 (Ki)

, (13)

where Iti(x) = 1 if x ∈ Ki at time t, and 0 otherwise, 𝓁 (Ki) is the area of the inclusion zone for object i. By using the
expression (13), the continuous population total is identical to the corresponding finite population total. This is because

Y (t) = ∫F
yt(x) dx = ∫F

∑
i∈U(t)

Iti(x)𝜉i(t)
𝓁 (Ki)

dx =
∑

i∈U(t)

𝜉i(t)
𝓁 (Ki)∫F

Iti(x) dx =
∑

i∈U(t)
𝜉i(t). (14)

Once we have constructed the continuous framework, we can easily employ the general framework in Section 2 for
our example.

First, a number of 100,000 clusters were independently selected as an initial first-phase sample, then a subset of size
10,000 clusters were selected using SCPS as the first-phase sample, since the algorithm is quite computationally intensive.
(This is only needed to do the simulation, we use the initial first-phase sample as the first-phase sample in reality because
we only select the second-phase sample once.) Then, from the first-phase sample, a sample of size 100 was selected as the
second-phase sample for both time occasions, respectively, using different strategies.

The auxiliary variables we used were the geographical coordinates, the mean tree height, the mean basal area, and
the mean elevation. Denote the five auxiliary variables at the plot level as qk(t) =

(
qxk (t), qyk (t), qhk (t), qbk (t), qek (t)

)T ∈ R5.
According to Grafström, Zhao, et al. (2017), we only had auxiliary information for one time occasion. Stand-level growth
models were applied to generate the 5-year's growth in the plot level for the mean tree height and the mean basal area.
The growth models were based on data from permanent samples of the Swedish NFI established during 1983–1987 and
reinventoried three to four times between 1988 and 2010 (Fridman, Holm, Nilsson, Ringvall, & Ståhl, 2014). We also
applied a clear cutting with a rate of 5% for the second time occasion. First, 20% of the plots who had the highest mean
tree height values were selected as the potential plots. Then, 1/4 of the plots among them were randomly selected for clear
cutting. Based on the growth and the clear cutting, we got the mean tree height and the mean basal area at the next time
occasion with a 5-years' time difference. The geographical coordinates as well as the elevation remained the same at time
Occasion 2.

The 5-years' growth models are expressed for the mean tree height and the mean basal area in the plot level in
Equations (15) and (16), respectively.

Δqhk = a0 + a1qhk (1) + a2log
(

qhk (1)
)
+ a3qbk (1) + 𝜀hk , (15)

Δqbk = b0 + b1qbk (1) + b2log
(

qbk (1)
)
+ b3qhk (1) + 𝜀bk , (16)

where 𝜀hk ∼ N(0, 𝜎hk ) and 𝜀bk ∼ N(0, 𝜎bk ). Before employing the auxiliary information to the sampling design, we aggre-
gated the plot level auxiliary information qk(t) to cluster-level zi(t). Whether a plot contributes to the aggregated cluster
value or not depends on if the plot center is inside of the region or not.
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T A B L E 2 Example National Forest Inventory

St B(1) B(2) Overlap V
(
̂Zh(1)

)
V
(
̂Zh(2)

)
V
(
�̂�Zh(1,2)

)
V
(
̂Zb(1)

)
V
(
̂Zb(2)

)
V
(
�̂�Zb(1,2)

)

1 0.129 0.127 62 0.809 0.744 0.978 0.017 0.017 0.022

2 0.239 0.238 100 10.311 10.165 2.130 0.233 0.242 0.048

3 0.129 0.171 100 0.809 2.475 1.969 0.017 0.058 0.043

4 0.129 0.128 1 0.809 0.776 1.608 0.017 0.018 0.035

P28 0.197 0.167 20 3.157 1.115 4.169 0.071 0.026 0.094

P55 0.224 0.209 50 4.694 2.122 5.986 0.106 0.050 0.138

P73 0.236 0.228 70 6.486 4.111 7.370 0.148 0.098 0.171

P82 0.241 0.236 80 7.869 6.125 7.411 0.177 0.144 0.170

Note: The first-phase sample size is N = 10, 000, the second-phase sample size is n(1) = n(2) = 100, the repetition time is 10,000. For tree height, the
sample mean for the two occasions is 100.27 and 101.50 dm, respectively. The percentage of change for the auxiliary is 95.17% and correlation of the two
time occasions for the auxiliary is .9186. For basal area, the sample mean is 13.76 and 14.64 m2/ha, respectively, for the two time occasions. The percentage
of change is 95.17% and correlation coefficient of the two time occasions for the auxiliary variable is .9205. B(i) is the mean of spatial balance for the

sample selected at time occasion i. Overlap is the mean of the percentage of overlap for the sample units selected at two time occasions. V
(
̂Zi(t)

)
represents the empirical variance of the estimator for the mean of the auxiliary variable. V

(
Δ̂Zi(1,2)

)
stands for the variance of the estimator of change. Pij

is the split panel design, the value of i corresponding to the percentage of the permanent sample and value of j corresponding to the percentage of
temporary sample. For example, P28 means the permanent panel is 20% and the temporary panel is 80%.

We applied the growth models since we would like to generate more realistic auxiliary variables at the second time
occasion. Separate research can be done within this topic. Since we do not have any target variable in the simulation,
results are only presented for auxiliary variables. As a multipurpose inventory, there are a wide range of target variables in
the Swedish NFI, some examples can be the proportions of different land types, volume and number of trees per hectare,
mean age, damages, amount of different berries, and so forth. Among them, most of the variables are related to the selected
auxiliary variables.

The simulation results of the example is shown in Table 2 for the new strategy and the four reference strategies.
According to Dobbie et al. (2008), the optimal panel design depends on the balance between needing to detect trend and
report on the states, four different partition schemes are applied for Strategy 5 to test if there is an optimal way to split
the two panels. The mean of spatial balance for samples at two time occasions, the percentage of overlap, the empirical
variances of the estimator of the two states as well as change are listed for mean tree height and mean basal area.

We can clearly see that both state and change estimators obtained by employing the new strategy (Strategy 1) are
better than what are possible by using reference strategies. There is no any optimal combination of the two panels for
the current Swedish NFI strategy. The higher the proportions of the permanent panels, the worse the estimators will be.
The main results can be summarized from two aspects: effect of using spatially balanced sampling designs and effect of
the amount of overlap.

Strategies 1 and 4 that apply spatially balanced sampling designs produce the best estimators for states. Theoretically,
the values of the estimators tend to be the same for the two strategies when the number of repetitions in the simulation
is large enough. Strategy 2, which only spreads the sample in the geographical space, leads to the worst estimators for
states. This confirms the importance of spreading the samples also in auxiliary variables other than the geographical
space. Comparing Strategies 1 and 4 against Strategy 2, reduction of variances of the state estimators for both auxiliary
variables is more than 92%, and the decrease in width of confidence intervals for both auxiliary variables is more than
70%. For Strategy 3, the quality of the state estimators reduced at the second time occasion, since the permanent sample is
not as well spread anymore at that time point. For the strategy that applies split panel designs, the value of the variances
for state estimators reduced as we increased the proportions of the well-spread panel.

Comparing Strategy 1 against Strategy 4, the reduction of variances for the estimators of change is more than 37%,
and the decrease in width of confidence intervals is more than 20% for both auxiliary variables. This is because we get a
much higher overlap (62%) between the samples selected at both time occasions using Strategy 1, which leads to higher
covariances between the two state estimators compared with Strategy 4. For mean tree height, the estimate for covariance
is 0.288 and −0.012 for Strategy 1 and Strategy 4, respectively. For mean basal area, the values are 0.006 and 8.21 × 10−5,
respectively. Based on Equation (4), when fixing the state variances, the strategy that has the larger covariance will
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produce a smaller variance for the estimator of change. At first glance, results produced by Strategy 5 do not seem to be
reasonable in terms of the estimators of change. It appears to be a contradictory statement that the variances of estima-
tors of change increase as the percentages of overlap increase. However, by careful observations, we can find that the
reason for the increased variances of change estimators is not because we do not have higher values of the covariances.
For tree height, the covariance between two state estimators increased from 1.115 to 3.291 when we increased the over-
lap from 20% to 80%. For basal area, the covariance increased from 0.001 to 0.075. The reason of the increased variances
of the change estimators are the increased values of variances for state estimators. According to Equation (4), when the
increase in covariance cannot compensate the increase in the two variances of state estimators, the variance of estimator
of change will still increase, even if we have a very high percentage of overlap.

5 CONCLUSION AND DISCUSSION

We proposed a new sampling strategy with its main focus on monitoring totals of environmental variables. In practice, it
is not restricted to monitor only the totals, it can also be applied for parameters such as quantiles (Grafström & Schelin,
2014). Positive coordination is studied by using SCPS within a continuous population framework. Based on an appli-
cation, with settings similar to the Swedish NFI, we illustrated that the proposed new strategy performed better than
all reference strategies. When matching the sample distribution of the auxiliary variables to the population distribution
and at the same time use positively coordinated samples, we improve the precision for both the state and the change
estimators.

If we use a sample, which is well spread only at the first time occasion as a permanent sample, then there is a big risk
that the sample evolves differently from the population. The sample may become less balanced over time and, as a result,
the state estimators also become less efficient over time. Although the sample overlap is 100% for a permanent sample,
the estimator of change will also gradually become worse over time as the sample can differ more and more from the
population in terms of the distributions of the auxiliary variables (and hence the target variables).

For the current Swedish NFI, two different types of clusters are used: permanent clusters and temporary clusters. In
fact, the Swedish NFI design that combines temporary and permanent clusters has almost become an international stan-
dard toward which NFIs in other countries' aim (Fridman et al., 2014). The permanent clusters primarily aim to increase
the accuracy of change estimation, and they are resurveyed regularly, whereas temporary ones are mainly intended to
capture the current state of the forest and are only surveyed once (Tomppo, Gschwantner, Lawrence, & McRoberts, 2010,
ch. 35). In the NFI example, we use positively coordinated and spatially balanced samples to target change and the
current states of two time occasions simultaneously. Based on the simulation, we can see that the new strategy success-
fully improves the precision of the estimator for both state and change for the auxiliary variables. Thus, it has potential
to also improve the precision of the estimators for the target variables that are related to the auxiliary variables. For
those target variables that are not related to the selected auxiliary variables, by spreading the samples in the auxiliary
variables, we get similar results as independent sample selections. Therefore, there is a potential to change the cur-
rent design of the Swedish NFI. Instead of using the complex and less efficient combination of the permanent and the
temporary samples, employing positively coordinated and well-spread samples can achieve both goals within a single
sampling strategy.

A planner has plenty of options in choosing a sampling strategy. The main properties considered often include pre-
cision, unbiasedness, cost-efficiency, and simplicity to apply. As Scott (1984) mentioned, when estimating both state and
change, a combination of remeasured (matched) plots, plots not remeasured (unmatched), and replacement (new) plots
is generally the most cost-effective alternative. With the suggested strategy, at each point in time, the sample is a sam-
ple of the SCPS design with the prescribed inclusion probabilities. Thus, we make no compromise on the level of spatial
balance of the different samples. Yet, we achieve a quite high degree of positive coordination. As the sample size can be
varied over time, the strategy is also flexible for budget changes over time. With auxiliary variables available, they can be
seen as proxies for the target variables. The sampling strategy that is superior for estimating the state and change for the
auxiliary variables is likely to be superior for estimating the state and change of target variables related to those auxiliary
variables.

Many spatially balance sampling designs can improve the state estimators compared with traditional designs
(Benedetti et al., 2015, ch. 7). We focus only on SCPS among others, since it is efficient and easy to apply when it
comes to positive sample coordination. The main reason of not including the GRTS or BAS designs as reference strate-
gies in the application is because we have additional auxiliary variables beside the geographical coordinates, which are
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not dimensions of the population. If we add an auxiliary variable such as elevation to the geographical coordinates,
then we get a surface with zero three-dimensional volume. By enclosing the surface in a three-dimensional rectan-
gular box and generate random points in the box, there is a zero probability to get points that lie on the surface.
Thus, for example, BAS fails to use the additional information and can only spread the sample in the geographical
coordinates.

The sample coordination method presented here is a probabilistic way for SCPS to define panels. This means by using
this method we cannot fix the panels beforehand as we could do by using the traditional panel designs. The overlap
between the successive samples at two time occasions depends on the change in the auxiliary variables between the two
time occasions. Further studies on how to select well-spread samples with a prescribed percentage of overlap is of a great
interest to us.
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