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Abstract
In cultivar testing, linearmixedmodels have been used routinely to analyzemul-
tienvironment trials. A single-stage analysis is considered as the gold standard,
whereas two-stage analysis produces similar resultswhen a fully efficientweight-
ingmethod is used, namely when the full variance–covariancematrix of the esti-
mated means from Stage 1 is forwarded to Stage 2. However, in practice, this
may be hard to do and a diagonal approximation is often used. We conducted a
cross-validationwith data from Swedish cultivar trials onwinter wheat (Triticum
aestivum L.) and spring barley (Hordeum vulgare L.) to assess the performance
of single-stage and two-stage analyses. The fully efficient method and two diag-
onal approximation methods were used for weighting in the two-stage analy-
ses. In Sweden, cultivar recommendation is delineated by zones (regions), not
individual locations. We demonstrate the use of best linear unbiased prediction
(BLUP) for cultivar effects per zone, which exploits correlations between zones
and thus allows information to be borrowed across zones. Complex variance–
covariance structures were applied to allow for heterogeneity of cultivar × zone
variance. The single-stage analysis and the three weighted two-stage analyses
all performed similarly. Loss of information caused by a diagonal approximation
of the variance–covariance matrix of adjusted means from Stage 1 was negligi-
ble. As expected, BLUP outperformed best linear unbiased estimation. Complex
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variance–covariance structures were dispensable. To our knowledge, this study
is the first to use cross-validation for comparing single-stage analyses with stage-
wise analyses.

1 INTRODUCTION

In crop variety testing, decisions on cultivar selection and
recommendation are based on predictions of future perfor-
mance. Cultivars are tested in multiple locations for sev-
eral years. Such tests are known as multienvironment tri-
als (METs),where an environment refers to a year–location
combination. The Swedish official cultivar testing under-
takes METs to provide farmers with zone-specific recom-
mendations. The two most important crops in Sweden are
winter wheat and spring barley.
The analysis of MET data is usually done by fitting

linear mixed models. A single-stage analysis is prefer-
able for theoretical reasons, since the estimation of fixed
and random effects is done in a single model from plot-
level data, accounting for all relevant effects in a sin-
gle model (Piepho, Möhring, Schulz-Streeck, & Ogutu,
2012). A potential disadvantage of this analysis, however,
is the computational effort required, especially when the
numbers of cultivars and environments are large and a
complex variance–covariance structure for the cultivar
× environment interaction effects is assumed (Möhring
& Piepho, 2009; Welham, Gogel, Smith, Thompson, &
Cullis, 2010).
A stagewise analysis splits up the analysis into two (or

more) stages. Through this procedure, it is possible to
reduce the computational burden substantially (Damesa,
Möhring, Worku, & Piepho, 2017; Piepho et al., 2012). In
Stage 1, each trial is analyzed separately via best linear
unbiased estimation (BLUE) to obtain adjusted cultivar
means per trial. Thus, in this stage, the cultivar effects
are modeled as fixed. In Stage 2, the adjusted cultivar
means from Stage 1 are analyzed jointly via an appropri-
ate mixed model to compute marginal means for culti-
vars across trials. In Stage 2, the cultivar effects may be
modeled as fixed or random, depending on whether culti-
vars are fixed or random in the corresponding single-stage
model. Stagewise analysis facilitates a combined analysis
of different trials with different experimental designs in
Stage 1 and subsequently allows one tomodel structures for
the heterogeneity of variance between or among trials eas-
ily (Piepho & Eckl, 2014). A major issue with conducting
analyses in multiple stages is the choice of method to for-
ward the information on precision (SEs and the variance–
covariance matrix of the adjusted means) between stages

in order to account for heteroscedasticity as well as covari-
ance among the adjusted means (Damesa et al., 2017;
Möhring & Piepho, 2009).
Several papers have addressed the comparison of single-

stage and two-stage analyses and even compared differ-
ent weighting methods (Möhring & Piepho, 2009; Schulz-
Streeck, Ogutu, & Piepho, 2013; Welham et al., 2010).
Damesa et al. (2017) reported that single-stage and fully
efficient (FE) two-stage analyses, where the full variance–
covariance matrix of adjusted means in Stage 1 is passed to
Stage 2, demonstrated similar results but were not equiv-
alent. They are mathematically equivalent only if identi-
cal variance parameter values are used, which is not the
case in the practice because the residual maximum likeli-
hood estimates will differ slightly between the two anal-
yses (Damesa et al., 2017; Piepho et al., 2012). By con-
trast, Gogel, Smith, and Cullis (2018) advocated a move
away from two-stage analysis, since the computing power
needed to analyze large and complex MET datasets is
already available. Their study of wheat MET data con-
firmed the equivalence of a two-stage factor-analytic (FA)
analysis with a known variance–covariance matrix from
Stage 1 to a single-stage analysis. An essential distinction
between the studies of Damesa et al. (2017) and Gogel et al.
(2018), however, is that Damesa et al. (2017) focus on pre-
dicting means across zones and across a whole target pop-
ulation of environments (TPE), whereas the study of Gogel
et al. (2018) focused on predictions for individual loca-
tions. The TPE defines the future growing conditions of
the tested cultivars (Comstock, 1977; Cooper & Hammer,
1996; Cooper et al., 2014). Thus a TPE can be delineated on
the basis of geography or agro-ecological factors such as
soil and meteorological conditions (van Eeuwijk, Bustos-
Korts, & Malosetti, 2016).
Currently, theMET data of Swedish official cultivar test-

ing are analyzed via an unweighted two-stage analysis.
In Stage 1, the model includes fixed effects for cultivars
(coded as F) and random effects for replicates and incom-
plete blocks. In Stage 2, the analysis is done per zone
via a model with fixed effects for cultivars and random
effects for locations. The major drawback of the current
unweighted approach is that themodel is oversimplified in
Stage 2. Specifically, the model does not account for either
the heteroscedasticity or heterogeneity of covariances of
the adjusted means. Furthermore, in Stage 2, the model
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does not exploit any covariance per zone, since the anal-
ysis is done per zone.
Möhring and Piepho (2009) showed, via simulation,

that weighting can improve efficiency but the unweighted
method was acceptable if the assumptions of the model
were correct (i.e., when the error variances are indepen-
dent of the genotype × environment interaction struc-
ture). They also mentioned that the relative merit of
different methods for weighting did not depend on
the evaluation criterion, but on the dataset. Welham
et al. (2010) conducted a simulation study and showed
that the two-stage unweighted method performed poorly
because of a loss of information in estimating estimates
of cultivar performance, both overall and within envi-
ronments. However, similar to Gogel et al. (2018), Wel-
ham et al. (2010) focused on predictions for individual
sites, whereas the focus in the present study is on means
across a wider region or zones or, in other words, zone-
based prediction.
The present study investigates the use of several differ-

ent variance–covariance structures, specifically the factor-
analytic (FA), the unstructured (UN), and the compound
symmetry (CS) structures for the cultivar × zone (C × Z)
interaction effects in order to better account for poten-
tial heterogeneity. In order to determine the best analy-
sis approach (i.e., single-stage vs. two-stage, unweighted or
weighted, and the choice of weighting method), combined
with variance–covariance structures on the C × Z interac-
tion effects, an empirical evaluation was needed. This arti-
cle therefore reports a cross-validation study for evaluation
of these different strategies.

2 MATERIALS ANDMETHODS

2.1 Swedish cultivar trial data

The datasets were obtained from official Swedish culti-
var tests. Dry matter yield was analyzed. All trials were
laid out as α-designs with two replicates. Within each
replicate, there were five to seven incomplete blocks.
Sweden is divided into three different agricultural zones:
South, Middle, and North (Buntaran, Piepho, Hagman,
& Forkman, 2019). A zone is represented by a num-
ber of locations. We selected five single-year datasets for
both crops to be able to perform a leave-one-out cross-
validation with a sufficient amount of data. The num-
ber of trials and the cultivars of winter wheat and spring
barley are reported in Figure 1. The sets of cultivars dif-
fered among years. However, within years, the set of culti-
vars was the same among zones. Each year was analyzed
separately.

Core Ideas

∙ Cross-validation showed that the two-stage
weighting strategy performed similarly to the
single-stage analysis with location-specific
residual variances.

∙ In comparison to coefficients of correlations, the
MSEPprovides a clearer distinction between the
EBLUP methods and the EBLUE method and a
clearer discrimination between the single-stage
and the two-stage approach.

∙ The choice between a single-stage or a two-stage
strategy depends on the computational reso-
urces due to the loss of information caused by
diagonal approximate weighting is negligible.

∙ The effects of cultivar and the cultivar × zone is
better to be modelled interaction as random to
improve the accuracy of zone-based prediction
through borrowing information across zones.

∙ Predictions for zones are more useful and infor-
mative for farmers and breeders than predic-
tions for individual locations, since zones cover
broader TPEs.

2.2 Models for single-stage and
stagewise analyses

Figure 2 depicts a scheme of a single-stage and a stage-
wise analysis. In the single-stage analysis, a zone-based
cultivar yield prediction is obtained in a single analysis.
In our stagewise approach, the analysis is done in two
stages. Thus from this point forward, the stagewise anal-
yses are referred to as two-stage analyses. In Stage 1, the
cultivar means were estimated via empirical best linear
unbiased estimation (EBLUE). The term “empirical” here
refers to the fact that the variance components must be
estimated from the data (Forkman, 2013; Harville, 1991;
Haslett & Welsh, 2019). In Stage 2, there were two options,
unweighted andweighted. The options of weightingmeth-
ods will be described in the Weighting Methods section.
In the single-stage analysis, C × Z effects are predicted

via empirical best linear unbiased prediction (EBLUP).
In the notation introduced by Patterson (1997), the linear
mixed model for single-stage analysis is:

Y = Z ∶ C + C ∙ Z + Z ∙ L + Z ∙ C ∙ L + Z ∙ L ∙ R

+Z ∙ L ∙ R ∙ B, (1)

where Y is the response variable (i.e., the yield), C is the
cultivar, Z is the zone, L is the location (i.e., the trial),
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F IGURE 1 Number of winter wheat and spring barley trials by year and agricultural zone in Sweden

Analysis options

Single-stage analysis

Two-stage analysis Stage 1 
(per location analysis)

Stage 2 (unweighted)

Stage 2 (weighted)

F IGURE 2 Scheme of single-stage and two-stage analyses

R is the replicate within a location, and B is the incom-
plete block within a replicate. Locations are always nested
within zones. The dot operator (∙) defines a crossed effect.
A crossed effect may refer to an interaction (C × Z and
Z × C × L) or a nested (Z∙L, Z∙L∙R, and Z∙L∙R∙B) effect.
The fixed effects are placed before the colon and the ran-
dom effects after the colon. With this notation, the grand
mean and the error term are implicit.
For the two-stage analysis, in Stage 1, a linear

mixed model was used for each location to obtain

the adjusted cultivar means. The cultivar means were
estimated via EBLUE through the use of the following
model:

Y = C ∶ R + R ∙ B. (2)

In Stage 2, C × Z interaction effects can either be mod-
eled as fixed or random. If the C × Z interaction effect is
fixed, then the C × Z means are estimated via EBLUE. In
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TABLE 1 The variance–covariance structures for each term in the models

Term
Variance–covariance
structure Remarks

Z∙L∙Ra
𝐆ZLR = ⊕𝐽

𝑗=1
𝐆ZLR(𝑗) Heterogeneous location-specific

𝐆ZLR(𝑗) is a 𝐾𝑗 × 𝐾𝑗 diagonal matrix with diagonal
elements σ2

ZLR(𝑗)
, where Kj is the number of replicates in the j-th

location
𝐆ZLR = 𝐈σ2ZLR Identity

Z∙L∙R∙Bb
𝐆ZLRB = ⊕𝐽

𝑗=1
𝐆ZLRB(𝑗) Heterogeneous location-specific

𝐆ZLRB(𝑗) is an𝑀𝑗 × 𝑀𝑗 diagonal matrix with elements σ2ZLRB(𝑗),
whereMj is the number of blocks in the j-th location.

𝐆ZLRB = 𝐈σ2ZLRB Identity
Z∙C∙Lc

in Models 1, 3, and 4
𝐆ZCL = 𝐈σ2ZCL Identity

C(Z) = C + C × Zd

in Models 1, 3, and 4
𝐆C(Z) = ⊕𝐼

𝑖=1
𝐆C(Z)(𝑖) ,

𝐆C(Z)(𝑖) = 𝐈σ2CZ + 𝐉σ2C

Compound symmetry
I is the number of cultivars.

𝐆C(Z) = ⊕𝐼
𝑖=1

𝐆C(Z)(𝑖) ,
𝐆C(Z)(𝑖) = σ2

𝑝𝑝′

Unstructured
𝑝 and 𝑝′ indicate zones.

𝐆C(Z) = ⊕𝐼
𝑖=1

𝐆C(Z)(𝑖) ,
𝐆C(Z)(𝑖) = [𝚲𝚲𝑻 + 𝚿]

Factor-analytic order 1

Residual variance 𝐑 = σ2 𝐈 Identity
𝐑 = ⊕𝑃

𝑝=1𝐑𝑝 Heterogeneous zone-specific
𝐑 = ⊕𝐽

j=1
𝐑𝑗 Heterogeneous location-specific (LR)

aZ∙L∙R, replicate in each location within zone.
bZ∙L∙R∙B, incomplete block within replicate in each location within zone.
cZ∙C∙L, zone × cultivar × location interaction.
dC × Z, cultivar × zone interaction.

this case, the model is:

Yadj = C + Z + C ∙ Z ∶ Z ∙ L + C ∙ Z ∙ L, (3)

where Yadj is the adjusted mean for a cultivar from Stage 1
(i.e., the marginal mean estimated via Model 2). Since the
C × Z interaction effects are fixed in Model 3, this model
needs reparameterization to estimate the C × Z interac-
tion parameters because the model is not full-rank. If the
C × Z interaction effects are random, as in Models 1 and
4, then EBLUP is used for predicting these effects. The
model is:

Yadj =Z ∶ C + Z ∙ L + C ∙ Z + C ∙ Z ∙ L. (4)

For Models 1 and 4, where the C × Z interaction effects
are random, there is no need to reparameterize the C
× Z effect estimates because the sum of these estimates
is zero. It should be noted that the cultivar × location
(C × Z × L) interaction effect can be estimated only if
weights are used in Stage 2. Otherwise, it is dropped from
the model and confounded with the residual error. The
weighting options are described in theWeightingMethods
section.

2.3 Cultivar effects: EBLUE vs. EBLUP

Empirical BLUP is described as a shrinkage estimator,
since EBLUPs are less spread than EBLUEs (Robinson,
1991). Based on this property, the EBLUPs of high-yielding
cultivars tend to be lower than the corresponding EBLUEs,
whereas the EBLUPs of low-yielding cultivars tend to be
higher than the corresponding EBLUEs. In Stage 1, we
assigned the cultivar effects as fixed in order to avoid dou-
ble shrinkage (Damesa et al., 2017; Piepho et al., 2012).

2.4 Variance–covariance structures

Table 1 gives an overview of the variance–covariance struc-
tures for each factor in the models that were introduced
in the previous section. The details of these structures are
provided the Appendix.

2.5 Weighting methods

In Stage 2 of the two-stage analysis, the model may be fit-
ted with precision measures carried forward from Stage 1
(weighting). In Stage 2, the variance–covariance matrix,
𝛀𝑗 , of the adjusted genotype means from Stage 1 at the
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TABLE 2 The 21 strategies based on the combinations of fitting methods and models for cultivar × zone (C × Z) effects

Structure for the C × Z effectsa

Fitting Methods CS FA1b UN
Fixed C × Z
effects

Single-stage
Single-stage ID residual variance 1S-CS-ID 1S-FA1-ID 1S-UN-ID –
Single-stage location-specific residual variance 1S-CS-LR 1S-FA1-LR 1S-UN-LR –
Single-stage All ID random effects and residual variancec 1S-AID – – –
Two-stage unweightedd

Two-stage unweighted ID residual variance 2S-CS-U-ID – 2S-UN-U-ID –
Two-stage unweighted location-specific residual variance 2S-ID-U-LR – 2S-UN-U-LR –
Two-stage unweighted zone-specific residual variance – – – 2S-F-U-ZRe

Two-stage weighted
Two-stage fully efficient 2S-CS-W-FE – – –
Two-stage Smith’s weighting location-specific residual variance 2S-CS-W-SW 2S-FA1-W-SW 2S-UN-W-SW 2S-F-SW
Two-stage AVVAR weighting location-specific residual variance 2S-CS-W-AVVAR 2S-FA1-W-AVVAR 2S-UN-W-AVVAR 2S-F-AVVAR

aAID, all ID random effects and residual variance; AVVAR, average variance of a difference; CS, compound symmetry; F, fixed effect of cultivar; FA1, factor-analytic
order 1; FE, fully efficient; ID, identity variance; LR, location-specific residual variance; SW, Smith’s weighting; U, unweighted; UN, unstructured variance; W,
weighted; ZR, zone-specific residual variance; 1S, single-stage; 2S, two-stage.
bThe FA1 and UN covariance model excluding the cultivar main random effects to avoid overparameterization.
cAll ID random effects assumes an ID variance–covariance structure for all randommain (cultivar), nested (replicate in each location within zone and incomplete
block within replicate in each location within zone), and interaction (cultivar × zone) effects.
dSince there is no weighting, the cultivar × location interaction term cannot be fitted in Stage 2.
eThe strategy in current practice.

j-th location is used as theweight. However, in application,
since thematrix𝛀𝑗 is not known, it is replaced by its resid-
ual maximum likelihood estimate, 𝐐𝑗 . The FE weighting
carries the full 𝐐𝑗 matrix from Stage 1 forward to Stage 2
(Damesa et al., 2017).
In practice, storing the full 𝐐𝑗 matrix is often not easy.

For example, it is not always practical to provide facili-
ties or resources that are able to store the full 𝐐𝑗 matrix
for many crops, traits, and seasons. As a more convenient
alternative, a diagonal matrix approximation of 𝐐𝑗 may
be used. Smith’s weighting (SW) uses the diagonal of the
inverse of𝐐𝑗 ,𝐷(𝐐−1

𝑗
) (Smith, Cullis, &Gilmour, 2001). The

diagonal elements are used as weights for the correspond-
ing adjusted means.
The average variance of a difference (AVVAR) is another

alternative for weighting via a diagonal approximation of
𝐐𝑗 . This is computed at each location by taking half of an
average variance of a difference (Möhring & Piepho, 2009).
Let 𝑡𝑗 denote the number of cultivars in the j-th location.
The AVVAR weight is computed as 0.5 × 𝐈𝑡(𝑗) × (VDIFF)𝑗 ,
where (VDIFF)𝑗 is the average squared standard error of

a difference at the j-th location:

(VDIFF)𝑗 =
𝑡𝑗 × 𝑡𝑟𝑎𝑐𝑒

(
𝐐𝑗

)
− 𝟏′𝐐𝑗𝟏

𝑡𝑗
(
𝑡𝑗 − 1

)
∕2

(5)

2.6 Strategies

Table 2 summarizes the strategies; in otherwords, the com-
bination of fittingmethod (single-stage and two-stage anal-
ysis), residual variance model, and assumptions for the
C × Z effects (fixed or randomwith some covariance struc-
tures). Altogether, 21 strategieswere compared in the cross-
validation study. These were coded as follows:

- The first two characters defines the fitting method:
single-stage or two-stage (1S or 2S).

- The second set of characters defines the structure for the
C× Z effects [CS, FA order 1 (FA1), or UN]. For a particu-
lar single-stage model, the code AID on the second set of
characters refers to the all-identity structure for all ran-
dom main (cultivar), nested (zone ∙ location ∙ replicate
and zone ∙ location ∙ replicate ∙ block), and interaction
(C × Z) effects and residual variance. For the fixed C × Z
effect structures, the letter F indicates that the effects of
cultivar, zone, and C × Z are fixed.

- For single-stage models (1S), the third set of characters
defines the residual structure: identity (ID) or location-
specific residual variances (LR). The LR residual struc-
ture refers to plot error estimates of individual location.
The ID residual structure represents a naive approach
that assumes that all locations have identical plot error
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variance. The zone-specific residual variance (ZR) struc-
ture was not applied in the single-stage models because
this structure does not assess the plot error of each trial.
For two-stage models (2S), the third set of characters
defines whether the locations were unweighted (U) or
weighted (W).

- For two-stagemodels, the fourth set of characters defines
the weighting method (FE, SW, or AVVAR). For two-
stage models without weighting, the fourth set of char-
acters defines the residual structure (ID, ZR, or LR).

2.7 Cross-validation

Many papers use Pearson’s product–moment correlation
or Spearman’s rank correlation for measuring the strength
of the relationship between the cultivar estimates of
single-stage and two-stage analyses (Damesa et al., 2017;
Gogel et al., 2018; Möhring & Piepho, 2009; Piepho et al.,
2012). In those papers, the correlation coefficient esti-
mates were often above 0.90, showing that the single-stage
and stagewise analyses provide correlated results. In
contrast to Pearson’s correlation, a cross-validation study
can measure the prediction errors of the model via the
mean squared error of prediction (MSEP) of difference,
which is more desirable for choosing the model that best
predicts cultivar performance in MET analysis. The MSEP
measures predictive accuracy and is considered to be
more informative than the correlation coefficient (Gauch,
Hwang, & Fick, 2003).
We conducted a leave-one-out cross-validation for

model comparison and selection. We left one location out
at a time. That location was used as a validation set;
and the remaining locations were used as a training set.
For example, if there were 18 locations in a single-year
dataset, as was the case for winter wheat in 2016, then
there were 18 folds of the cross-validation. We computed
an MSEP similar to the MSEP proposed by Piepho (1998)
for measuring the prediction accuracy of the models for
each single-year dataset. We accumulated the discrepan-
cies between the observed and predicted pairwise differ-
ences from the 18 folds of the cross-validation. We then
computed theMSEP from this accumulation. Hence, there
will be just one value ofMSEP from the 18 folds of the cross-
validation. The MSEP is a standard statistic for assessing
predictive accuracy. Let 𝑦 and 𝑧 denote the observed and
predicted values, respectively; let 𝐼 be the total number
of cultivars; and let 𝐽 be the total number of locations.
The assessment was based on the discrepancies between
the observed (𝑦𝑖𝑗 − 𝑦𝑖′𝑗) and predicted (𝑧𝑖𝑗 − 𝑧𝑖′𝑗) pairwise

differences:

𝑀𝑆𝐸𝑃 =

∑𝐽

𝑗=1

∑𝐼

𝑖=1

∑𝐼

𝑖≠𝑖′

[
𝑦𝑖𝑗 − 𝑦𝑖′𝑗 −

(
𝑧𝑖𝑗 − 𝑧𝑖′𝑗

)]2
𝐽𝐼(𝐼 − 1)

,

(6)

where yij is the observed yield of cultivar i in location j;
yi′j is the observed yield of cultivar i′ in location j, where
i ≠ i′, zij is the predicted yield of cultivar i in location j
and zi′j is for the predicted yield of cultivar i in location
j, where i ≠ i′. The rationale of using pairwise differences
is that the main interest in cultivar trials is to predict dif-
ferences among cultivars rather than individual cultivars’
performance (Piepho, 1998).
The best model was the one that produced the smallest

MSEP, since it predicted yield differences in the vali-
dation set most accurately. We would like to have the
most accurate predictions for each agricultural zone as a
prediction for the locations within zones. The approaches
were ranked on the basis of the average MSEP over the
five cross-validation sets, since there were five single-year
datasets. We conducted the cross-validation study in R (R
Core Team, 2018) and fitted all the models in ASReml-R
version 4.1.0.106 (Butler, Cullis, Gilmour, Gogel, &Thomp-
son, 2017) in RStudio (RStudio Team, 2016). The ggplot2
package (Wickham, 2009) was used in R to produce
the plots.

3 RESULTS

3.1 Cross-validation of the single-stage
and two-stage approaches

The MSEP averages are presented in Table 3. For both
crops, the single-stage approach with the CS variance–
covariance structure of random effects and location-
specific residual structure (1S-CS-LR) performed best,
since this strategy had the lowest average MSEP. However,
the differences between 1S-CS-LR and the three weighted
two-stage strategies (2S-CS-W-FE, 2S-CS-W-AVVAR, and
2S-CS-W-SW) were minor for both crops. Thus these
four strategies performed very similarly. Furthermore, in
Supplemental Figure S1, Supplemental Figure S2, Supple-
mental Figure S3, and Supplemental Figure S4 depict the
scatterplots of the observed differences vs. the predicted
differences of the cross-validation results for 1S-CS-LR,
2S-CS-W-FE, 2S-CS-W-AVVAR, and 2S-CS-W-SW. They
show that the patterns of these four strategies are very
similar. The relevance of a difference may be judged on
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TABLE 3 Mean squared error of prediction differences of
winter wheat (na

= 5) and spring barley (n = 5)

Winter wheat Spring barley
Ranking Strategyb Mean Strategy Mean

g2 m−4 g2 m−4

1 1S-CS-LRc 5,041 1S-CS-LR 1,723
2 2S-CS-W-FE 5,045 2S-CS-W-FE 1,726
3 2S-CS-W-

AVVAR
5,049 2S-CS-W-S W 1,727

4 2S-CS-W-S W 5,051 2S-CS-W-
AVVAR

1,728

5 1S-UN-LR 5,057 1S-UN-LR 1,728
6 2S-CS-U-ID 5,066 2S-UN-U-LR 1,731
7 2S-UN-W-

AVVAR
5,066 2S-CS-U-ID 1,736

8 2S-UN-W-SW 5,072 1S-CS-ID 1,736
9 1S-CS-ID 5,080 1S-UN-ID 1,739
10 2S-FA1-W-

AVVAR
5,084 2S-UN-W-SW 1,739

11 1S-UN-ID 5,088 2S-FA1-W-SW 1,740
12 1S-FA1-LR 5,090 2S-UN-U-ID 1,741
13 2S-FA1-W-SW 5,091 2S-UN-W-

AVVAR
1,741

14 2S-UN-U-ID 5,091 2S-FA1-W-
AVVAR

1,742

15 1S-AID 5,102 2S-CS-U-LR 1,743
16 1S-FA1-ID 5,107 1S-AID 1,758
17 2S-CS-U-LR 5,123 1S-FA1-LR 1,804
18 2S-UN-U-LR 5,210 2S-F-SW 1,838
19 2S-F-AVVAR 5,327 2S-F-AVVAR 1,840
20 2S-F-SW 5,334 2S-F-U-ZRd 1,850
21 2S-F-U-ZRd 5,389 1S-FA1-ID 1,870

aNumber of datasets.
bThe four top-performing strategies have been underlined.
cAVVAR, average variance of a difference; CS, compound symmetry; F, fixed
effect of cultivar; FA1, factor-analytic order 1; FE, fully efficient; ID, identity
variance; LR, location-specific residual variance; SW, Smith’s weighting; U,
unweighted; UN, unstructured variance; W, weighted; ZR, zone-specific resid-
ual variance; 1S, single-stage; 2S, two-stage.
dThe current practice of analysis in Swedish cultivar testing.

the basis of: √
(𝑀𝑆𝐸𝑃1 −𝑀𝑆𝐸𝑃2)√∑5

𝑣 = 1

(
σ2
C𝑣

+σ2
CZ𝑣

)
5

× 100%, (7)

where MSEP1 is the MSEP for Strategy 1, MSEP2 is the
MSEP for Strategy 2, p refers to the cross-validation set for
each year’s dataset, σ2

C𝑣
is the variance components of the

cultivar of the v-th cross-validation set, and σ2
CZ𝑣

is the vari-
ance components of theC×Z interactions of the p-th cross-
validation set. The denominator is the SD of the genotypic

values, cultivar + C × Z, computed by taking the square
root of the average of the variance component estimates of
cultivar and C × Z effects from the five datasets. In win-
ter wheat, the difference in MSEP between the two top-
performing strategies (1S-CS-LR and 2S-CS-W-FE) is 4 and
the square root of this difference, which is 2, corresponds
to 5.33% of the SD of genotype values, which is very small.
The value of 5.33% is calculated as 2 divided by the SD of
genotypic values, then multiplying the result by 100%.
On the other hand, the current practice (2S-F-U-ZR)

was the lowest performing strategy for winter wheat and
the second lowest for spring barley. Supplemental Figure
S5 and Supplemental Figure S10 depict the scatterplots
of the observed differences vs. the predicted differences
for 2S-F-U-ZR and shows that the dots are more spread
out than in the four best strategies, which means the 2S-
F-U-ZR strategy provides the lowest prediction accuracy.
When the 1S-CS-LR strategy is compared with the cur-
rent practice (2S-F-U-ZR), the difference in MSEP corre-
sponds to 49.69%. Hence, the improvement of single-stage
analysis with BLUP over two-stage unweighted BLUE was
considerable.
Furthermore, none of the weighting methods greatly

improved the fixed C × Z effect strategies (2S-F-AVVAR
and 2S-F-SW) much compared with the current approach
(2S-F-U-ZR). Complex variance–covariance structures for
C × Z did not improve the predictive model performance.
The FA1 structure performed much worse than the ID
structure for single-stage strategies as well as for two-stage
strategies. No model with the FA structure was among the
five top-performing strategies. In spring barley, the 1S-FA1-
ID strategy performed the worst, even worse than the cur-
rent practice. In general, the MSEP of the UN structure
was similar to the MSEP of the FA1 structure. The excep-
tion was the UN structure in the single-stage strategy with
heterogeneous residual location-specific variance (1S-UN-
LR), which, for both crops, showed the fifth-best average
MSEP.
In both crops, the simple unweighted two-stage strategy,

2S-CS-U-ID, performed better than 1S-AID. This outcome
showed that the simple EBLUP two-stage unweighted
strategy produced better predictions than the simple
single-stage EBLUP strategy. Thus, the use of adjusted
means from Stage 1 was more accurate than a single-stage
approach that neglects the heterogeneity of variance in
replicates and incomplete blocks across locations.

3.2 Application to winter wheat and
spring barley datasets

As examples, in this section, we consider the application of
the four top-performing strategies (1S-CS-LR, 2S-CS-W-FE,
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TABLE 4 Variance component estimates of the winter wheat 2016 and spring barley 2015 datasets

Winter wheat 2016 Spring barley 2015
Strategya Strategya

Variance
parameter

1S-CS-
LR

2S-CS-
W-FE

2S-CS-
W-AVVAR

2S-CS-
W-SW

1S-CS-
LR

2S-CS-
W-FE

2S-CS-
W-AVVAR

2S-CS-
W-SW

σ2C 557.2 614.7 596.0 601.7 1,153.3 1,118.3 1,123.2 1,121.3
σ2ZL 4,8874.4 4,8874.5 4,8937.4 4,9024.8 4,967.5 7,628.6 8,056.9 8,056.3
σ2CZ 129.7 125.0 129.4 130.3 203.9 217.2 216.1 216.2
σ2ZCL 794.4 1,479.3 1,399.4 1,472.2 301.2 416.4 422.1 428.1

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analysis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry; FE,
fully efficient; LR, location-specific residual variance; SW, Smith’s weighting; W, weighted; 1S, single-stage; 2S, two-stage; σ2

C
, variance component estimate of

the cultivar; σ2CZ, variance component estimate of cultivar × zone; σ
2
ZCL, variance component estimate of cultivar × location; σ

2
ZL, variance component estimate of

location.

TABLE 5 Estimates of cultivar variance (on the diagonal), correlation (above the diagonal), and covariance (below the diagonal) with CS
structure on C × Z effect in the winter wheat 2016 dataset

Strategya

1S-CS-LR 2S-CS-W-FE 2S-CS-W-AVVAR 2S-CS-W-SW
EBLUP EBLUP EBLUP EBLUP

Zone 1 2 3 1 2 3 1 2 3 1 2 3
1 686.88 0.81 0.81 739.72 0.83 0.83 725.44 0.82 0.82 732 0.82 0.82
2 557.18 686.88 0.81 614.71 739.72 0.83 596.02 725.44 0.82 601.7 732 0.82
3 557.18 557.18 686.88 614.71 614.71 739.72 596.02 596.02 725.44 601.7 601.7 732

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analysis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CA-W-SW, two-stage analysis with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry; FE,
fully efficient; LR, location-specific residual variance; SW, Smith’s weighting; W, weighted; 1S, single-stage; 2S, two-stage; EBLUP, empirical best linear unbiased
prediction.

2S-CS-W-AVVAR, and 2S-CS-W-SW) to the winter wheat
2016 and spring barley 2015 datasets. The variance compo-
nent estimates for effects of cultivar (σ2

C
), location (σ2

ZL
),

C × Z interactions (σ2
CZ
), and cultivar × location interac-

tions (σ2
ZCL

) are presented in Table 4. Lists of the variance
component estimates for both datasets are available in Sup-
plemental Table S1 and Supplemental Table S2.
For winter wheat, there were only small differences

among the four approaches in the estimates of cultivar,
location, and C × Z variances (Table 4). The estimate of
σ2
ZCL

by the 1S-CS-LR strategy was approximately 55% of
the variance estimates for the other three two-stage strate-
gies (2S-CS-W-FE, 2S-CS-W-AVVAR, and 2S-CS-W-SW). In
spring barley, σ2

ZL
by the 1S-CS-LR method was approxi-

mately 63% of the estimates for the other three two-stage
strategies. The variance component estimates for cultivar,
C × Z, and zone × location effects were similar among
these four approaches.
The cultivars’ variances, covariances, and correlations

are presented in Table 5 and Table 6 for winter wheat
and spring barley, respectively. Since there were only three
zones, the CS, UN, and FA1 structures were equal regard-
ing the number of variance–covariance estimates. The cul-
tivar variance estimate (the diagonal part of Table 5 and

Table 6) for these four top-performing strategies was rela-
tively similar for both crops. The same goes for the genetic
correlation and covariance in both crops. Therefore, there
was no notable difference among these four strategies. It
should be noted that to exploit genetic variance and corre-
lation information, the C × Z effect has to be assigned as a
random effect, which is not the case with the current prac-
tice in Sweden, where the C × Z effect is fixed. The genetic
correlation was around 0.80, meaning that the yield effect
of each cultivar is similar among the three zones, though
the ranking of the cultivars is likely to be different among
zones since the genetic correlations were not close to one.
Figure 3 depicts the zone-pairwise scatterplots of

cultivar predictions (EBLUP) and estimates (EBLUE) for
each model and crop. Figure 3a shows pairwise cultivar
predictions and estimates of C × Z effects for the South
and North zones. Figure 3b presents pairwise cultivar
predictions and estimates of C × Z effects for the Middle
and North zones, and Figure 3c shows pairwise cultivar
predictions and estimates of C× Z effects for the South and
Middle zones. In general, it can be seen that the EBLUP
methods (1S-CS-LR, 2S-CS-W-FE, 2S-CS-W-AVVAR,
2S-CS-W-SW) have narrower ellipses than the EBLUE
method (2S-F-U-ZR). Thus with the EBLUP method, the
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TABLE 6 Estimates of cultivar variance (on the diagonal), correlation (above the diagonal), and covariance (below the diagonal) with CS
structure on C × Z effect structure in spring barley 2015 dataset

Strategya

1S-CS-LR 2S-CS-W-FE 2S-CS-W-AVVAR 2S-CS-W-SW
EBLUP EBLUP EBLUP EBLUP

Zone 1 2 3 1 2 3 1 2 3 1 2 3
1 1,357.20 0.85 0.85 1,335.53 0.84 0.84 1,339.40 0.84 0.84 1,337.50 0.84 0.84
2 1,153.30 1,357.20 0.85 1,121.85 1,335.53 0.84 1,123.20 1,339.40 0.84 1,121.30 1,337.50 0.84
3 1,153.30 1,153.30 1,357.20 1,121.85 1,121.85 1,335.53 1,123.20 1,123.20 1,339.40 1,121.30 1,121.30 1,337.50

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analysis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry; FE,
fully efficient; LR, location-specific residual variance; SW, Smith’s weighting; W, weighted; 1S, single-stage; 2S, two-stage; EBLUP, empirical best linear unbiased
prediction.

cultivar rankings were more similar between two zones
than with the EBLUE method, as expected.
Table 7 reports the Akaike information criterion and –2

residual log-likelihood of the four top-performing strate-
gies in both crops. The FE, AVVAR, and SW strategies
did not differ much for both crops in likelihood and
Akaike information criterion. All these four strategies con-
verged without demanding much computational time, as
summarized in Table 8. With the current software and
computational resources, the single-stage approach only
took a couple of seconds (macOS X 10.15.1, Apple Inc.,
Cupertino, CA; 64-bit operating system, 16 GB RAM).
However, the two-stage FE analysis (2S-CS-W-FE) was
the most demanding computationally compared with
the other three strategies because it needed more time
and memory allocation for forwarding the full variance–
covariance matrix of the adjusted means from Stage 1 to
Stage 2. Note that the variance–covariance matrix of the
winter wheat 2016 dataset consisted of 540 columns and
540 rows, resulting in 291,600 entries.
The top 10 rankings and the predictions and estimates

of dry matter yield of winter wheat and spring barley
in the South zone are presented in Tables 9 and 10,
respectively. These tables compare the four top-performing
strategies with the current strategy. The full lists of the
adjusted cultivar estimates per zone, for both crops, are
available in Supplemental Table S3 and Supplemental
Table S4.
In winter wheat, the top-performing cultivar was the

same, cultivar G 0512LT3, for all approaches. However,
moderate shrinkage from 960 to ∼928 g m−2 was observed
with the four strategies that applied EBLUP (1S-CS-LR, 2S-
CS-W-FE, 2S-CS-W-AVVAR, and 2S-CS-W-SW) compared
with EBLUE (2S-CS-U-ZR), which is the strategy that is
currently used in Sweden. Furthermore, the rankings of
the EBLUEmethods were considerably dissimilar to those
of the EBLUP methods. The most obvious difference was
the cultivar RGT Reform. This cultivar ranked third in the
single-stage analysis with EBLUP methods and fourth by

the two-stage weighting analyses with EBLUP methods,
while by the EBLUE method, it ranked 10. On the other
hand, cultivar Brons ranked third by the EBLUE method
but was ranked lower by the two-stage weighting strate-
gies with EBLUPmethods. Moreover, this cultivar was not
in the 10 top-performing cultivars according to the single-
stage analysis with EBLUP. The cultivar ranking was the
same for the two different weighting methods. Nonethe-
less, the ranking of these two-stage analyses was slightly
different from that of the single-stage analysis. Note that
according to the single-stage analysis, the cultivar Here-
ford was among the top 10, but not according to the two-
stage analyses.
In spring barley, the top performing cultivar was also the

same for the four strategies: cultivar Dragoon. The shrink-
age by EBLUP (1S-CS-LR, 2S-CS-W-AVVAR, and 2S-CS-
W-SW) was smaller than in winter wheat. Thus the non-
genetic variation in spring barley was smaller than that in
winter wheat. The rankings of cultivars among the four
strategies with EBLUP were very similar, which agrees
with Figure 2. However, these EBLUP rankings differed
from the EBLUE rankings (2S-F-U-ZR).
Table 11 and Table 12 present, for winter wheat and

spring barley, respectively, Pearson’s product–moment cor-
relations and Spearman’s rank correlations for all adjusted
cultivar predictions and estimates, using the four top-
performing strategies (1S-CS-LR, 2S-CS-W-FE, 2S-CS-W-
AVVAR, 2S-CS-W-SW) and the current strategy (2S-F-U-
ZR.) Here, the cultivar ranking of the four top-performing
strategies can be compared with the cultivar ranking of
the current strategy. For winter wheat, both Pearson’s and
Spearman’s correlations were high among the four strate-
gies with EBLUP but relatively low between these four
strategies and the 2S-F-U-ZR strategy. The correlations
between the two-stage analyses were close to one. For
spring barley, the correlations among these four strategies
were higher than in winter wheat, even for the correla-
tions between the strategies with EBLUP and the 2S-F-U-
ZR strategy.
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F IGURE 3 Zone-pairwise scatterplots of cultivar estimates of cultivar × zone interaction effects for the four top-performing strategies and
the strategy in current practice [two-stage unweighted zone-specific residual variance (2S-F-U-ZR EBLUE)]. Cultivar predictions and estimates
for (a) North and South, (b) Middle and North, and (c) South and Middle

4 DISCUSSION

The cross-validation study revealed that the two-stage
strategies with diagonal weighting, either with SW (2S-
CS-W-SW) or with AVVAR weights (2S-CS-W-AVVAR),
were very close in performance to the two-stage FE
strategies (2S-CS-W-FE) and the single-stage strategy
with heterogeneous location-specific residual variance (1S-
CS-LR). In addition, these four strategies outperformed
the current strategy (2S-F-U-ZR). Hence, the current-

practice strategy should be discontinued for routine anal-
ysis. The differences in MSEP among 1S-CS-LR, 2S-W-
CS-FE, 2S-CS-W-AVVAR, and 2S-CS-W-SW were slight,
which confirmed that the loss of information resulting
from a two-stage analysis with diagonal weights instead
of a the single-stage analysis is acceptable (Möhring &
Piepho, 2009).
The reason why the single-stage analysis and the two-

stage with weighting performed similarly was because of
the weighting that was used in the two-stage analysis.
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TABLE 7 Akaike information criterion (AIC) and –2 residual
log-likelihood (–2LL) values for the four top-performing strategies
in winter wheat and spring barley. Note that −2LL and AIC can be
compared only within two-stage (2S) analyses, but not between
single-stage (1S) and 2S analyses

Winter wheat Spring barley
Strategya –2LL AIC –2LL AIC
1S-CS-LR 9,586 9,702 10,918 11,045
2S-CS-W-FE 4,918 4,926 5,328 5,336
2S-CS-W-AVVAR 4,910 4,917 5,332 5,341
2S-CS-W-SW 4,916 4,924 5,330 5,338

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analy-
sis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis
with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry;
FE, fully efficient; LR, location-specific residual variance; SW, Smith’s weight-
ing; W, weighted.

Again, the performance of the two-stage FE method was
very close to the single-stage analysis, since all informa-
tion from Stage 1 was carried forward to Stage 2. For the
diagonal approximate weighting, the performance was
similar to that of the single-stage analysis, since theweight-
ing was based on diagonal part of the inverse of the
variance–covariance matrix. This inverse of the variance–
covariance matrix had small, and hence negligible, off-
diagonal elements, whereas the diagonal elements used for
weighting in Stage 2 were large by comparison. Thus the
use of two-stage weighting is reasonable.
Henderson (1978) compared the single-stage method,

the so-called “mixed model”, with the regressed least
squares (RLS), and modified regressed least squares meth-
ods for predicting breeding values. The latter two methods
can be considered as two-stage analyses. Although, in this
study, the results of the single-stage and two-stage analy-
sis were very similar, in his study, the results of the “mixed
model” and regressed least squares were not. The notable
distinctions between our study and Henderson’s study are
(a) that regressed least squares does not consider weight-
ing, and (b) that the goal in Henderson’s study was to pre-
dict breeding values, which required pedigree data; how-
ever, our analysis does not use pedigree data.
In comparison with the MSEPs in Table 3, when Pear-

son’s and Spearman’s correlation coefficients were used
exclusively, as presented in Table 10 and Table 11, it is dif-
ficult to detect that EBLUP performed better than EBLUE,
especially in spring barley. Besides, it is also difficult to
see any difference in performance between the single-stage
and two-stage approaches. The MSEP provides a clearer
distinction between the EBLUP methods and the EBLUE
method and a clearer discrimination between the single-
stage and the two-stage approach. According to Kobayashi
and Salam (2000), correlation is not the best measure for

TABLE 8 Computing time of each strategy in winter wheat
and spring barley

Computing time
Strategya Winter wheat Spring barley

s
1S-CS-LR 2.98 3.05
2S-CS-W-FE 59.16 97.21
2S-CS-W-AVVAR 8.64 9.15
2S-CS-W-SW 8.80 8.96

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analy-
sis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis
with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry;
FE, fully efficient; LR, location-specific residual variance; SW, Smith’s weight-
ing; W, weighted; 1S, single-stage; 2S, two-stage.

model evaluation, since themean squared deviation is eas-
ier to interpret and more useful for direct comparisons
between model output and measurement. Thus the MSEP
from this cross-validation study was used as additional
evidence.
The cross-validation was done by excluding one loca-

tion at a time for each year dataset rather than excluding
a complete year dataset. The reason for not excluding a
complete 1-yr dataset and taking the other 4 yr as a vali-
dation set was that the training set and the validation set
must be in a consecutive scheme because the goal of MET
is to predict future cultivar performance. Moreover, cul-
tivars drop out of the system each year, meaning that in
the cross-validation, the set of cultivars is thinned out over
time. Thus it is not possible to randomly assign any year to
be the validation set. In Supplemental Figure S1, Supple-
mental Figure S2, Supplemental Figure S3, Supplemental
Figure S4, and Supplemental Figure S5, which depict the
scatterplots of the observed differences vs. the predicted
differences of the cross-validation results for 1S-CS-LR, 2S-
CS-W-FE, 2S-CS-W-AVVAR, 2S-CS-W-SW, and 2S-F-U-ZR
for winter wheat datasets, show a similar pattern among
different datasets. The same plots for the spring barley
datasets are depicted in Supplemental Figure S6, Supple-
mental Figure S7, Supplemental Figure S8, Supplemental
Figure S9, and Supplemental Figure S10 and shows similar
patterns. Therefore, conducting per-year cross-validations
will provide similar results to the cross-validation that
excludes a complete year.
TheMSEP obtained in our cross-validation study clearly

showed that the four strategies with random cultivar
effects were more accurate than the strategy in current
practice, which uses fixed cultivar effects. From a statis-
tical perspective, fitting the effects of cultivars as random
is better than fitting them as fixed because the rankings
of the estimated cultivars are expected to be close to the
rankings of the cultivar effects and hence provide more
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TABLE 9 Top 10 ranking and the predictions and estimates of dry matter yield (DMY) of winter wheat cultivars in the South zone

Strategya

1S-CS-LR 2S-CS-W-FE 2S-CS-W-AVVAR 2S-CS-W-SW 2S-F-U-ZRb

EBLUP EBLUP EBLUP EBLUP EBLUE
Cultivar Ranking DMY Ranking DMY Ranking DMY Ranking DMY Ranking DMY

g m−2 g m−2 g m−2 g m−2 g m−2

Brons – – – – 10 883.7 10 884.1 3 915.0
Creator (SJ 8544003) 9 888.4 8 892.3 8 890.3 8 890.4 5 907.5
Effekt (SW 85131) 10 887.1 7 893.2 7 890.8 7 890.9 7 904.7
Ellen (SW 75638) 4 893.0 3 900.9 3 899.6 3 900.1 4 908.2
Etana 2 908.0 2 912.4 2 910.5 2 910.8 2 937.1
Festival (SW 95594) – – 9 885.7 9 885.2 9 885.5 8 904.4
G 0512LT3 1 928.3 1 927.1 1 927.6 1 928.1 1 960.1
Hereford 6 891.5 10 884.3 – – – – – –
Mariboss 5 891.6 5 894.7 5 893.8 5 893.3 6 907.0
RGT Reform 3 898.4 4 895.4 4 895.2 4 895.0 10 898.4
Rivero (Nord 07098/125) – – – – – – – – 9 899.7
Rockefeller (SJ8584007) 7 889.5 6 893.5 6 892.6 6 892.3 – –
W 237 8 888.7 – – – – – – – –

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analysis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry; F,
fixed effect of cultivar; FE, fully efficient; LR, location-specific residual variance; SW, Smith’s weighting; U, unweighted; W, weighted; ZR, zone-specific residual
variance; 1S, single-stage; 2S, two-stage; EBLUP, empirical best linear unbiased prediction; EBLUE, empirical best linear estimation.
bCurrent practice.

TABLE 10 Top 10 ranking and the predictions and estimates of dry matter yield (DMY) of the spring barley cultivars in the South zone

Strategya

1S-CS-LR 2S-CS-W-FE 2S-CS-W-AVVAR 2S-CS-W-SW 2S-F-U-ZRb

EBLUP EBLUP EBLUP EBLUP EBLUE
Cultivar Ranking DMY Ranking DMY Ranking DMY Ranking DMY Ranking DMY

g m−2 g m−2 g m−2 g m−2 g m−2

Avenger (SC 42591 M4) 10 845.3 10 844.6 10 844.4 10 844.2 – –
Deveron (LGB 11–8345) 4 870.2 3 869.8 4 869.7 4 869.6 4 868.6
Dragoon 1 877.2 1 878.1 1 879 1 879 1 883.3
Highway (NOS 19339–81) 9 845.7 – – 9 844.9 9 845.1 10 843
KWS Irina 7 848.9 6 849.9 6 852.2 6 852.3 6 857.9
NOS 19313–83 – – 9 845.2 – – – – 9 849.7
Odyssey 8 846.6 8 846 8 846.9 8 847.1 7 855.7
RGT Planet 3 870.4 4 869.7 3 871.6 3 871.5 2 877.6
Sanette (SY 409-226) 6 849.1 7 849.2 7 849.2 7 849.4 8 850.9
Scholar 2 872.4 2 872.2 2 872.8 2 872.8 3 876.9
Thermus (SJ 111703) 5 857.6 5 856.4 5 856.6 5 856.6 5 860.3

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analysis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry; F,
fixed effect of cultivar; FE, fully efficient; LR, location-specific residual variance; SW, Smith’s weighting; U, unweighted; W, weighted; ZR, zone-specific residual
variance; 1S, single-stage; 2S, 2S, two-stage; EBLUP, empirical best linear unbiased prediction; EBLUE, empirical best linear estimation.
bCurrent practice.
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TABLE 11 Correlations among adjusted cultivar estimates in the winter wheat 2016 dataset with Pearson’s product–moment correlation
above the diagonal and Spearman’s rank correlation below the diagonal

Strategya

1S-CS-LR 2S-CS-W-FE 2S-CS-W-AVVAR 2S-CS-W-SW 2S-F-U-ZRb

Approach EBLUP EBLUP EBLUP EBLUP EBLUE
1S-CS-LR 1.0000 0.9894 0.9904 0.9895 0.8986
2S-CS-W-FE 0.9866 1.0000 0.9997 0.9997 0.9227
2S-CS-W-AVVAR 0.9881 0.9987 1.0000 0.9999 0.9243
2S-CS-W-SW 0.9872 0.9991 0.9997 1.0000 0.9244
2S-F-U-ZR 0.8889 0.9125 0.9156 0.9144 1.0000

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analysis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis with Smith’s diagonal weights (Smith et al., 2001); CS, compound symmetry; F,
fixed effect of cultivar; FE, fully efficient; LR, location-specific residual variance; SW, Smith’s weighting; U, unweighted; W, weighted; ZR, zone-specific residual
variance; 1S, single-stage; 2S, two-stage; EBLUP, empirical best linear unbiased prediction; EBLUE, empirical best linear estimation.
bCurrent practice.

TABLE 1 2 Correlations among adjusted cultivar estimates in the spring barley 2015 dataset with Pearson’s product–moment correlation
above the diagonal and Spearman’s rank correlation below the diagonal

Strategya

1S-CS-LR 2S-CS-W-FE 2S-CS-W-AVVAR 2S-CS-W-SW 2S-F-U-ZRb

Approach EBLUP EBLUP EBLUP EBLUP EBLUE
1S-CS-LR 1.0000 0.9841 0.9812 0.9812 0.9784
2S-CS-W-FE 0.9721 1.0000 0.9998 0.9998 0.9977
2S-CS-W-AVVAR 0.9704 0.9995 1.0000 1.0000 0.9978
2S-CS-W-SW 0.9704 0.9996 1.0000 1.0000 0.9978
2S-F-U-ZR 0.9644 0.9964 0.9964 0.9964 1.0000

a1S-CS-LR, single-stage analysis; 2S-CS-W-FE, two-stage fully efficient analysis; 2S-CS-W-AVVAR, two-stage analysis with average variance of a difference
(AVVAR) weights (Möhring & Piepho, 2009); 2S-CS-W-SW, two-stage analysis with Smith’s diagonal weights (Smith et al., 2001); 2S-F-U-ZR, current practice
method; CS, compound symmetry; F, fixed effect of cultivar; FE, fully efficient; LR, location-specific residual variance; SW, Smith’s weighting; U, unweighted;
W, weighted; ZR, zone-specific residual variance; 1S, single-stage; 2S, two-stage; EBLUP, empirical best linear unbiased prediction; EBLUE, empirical best linear
estimation.
bCurrent practice.

accurate predictions (Smith, Cullis, & Thompson, 2005).
From a biological perspective, the cultivars can be consid-
ered as a random sample of the current genetic variability
(Curti, de la Vega, Andrade, Bramardi, & Bertero, 2014).
Regarding the use of complex variance–covariance struc-
tures, the MSEP results revealed that models with com-
plex variance–covariance structures were likely to be over-
fitted, since theMSEPwas larger for these complexmodels
than for models with simpler variance–covariance struc-
tures. An incorrect variance–covariance matrix structure
still provides unbiased parameter estimates for fixed effects
but not for the associated SEs. However, in this study, the
fixed effects were fitted for zone only. This effect is not
the main interest. Moreover, when the C × Z interactions
effects were fixed, a variance–covariance structure was not
applicable. However, it is true that the choosing a suitable
variance–covariance matrix is essential for obtaining reli-
able results via BLUP.

With only a small number of zones (i.e., three zones),
there may be no or only little gain in applying FA1 or UN
variance–covariance structures. In fact, with three zones,
the FA1 structure has the same number of parameters as
the UN structure (i.e., six parameters). The variance com-
ponent estimates for C× Z effects, as presented in Table 4,
were relatively small compared with the other compo-
nents. When the variance component estimates are small,
there may be no need for complex variance–covariance
structures. Nevertheless, when the variance component
estimates are large, then more parameters with complex
variance–covariance might be needed to account for the
heterogeneity of variance for C × Z effects. In a cross-
validation study of a similar dataset, comparing theEBLUE
and EBLUP methods, it was also revealed that complex
variance–covariance structures did not improve the accu-
racy of yield predictions (Buntaran et al., 2019). To the
best of our knowledge, a cross-validation study has not
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previously been conducted for comparing single-stage and
stagewise analyses of MET data.
We applied the four top-performing strategies and the

current strategy to actual datasets. The prediction dif-
ferences among the 1S-CS-LR, 2S-CS-W-FE, 2S-CS-W-
AVVAR, and 2S-CS-W-SW strategies were very small.
For that reason, the choice of strategy depends on com-
putational resources (Gogel et al., 2018). The two-stage
weighting strategy is preferable when the computational
resources are limited. Furthermore, in some cases, data
from all the locations or trials may not be available at once.
In this case, using two-stage analysis will be more practi-
cal, since (a) the readily available trial data can be analyzed
instantly and provide individual trial information, and (b)
there are savings in time by storing the adjusted means
of each trial and the accompanying precision measures,
which later can be used for Stage 2 analyses while data
from other trials are still being collected. The two-stage
weighting strategymay be preferable, especiallywhen each
trial has a different experimental design. In this case, fit-
ting a model for single-stage analysis may not be easy. The
two-stage weighting method is also preferable if one wants
to asses each trial thoroughly because with a vast num-
ber of trials, it will be difficult to check each trial thor-
oughly with a single-stage analysis because of the abun-
dance of variance component estimates produced by the
single-stage analysis. However, it should be noted thatwith
the current software used in this study, the two-stage FE
analysis needs more memory allocated for conducting the
analysis in Stage 2 and obtaining the EBLUPs than the
other two-stage analyses (2S-CS-W-AVVAR and 2S-CS-W-
SW). Other available software packages might be more
suitable to perform two-stage fully efficient analysis but
not the single-stage analysis. The software used in this
studywas designed to perform single-stage analyses. The R
code for four strategies (i.e., 1S-CS-LR, 2S-CS-W-FE, 2S-CS-
W-AVVAR, and 2S-CS-W-SW) is available in Supplemental
File S1.
A single-stage analysis has the theoretical benefit that

estimating fixed effects and predicting random effects are
done under the assumed single-stage model (Piepho et al.,
2012). Moreover, the optimality of the performance of the
single-stage analysis has been confirmed via simulation
by Welham et al. (2010). Gogel et al. (2018) recommended
using one-stage analysis for MET datasets with only a few
trials. However, their objective was to obtain accurate pre-
dictions for individual locations, whereas in our study, we
aimed at accurate predictions for zones. As Damesa et al.
(2017) pointed out, it is more informative to obtain pre-
dictions per agro-ecological zone or a broader TPE than
predictions for individual field trial sites because farm-
ers are interested in cultivars that perform well on aver-
age in broad environmental conditions and the next grow-

ing season. The next growing season may be considered as
a new environmental condition that no trials have previ-
ously been conducted in.
From a breeder’s perspective, predicting cultivar perfor-

mance in a specific trial site is rarely of interest. Official
Swedish cultivar trials have the same objective (i.e., to rec-
ommend cultivars that perform well for each zone, not
for individual trial locations). Thus accurate information
regarding which cultivars perform well on average within
zones or perform above average across locations is essen-
tial for both farmers and breeders.
With the widespread use of linear mixed models for

analyzing MET data, the frequent question is whether to
model cultivar effects as fixed or random. We recommend
modeling cultivar effects as randomwhen the primary goal
is to select the best cultivars from the population under
study and when the effects and residuals presumably fol-
low a normal distribution. In this case, BLUP outperforms
BLUE with regard to agreement between predictions of
cultivar rankings and true rankings (McCulloch, Searle, &
Neuhaus, 2008; Searle, Casella, & McCulloch, 1992). The
shrinkage feature will avoid overoptimistic predictions of
the top-performing cultivars and over-pessimistic predic-
tions of poorly performing cultivars. Furthermore, with
random C × Z effects, the accuracy of predictions within
zones is improved, since information is borrowed across
zones by exploiting the cultivar correlations between zones
(Atlin, Baker, McRae, & Lu, 2000; Kleinknecht et al., 2013;
Piepho et al., 2016). However, it is important to note that
when the genotype correlations between or among zones
are small, then the information that can be borrowed
across zone will be very little. In this case, BLUP will not
bemore beneficial thanBLUE.However, when the cultivar
correlations between or among zones are high, then BLUP
will be favorable to BLUE.
Henderson (1963) showed the derivation of BLUPs in the

mixed-model equations without assuming a normal distri-
bution. Besides, as pointed out by Lee, Nelder, and Pawitan
(2017, p.144), to support the benefits of using BLUP: “With
a random effect specification, we gain significant parsi-
mony. In such situations, even if the truemodel is the fixed
effect model, i.e., there is no random sampling involved,
the use of random effect estimation has been advocated as
shrinkage estimation (James & Stein, 1992).”
The concept of two-stage analysis can be viewed as being

similar to Bayesian Updating (Sorensen & Gianola, 2002).
The idea of Bayesian Updating is to use the prior distribu-
tion from the previous posterior distribution. In this case,
the Bayes theorem has “memory” and the inferences can
be updated sequentially. In comparison with the two-stage
analysis, the result of Stage 1 can be regarded as a poste-
rior distribution that will be used as the prior distribution
for Stage 2. Moreover, BLUP is empirical Bayesian when
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the distribution of random effects is Gaussian (Robinson,
1991). Thus, Bayesian Updating might be comparable with
the “frequentist” BLUP of two-stage analysis. A further
study comparing the “frequentist” two-stage analysis with
the Bayesian Updating framework would be worthwhile.
The merit of BLUP will only be valid when data are

missing at random. If the missing data pattern is not at
random, biased variance component estimates may occur
(Piepho & Möhring, 2006). Another difficulty with miss-
ing data when BLUP is used is that if some varieties are
missing at some locations, their predictions will be shrunk
towards the overall mean to a larger extent than the other
varieties. Thus varieties that are actually good but have
been experimented with less will probably not come out as
top-performing in the analysis of the study. This feature of
BLUP is still beneficial because a prediction based on little
information is uncertain (both upwards and downwards).
Best linear unbiased prediction therefore protects against
poor decisions for cultivar selection. A good cultivar can-
didate still needs to be tested across a vast number of trials
to obtain reliable information of its performance.
Although we recommend the use of BLUP for estimat-

ing cultivar effects, we discourage the use of BLUP in Stage
1 of the two-stage approach. The use of BLUP in Stage 1
will cause double shrinkage, since BLUP is also used in
Stage 2. If BLUP were to be used in Stage 1, predictions
would need to be unshrunk before proceeding to Stage 2
(Smith et al., 2001) but it is not obvious how this should
be done or how to perform the weighting in Stage 2. Some
progress could potentially be made by taking recourse to
the so-called “deregressed proofs” as used in animal breed-
ing (Calus, Vandenplas, ten Napel, & Veerkamp, 2016).

5 CONCLUSION

This cross-validation study provided insights into the
performance of single-stage and two-stage strategies.
The two-stage weighting strategy (FE, AVVAR and SW)
performed similarly to the single-stage analysis with
location-specific residual variances. The choice between a
single-stage or a two-stage strategy depends on the compu-
tational resources, since the loss of information caused by
diagonal approximate weighting is negligible. In our study,
with only three zones, complex variance–covariance struc-
tureswere not necessary, since these caused overfitting.We
recommend modeling the effects of cultivar and the C × Z
interaction as random, because this improves the accuracy
of zone-based prediction through borrowing information
across zones. Predictions for zones are more useful and
informative for farmers and breeders than predictions for
individual locations, since zones cover broader TPEs.
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APPENDIX

(1) Variance–covariance structures for zone ∙ location ∙

replicate and zone ∙ location ∙ replicate ∙ block in the
single-stage model, Model 1

(1a) Heterogeneous variance–covariance struc-
tures for zone∙location∙replicate and zone∙loca
tion∙repliate∙block

The heterogeneous variance–covariance struc-
ture of zone ∙ location ∙ replicate (Z∙L∙R) was
𝐆ZLR = ⊕𝐽

𝑗=1
𝐆ZLR(𝑗), where J is the number of locations,

𝐆ZLR(𝑗) is a 𝐾𝑗 × 𝐾𝑗 diagonal matrix with the diagonal
elements σ2

ZLR(𝑗)
and Kj is the number of replicates in the

j-th location. The variances of this variance–covariance
structure are location-specific:

𝐆ZLR(j) =

⎡⎢⎢⎢⎢⎣
σ2
ZLR(𝑗)

0 … 0

0 σ2
ZLR(𝑗)

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
ZLR(𝑗)

⎤⎥⎥⎥⎥⎦
. (A1)

The heterogeneous variance–covariance structure for
zone ∙ location ∙ replicate ∙ block (Z∙L∙R∙B) was 𝐆ZLRB =

⊕𝐽
𝑗=1

𝐆ZLRB(𝑗), where 𝐆ZLRB(𝑗) is an 𝑀𝑗 × 𝑀𝑗 diagonal
matrix with the elements σ2

ZLRB(𝑗)
, andMl is the number of

blocks in the j-th location. The variances of this variance–
covariance structure are location-specific:

𝐆ZLRB(𝑗) =

⎡⎢⎢⎢⎢⎣
σ2
ZLRB(𝑗)

0 … 0

0 σ2
ZLRB(𝑗)

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
ZLRB(𝑗)

⎤⎥⎥⎥⎥⎦
. (A2)

(1b) Homogeneous variance–covariance structures for
Z∙L∙R and Z∙L∙R∙B

The covariance structure for Z∙L∙R was 𝐆ZLR = 𝐈σ2
ZLR

:

𝐆ZLR =

⎡⎢⎢⎢⎢⎣
σ2
ZLR

0 … 0

0 σ2
ZLR

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
ZLR

⎤⎥⎥⎥⎥⎦
(A3)

The covariance structure for Z∙L∙R∙B was 𝐆ZLRB =

𝐈σ2
ZLRB

:

𝐆ZLRB =

⎡⎢⎢⎢⎢⎣
σ2
ZLRB

0 … 0

0 σ2
ZLRB

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
ZLRB

⎤⎥⎥⎥⎥⎦
. (A4)

(2) Variance–covariance structure for zone ∙ cultivar ∙

location in Models 1, 3, and 4

For all models, the covariance structure for zone ∙ culti-
var ∙ location (Z∙C∙L) was 𝐆ZCL = 𝐈σ2

ZCL
:

𝐆ZCL =

⎡⎢⎢⎢⎢⎣
σ2
ZCL

0 … 0

0 σ2
ZCL

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
ZCL

⎤⎥⎥⎥⎥⎦
. (A5)

(3) Variance–covariance structures for cultivar
(zone) = cultivar + C × Z in Models 1, 3, and 4

We considered three different variance–covariance
structures for C × Z effects: (a) ID, (b) CS, (c) UN, and
(3) FA. In the ID structure, the cultivar main effect is
excluded in the model because cultivars are independent
among zones. In the CS structure, the cultivar main
effect is included because the cultivars are correlated
among zones. In the UN and FA structures, because of
the nonzero covariance, the model has to be reparame-
terized by dropping the cultivar main effect in order to
avoid overparameterization. The dimension of the 𝐆cz

covariance matrix is the number of cultivars multiplied
by the number of zones. For the CS, UN, and FA models,
this matrix is block diagonal, 𝐆CZ = ⊕𝐼

𝑖=1
𝐆CZ(𝑖) , where I

is the number of cultivars. The size of the blocks, 𝐆CZ(𝑖), is
the number of zones.

(3a) Identity

The identity or identical variance–covariance structure
assumes independence and homogeneity, 𝐆CZ = 𝐈(σ2

CZ
):

𝐆CZ =

⎡⎢⎢⎢⎢⎣
σ2
CZ

0 … 0

0 σ2
CZ

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
CZ

⎤⎥⎥⎥⎥⎦
. (A6)
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(3b) Compound symmetry

The CSmodel implies that both the variance and covari-
ance are homogeneous: 𝐆CZ = 𝐉σ2

C
+ 𝐈σ2

CZ
. The structure

of the CS variance–covariance matrix is:

𝐆CZ(𝑖) =

⎡⎢⎢⎢⎢⎣
σ2
C
+ σ2

CZ
σ2
C

… σ2
C

σ2
C

σ2
C
+ σ2

CZ
… σ2

C

⋮ ⋮ ⋱ ⋮

σ2
C

σ2
C

… σ2
C
+ σ2

CZ

⎤⎥⎥⎥⎥⎦
. (A7)

The correlation between zones is
σ2
𝐶

σ2
𝐶
+σ2

𝐶𝑍

.

(3c) Unstructured

The unstructured variance–covariance structure allows
both heterogeneous covariance and variance. Thus each
zone has a unique cultivar variance and each pair of
zones has a unique covariance. The number of parameters
needed for this variance–covariance structure is 𝑝(𝑝 + 1)

2
,

where 𝑝 is the number of zones. In this study, six parame-
ters were needed for three zones.

𝐆CZ(𝑖) =

⎡⎢⎢⎢⎢⎣
σ2
Z1

σ2
Z12

… σ2
Z1𝑝

σ2
Z21

σ2
Z2

… σ2
Z2𝑝

⋮ ⋮ ⋱ ⋮

σ2
Z𝑝1

σ2
Z𝑝2

… σ2
Z𝑝

⎤⎥⎥⎥⎥⎦
. (A8)

(3d) Factor-analytic Order 1

Factor analytic structures are often more useful than
the UN structure for taking heterogeneity into account
in complex genotype × environment models. These struc-
tures have fewer parameters than the UN structure (Isik,
Holland, & Maltecca, 2017). We used a FA structure with
a single multiplicative term (FA1). According to this struc-
ture, 𝐆CZ(𝑖) is modeled as 𝚲𝚲𝑻 +𝚿, where 𝚲 is a vector
of dimension 1 × 𝑝, which consists of factors loading λ1 to
λ𝑝, and𝚿 is 𝑝 × 𝑝 diagonalmatrix, which consists of zone-
specific cultivar variancesψ2

1
toψ2𝑝. For the FA1model with

𝑖 unrelated cultivars tested in p zones, this is:

𝚲 =

⎡⎢⎢⎢⎢⎣
λ1
λ2
⋮

λ𝑝

⎤⎥⎥⎥⎥⎦
, 𝚿 =

⎡⎢⎢⎢⎢⎣
ψ2
1
0 … 0

0 ψ2
2
… 0

⋮ ⋮ ⋱ ⋮

0 0 … ψ2𝑝

⎤⎥⎥⎥⎥⎦
. (A9)

Hence, the variance–covariance structure for 𝐆CZ(𝑖) is:

𝐆CZ =
[
𝚲𝚲𝑻 +𝚿

]
=

⎡⎢⎢⎢⎢⎣
λ2
1
+ ψ2

1
λ1λ2 … λ1λ𝑝

λ2λ1 λ2
2
+ ψ2

2
… λ2λ𝑝

⋮ ⋮ ⋱ ⋮

λ𝑝λ1 λ𝑝λ2 … λ2𝑝 + ψ2𝑝

⎤⎥⎥⎥⎥⎦
.

(A10)

The off-diagonal elements of these blocks,𝚲𝚲𝑻 +𝚿, are
the products of the parameters λ𝑝 and λ𝑝′ , which refer
to the p-th and p′-th zone, respectively. Thus the nested
effects of the same cultivar in different zones are corre-
lated, whereas the interaction effects from different culti-
vars are uncorrelated.

(4) Variance–covariance structure for residual variance

Three different variance–covariance structures for the
residual variance were used in this study: (a) the ID resid-
ual structure, (b) the heterogeneous residual structure
with zone-specific variance (ZR), and (c) the heteroge-
neous residual structure with location-specific variance
(LR).

(4a) Identity structure

The identity residual structure assumes homoscedastic-
ity with 𝐑 = σ2 𝐈. The matrix form is as follows:

𝐑 =

⎡⎢⎢⎢⎢⎣
σ2 0 … 0

0 σ2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2

⎤⎥⎥⎥⎥⎦
. (A11)

This structure was used only in the single-stage
analysis.

(4b) Heterogeneous residual zone-specific structure

The heterogeneous ZR variance–covariance structure
is 𝐑 = ⊕𝑃

𝑝=1
𝐑𝑝, where 𝐑𝑝 is a diagonal matrix, for the

p-th zone, with the diagonal element σ2
ε(𝑝)

. This structure
can be implemented in a single-stage analysis and in a
two-stage analysis. The two-stage analysis is the current
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Swedish practice (EBLUE C × Z).

𝐑𝑝 =

⎡⎢⎢⎢⎢⎣
σ2
ε(𝑝)

0 … 0

0 σ2
ε(𝑝)

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
ε(𝑝)

⎤⎥⎥⎥⎥⎦
. (A11)

(4c) Heterogeneous residual location-specific structure
(LR)

The heterogeneous LR variance–covariance structure,
𝐑 = ⊕𝐽

𝑗=1
𝐑𝑗 , where Rj is a diagonal matrix for the j-th

location with the diagonal element σ2
ε(𝑗)

, is as follows:

𝐑𝑗 =

⎡⎢⎢⎢⎢⎣
σ2
ε(𝑗)

0 … 0

0 σ2
ε(𝑗)

… 0

⋮ ⋮ ⋱ ⋮

0 0 … σ2
ε(𝑗)

⎤⎥⎥⎥⎥⎦
. (A12)

This structure can be implemented in a single-stage
analysis and in a two-stage analysis.
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