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Abstract 
In the summer of 2014, the Sala municipality in central Sweden registered the largest 
fire in modern Swedish history. The circumstances under which the fire took place 
highlight the complex interactions between the ignition as well as the spread of fire, 
and human activities along with weather. Although the role of human activities and 
climate are of critical importance in shaping modern fire activity, their joint effects 
remain largely unstudied in Northern Europe. The main aim of this thesis was to 
investigate the impact of landscape properties (natural and human-related) and 
climate patterns on forest fires at different spatial and temporal scales. 
Dendrochronological study (Paper II) suggested that in the past the lack of major 
firebreaks, homogenization of forests due to its long-term management, and a long 
period without fires might have contributed to the occurrence of the exceptionally 
large 2014 mega-fire in Sala. A study of modern fire activity (Paper I) showed that 
a combination of human-related ignitions, weather conditions controlling fire 
spread, and vegetation composition are the main drivers of fire activity in Sweden. 
At the scale of the European boreal zone (Paper IV), forest fire activity remains 
strongly connected to the annual climate variability. Predictions of the future area 
burned in Sweden (Paper III) indicated that changes in climate would lead to an 
increase in area burned, with changes in vegetation leading either to further increase 
or mitigation of this increase to a certain degree. 
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Sammanfattning 
Under sommaren 2014 eldhärjades skogen i Sala kommun i centrala Sverige av den 
största skogsbranden i modern historia. Den stora branden stod i kontrast till den 
moderna brandaktiviteten i Sverige, som normalt kännetecknas av en stor mängd 
små bränder. Omständigheterna kring branden belyste de komplexa interaktionerna 
mellan olika mänskliga aktiviteter och klimatet och normal brandaktivitet. Även om 
effekterna från mänskliga aktiviteter och klimat spelar en avgörande roll i mängden 
antal skogsbränder, förblir de till stor del ostuderade i norra Europa. Huvudsyftet 
med denna avhandling var att undersöka hur effekterna av landskapet (naturliga och 
mänskliga) och klimatmönster påverkar skogsbränder i olika rumsliga och 
tidsmässiga skalor. För att förstå dessa mönster genomfördes dendrokronologiska 
studier (Paper II) som visade att bristen på naturliga brandgator, homogenisering av 
trädslagssammansättning och åldersfördelning tillsammans med en lång period utan 
skogsbränder kan ha varit bidragande orsaker till den stora branden 2014 i Sala 
Studier av modern brandaktivitet (Paper I) visade att en kombination av mänsklig 
påverkan i form av antändningar i kombination med väderförhållanden styr 
eldspridningen tillsammans i kombination med artsammansättning är de främsta 
drivkrafterna för skogsbränder i Sverige. På skalan för den europeiska boreala zonen 
(Paper IV) är skogsbrandsaktiviteten (Paper III) indikerar att klimatet kan leda till 
en ökning av det areal som drabbas av skogsbränder, där olika vegetationstyper kan 
påverkar brandintensiteten genom att öka eller minska den till en viss grad. 

Keywords: boreal skog, landskapsegenskaper, brandförutsägelse, 
brandbekämpning, INLA, naturliga risker, klimatpåverkan, brandhistoria, 
brandregim. 
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Forest fires are a major disturbance factor common throughout the boreal 
zone. Fires shape successional pathways in vegetation, biodiversity, and the 
biogeochemical cycles, e.g. the rate of carbon emissions (Granström 2001; 
Amiro et al. 2001; Ryan 2002; Zhang et al. 2003; de Groot et al. 2009). 
Within the boreal zone between five and 20 million ha of forest is burned 
every year (Stocks et al. 1998; Zhang et al. 2003; Wooster and Zhang 2004; 
Flannigan et al. 2013). Fires are mainly driven by climatic conditions (Stocks 
et al. 2002; Drobyshev et al. 2012, 2016; Flannigan et al. 2013). Forest 
composition controls the distribution and abundance of forest fuels, creating 
variability in fire risk across the landscape and affecting the pattern of fire 
spread (Larsen 1997; Niklasson and Granström 2000; Ryan 2002; Hellberg 
et al. 2004). Longer drought periods result in fuel drying over large portions 
of the boreal landscapes, resulting in forests preconditioned to larger fires 
(Ryan 2002). 

In Scandinavia today forest fires are common; however, there are very 
few records of the occurrence of mega-fires (i.e. fires larger than 10 000 ha). 
In the summer of 2014, a fire in the municipality of Sala, Västmanland 
county in central Sweden, burned an area around 14 000 ha (MSB 2015). 
This was one order of magnitude larger than the previous largest fire in 
Sweden, a fire that occurred in the Norrbotten county in 2006 and burned ~1 
900 ha (Bodens kommun 2006). As a result of the Sala mega-fire, one person 
was killed, and the large forested area burned caused tangible economic 
losses for the municipality and forestry operations. In Sala, the ignition was 
human-related, but the fire spread was driven by a prolonged drought and 
strong winds (MSB 2015). Homogenous vegetation due to long-term forestry 
monoculture may have facilitated the fire spread (Ryan 2002). Although the 
relationships between human activities and climate are of critical importance 

1. Introduction 
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in shaping modern fire activity, they remain largely unstudied in Northern 
Europe. 

Annual reconstructions of past fire activity rely on the use of 
dendrochronological (i.e. tree ring-based) methods to date fire scars and 
provide annually resolved multi-century fire chronologies. 
Dendrochronological studies indicate large temporal and spatial variations in 
fire activity in Sweden during the last 500 years (Niklasson and Granström 
2000; Niklasson and Drakenberg 2001; Drobyshev et al. 2014). These 
studies used the fire cycle concept (FC), which is the period that would be 
required for the total study area to be burned (Johnson and Wagner 1985). 
For example, before the 1700s the FC was approximately 200 years in 
northern Sweden and 64 to 156 years in southern Sweden (Niklasson and 
Granström 2000; Niklasson et al. 2010), while in the modern times the FC is 
around 104 years across the country (Drobyshev et al. 2012).  

Dendrochronological reconstructions in Northern Sweden have shown 
that prior to 1550 fire activity was dominated by a small number of fires of 
much larger magnitudes and from 1800-1850 numerous smaller fires 
dominated (Niklasson and Granström 2000; Niklasson et al. 2010). This 
difference in fire activity was driven by the introduction of fire suppression 
policies and changes in land-use around the 18th-19th centuries (Niklasson 
and Granström 2000; Niklasson et al. 2010; Drobyshev et al. 2012; Rolstad 
et al. 2017). Nowadays, fires are quickly suppressed after its ignition, with 
many but small fires events characterizing the annual fire record. In modern 
Sweden between 3 000 and 4 000 fires are recorded annually, burning on 
average ~3600 ha, or around 0.008% of the country’s forested area (MSB 
2019; Sjöström and Granström 2020). The main ignition causes are human-
related (e.g. campfires, mechanical failures, or arson) with only ~4% being 
due to lightning (MSB 2019; Sjöström and Granström 2020). Human-related 
ignitions are more common in the vicinity of densely populated areas (Pinto 
et al. 2020). 

The analyses of fires since 1875 (Drobyshev et al. 2012) and 
reconstructed historical fire activity since the 1400s (Drobyshev et al. 2014) 
suggests there are two well-defined zones of characteristic fire activity in 
Sweden, the boundary between the zones being approximately 60º N. In the 
north, fire regime appears to be controlled by the summer aridity, whereas in 
the south the spring drought conditions are important, with a large proportion 
of fires occurring in late spring to early summer (Drobyshev et al. 2012).  
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In the last decade, the total area burned increased by over 30% in 
comparison to the previous decade, mostly due to the fires recorded in the 
years 2014 and 2018. The total area burned in each year was one order of 
magnitude larger than the 1996-2018 average, with over 14 000 ha burned in 
2014 (mostly from the Sala mega-fire alone) and over 24 000 ha of the area 
burned in 2018 (from multiple fires) (MSB 2019). However, it is important 
to realize that the modern levels of forest fire activity in Sweden are very low 
from a historical perspective, mostly due to effective fire suppression. 

Modeling is an important tool for forest fire managers tasked with 
integrating fire-related risks into long-term forest planning. A number of 
properties of fire regimes have been subject to such modeling work, 
including fire occurrence (Syphard et al. 2008; Rodrigues and de la Riva 
2014), fire spread (Rodriguez-Aseretto et al. 2013; Haas et al. 2013), and 
overall fire risk (Gudmundsson et al. 2014; Turco et al. 2019). For 
Scandinavia, models predict an increase in forest fires risk associated with 
either an increase in temperature or in the length of the fire season 
(Kilpeläinen et al. 2010; Flannigan et al. 2013; Yang et al. 2015). Models 
further predict an increase of ~20% in the annual frequency of forest fires, 
mostly in the southern Scandinavia (Kilpeläinen et al. 2010; Yang et al. 
2015).  

Fire prediction models commonly use climate and landscape variables as 
predictors (Kilpeläinen et al. 2010; van der Kamp et al. 2013; Barbero et al. 
2014; Yang et al. 2015; Hernandez et al. 2015; Tardivo et al. 2017). Joint 
analyses of these factors with human-related factors are uncommon and to 
the best of my knowledge, no joint analyses have been undertaken for 
Sweden. My project has been intended to fill in this knowledge gap. 
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The main aim of this thesis was to investigate the impacts of landscape 
(natural and human-related) and climate patterns on forest fires at different 
spatial and temporal scales. I present a multi-century perspective of the fire 
activity in Sweden. The study is an analysis of fire history in the area where 
the Sala mega-fire took place, a site with a legacy of forest management and 
with the most common type of forested land currently in Sweden, i.e. a 
coniferous-dominated landscape managed for wood production. It is 
presented a Sweden-wide study of the relationship between the occurrence 
and size of modern fires versus human-related and natural/semi-natural 
landscape features. I also present an overview of the fire activity within the 
European boreal zone (EBZ). Lastly, predictions are made of future total area 
burned in Sweden using climate and landscape variables. 

The specific research questions that guided this work were: 
 

I. What are the impacts of climate, biotic, and abiotic landscape 
features on fire occurrence and fire size in modern Sweden? 

II. How does the history of a landscape influence modern fire activity? 
III. How does variability in climate and landscape properties affect the 

fire risk? 
IV. What are the spatio-temporal patterns of fire activity across the 

European boreal forest? 
  

2. Objectives 
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Forest fires were studied at local (Paper II), national (Papers I and III), and 
sub-continental (Paper IV) scales and on three temporal scales - years, 
decades, and centuries (Fig 1). 

 

 
Figure 1. Spatial and temporal coverage of the papers included in this project. 

 
Paper I used data from fires in Sweden between 1998-2017, obtained from 
the Swedish Civil Contingency Agency (in Swedish Myndigheten för 
Samhällsskydd och Beredskap, MSB) (MSB 2019). The paper studied the 
effects of landscape properties (road density, population density, firebreaks, 
vegetation zones) and climate (Buildup Index – BUI, and Initial Spread 

3. The structure of the thesis 
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Index – ISI) on fire occurrence and fire size. The analysis of the data used a 
Bayesian approach aiming to reduce the effects of spatial-auto-correlation. 

Paper II used dendrochronological methods to reconstruct the history of 
fires in the area where 2014 Sala mega-fire took place. Samples were 
collected from within the burned area in the Sala municipality, Central 
Sweden, during the summers of 2016-2018. The analysis of the samples used 
a range of statistical methods to identify changes in the fire regime and to 
analyze the relationship between the fire, climate and humans. 

Paper III presents future predictions of the area burned by forest fires in 
Sweden. The analysis used future estimates for population density, two 
climate projections and three vegetation scenarios (more fire-prone, less fire-
prone, and no changes in vegetation). The analysis also considered the effects 
of urban areas, water bodies, road density, and vegetation zones on the 
predictions. Similar to Paper I, the data from fires originated from the MSB 
and the analysis used a Bayesian method. 

Paper IV used data from the annual area burned (ABA) from different 
administrative units within the European Boreal Zone (EBZ). The source of 
the data was either the statistics maintained by the respective state authorities 
or from the Global Fire Emission Database (Giglio et al. 2013). The analysis 
used several statistical methods to reconstruct long-term ABA chronologies 
at a regional level. Later, the analysis investigated the relationships between 
the ABA and climate (MDC, monthly drought code) at a sub-continental 
level. 

I direct the reader to the respective papers for a detailed presentation of 
the material and methods for each study. 
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4.1 Human influence on fire activity in the past (Paper II) 
The long-term analysis in Paper II showed a dramatic decline of fire activity 
in the Sala municipality in central Sweden around the 1700s, observed both 
in terms of fire occurrence and area burned (Figure 4). The onset of the fire 
free period occurred in 1756 and the 2014 fire marked its end. The decline 
in fire activity followed a transition in land-use practices away from the use 
of fire as a land management tool and has been commonly observed in 
Scandinavia during the 1800s (Niklasson and Granström 2000; Pitkänen et 
al. 2003; Niklasson et al. 2010; Storaunet et al. 2013; Rolstad et al. 2017). 
The regime shift identified in Sala occurred almost half-century earlier than 
other regions in Northern Europe (Page et al. 1996; Niklasson and Granström 
2000; Niklasson et al. 2010; Wallenius et al. 2010; Rolstad et al. 2017; 
Ryzhkova et al. 2020). It was speculated that human-activities related to 
agriculture and mining were the drivers for such an early shift. Slash-and-
burn and charcoal production were important drivers of fire activity during 
1480-1690 (Segerström and Emanuelsson 2002; Bindler et al. 2009). By the 
turn of the 18th century, changes from slash-and-burn to permanent fields 
were the likely drives for the regime shift (Emanuelsson and Segerstrom 
2002; Segerström and Emanuelsson 2002). An increase in timber value 
further facilitated the abandonment of fire-related activities (Groven and 
Niklasson 2005; Storaunet et al. 2013). Superimposed epoch analyses 
indicated climate change played a role in the forcing of large fire years (LFY) 
in the pre-decline era, indicating that the reconstructed fire chronology is a 
product of both human impacts and climate variability. 

 

4. Main results and discussion 
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Figure 2 View of the area burned in the Sala fire two years after the event (top) and six 
years after the event (bottom). The consumption of ground vegetation by the fire is 
evident in the area (photos: Guilherme Pinto (top) and Igor Drobyshev (bottom). 
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Figure 3 Top-left: example of a charred stump in the Sala burned area. Top-right: cross-
section of a charred stump that was sampled in the area affected by 2014 Sala mega-fire. 
Bottom: dated sample from Sala with fire scar (photos: Guilherme Pinto). 

 
Figure 4 (a) The reconstructed area burned and (b) the number of sites burned at decadal 
resolution (dotted lines). Regime changes in the fire cycle (a) and the fire occurrence (b), 
as identified by the regime-shift analysis (line with dots in red). The population data are 
shown by the dashed blue line. Site replication is shown by the black solid lines. 
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4.2 Effects of the landscape and climate on modern fire 
activity in Sweden and across the European boreal 
zone (Papers I and IV) 

Fire occurrence is strongly influenced by road density, the number of 
firebreaks, and population density, suggesting an important role of human-
related ignitions (Figure 5). Specifically, most of the fires are human ignited 
and normally close to densely populated areas (Syphard et al. 2007; Catry et 
al. 2009; Martínez et al. 2009). A dense road network facilitates peoples’ 
access to forested areas and increases the ignition frequencies further away 
from populated areas (Feltman et al. 2012). Water and urban areas are 
considered firebreaks, but they also have a high recreational value and 
human activity, which in itself could increase fire occurrence. Drought 
indices are strongly and positively correlated with fire size (Figure 6). The 
initial spread index, a drought index used as a proxy for fire spread risk, 
showed a stronger positive correlation with fire size than the build-up index, 
a proxy for the dryness of deep organic layers in the soil. Human structures, 
such as urban areas and roads, and firebreaks limited fire size and possibly 
assisted in fire suppression in the areas with a denser population. 
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Figure 5 Relationship between fire occurrence and factors selected by the best model 
operating on the subset of data representing (a) large fire years (LFY) and (b) non-large 
fire years (nLFY). Units: road density, meters; population density, log (mean of 
inhabitants/km2), firebreaks, pixel count within the buffer area; and vegetation zones, 
predefined classes. The y-axis shows the probability of a point being a fire proportional 
to the density of our observations (random points (probability of 0) and fire points 
(probability of 1)). Each blue point represents either a random point or a fire and the 
dotted lines represent the credible interval (CI) (Pinto et al. 2020). 
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Figure 6 Relationship between fire size and factors selected in the model operating on 
the subset of data representing (a) large fire years (LFY) and (b) non-large fire years 
(nLFY). Units: road density, meters; population density, log (mean of inhabitants/km2), 
firebreaks, pixel count within the buffer area, vegetation zones, predefined classes; BUI 
and ISI - index values. Each blue point represents a fire and the dotted lines represent the 
credible interval (CI). 

The European boreal zone (EBZ) exhibited large variability in forest fire 
activity with the fire cycles varying from 1 581 (St. Petersburg region) to 37 
119 years (Finland). Considering their ABA, the clustering of administrative 
units suggested the presence of sub-regions with synchronous annual 
variability in ABAs (Figure 7). LFY s in each of the clusters were associated 
with the development of high-pressure cells over the regions in question in 
July, indicating climatic forcing of LFYs. Contingency analysis indicated no 
long-term trend in the synchrony of LFYs observed simultaneously over 
several administrative units.  

A trend towards higher values of MDC was observed for the months of 
April and May in the western section of EBZ (April) and southern-eastern 
sections of the Baltic Sea region and North sections of EBZ in Russia (May). 
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Trends in MDC during the summer months were largely absent. The 
geographic pattern of July MDC values analyzed through principal 
component analysis over the entire EBZ, indicated the presence of a dipole, 
i.e. alternative behavior, of the July MDC values over the Scandinavian 
peninsular and the eastern section of the EBZ. The dynamics of summer 
precipitation likely act as a “synchronizing factor” for the EBZ-wide forest 
fire activity. June SNAO exhibited positive but moderate (R2 = 0.17) 
correlation with EBZ fire activity, pointing to only partial annual 
synchronization of fire-prone conditions across the EBZ. 

 

 
Figure 7 The geographical scope of the study with the regions providing the fire data for 
Paper IV. The classification is a result of clustering methods based on the between 1901-
2017. Each cluster represents a group of administrative units with synchronous annual 
fire activity (see the colored version in Paper IV). 

 

4.3 Future area burned in Sweden (Paper III) 
Rising temperatures are expected to increase fire activity in the boreal zone 
until the end of the century. This study offered predictions of the forest area 
burned in Sweden under two climate projections (RCP4.5 and RCP8.5) and 
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three vegetation scenarios (more fire-prone, MFP, less fire-prone LFP, and a 
scenario with changes in climate and population only, CPO) (Figure 8). The 
projections used climate data from a 20-year period centered on three time 
horizons: years 2060, 2080, and 2100. The MFP scenario prescribed an 
increase in the volume of pine, resulting from a decrease in the volumes of 
spruce and deciduous species. The LFP scenario prescribed an increase in 
the volume of spruce and deciduous, at the expense of the pine volume. Both 
MPF and LFP considered both climate projections (RCP4.5 and RCP8.5). 
The CPO scenario operated with two climate projections and changes in 
population. The area burned by forest fires is expected to increase by an 
average of 58% in the MFP and by 28% in the CPO scenarios in all time 
horizons, in comparison to the mean 1996-2019 levels. The LFP scenario 
showed an average decrease of 3% in comparison to the mean 1996-2019 
levels. Changes in vegetation between scenarios seemed to considerably 
affect the future area burned. The small differences observed in area burned 
between the time horizons in all scenarios indicate fire activity shows a 
certain level of resilience to small changes in climate. There were observed 
regional differences, with southern Sweden (the region below 60º latitude) 
having a larger increase in area burned compared to northern Sweden, 
possibly due to a larger increase in precipitation for northern Sweden in 
comparison to the southern portion of the country, especially over summer 
(Kilpeläinen et al. 2010; Nikulin et al. 2011; Yang et al. 2015). The results 
suggest that vegetation has a strong impact on fire activity, with possibilities 
to mitigate the increases in area burned expected due to climate change. 
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To disentangle the role of human-related activities and climate upon fire 
activity is a complicated task, as both intimately co-interact at multiple 
temporal and spatial scales. These co-interactions often show various 
temporal lags and many cumulative and non-linear effects. The results from 
this project suggested that climatic annual variability and scale are two 
important elements to understand the individual roles of climate and human 
activity. Annual climate oscillation is the main factor impacting annual 
variability in fire activity. Throughout the year, dry weather is responsible 
for preconditioning forest fuels in increasingly larger portions of the forest 
landscape which is conducive to fires. During prolonged droughts the 
proportion of the forested landscape capable of carrying fire increases. 

Humans and vegetation structures, however, impact the landscape on a 
different scale. From a societal point of view, the amount of area burned in 
a given time is of high importance. This is where the differences in vegetation 
structures and human suppression comes in. Humans are the main source of 
fire ignitions in Sweden, either purposeful or accidental. The difference in 
fuel composition in a forest makes a landscape more or less prone to fire 
spread. Similarly, fires closer to populated areas are subject to fire 
suppression. In fact, the major decline in modern fire activity in comparison 
with historical levels shows the effectiveness of suppression efforts, the scale 
of human impact on fire activity today is much reduced than it was in the 
past. Today at the landscape level, human activities have become one of the 
main drivers of fire activity, along with climate. 

Future climate will likely be more fire-prone and the amount of forest 
area burned will increase. It is unclear if the current fire suppression 
framework will be sufficient to effectively address future fire risks. 
Difficulties in controlling today’s large fires and projected increase in 

5. Conclusion 
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climatological fire hazards, call for novel strategic approaches in fire 
mitigation. One strategic approach could be regional fuel management, 
which would address the risks of fires spreading over the large areas under 
severe drought conditions. 
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