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Identification errors in camera-
trap studies result in systematic 
population overestimation
Örjan Johansson1,2*, Gustaf Samelius2,3, Ewa Wikberg3, Guillaume Chapron1, 
Charudutt Mishra2,4 & Matthew Low5

Reliable assessments of animal abundance are key for successful conservation of endangered species. 
For elusive animals with individually-unique markings, camera-trap surveys are a benchmark standard 
for estimating local and global population abundance. Central to the reliability of resulting abundance 
estimates is the assumption that individuals are accurately identified from photographic captures. To 
quantify the risk of individual misidentification and its impact on population abundance estimates we 
performed an experiment under controlled conditions in which 16 captive snow leopards (Panthera 
uncia) were camera-trapped on 40 occasions and eight observers independently identified individuals 
and recaptures. Observers misclassified 12.5% of all capture occasions, resulting in systematically 
inflated population abundance estimates on average by one third (mean ± SD = 35 ± 21%). Our results 
show that identifying individually-unique individuals from camera-trap photos may not be as reliable as 
previously believed, implying that elusive and endangered species could be less abundant than current 
estimates indicate.

When using photographic surveys (e.g. camera-trapping) to derive population abundance or demographic 
parameter estimates using capture-recapture analytical methods, it is critical that individuals are reliably and 
accurately identified from images to avoid estimation biases1–4 (Fig. 1). It is well recognized that misclassification 
of photographs may occur when identifying individuals using natural marks or patterns because of poor photo-
graphic quality1,5, if the variability in marking patterns is small1,6,7, or if patterns vary over time3. However, in ter-
restrial species with individually-unique natural markings such as stripes [e.g. tiger (Panthera tigris), wildebeest 
(Connochaetes taurinus)] or spots [e.g. cheetah (Acinonyx jubatus), snow leopard (Panthera uncia)], it is generally 
assumed that individuals are accurately identified4,8–11. This is despite there being almost no empirical evidence 
to verify this assumption because camera-trapping studies on species with individually-unique markings rarely 
report how identification was performed, the number of photographs that were unidentifiable, or if there was 
inter-observer heterogeneity in assigning identities6,11–14. Also, there is no baseline measure of classification error 
in these species because studies have not been undertaken to measure classification accuracy in a population of 
individuals with known identity. Thus, it is currently unknown how much observational uncertainty is associ-
ated with classifying images of species with individually-unique markings, and how this subsequently influences 
confidence in abundance estimates. This is surprising, considering that many of the species surveyed photo-
graphically are threatened or endangered, and accurate population and demographic estimates are critical to their 
conservation10,13,15.

Despite this, significant progress has been made in addressing the general issue of incorrect classification of 
wildlife ‘recaptures’ within the capture-recapture analytical framework. These methods include: (1) using multiple 
observers to help identify classification errors or estimate observation error13, (2) including spatial information 
to probabilistically resolve issues of incomplete identity through spatial capture-recapture models16 and spatial 
partial identity models17, and (3) resolving genotyping errors by using sample matching approaches for genetic 
mark-recapture studies18–20. However, regardless of these advances in wildlife studies, the degree to which their 
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application would solve issues of photographic misclassification for animals with individually-unique markings is 
difficult to determine if the types of errors being made and the frequency of these errors are unknown.

Four types of error can occur when identifying individuals from photographs (Fig. 1). First, photographic 
captures of the same individual can be split into two (a splitting error that creates an additional ‘ghost’ animal). 
Second, captures of two individuals are combined into one, so that an animal not captured previously is errone-
ously believed to be a recapture (a combination error). Third, a photographic capture is shifted from one indi-
vidual’s capture history to another (a shifting error that results from a splitting error from the first individual in 
conjunction with a combination error to the second individual). Finally, a photographic capture is not assigned 

Figure 1. Conceptual figure of the experiment and influence of different errors on the structure of the 
capture histories (CH) in photograph-based population abundance estimation. Here, the true CH contains an 
individual (A) who was captured twice using a camera-trap and another individual (B) who was captured once. 
Capture-recapture methods use the number of individuals and the proportion of captures (1) and non-captures 
(0) to estimate the population abundance; thus anything influencing either of these factors will influence the 
population estimate. A shift error moves a capture event from one individual to another, but does not change 
the total number of individuals or the number of 1’s and 0’s (middle left). A combination error combines the 
captures from two individuals into one, reducing the number of individuals and the total number of zeros 
(lower left). A splitting error splits the captures from one individual into two and creates a “ghost” individual, 
increasing the number of individuals and the total number of 0’s (top right). A capture exclusion where 
identification is possible, is a form of identification error that changes a 1 to 0 in that individual’s CH (bottom 
right). Population abundance estimates will be underestimated by combinations and overestimated by splits. In 
a conventional capture-recapture framework, shifts will largely not affect population estimates. Exclusions may 
over- or underestimate the abundance, depending on whether they result in the loss of individuals from the CH 
or if they are non-random relative to individual identity (bottom right). The image was created in the software 
OmniGraffle 7 (https://www.omnigroup.com/omnigraffle).
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to any capture history, and instead is excluded from classification despite it containing enough information for 
it to be reliably classified (an exclusion error; Fig. 1). Previous efforts to estimate misidentification rates from 
camera-trapping surveys have been restricted to species with low intra-specific variation, as a means of determin-
ing whether photo identification is feasible in these species7,21,22. Further, such studies have either compared the 
level of agreement between observers21 or estimated an overall error rate22,23. Animals with individually-unique 
markings (e.g. tigers or snow leopards) have been largely ignored in this regard, where the possibility of misiden-
tification errors has been assumed to be negligible. However, it is important to understand exactly where and how 
often errors arise, because different types of misidentification will affect population estimates differently: splitting 
errors will systematically overestimate abundance19, combination errors will underestimate abundance20, shift-
ing errors can introduce significant bias in estimates from spatial capture-recapture approaches, while exclusion 
errors could potentially inflate abundance estimates if they do not simultaneously remove some animals from the 
capture history18 or negatively bias abundance estimates if exclusions are not random with respect to individual 
identity and hence increase detection heterogeneity19 (Fig. 1). Therefore, the rates at which splitting errors, com-
bination errors, shifting errors and false exclusions occur need to be quantified in all species where photographic 
identification is used for determining population abundance estimates3, especially those where conservation pri-
orities may be informed by these estimates24,25.

To this end we camera-trapped captive snow leopards (Figs. 1 and 2) in order to quantify: (1) how often 
observers correctly assigned the identities of individuals to photographs and the relative proportion of splitting, 
combination, shifting and false exclusion errors, and (2) how these errors have potential to translate into biases 
in population abundance estimates. We discuss the implications of our findings for photograph-based survey 
techniques to derive population abundance estimates in snow leopards and other conservation critical species.

Results
Misclassification errors. 12.5% of capture events (hereafter ‘events’) were incorrectly classified, with the 
majority of mistakes coming from splitting errors (total splitting error probability = 0.111) rather than combi-
nation errors (total combination error probability = 0.037; see Table 2 for details). This pattern was similar for 
both experts and non-experts (Tables 1–3). Experts were generally less likely to make errors than non-experts, 
but still had a 9.9% probability of misclassifying an event (versus 14.6% for non-experts; Table 2), resulting in an 
average 2.5 ghost individuals created by splitting errors per expert’s capture history (versus 3.2 for non-experts; 
Tables 1 and 3). This ghost creation was as high as 31% of the true population (5 ghosts) for non-experts and 25% 
(4 ghosts) for experts (Table 1).

Exclusion errors. There was an 8.7% probability that an event would be excluded from classification, with 
non-experts having double the probability of excluding than experts (11.9% versus 5.3%; Table 1). However, one 
non-expert (observer 2) excluded 12/40 events (30%), which was substantially more than all other observers; 
if that observer was removed, then exclusion rates were roughly the same for non-experts and experts (4.4% vs 
5.3%; Tables 1 and 2).

There was no evidence that events that were more likely to be excluded by some observers were subsequently 
more likely to be misclassified by the remaining observers who attempted classification (though the uncertainty 
around the estimates was large and such an effect may still exist without being detectable; Supplementary Fig. S1). 
The two events that were most commonly excluded (#25 & #31 were each excluded by four observers) were cor-
rectly classified by the remaining four observers. The events that were most commonly misclassified (#22 was 
misclassified by 7 of the 8 observers, #40 misclassified by 4 observers, and #24 & #38 misclassified by 3 observers) 
were either never excluded (#40 & #38) or were only excluded by the non-expert who excluded 30% of his/her 
events. This strongly suggests that our assumption of all events being classifiable was correct, and that all exclu-
sions in this study can be considered as exclusion errors. Thus, if exclusions are included when calculating the 
probability of an error (i.e. misclassification + exclusion), the probability of experts making an event error was 

Figure 2. Example of photographs used in this study to assess identification errors in camera-trap photographs 
of snow leopards. Note the right side of the cat is visible and the background has been removed to prevent 
observers identifying the cat based on visual information from the background.
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15.1% and non-experts 26.4% (or 19.1% if observer 2 is removed). It should also be noted that, for this analysis, 
individual cats needed to be included as a random factor on the model’s intercept to account for overdispersion 
(Appendix S3); this ‘misclassification heterogeneity’ indicates that some individuals were more likely to be mis-
classified than others regardless of exclusion rates, clearly suggesting that there were individual differences in spot 
patterns of the snow leopards that made some easier to identify than others. This would indicate that exclusion 
and misclassification errors are likely non-random with respect to individuals.

How errors affect capture histories and population estimates. Across all observers, there was an 
11% probability that a split would occur, with the majority of these (81%) resulting in a ghost. For experts, almost 
all splits (95%) yielded ghosts because experts rarely made a ‘shift’ error (Tables 1 and 2), while for non-experts 
only 73% of splits yielded ghosts (i.e. because 27% of their splits arose within a ‘shifting’ error). Because splitting 
errors were always more common than combination errors, all observers created capture histories that contained 
more animals than the true capture history, and individuals had smaller numbers of recaptures (Table 3). This 
inflated population estimates over the true population size (n = 16) for experts and non-experts (mean inflation 
+33% versus +37% respectively) and ranged up to ~50% population overestimation (Table 3).

The two simulations clearly show that the potential impact of splitting errors on abundance estimates depends 
on three factors: the number of encounter occasions, the probability of detection and the number of splitting 
errors (Fig. 3; Supplementary Table S2). Based on a population of 12 individuals with 16 capture occasions and a 
capture probability at each occasion of 0.16 (similar to the most extensive field study to date, see26), a 10% splitting 
error leads to an average 25% overestimate of the true population size (with overestimates as high as 125% within 
the 95% confidence range; Fig. 3). When examining ranges of capture occasions (7–30) and capture probabili-
ties at each occasion (0.1–0.4), a single splitting error could add anywhere from 1 to 8 additional animals to the 
true abundance estimate of 16 (population overestimated by 6–50%). Here, fewer capture occasions and lower 
capture probabilities result in the largest impact of splitting errors (Supplementary Table S2). The effect of each 
additional splitting error magnifies the error on the abundance estimate because the additional zeros it adds to 
the encounter history creates an increasingly smaller estimate of the capture probability (Fig. 3; Supplementary 
Table S2; Appendix S4).

Discussion
Regardless of the extent and sophistication of the survey methods or analyses used to determine population abun-
dance from camera-trapping data, incorrect classification creates false capture histories and biased estimates1–4. 
Until now it has been generally assumed that because some species have individually-unique markings (e.g. tiger 
stripes or cheetah spots), these allow researchers to correctly identify individuals upon re-encounter9–11,26. In 
an ideal situation this may be true; however, observation error is common in ecology even in situations where 
one might expect these errors to be small or absent27. Here we show that not only do experienced observers 
make mistakes, but in our experiment, these mistakes were reasonably common (one observation out of ten was 
misclassified), implying that they may impact population abundance estimation in real-world situations. These 
results raise questions regarding the breadth and magnitude of these biases in current field population estimates 
based on camera-trapping data and how this observational uncertainty (if present) can be reduced or accounted 

Exclude Split Shift Combine Individuals lost in 
excluded CEs

Individuals lost in 
combination errors

Ghosts created 
in split errors

Number of individuals 
identified (true)

Obs1 4 5 5 1 1 2 5 18 (15)

Obs2 12 2 0 0 3 0 2 15 (13)

Obs3 0 2 0 0 0 0 2 18 (16)

Obs4 1 4 1 0 0 0 4 20 (16)

Obs5 4 3 0 0 1 0 3 18 (15)

Obs6 1 4 0 0 0 0 4 20 (16)

Obs7 2 0 1 0 1 0 0 15 (15)

Obs8 1 3 0 3 0 1 3 18 (16)

Table 1. The types of identification errors and the number of individuals added to or lost from the capture 
history for each observer (Obs1–4 are non-experts and 5–8 are experts). Exclude = capture events (CE) 
removed from classification for being too difficult to classify, split = CEs split from one individual to create 
two individuals, combine = CEs combined from two individuals into one individual, shift = CEs split from 
one individual and combined with another. These errors result in the loss of individuals when: (1) they are not 
considered because all CEs containing their photos were excluded [here they are not present in the capture 
history], or (2) they are combined with another individual [here they remain in the capture history, but are 
misclassified]. Errors also result in false individuals being created (ghosts) from splitting errors. Thus the 
‘number of individuals identified’ in a capture history can have three meanings: (1) how many unique animals 
the observer thinks they saw and classified; this is the number of rows in the capture history and equals: the true 
number photographed – individuals lost (exclusion or combination) + ghosts created, (2) how many unique 
animals the observer actually saw and classified (true); this equals number of animals recorded in the capture 
history (true number photographed – individuals lost through CE exclusion), and (3) in a very broad sense 
it could be interpreted to mean the population abundance estimate, since the capture history also contains 
information about animals that were not seen (see Table 3).
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for in estimates. Our point here is not to recommend discarding camera trap studies, but instead to stress the 
need for additional rigor when identifying individuals from camera-trap photos to ensure that the derived esti-
mates are as least biased as possible (this is similar to the issue of genotyping errors that has been a major focus 
in the non-invasive genetic capture-recapture literature18–20). Our study shows that the implicit assumption of 
individually-unique animals being always correctly identified is unlikely to be true.

Camera-trap surveys yield a number of capture events where individuals are either seen (1) or not seen (0) at 
each sampling occasion. In essence, population abundance estimates are derived from a capture–recapture frame-
work where the number of individuals encountered during the survey is divided by the overall capture probabil-
ity28. Since capture probability is a function of the number of animal detection over total capture occasions (i.e. 
the ratio of 1’s and 0’s in the capture history), anything that changes this ratio will affect the population abundance 
estimate. Thus, when observers make more splitting errors than combination errors, this inflates population 
abundance estimates not only via an increase in the number of individuals identified (ghosts added), but also 
by reducing the capture probability through the addition of zeros to the capture history (Fig. 1; Supplementary 
Table S2; Supplementary Appendix S5). In addition, excluded capture events (false exclusions) replace a ‘capture’ 

Error Overall Non-expert Expert P(Non> Expert)

Split 0.091 ± 0.016 0.098 ± 0.025 0.078 ± 0.021 0.709

Combine 0.016 ± 0.007 0.007 ± 0.007 0.019 ± 0.011 0.138

Shift 0.023 ± 0.008 0.042 ± 0.016 0.002 ± 0.001 1

Total split 0.111 ± 0.011 0.139 ± 0.028 0.078 ± 0.022 0.957

Total combine 0.037 ± 0.011 0.049 ± 0.017 0.019 ± 0.011 0.918

Exclude 0.087 ± 0.016 0.119 ± 0.027 0.053 ± 0.018 0.981

Exclude* 0.049 ± 0.013 0.044 ± 0.019 0.053 ± 0.018 0.344

CE error 0.125 ± 0.019 0.146 ± 0.029 0.099 ± 0.024 0.895

CE error + 0.208 ± 0.023 0.264 ± 0.036 0.151 ± 0.028 0.994

CE error* + 0.174 ± 0.023 0.191 ± 0.034 0.151 ± 0.028 0.782

Table 2. Probabilities of identification errors while classifying each set of camera-trap photographs (capture 
event (CE) folders) of snow leopards (estimates are the mean ± SD of the posterior distribution of the expected 
mean error probability from Bayesian binomial models described in Appendix S1). Estimates are presented 
for the 8 observers (overall) and also divided according to their previous experience in snow leopard photo 
classification (non-expert vs. expert) with the probability that non-experts have greater errors than experts 
[P(non > expert) derived from the posterior distribution of the difference between observers]. Total split 
and total combine add the shift estimate to the split and combine estimates, respectively, since shifts involve a 
split and combination error. Capture event error (CE) relates to the total probability of a capture event being 
misclassified: this is presented for classification errors only (CE error) and when exclusions are considered as a 
classification error (CE error+). Because observer 2 excluded 30% of all capture events, some estimates are also 
presented where observer 2 has been removed from the analysis (*).

CH structure
Population estimate

Bias in population estimate

5 4 3 2 1 True Remaining

TRUE 1 2 5 4 4 16.6 ± 0.9 +3.7% +3.7%

Obs1 0 2 3 6 7 20.3 ± 2.0 +27% +35%

Obs 2 1 1 1 4 8 23.9 ± 7.2 +49% +84%

Obs 3 1 2 3 6 6 21.0 ± 2.8 +31% +31%

Obs 4 0 2 2 9 7 22.8 ± 2.3 +42% +42%

Obs 5 1 1 3 5 8 23.5 ± 4.5 +47% +56%

Obs 6 0 3 2 6 9 22.8 ± 2.3 +42% +42%

Obs 7 2 0 5 5 3 16.1 ± 1.3 +0.6% +7%

Obs 8 3 0 2 5 8 23.2 ± 3.9 +45% +45%

Table 3. Comparison of the structure of the capture histories (CH) derived from classification of snow leopard 
images by eight observers (Obs 1–4 were non-experts, Obs 5–8 were experts) with the true capture history 
(TRUE). The CHs were based on 5 sampling occasions; CH structure shows how many times each snow leopard 
individual was seen (where the ‘5’ column indicates an individual was recorded in 5 capture events, and the 
‘1’ column indicates an individual was only identified by the observer once). Based on each observer’s CH a 
population abundance estimate was derived using a closed capture-recapture model (mean ± SD; see methods). 
The bias in the mean estimate for the population is shown relative to the true population size (n = 16) and also 
relative to the number of unique individuals remaining in each observers’ CH after accounting for animals 
removed from consideration because of capture event exclusion (for observers 1, 2, 5 & 7 the number of unique 
individuals assessed was n = 15, 13, 15 & 15 respectively; see Table 1).
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(1) with a ‘not observed’ (0), further reducing the 1:0 ratio. This can impact on abundance estimates in one of 
three ways: (i) the addition of ‘missing data’ will decrease the precision of estimates, (ii) missed recapture events 
inflate mark-recapture abundance estimates18, or (iii) if exclusions are non-random (as our results suggest) then 
the resulting inflation of recapture heterogeneity could negatively bias abundance estimates20. ‘Shift’ errors (split 
+ combine) neither change the number of capture events nor the number of individuals identified. However, in 
multi-year studies, shifts could complicate future identification because the identification key for these ‘misiden-
tified’ individuals will contain multiple different individuals. Similarly, in a spatial capture-recapture framework, 
shifts may introduce large spatial recaptures that positively bias the spatial scale parameter and negatively bias the 
detection parameter: this has the potential to substantially influence the abundance estimate.

In our study, splitting errors swamped any impacts of combination errors and led to population abundance 
estimates from experts being inflated by an average of 33% above the true population size. Subsequent simula-
tions demonstrated that the impact of splitting errors was dependent on the number of capture occasions and 
capture probability at each event, with these effects becoming increasingly influential with each additional ‘ghost’ 
individual and quickly leading to population abundance overestimated by up to 50% (Fig. 3; Supplementary 
Table S2). This shows that the impact of these splitting errors on population abundance can be partly mitigated 
by increasing the number of capture occasions (although we have not explored the impact of this for spatial 
capture-recapture data). However, since total splitting errors are based on the number of classifications attempted 
(i.e. 1 split per 10 classifications in our study), any increase in the number of capture occasions needs to not only 
consider limiting the effect of each splitting error on population abundance estimates, but also limiting the total 
number of splitting errors. More quantitative investigation of the interplay between impact of splitting errors and 
number of capture occasions is needed.

Experts made one-third fewer classification errors than non-experts, and fewer false exclusions (although not 
if non-expert 2 was removed) cf.22,29. There is an urgent need to understand what type of ‘experience’ experts need 
in order to decrease classification errors or how targeted training could help reduce such errors. As a first step to 
achieve this, the photographs and capture events used in this study have been incorporated into an online training 
tool (camtraining.globalsnowleopard.org) where observers can practice identifying snow leopards and evaluate 
their risk of making different types of error. If similar efforts are developed for other species, individual experts 
could be trained to minimize their own classification errors, or at least to be more aware of the magnitude of the 
issue. These error rates can be collected from these training tools and subsequently used for incorporating obser-
vational error into the modelling framework, or to determine which advances in capture-recapture methodology 
(e.g. spatial capture-recapture methods) would likely reduce their impacts. In addition, if the number of excluded 
capture events and between-observer variation is reported for specific studies, potential bias and uncertainties 
in population abundance estimates could be more easily accounted for. A special emphasis on assessing the valid 
existence of new animals appearing in capture histories might also help reduce error propagation of ‘ghosts’ into 
abundance estimates, in much the same way that genetic capture-recapture methods have worked to minimize the 
risk of misclassification arising from genotyping errors18–20. Future approaches to solving some of these issues will 
likely rely on software classification using automated image recognition algorithms such as deep convolutional 

Figure 3. How different rates of ghost-producing splitting errors (0.05–0.20) affect the population abundance 
estimate, based on camera-trapping data from a real-world snow leopard study in Mongolia21 (where the 
population size = 12, capture occasions = 16, capture probability = 0.16). Estimates are derived from 1000 
simulations at each error rate; the solid line is the median error and the grey shading the 95% quantile range. 
This is shown relative to the expected credible range of splitting errors (50% and 95% CIs as thick and thin lines 
respectively), from expert and non-expert observers (generated from the binomial likelihood of the model in 
Appendix S1; for splitting errors that create new individuals).
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neural networks30; however, these are likely to suffer from some of the issues we describe here, and their errors 
will similarly need to be quantified.

The primary question our study raises is: to what extent does misclassification of camera-trap photos inflate 
current population estimates of wild felids and other species that rely on similar technologies? It appears that 
the possibility to inflate population estimates due to identification errors can be substantial, with our controlled 
condition experiment reporting an inflation of approximately 35% on average. Future studies need to examine 
observational error in this and other species to understand exactly how far the problem extends, and what meth-
ods are most effective at minimizing these errors.

This issue is not a trivial point of simply methodological interest. Population sizes and trends are the central 
parameters for all conservation and management decisions. Thus, if survey methods yielding these parameters 
are systematically biased, or are more uncertain than acknowledged, conservation decision making will suffer as a 
result. For example, the snow leopard was recently down-listed from Endangered to Vulnerable by the IUCN, with 
this being largely based on camera-trapping studies for population estimation and validation of other methods31. 
While previous research has shown that the size and types of areas surveyed for this assessment may overestimate 
density up to five-fold32, our study brings to light an additional source of potential uncertainty in the global pop-
ulation estimate. Because most felid species whose populations have been estimated by camera-trapping studies 
are threatened with extinction, our findings have potentially serious implications for other species with individual 
specific markings, such as tigers, leopards (Panthera pardus) and cheetahs, whose population abundances are 
based on similar survey techniques. Until studies on these species have been undertaken to quantify classification 
error rates and their impacts on population estimation, we recommend caution when judging current population 
estimates or inferring population responses to conservation actions. If our results turn out to be generalizable to 
field conditions and additional taxa, the populations of some threatened species may be smaller and therefore 
closer to extinction than currently believed.

Methods
Snow leopard photographic captures. We deployed one camera-trap (Reconyx HC-500, Reconyx, 
Holmen, USA) per snow leopard enclosure in seven European zoos (Helsinki and Ätheri Zoos in Finland, 
Kolmården Zoo, Nordens Ark and Orsa Bear Park in Sweden, and Köln and Wuppertal Zoos in Germany) from 
February to October 2012. The cameras were installed three to seven meters from trails that the snow leopards 
frequently used, to achieve similar photographic quality as is commonly gathered in the field (Fig. 2). We pro-
grammed the cameras to take five photographs on each trigger, with an interval of 0.5 seconds and no time lapse 
between triggers (same setup as typical field studies, e.g.26). Photographs were taken in the resolution 1080p. 
Only one snow leopard at a time was allowed in the enclosure when the camera-trap was active to ensure known 
identity of the individual in the photographs. In total, 16 adult snow leopards were photographed, which can be 
compared to a typical snow leopard data set from the field where 6 to 20 individuals photographed over a single 
sampling session have been reported e.g.5,9,26.

We created a photographic library containing 40 capture events, where each event contained a series of con-
secutive photographs from one of the 16 individual snow leopards. Each individual snow leopard was repre-
sented in one to five events (representing a range of recaptures across five sampling occasions) and the number 
of photographs within each event ranged from three to eleven to simulate a typical capture event (Supplementary 
Table S1; Fig. 1). Snow leopards have asymmetrical pelage patterns, similar to other spotted cats. This means that 
patterns on the animal’s left-hand side are different from those on the right-hand side. Criteria for inclusion in the 
library were: (i) the right-hand side of the snow leopard was displayed in at least one of the photographs, and (ii) 
combined with each other, the photographs showed enough of the animal’s side and were of sufficient quality to 
allow for individual identification. To ensure that background features could not be used to help the identification 
of animals, the background of all photographs was blurred using photo-editing software (Fig. 2).

Individual identification and types of error. We asked eight observers to independently identify snow 
leopard individuals from the 40 events by examining distinct spot and rosette patterns (Table 1; Fig. 2). Four 
observers were researchers with previous experience in identifying snow leopards from camera-trap photo-
graphs (‘experts’), with three of these having authored peer-reviewed papers involving abundance estimation 
from camera-traps. The other four observers had experience of snow leopards in captivity but not in camera-trap 
photographic identification (‘non-experts’). The observers performed their work independently (for the observer 
protocol, see Appendix S1). If an observer felt they could not reliably identify an individual from the photographs 
in an event, it was excluded from further classification. This reduced the number of events for some observers 
(<40) and in some cases the total number of individuals if all events containing a given individual were excluded 
(Table 1; Supplementary Table S1; Fig. 1).

To calculate the probabilities of different identification errors, we evaluated if observers correctly classified 
each event by scoring it as correct or incorrect (Table 1; Supplementary Table S1). Incorrectly classified events 
were further scored into the following categories: (1) ‘split’, meaning the event was incorrectly split from other 
events containing the same individual and placed by itself, thereby creating a new individual, (2) ‘combine’, where 
the event(s) from an individual was combined with another individual, resulting in the loss of the focal individual 
(with one exception, this occurred with individuals that were represented by only one event), (3) ‘shift’, meaning 
the event was incorrectly split from other events containing the same individual and added to another individ-
ual’s set of events but this did not result in loss of the individual (i.e. a split + combine), or (4) ‘exclude’ because 
the snow leopard was deemed unidentifiable. Exclusion of an event where identification is possible is a form of 
identification error that affects capture-recapture calculations (by placing a 0 instead of a 1 at that (re)capture 
event; Fig. 1); thus we included it in our analyses for assessing the total number of event errors in addition to esti-
mating its probability. Splits are single errors that create new individuals (sometimes referred to as ‘ghosts’) from 
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previously known individuals. Combines are single combination errors that occur when a previously-unknown 
individual is misidentified as a known individual (in the genetic capture-recapture literature this is also known as 
the ‘shadow effect’20); these reduce the number of individuals in the sample (lost). Shifts consist of two errors, a 
split from one individual and a combination with another. Shifts do not affect the number of individuals identified 
but result in erroneous identification keys that can have major implications for spatial capture-recapture methods 
and increase the measure of capture heterogeneity. It is important to understand what these different errors repre-
sent when estimating the probability of a splitting or combination error. Total splitting errors are thus the number 
of splits + shifts; while total combination errors are the number of combines + shifts (for summary see Fig. 1 and 
Table 1). We present separate error estimates for experts and non-experts to highlight conditions where the two 
groups diverge and help the interpretation of the general estimates from all observers.

Estimating observer misclassification & exclusion errors. We modelled each of the error categories 
(i.e. split, combine, shift, exclusion) as well as specific combinations of error categories (i.e. splitting, combination 
and total errors) using a logistic regression model (binomial likelihood) in a Bayesian framework run in JAGS33 
within R34. This method allowed us to calculate the probability of each type of error occurring, based on the total 
number of events categorized by each observer (number of binomial draws, Appendix S2). Thus, for the exclusion 
category we consider all events as having the potential to be excluded; however for the split, shift and combine 
categories, we only considered the number of events that remained after the excluded capture events had been 
removed. We derived probability estimates not only for the general error rates, but also separate estimates for 
the two observer types: experts and non-experts. The advantage of using Bayesian models for these analyses was 
that we could directly calculate the probability that non-experts had greater exclusion, splitting or combination 
error rates than the experts. These resulting posterior distributions represented the difference between the two 
groups; thus, the proportion of the resulting posterior distribution that was above zero was the probability that 
non-experts were more likely to make errors than experts (the closer the proportion of the posterior distribution 
was to 0.5, the more likely there was no difference between the groups). We could also simulate expected values 
directly from the model’s likelihood function to generate the expected range of error rates from different observ-
ers in each category (see Appendix S3). For all models we used minimally-informative priors and ran a MCMC 
for 10 000 iterations after the chain convergence had been reached (see Appendix S3).

Estimating capture event exclusion and misclassification. We allowed the observers to exclude 
capture events from classification if they felt they were not confident enough to make a decision regarding the 
identity of an animal, as would occur in a study of images captured in the field. We allowed this option despite 
us creating the events with what we believed were images that could reliably classify the individual. Thus, if 
exclusions occurred, we hoped to gain insights into how event exclusion may be interpreted as another source of 
observation error. To examine whether our assumption that all 40 events were possible to identify was correct (i.e. 
exclusions were ‘false exclusions’), and to better understand the nature of why events might be excluded in a field 
study, we compared misclassification rates and exclusion rates for the eight observers for each of the 40 events. 
If exclusions were in fact ‘true exclusions’ because they could not be reliably matched, then we expected higher 
misclassifications of those events when observers did attempt to classify them.

We modelled the number of misclassification errors for individual events as a function of three factors: (1) 
the number of times the events were excluded by the eight observers (range 0–4; the explanatory variable we 
were most interested in), (2) the total number of events that belonged to that individual cat if all events were 
assigned correctly (range 1–5) and (3) the individual cat identity. The model had a binomial Bayesian hierarchical 
structure with the number of trials (max = 8) adjusted based on the number of events excluded (i.e. only events 
that were classified in some way could be misclassified; Appendix S3). The total number of events belonging to 
each individual was included to control for the possibility that correctly classifying an event may be related to 
the total number of events linked to each individual: for example, a cat with a single event can only be combined 
with another cat, whereas a cat with multiple events can be split or shifted. Also, a cat with multiple events has 
more reference material, so the probability of making classification mistakes may be lower than for a cat with 
fewer events. Individual cat ID was included as a random effect on the intercept to account for the possibility of 
additional variation because some cats were more difficult to classify than others (independent of the decision to 
exclude or not; see Appendix S3).

Impacts of splitting errors on population estimates. From each observer’s capture history we esti-
mated the population size using a closed population capture-recapture estimation method [closedp() function 
from the R package ‘Rcapture’35] (Appendix S4). We used AIC to choose the highest ranking model’s population 
abundance estimate and compared this to the true number of animals in the population (n = 16) and also to the 
number of animals that were classified by each observer given that they may have excluded individuals from 
consideration (n ≤ 16).

To see the general effect of how misclassification of individual identities, and specifically splitting errors, 
within the capture history can influence population abundance estimates, we simulated snow leopard cap-
ture histories based on varying the number of capture occasions, capture probability and number of splitting 
errors. Because misclassification always created a net number of splitting errors (splits > combines; Table 1), this 
approach allowed us to investigate the general effect of how net misclassification of individual identities within 
the capture history influences population abundance estimates (Appendix S4 and S5). First, we simulated 1000 
snow leopard capture histories based on the number of capture occasions and capture probability from our snow 
leopard field study in Mongolia26 and subsequently introduced splitting errors with a probability ranging from 
0.5% to 25%. This was to examine how the observed rates of misidentification (between the different observers) 
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translate into errors of population abundance estimates in our study population. Second, we simulated 1000 snow 
leopard capture histories for each of a variety of capture occasions and capture probabilities while introducing 
splitting errors (up to 5) to examine more generally how the creation of new (ghost) individual identities to the 
capture history influences population abundance estimates (Appendix S4 and S5).

Data availability
All data is available at camtraining.globalsnowleopard.org.
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