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Abstract
Abundant citizen science data on species occurrences are becoming increasingly 
available and enable identifying composition of communities occurring at multiple 
sites with high temporal resolution. However, for species displaying temporary pat-
terns of local occurrences that are transient to some sites, biodiversity measures 
are clearly dependent on the criteria used to include species into local species lists. 
Using abundant opportunistic citizen science data from frequently visited wetlands, 
we investigated the sensitivity of α- and β-diversity estimates to the use raw versus 
detection-corrected data and to the use of inclusion criteria for species presence 
reflecting alternative site use. We tested seven inclusion criteria (with varying num-
ber of days required to be present) on time series of daily occurrence status during a 
breeding season of 90 days for 77 wetland bird species. We show that even when op-
portunistic presence-only observation data are abundant, raw data may not produce 
reliable local species richness estimates and rank sites very differently in terms of 
species richness. Furthermore, occupancy model based α- and β-diversity estimates 
were sensitive to the inclusion criteria used. Total species lists (all species observed 
at least once during a season) may therefore mask diversity differences among sites 
in local communities of species, by including vagrant species on potentially breeding 
communities and change the relative rank order of sites in terms of species richness. 
Very high sampling effort does not necessarily free opportunistic data from its inher-
ent bias and can produce a pattern in which many species are observed at least once 
almost everywhere, thus leading to a possible paradox: The large amount of biologi-
cal information may hinder its usefulness. Therefore, when prioritizing among sites 
to manage or preserve species diversity estimates need to be carefully related to 
relevant inclusion criteria depending on the diversity estimate in focus.
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1  | INTRODUC TION

Measures of biodiversity are of central interest to many subdisci-
plines in ecology, from community and macroecology to functional 
ecology and conservation (Chapin et al., 2000; Hubbell, 2001; Isbell 
et al., 2017; Leibold et al., 2004; Sala et al., 2000). Biodiversity mea-
sures (a.k.a. biodiversity variables) are elaborations upon primary 
data, such as species observations (Schmeller et al., 2017). However, 
for species displaying temporary patterns of local occurrences that 
are transient and locally occurring only during short time periods, 
biodiversity measures are clearly dependent on the criteria used to 
include species into local species lists.

When do we consider a species as part of a local community? 
Others have addressed this question at a between-season scale 
trying to separate transient from core species in communities 
through the proportion of seasons a species has been observed 
in the local community (Coyle, Hurlbert, & White, 2013; Taylor, 
Evans, White, & Hurlbert, 2018). However, we are often inter-
ested in the annual variation in local species presences, and the 
criteria for inclusion or exclusion of species then need to be linked 
to within-season patterns of occurrence and site use (Mordecai, 
Mattsson, Tzilkowski, & Cooper, 2011). Traditional standardized 
surveys based on, for example, 10 visits may require presence in 
at least three visits in order to include a species as part of the local 
community (e.g., defining a potential breeder in territory mapping 
of breeding bird surveys; Bibby, Burgess, Hill, & Mustoe, 2000). 
No such rule of thumb is available for situations when there are 
hundreds of local visits to a site, as is frequently the case for op-
portunistic citizen science data.

Currently, high-density opportunistic observations of species 
are accumulating at a high rate in biodiversity databases (e.g., GBIF) 
with a large number of records even within single days (Amano, 
Lamming, & Sutherland, 2016; Graham, Ferrier, Huettman, Moritz, 
& Peterson, 2004). Despite known biases, citizen science data have 
increased our knowledge of species distributions, niche breadth, 
biodiversity, phenology, spread of invasive species, and phyloge-
ography patterns (GBIF Secretariat, 2019). Even more, opportunis-
tic biodiversity data were in some cases reported to return higher 
species counts than systematic but constrained surveys (Callaghan 
& Gawlik, 2015; Callaghan, Martin, Major, & Kingsford, 2018). 
However, many times conservation planning requires not only 
knowledge about complete local species lists but also about the 
way different species use the sites. The question then is how to col-
late the information in the many observations of a species during a 
given period (e.g., a reproductive season) into a decision on whether 
to include the species in the local species list? Such decisions may 
have great effects on β-diversity indices as they have been observed 
to be sensitive to biased and incomplete species surveys, such as 
those obtained from opportunistic biodiversity data (Callaghan & 
Gawlik, 2015; Schroeder & Jenkins, 2018).

To illustrate the possible problems of abundant data on species 
diversity estimates, we explore how different within-season species 
inclusion criteria affect biodiversity measures of wetland breeding 

bird communities, as a case study. Using high-density opportunistic 
observations at popular birding wetlands in Sweden, we applied oc-
cupancy models to estimate daily presences at all wetlands for each 
species during the breeding season of 3 months (see Ruete, Pärt, 
Berg, & Knape, 2017). From these estimates, we compiled seasonal 
species lists using seven different inclusion criteria of local species 
presence with increasing restrictiveness from 1 day to 30 days of 
presence, either in consecutive or nonconsecutive days during the 
breeding season of 3 months. For each criterion, we computed mea-
sures of local species richness (α-diversity) and of pairwise local 
community dissimilarity (β-diversity) for 107 wetlands. Measures of 
both these types of biodiversity are necessary to understand com-
munity assembly and conservation planning (Dornelas et al., 2012; 
Ladle & Whittaker, 2011; Roden, Kocsis, Zuschin, & Kiessling, 2018; 
Socolar, Gilroy, Kunin, & Edwards, 2016). We asked: (a) given that we 
have local daily opportunistic observations, how sensitive are rela-
tive estimates of diversity to adopting different site-use criteria for 
the inclusion/exclusion of species in local communities (e.g., in terms 
number of days present)? In other words, how much does species 
richness of wetlands and dissimilarity among them change under 
different criteria? (b) How do estimates based on raw opportunis-
tic data compare to estimates based on detection-corrected data 
in terms of the sensitivity to site-use criteria. Here, we exemplify 
by asking (c) how can we separate transient and resident species 
on breeding communities (as an example when reproducing species 
are at focus) and what is the effect of applying different site-use 
criteria on α- and β-diversity estimates of these communities. We 
finally discuss how to generalize this approach to investigate other 
questions, such as evaluating biodiversity values at stopover and 
wintering sites.

2  | METHODS

2.1 | Data

We obtained data from Artportalen (Swedish Species Observation 
System, http://www.artpo rtalen.se/) via the Swedish LifeWatch 
Analysis portal (Leidenberger, Käck, Karlsson, & Kindvall, 2016) 
on November 2015. The data are also available at the Global 
Biodiversity Information Facility (www.gbif.org). These data are 
largely composed of citizen science presence-only records (a.k.a. 
opportunistic data; Waller, 2019). It is important to know that until 
2019 in Artportalen there were no so-called “checklists” (a-priori 
assembled species lists used while observing with the intention to 
mark presence and absences). We extracted presence-only data on 
77 bird species known to use wetlands for breeding and foraging 
at 107 frequently visited wetland sites in Sweden (Figure S1) during 
the main breeding season (over 90 days, April to June) from 2005 to 
2014. In total, we extracted 1,184,984 opportunistic single-species 
observations made during 224,264 visits (Table S1). We defined 
a visit j as all observations made by an observer (or observations 
reported by several observers as a group) at a site i during day d 

http://www.artportalen.se/
http://www.gbif.org
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and year t, following Kéry et al. (2010) and van Strien, Termaat, 
Groenendijk, Mensing, and Kéry (2010). We calculated the length 
of the list of observed species for each visit (species list length; SLL 
hereafter), later to be used to control for variation in effort among 
visits (Szabo, Vesk, Baxter, & Possingham, 2010). Other approaches 
(e.g., Bradter et al., 2018) ignore all observations coming from visits 
with an SLL shorter than a threshold level. We, however, included 
all observations in our analyses as also these contain some informa-
tion. SLLs ranged from 1 to 45 species of which c. 60% of all visits 
consisted of single observations (SLL = 1). For computational rea-
sons, we restricted the maximum number of visits to 40 per day and 
site, prioritizing visits with the longest species lists, thus reducing 
the number of single observations in our data to c. 31%. In order 
to construct data on pseudo-nondetections, any species not re-
ported during a visit j was considered not detected in that visit. A 
pseudo-nondetection then corresponds to a focal species not being 
observed or reported by an observer reporting at least one other 
species at the wetland on that day.

2.2 | Modeling daily occupancy

In order to estimate daily site- and species-specific occupancy prob-
abilities, we employed a site-use model (Ruete et al., 2017), derived 
from dynamic occupancy models (Kéry et al., 2010; van Strien, van 
Swaay, & Termaat, 2013). We could estimate daily occupancies be-
cause we had many visits by independent observers within days, 
thus creating daily species observation series of zeroes and ones 
enabling estimation of detection and occupancy probabilities with a 
closure criterion of one day. For each species, we applied the site-use 
model to estimate daily occurrence status, adjusted for detection 
and reporting probability (hereafter simply called detection proba-
bility). The model consists of two submodels coupled hierarchically: 
a process model for the daily occurrence status and an observation 
model for the detection or nondetection of the species; the latter 
being conditional on the occurrence submodel. Defining presence 
yj,d,t,i = 1 if the species is included in the species list for visit j on day d 
in year t and at site i, and yj,d,t,i = 0 if is not included, we modeled the 
detection process using

where ud,t,i is the (binary) occurrence status of the species in day d, year 
t, and site i, and pj,d,t,i is the detection probability of the species in visit 
j, given that the species is present. To control for variation in effort, we 
modeled detection probability as an increasing function of a visit's SLL. 
The steepness of the increase in detection probability with SLL was 
further allowed to vary among sites, on whether the visit was done 
during the first or second half of the season, and with the annual pro-
portion of long species lists (PLL, observed species lists equal or longer 
than 10 species). In other words, the parameter in the detectability sat-
uration function will vary with each year's general observation behav-
ior (PLL), the species behavior according to whether it is early or late 

during the season, and independently for each site. See more details on 
the modeling approach in Supplementary Information S1.

The occurrence status ud,t,i was modeled as a daily dynamic col-
onization–extinction process. Thus, whether site i that was occu-
pied in day d remained occupied in d + 1 was determined by the 
persistence probability, whereas whether site i that was unoccupied 
in day d becomes occupied in d + 1 depends was a function of the 
colonization probability. Because we expect the persistence and col-
onization probabilities of the daily colonization–extinction process 
to vary along the season, we modeled these parameters as quadratic 
functions of the day of the year (doy) and random effects for site 
and year. We modeled the effect of the doy as a quadratic function 
to allow the colonization and persistence parameters to increase, 
decrease, or both within the season. In this way, the model may be 
suitable for a wider range of species with different phenologies.

The models were fitted separately to data for each species in the 
Bayesian framework using JAGS (Plummer, 2012). For details on the 
model specification, prior parameter selection, goodness-of-fit test, 
and the commented script, see Supplementary Information S1.

We fitted the site-use model to data over all 10 years from 2005 
to 2014. Using multiple years as input to the model allows us to bet-
ter estimate detection probability parameters (via species list length 
and yearly proportion of long species lists) and the colonization–ex-
tinction process by sampling more independent annual colonization 
and extinction events. However, to simplify the presentation of re-
sults we only estimated local species richness and derived bird diver-
sity measures for year 2014.

2.3 | Observed and estimated local daily 
species richness

We compared the observed daily local species richness obtained 
from the raw opportunistic data (as downloaded from Artportalen) 
to the estimated daily local species richness (Si

day) obtained by sum-
ming the posterior mean of daily occurrence probabilities for each 
species and site. As shown by other authors, probability-based 
richness is not prone to be biased by the amount of suitable habi-
tat occupied by a species (i.e., habitat saturation; Grenié, Violle, & 
Munoz, 2020).

2.4 | Sensitivity of seasonal α-diversity to different 
inclusion criteria

To investigate the sensitivity of biodiversity indices to the inclusion 
criteria used, we computed species richness estimates using differ-
ent criteria for inclusion of species based on different number of 
days a species is required to be present at a site. We tested thresh-
olds of 1, 10, 20, and 30 days during our 90-day season. To compute 
estimates of local species richness from the raw opportunistic data, 
for each wetland and threshold we used the number of species that 
were observed on at least as many days as required by the threshold 

(1)yj,d,t,i∼Bernoulli(ud,t,i×pj,d,t,i)



10060  |     RUETE ET al.

(i.e., allowing nonconsecutive daily observations). For example, the 
observed richness under the 10-day criterion at a wetland is the 
number of species that were observed on at least 10 different days.

We also estimated local species richness based on the estimated 
daily occurrence status that was corrected for detection and report-
ing probability. Given we estimated the daily occurrence dynam-
ics per site, the criteria for inclusion (i.e., number of days a species 
was required to be present in order to be included in local richness) 
were considered either in any sequence spread-out over the season 
(nonconsecutive) or strictly on consecutive days within the season 
(consecutive). The occupancy model for each species was used to 
compute the posterior probabilities that the species were present 
for at least the number of days required by the threshold at each 
wetland (see Supplementary Information S2 and data repository for 
the details of these estimate). For example, the nonconsecutive 10-
day criterion the occupancy model represented the wetland-specific 
posterior probabilities that a specific species was present for at least 
10 days. We calculated local species richness for each site based 
on each inclusion criterion by summing the posterior probability of 
presence across all species, which represented the expected number 
of species present.

2.5 | Sensitivity of β-diversity to different 
inclusion criteria

To measure the effects of different inclusion criteria on community 
composition across sites given the different inclusion criteria, we 
calculated pairwise dissimilarity indices following the β-diversity 
partition method (Baselga, 2010). This method requires binary rather 
than probabilistic estimates of seasonal occupancy. We compiled 
such local species lists by only including species with a posterior sea-
sonal occupancy probability (given a criterion) above 0.5. With the 
resulting local species lists, we calculated three dissimilarity indices: 

total dissimilarity (Sørensen, βSOR), turnover of species (Simpson, 
βSIM), and dissimilarity by reduction in number of species (nested-
ness, βNES = βSOR − βSIM), using the beta.pair() function from the R 
package "betapart" (Baselga & Orme, 2012). We then computed the 
mean dissimilarity for each site and compared estimates of species 
richness and community dissimilarity for each criterion.

3  | RESULTS

The sampling effort (e.g., number of visits) in opportunistic observa-
tions of birds typically varied from day to day and decreased at the 
end of the season inducing lower numbers of observed species (ob-
served Sday, Figure 1). However, the occupancy model corrected for 
this variation in effort (see estimated richness in Figure 1, and sensi-
tivity analysis in Supplementary Information S1). The goodness-of-fit 

F I G U R E  1   Daily (left) and seasonal (right) observed (raw) and 
estimated species richness (daily: Sday; at least once during season: 
S1d). Each vertical segment summarizes species richness across all 
sites. Dotted vertical lines divide months April, May, and June

F I G U R E  2   Species richness estimates 
for wetland birds during the 2014 
breeding season (April–June), as a 
function of number of time units (days: 1, 
10, 20, and 30) and spread of these time 
units (consecutive vs. nonconsecutive 
days) required for inclusion of a species 
in the richness estimates. Observed 
species richness is always based on a 
nonconsecutive basis
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analysis indicated no signs of systematic bias for any species, al-
though model estimates were less precise for less common species. 
Estimated daily species richness Sday increased during the season, 
levelling off by the end of the season (Figure 2).

3.1 | Sensitivity of α-diversity to different 
inclusion criteria

As a consequence of an increasingly stricter criterion, the more days 
each species was required to be present at the site, the lower was 
the estimated local species richness regardless of whether they were 
based on raw or estimated data (Figure 2). Estimated species rich-
ness decreased, compared to the one-day criterion, by on average 
30% and 50% when required to be present at least 20 days (esti-
mated nonconsecutive and consecutive, respectively). In general, 
species richness estimates under the criteria of consecutive days 
were at least 20% lower than estimates under the corresponding 
nonconsecutive criteria (Figure 2). Although average species rich-
ness was relatively similar between raw observations and occupancy 

modeled estimates under the less strict criterion of a species being 
present at least one day, this changed dramatically when compar-
ing more restrictive criteria. In general, the difference between raw 
and modeled data increased with increased number of days required 
to be included in the richness estimate (cf. observed vs. occupancy, 
nonconsecutive days Figure 2) such that estimates of species rich-
ness generated from the raw observations were 50% less than spe-
cies richness estimates based on occupancy models. There was also 
an increase in variance with increasing restrictions for raw data, but 
less so for occupancy data (Figure 2).

In general, there was a broad correlation between richness based 
on observed and estimated occupancy data (Figure 3a,b). However, 
as seen by the residual variation there was not a perfect match as 
some wetlands with relatively low observed richness could have a 
high relative richness when estimated by occupancy estimates and 
vice versa. The correlation between observed and occupancy-based 
species richness declined as the inclusion criteria increased, mainly 
due to increased variability in observed richness. However, the cor-
relation between estimated local richness assuming both different 
criteria (1 vs. 10 days and 10 vs. 20 days, Figure 3b,e) and different 

F I G U R E  3   Comparison of correlations between observed and estimated local species richness based using 1 (a) and 20 (d) days as 
criterion for species inclusion; estimated local species richness (nonconsecutive) based on inclusion criterion 1 versus 10 days (b) and 10 
versus 20 days (e); and estimated local richness for nonconsecutive versus consecutive criteria using 10 days (c) and 20 days (f) as inclusion 
criteria. Solid lines show the normal regression line. Dashed gray lines show the identity line
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approaches (nonconsecutive vs. consecutive, Figure 3c,f) was rel-
atively high. There was, however, quite some residual variation in 
comparisons of nonconsecutive 1 versus 10 days and nonconsecu-
tive versus consecutive 20 days criteria.

3.2 | Sensitivity of β-diversity to different 
inclusion criteria

The changes in estimated local richness after applying inclusion 
criteria also resulted in community dissimilarity indices between 
sites to be sensitive to the inclusion criterion (Figure 4). The total 
dissimilarity among sites (Sørensen index for β-diversity) increased 
as the inclusion criterion got stricter. Total dissimilarity among 
sites increased, compared to the one-day criterion, by on aver-
age 56% and 100% when species were required to be present at 
least 5 days (nonconsecutive and consecutive, respectively), and 
by 130% and 277% when required to be present at least 20 days 
(nonconsecutive and consecutive, respectively). In general, total 
dissimilarity among sites under the criteria of consecutive days 
were at least 28% higher than estimates under the nonconsecu-
tive criteria.

Partitioning the total dissimilarity (Sørensen index) into turn-
over (Simpson index) and nestedness components (Baselga, 2010) 
showed that the proportion of total dissimilarity caused by species 
turnover and nestedness was not changing with increasing restric-
tiveness of the inclusion criteria (Figure S3, in Appendix S1). Also, 
the variance in total dissimilarity among sites increased the more 
restrictive the criterion for presence. This is because differences 
among sites got amplified. However, the relationship between 
species richness and community dissimilarity among sites did not 
change when the inclusion criterion got more restrictive (Figure 
S4, in Appendix S1).

4  | DISCUSSION

In theory, very high sampling effort can produce a pattern in which 
almost every species is observed almost everywhere, especially for 
organisms with high dispersal abilities (e.g., insects, birds). If the aim 
is to investigate the stable part of local community, for example, spe-
cies reproducing at a site, then a large fraction of transient occurring 
species will also be included when data are abundant and spread 
over time. Therefore, as the amount of data provided by citizen sci-
ence is increasing rapidly and can be huge at some frequently visited 
sites (Amano et al., 2016; Walker & Taylor, 2017), it may lead to a 
paradox: the increased amount of biological information may de-
crease precision in estimates of community composition, unless the 
collected species list is filtered to better match the questions asked.

We show that even when opportunistic presence-only observa-
tion data are abundant, such as at popular wetland birding localities, 
raw observation data may produce erratic local species richness es-
timates. Similarly, raw opportunistic observation data on dragonflies 
(Odonata) within 10, 20, and even 30 km radius around a city were 
shown to give erratic estimates of annual measures of biodiversity, 
which was suggested to be due to underreporting of mainly common 
species (Johansson et al., 2020). However, abundant raw opportu-
nistic observation data for birds on urban greenspaces (probably the 
most abundant type of opportunistic data) were shown to reliably 
estimate seasonal biodiversity measures (Callaghan, Lyons, Martin, 
Major, & Kingsford, 2017; Callaghan et al., 2018). In our study case, 
data were abundant but uneven among days and sites (varying from 
0 to 40 daily visits). In this case, both daily and seasonal estimates of 
local species richness based on raw observations were consistently 
lower than estimates based on daily occupancy data (considering ef-
fort and detection probability). We showed that the relative order 
among wetlands in terms of richness may drastically change when 
comparing richness estimates based on raw observations versus 

F I G U R E  4   Community dissimilarity 
indices (average of pairwise nestedness, 
Simpsons species turnover, and Sørensens 
total dissimilarity; see Methods) among 
sites for wetland birds during the 2014 
breeding season (April–June), as a function 
of number of time units (1, 10, 20, and 
30 days) in nonconsecutive (left) and 
consecutive (right) sequences required for 
inclusion of a species in local species lists
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corrected occupancy. This is especially so when applying restrictive 
inclusion criteria (in terms of number of days present) to filter the data 
in favor of breeding or resident species. These findings suggest that 
untreated raw data (i.e., without correcting it for sampling effort) may 
give unreliable estimates of biodiversity, even if abundant. Detection-
adjusted occupancy estimates are more stable, and likely more accu-
rate provided that model assumptions are reasonably satisfied.

Although other study systems and organisms may display other 
patterns in relation to the criteria used, the reduction in α-diver-
sity with stricter criteria is a result in line with a general expecta-
tion. Patterns of β-diversity, however, are less obvious to predict as 
β-diversity relates to the relative importance of species turnover, 
nestedness, and species richness differences among sites. Still, a 
common pattern is that when α-diversity decreases β-diversity in-
creases except for when communities get more species poor and ho-
mogenized (Clavel, Julliard, & Devictor, 2010; Filgueiras et al., 2016; 
Price, Spyreas, & Matthews, 2019). Looking closer at the dissimilar-
ity indices among sites, the ratio between total dissimilarity index 
(Sørensen index) and species turnover (Simpson index) remained un-
changed across all criteria applied (Figure S3). This suggests that the 
relative importance of species turnover versus changes in species 
richness and nestedness patterns were robust to changes in inclu-
sion criteria in our study despite absolute values of α- and β-diversity 
changed distinctly depending on the inclusion criteria used.

The distinction between site use (here considered as a persistent 
presence at a site) and occupancy (any occurrence without consider-
ation of the use of the site) for determining composition of species 
communities is particularly relevant when prioritizing among sites 
to manage or preserve species. For instance, complete species lists 
can mask diversity patterns regarding only species that use the site 
for reproduction (Coyle et al., 2013; Taylor et al., 2018). For example, 
a site protection program using a generous criterion (e.g., complete 
species lists, cf. 1-day criterion) to select those sites that protect the 
most species, would quickly saturate α-diversity with a few sites se-
lected, at the cost of reducing β-diversity. Thus, such an approach 
would suggest a conservation strategy that protects few sites in 
order to reach the goal of fully covering the regional (i.e., gamma) 
diversity. However, if the aim is to ensure a high richness of only re-
producing species at a regional scale, a larger number of sites would 
have to be protected to ensure that there is at least one reproduc-
tive site for most species. Then, a stricter criterion would have to 
be applied to properly identify biologically relevant sites for each 
species. Similarly, when the selection of sites to protect is based on 
relative species richness among sites (i.e., the rank order) there is a 
risk that using a generous criterion of occupancy (1 day occupancy) 
to select sites may fail because of the high uncertainty in the num-
ber of species breeding at the site (as defined by, e.g., 10-day crite-
rion; Figure 3b). However, comparing the other restrictive criteria 
suggests the relative species richness to be robust to differences 
in the other inclusion criteria compared (Figure 3b,c,e,f). Thus, the 
inclusion criteria defining species presence need to be chosen with 
some care and based on the questions asked (e.g., identifying likely 
breeding communities).

5  | CONCLUSION

As opportunistic observations of species with high temporal resolu-
tion are increasingly available in biodiversity databases, we antici-
pate that in order to ensure validity and comparability of biodiversity 
indices it will become necessary to use inclusion criteria based on 
site use (like the ones presented here and in Ruete et al., 2017) and 
sensitivity analyses on those. However, the problem of choosing cri-
teria for the inclusion of species in the local list could be minimized 
when the criterion used is clearly defined and related to the research 
question asked.

In general, our approach could be used also for coarser tempo-
ral resolutions (e.g., weeks) and for species groups with, generally, 
somewhat smaller number of observations available (e.g., butterflies, 
dragonflies, or beetles Beck, Böller, Erhardt, & Schwanghart, 2014; La 
Sorte & Somveille, 2019; Mair & Ruete, 2016; Troudet, Grandcolas, 
Blin, Vignes-Lebbe, & Legendre, 2017). Site-use occupancy models 
that allow to discriminate between simple occupancy and site use 
based on some criteria open up for investigations of relative im-
portance of habitats other than for reproduction, such as stopover 
sites (e.g., during spring vs. autumn migration) or for stepping stone 
sites linking metacommunity assemblages (Leibold, Chase, Levin, 
& Horn 2018; Leibold et al., 2004). Abundant biodiversity data in 
combination with a modeling approach presented here (see also 
Ruete et al., 2017) and with relevant site-use criteria for quantifying 
species occupancy rates of such transient species occupancy could 
potentially help on the identification of communities that are de-
fined by their use of a site, and the role different sites have for each 
species.
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