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Abstract
Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw 
of permafrost ecosystems. Temperature-dependent decomposition of previously fro-
zen carbon (C) is currently considered one of the strongest feedbacks between the 
Arctic and the climate system, but the direction and magnitude of the net C balance 
remains uncertain. This is because winter effects are rarely integrated with C fluxes 
during the snow-free season and because predicting the net C balance from both sur-
face processes and thawing deep layers remains challenging. In this study, we quanti-
fied changes in the long-term net C balance (net ecosystem production) in a subarctic 
peat plateau subjected to 10 years of experimental winter-warming. By combining 
210Pb and 14Cdating of peat cores with peat growth models, we investigated thaw-
ing effects on year-round primary production and C losses through respiration and 
leaching from both shallow and deep peat layers. Winter-warming and permafrost 
thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon 
losses through decomposition from the upper peat were reduced as thawing of per-
mafrost induced surface subsidence and subsequent waterlogging. However, primary 
production was also reduced likely due to a strong decline in bryophytes cover while 
losses from the old C pool almost tripled, caused by the deepened active layer. Our 
findings highlight the need to estimate long-term responses of whole-year production 
and decomposition processes to thawing, both in shallow and deep soil layers, as they 
may contrast and lead to unexpected net effects on permafrost C storage.
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1  | INTRODUC TION

Ongoing climate change causes rapid thawing of permafrost 
(Biskaborn et al., 2019; Lemke et al., 2007) and deepening of 

the seasonally thawing ‘active layer’ in high-latitude peatlands 
(Åkerman & Johansson, 2008; Johansson et al., 2013), which store 
c. 50% of the world's total soil carbon (C) and c. 26% of the per-
mafrost soil C pool (Hugelius et al., 2014; Yu, 2012). There is a 
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great concern that increased active layer thickness will facilitate 
the release of this large C store, causing a positive feedback to the 
climate system (Koven, Lawrence, & Riley, 2015; Koven, Schuur, 
et al., 2015; MacDougall, Avis, & Weaver, 2012; Schuur et al., 2015; 
Turetsky et al., 2020). However, the magnitude of the responses of 
the C pools and balance to thawing remains uncertain.

Quantifying the effects of thawing on the C pools and balance 
of permafrost peatlands is complex because of different interact-
ing mechanisms that may respond differently, including C uptake 
versus losses, as well as depth-related C-age differences (Abbott 
et al., 2016; Hobbie, Schimel, Trumbore, & Randerson, 2000; Koven, 
Lawrence, et al., 2015; Koven, Schuur, et al., 2015). Higher soil tem-
peratures and increased oxygen availability upon thawing (Lawrence, 
Koven, Swenson, Riley, & Slater, 2015; St Jaques & Sauchyn, 2009) 
may accelerate organic matter decomposition in deep soil layers and 
increase C losses to the atmosphere (Dorrepaal et al., 2009; Hick 
Pries, Schuur, & Crummer, 2013; Schuur et al., 2015). However, 
thawing-related changes in nutrient availability, plant biomass and 
moisture may increase C sequestration in surface layers by stimu-
lating above-ground plant productivity, which may offset or even 
exceed increased C losses (Keuper et al., 2017; Natali, Schuur, & 
Rubin, 2012; Salmon et al., 2016). Estimating the net response of C in 
permafrost systems to, and its feedback on climate change remains 
a challenge (Abbott et al., 2016; McGuire et al., 2018), by lack of a 
detailed understanding of losses and inputs of the different C pools.

Responses of C inputs and losses in permafrost to climate change 
are generally estimated based on upscaling of laboratory incubation 
studies of permafrost soils (Elberling et al., 2013; Knoblauch, Beer, 
Sosnin, Wagner, & Pfeiffer, 2013; Koven, Lawrence, et al., 2015; 
Koven, Schuur, et al., 2015; Schädel et al., 2016), in situ flux measure-
ments in ecosystem-scale permafrost thaw experiments (Hick Pries, 
Schuur, Schuur, Natali, & Crummer, 2015; Natali et al., 2011) or mea-
surements made across naturally degrading permafrost gradients 
(Jones et al., 2017; Schuur, Grummer, Vogel, & Mack, 2007; Schuur 
et al., 2009; Trucco et al., 2012). Long-term effects pertinent to cli-
mate change are highly uncertain as current estimates are strongly 
biased towards short timescales, for example, weeks–months for soil 
incubations and thaw experiments (e.g. Li et al., 2016), or a limited 
number of years, with potentially considerable interannual variation, 
for field flux measurements (e.g. Schuur et al., 2009). Naturally de-
grading permafrost gradients may show longer term responses of 
the permafrost C balance, but suffer from high uncertainties due to 
the unknown spatial heterogeneity in initial soil conditions among 
sites. Furthermore, plot-scale measurements in experimental and 
gradient studies are often only carried out during the summer, thus 
ignoring C losses during the long cold season, which may significantly 
contribute to the annual soil C balance (Hobbie et al., 2000; Natali 
et al., 2019; Salmon et al., 2016; Schimel, Bilbrough, & Welker, 2004; 
Schuur et al., 2009; Zona et al., 2016). Robust estimates of the 
long-term effects of permafrost thaw on the net C balance, which 
integrate year-round C inputs and losses over annual and decadal 
timescales, are thus urgently required to predict the strength and di-
rection of permafrost C cycle-climate feedbacks in a warming Arctic.

An alternative approach to study the long-term response of 
soil C balance to environmental changes is to use dated peat pro-
files (Heffernan, Estop-Aragonés, Knorr, Talbot, & Olefeldt, 2020; 
Hick Pries, Schuur, & Grace Crummer, 2012; Olid, Nilsson, Eriksson, 
& Klaminder, 2014). If the profiles encompass the whole stratum, 
age–depth relations of the C stocks can be used to calculate C accu-
mulation rates over different depth intervals to evaluate how perma-
frost thaw affects both near surface (young) and deep (old) C stocks. 
Furthermore, developed peat growth models can be used to estimate 
the fluxes of organic matter added to the uppermost layer by plant 
primary production (i.e. C inputs) and lost by decomposition (i.e. C 
losses) over the continuum of young (decadal) and old (millennial) peat 
(Clymo, 1984). The imbalance between these fluxes can then pro-
vide mechanistic insights behind inferred net changes in long-term 
C accumulation rates. This approach has been used to evaluate the 
long-term C dynamics of peatlands at boreal and subarctic regions 
(e.g. Belyea & Malmer, 2004; Olid et al., 2014; Turunen, Tomppo, 
Tolonen, & Reinikainen, 2002). Studies in the permafrost region are 
limited and mostly focus on old C losses that occur deep in the pro-
file (Heffernan et al., 2020; Hick Pries et al., 2012; Vardy, Warner, 
Turunen, & Aravena, 2000). While only few studies included young 
C fluxes' responses due to gradual thawing (Hick Pries et al., 2012), 
little is known about how the net C balance of the whole soil column 
responds to winter-warming. This knowledge gap is particularly pro-
nounced in lowlands where permafrost thawing causes surface sub-
sidence (thermokarst) and waterlogging, and thus, alter conditions for 
plants growing during the upcoming decades of climate change.

The aim of this study was to quantify how C fluxes (primary 
production and decomposition) in surface and deeper peat layers 
respond to thawing caused by a thicker insulating snowpack, and esti-
mate the net effects on the C balance. To achieve this aim, we used a 
peat-age modelling approach to quantify surface C inputs and shallow 
and deep C losses from a subarctic ice-rich permafrost peatland sub-
jected to 10 years of experimental snow addition (winter-warming). 
Unlike natural thaw gradient studies, this approach ensures homoge-
nous initial conditions for the studied profiles and enables attribution 
of changes in the C balance exclusively to thawing and directly as-
sociated changes. We hypothesize that winter-warming reduces the 
potential of permafrost peatlands to accumulate C (i.e. negative ef-
fect on the net C balance). Specifically, we expect this to be driven by 
greater increases in C losses from decomposing peat in both upper ac-
tive layer and newly thawed permafrost, due to higher peat soil tem-
peratures, than any positive effect on plant C sequestration, due to 
increases in nutrient availability. We further expect these responses 
to be regulated by moisture conditions and plant composition.

2  | METHODS

2.1 | Study site

The study was carried out in the subarctic Storflaket mire complex 
(68°20′48″N, 18°58′16″E; c. 900 m long, 400 m wide), located 
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approximately 6 km east of the Abisko Scientific Research Station 
(northernmost Sweden) within the zone of discontinuous/sporadic 
permafrost (Brown, Ferrians, Heginbottom, & Melnikov, 1997). The 
permafrost plateau at which the experiment was performed has a 
peat layer of 60–90 cm thick, underlain by a silty lacustrine sedi-
ment of glacial origin (Åkerman & Johansson, 2008; Klaminder, Yoo, 
Rydberg, & Giesler, 2008), and a water table depth around 30 cm in 
October 2013. The permafrost thickness was approximately 15 m in 
the 1980s (Åkerman & Johansson, 2008), but more recent measure-
ments indicate that it may be thicker (Dobinski, 2010). Mean active 
layer thickness was around 60 cm for the period 1978–2012, and 
increased by 0.7 cm/year during the past three decades (Åkerman 
& Johansson, 2008; Johansson et al., 2013). Dominant vegeta-
tion consists of peat moss (Sphagnum spp.), Eriophorum vaginatum 
L., Vaccinium vitis-idaea L., Andromeda polifolia L., Betula nana L., 
Empetrum nigrum L. and Rubus chamaemorus.

Mean monthly temperatures in the area ranged from −10.6°C 
in January to +12.4°C in July, with a mean annual temperature of 
+0.7°C for the period of the experiment 2005–2016 (meteorolog-
ical data from Abisko Scientific Research Station). Average annual 
precipitation increased from 304 to 327 mm between 1961–1990 
and 2005–2016 period (Alexandersson, Karlström, & Larsson-
McCann, 1991; Abisko Scientific Research Station), while mean 
snow depth increased about 5%–10% per decade (Kohler, Brandt, 
Johansson, & Callaghan, 2006). This has led to widespread degrada-
tion of permafrost and increasing thaw depths in the area (Åkerman 
& Johansson, 2008; Johansson et al., 2011), which will likely con-
tinue or even accelerate during the coming decades (Sælthun & 
Barkved, 2003; Swindles et al., 2015).

2.2 | Experimental setup

A long-term experiment to simulate ongoing permafrost thaw due 
to increased snow thickness was set up in Autumn 2005 and is de-
scribed in detail elsewhere (Johansson et al., 2013). In brief, 12 ran-
dom plots were established on the western part of the Storflaket 
peat plateau. Six of these were randomly chosen and, every winter 
(from September till late May/early June), snow fences (10 m long, 
1 m tall) were erected perpendicular to the prevailing east–west 
wind. These plots are further on referred to as ‘winter-warming’. The 
remaining six plots, with ambient snow accumulation, served as ‘con-
trols’ or reference plots.

Snow fences increased mean winter snow accumulation 2.6-fold 
(by 16–24 cm) in the winter-warming plots, simulating predicted in-
crease in winter precipitation in the Arctic (Biskaborn et al., 2019; 
IPCC, 2013). The enhanced snow accumulation in turn increased 
winter (October–May) soil temperatures by 1.8 and 1.3°C at 15 and 
30 cm depth respectively. At 45 cm, soil temperatures in the win-
ter-warming plots were 1.3°C lower than controls. In summer (June–
September), soil temperatures were on average 1.8°C lower in the 
winter-warming plots for all depths (Blume-Werry, Milbau, Teuber, 
Johansson, & Dorrepaal, 2019; Figure S1), which is explained by the 

fact that the snow disappeared quite early in the season (April–May). 
Three years after the onset of the experiment, enhanced snow depth 
and prolonged snow cover duration delayed the start of the grow-
ing season up to 22 days (Bosiö, Stiegler, Johansson, Mbufong, & 
Christensen, 2014).

Enhanced snow depth and higher winter soil temperatures in 
turn increased active layer thickness, which reached 98 ± 11 cm 
(mean ± SD) in manipulated plots compared to 62 ± 3 cm in controls. 
Furthermore, the thawing of ice layers in the uppermost permafrost 
induced surface subsidence (average of 24 cm in 2012 compared 
to 2005, vs. 5 cm in control plots) and raised the water table level 
(up to 6–11 cm), with the formation of seasonal ponds (Johansson 
et al., 2013; Figure S2). As a consequence, soil moisture in the upper 
peat layers (above the ambient water table) increased during the 
(early) summer (Johansson et al., 2013). Winter-warming altered veg-
etation, with a decrease in bryophyte cover and an increase in the 
graminoid Eriophorum vaginatum in the manipulated plots (Blume-
Werry et al., 2019; Johansson et al., 2013), which had more flowering 
tillers compared to the control plots (Johansson et al., 2013). Root 
depth distribution and growth were also affected, resulting in more 
roots and a greater total root length in deeper soil (Blume-Werry 
et al., 2019). Emissions of carbon dioxide (CO2) increased with win-
ter-warming compared to control conditions, while methane (CH4) 
emissions were almost negligible within and outside the winter- 
warming plots (Njuabe, 2011).

Overall, the warming achieved at Storflaket together with 
responses in soil and above-ground vegetation are compara-
ble to other snow fence, permafrost-thaw experiments (Aerts, 
Cornelissen, & Dorrepaal, 2006; Hinkel & Hurd, 2006; Wahren, 
Walker, & Bret-Harte, 2005), even those where the additional snow 
was removed before the end of the snow season (Natali et al., 2011, 
2012; Salmon et al., 2016). These responses are also in line with 
changes that occurred in the area during the last decade (Åkerman 
& Johansson, 2008; Biskaborn et al., 2019; IPCC, 2013; Johansson 
et al., 2011; Sælthun & Barkved, 2003), which supports the validity 
of our experimental setup to realistically mimick near-future perma-
frost thaw conditions in northernmost Sweden.

2.3 | Peat sampling and analyses

One peat core per plot was collected between late June and late 
September 2015. In order not to compact the thawed upper peat, we 
collected the upper 20–30 cm by cutting rectangular blocks using a 
handsaw. The rest of the profile up to the thaw front was collected 
using a peat-corer (11 × 11.4 cm, Eijkelkame Netherlands). For the 
(frozen) permafrost layer, we collected peat cores using a custom-
made, gas powered, fluid-less concrete drill (10.2 cm diameter). 
Frozen peat segments were rinsed with sterilized deionized water, 
wrapped in plastic foil and stored in a cooler box until transport to 
the laboratory. The total length of the cores (unfrozen + frozen com-
partments) varied between 107 and 134 cm, as we stopped the drill-
ing when the drill hit small rocks and/or we reached a mineral layer, 
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which happened at varying depths in the frozen soil. The upper, 
unfrozen compartments were stored in the fridge (4°C) while the 
frozen parts of the profiles were stored in the freezer (−20°C) until 
further processing.

The uppermost, unfrozen parts (i.e. on average 0–62 cm for 
control and 0–98 cm for winter-warming treatment) were sliced 
into 1 cm thick sections by hand. The lengths of all sides were 
measured to determine the volume of each slide. Samples were 
dried at 65°C to a constant mass and then weighed and ground. 
For the frozen compartments, samples were taken at intervals of 
~5 cm using a hollow drill bit (3.7 cm diameter) perpendicular to 
the soil core. The length of each sampled cylinder was measured 
to determine its volume. Subsamples from cylinders collected at 
40 and 70 cm depth were kept in the freezer for posterior ra-
diocarbon dating analyses. Frozen samples were freeze-dried, 
weighed and ground.

Bulk density (g/cm3) for each sample was determined by dividing 
the dry mass of each section by its volume. Linear interpolation be-
tween measured values was used to obtain the bulk densities along 
the whole profile for each core.

Carbon content (% = g C/g peat) was analysed for a subset of 
ground subsamples from the active layer (every 2 cm, from the sur-
face) and for all collected permafrost samples (at intervals of 5 cm, 
from the thaw front) using an NCS 2500 elemental analyser (CE 
Instruments). Linear interpolation between analysed points was 
used to obtain the C content for the non-analysed sections. The or-
ganic/mineral boundary was determined based on a decrease in C 
content to values lower than 20% and all C stocks were calculated 
down to this boundary.

2.4 | Peat profile chronology

High-resolution dating for the past 100–150 years was applied 
to the upper 15–20 cm of the active layer of each core based on 
the distribution of the natural radionuclide 210Pb. Thereto, we 
measured the emission of the 210Po granddaughter, assumed in 
secular equilibrium with its parent nuclide 210Pb. Briefly, ground 
subsamples (0.1–0.2 g) from each 1 cm section were acid digested 
after spiking with a known amount of 209Po yield tracer (Sanchez-
Cabeza, Masqué, & Ani-Ragolta, 1998). The material was plated 
onto silver discs and measured by alpha spectrometry using Ortec 
ULTRA-AS Ion-Implanted-Silicon Charged-Particle Detectors 
(Model U-020-450-AS). Activities of 210Pb decreased exponen-
tially with depth until reaching constant values around 15–20 cm 
(data not shown). The average deeper activity of 210Pb was similar 
to 226Ra activities at depth and considered thus as the supported 
fraction. Therefore, the supported 210Pb activity was subtracted 
from the total 210Pb activity to obtain the unsupported 210Pb frac-
tion used for dating. Total unsupported 210Pb inventories (Bq/m2) 
did not differ between treatments (p = .681), which indicates that 
the additional snow did not affect the accumulation of 210Pb and 
thus, all cores were datable. The age of each depth interval was 

estimated by applying the Initial Penetration – Constant Rate of 
Supply (IP-CRS) model (Olid, Diego, Garcia-Orellana, Cortizas, & 
Klaminder, 2016).

For six of the cores (n = 3 control and n = 3 winter-warming), the 
derived 210Pb-chronologies were validated using the record of 137Cs 
(Appleby, Shotyk, & Fankhauser, 1997). Dried and ground subsam-
ples were sealed into PerkinElmer cylindrical polyethylene vials of 
5.65 cm3 and measured by gamma spectrometry, using a high-purity 
germanium well-detector (Canberra, GCW3523-type). The IP-CRS 
chronologies for one winter-warming and two control cores located 
the maxima of 137Cs in 1957–1971 and 1984–1988 period, which is 
in good agreement with the maximum global fallout of artificial ra-
dionuclides (Appleby et al., 1997) and validates the 210Pb-derived 
ages. Clear 137Cs peaks were not identified for the rest of the cores 
likely due to the high mobility of 137Cs in peat (MacKenzie, Farmer, 
& Sugden, 1997).

For older (deeper) parts of the profiles, we used 14C-based dat-
ing. Because of the high cost associated with radiocarbon dating, 
we analysed millennial ages at two depths (40 and 70 cm) in the 
same cores where 137Cs was measured (n = 3 control and n = 3 win-
ter-warming). We used bulk peat subsamples (free of roots) without 
further pre-treatment for the analyses. Radiocarbon concentrations 
were analysed by acceleration mass spectrometer at Beta Analytic. 
Radiocarbon dates were converted to calibrated ages BP by IntCal1 
14C age calibration curves (Reimer et al., 2013) and recalculated to 
calendar years.

Both 210Pb and 14C dates were used to obtain a continuous 
chronology along the whole profile using the age–depth model Plum 
(Aquino-López, Blaauw, Christen, & Sanderson, 2018). Unlike the 
traditional way of obtaining such chronologies, Plum calculates both 
chronology and uncertainties using Bayesian statistics.

2.5 | Carbon stocks and accumulation rates

Organic C stocks have been widely used as a proxy for organic C se-
questration capacity. We estimated C stocks accumulated over three 
different depth compartments: (a) the ambient active layer depth (i.e. 
the upper 62 cm), (b) the intermediate layer that is seasonally thawed 
in the winter-warming plots but still frozen in controls (i.e. from 62 
to 98 cm) and (c) the upper meter of accumulation. Standardizing C 
stocks to a certain depth may, however, give a misleading impression 
of the C sequestration capacity, due to differences in sedimentation 
rates. In contrast, data from C accumulation rates over time allows to 
normalize C stocks accumulated over a certain time period. We used 
bulk density and C content profiles (Figure S3) together with the 
derived age–depth relationships to quantify rates of organic C ac-
cumulation over time. Based on the peat chronology, we estimated 
C stocks for the past 10 (recent), 100 (decadal) and 7,000 (millen-
nial) years of peat accumulation. The selected time-horizons corre-
sponded to the period during which the winter-warming treatment 
was applied, and the oldest ages derived from 210Pb and 14C dating 
found in all the cores respectively.
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2.6 | Modelling C inputs and decomposition rates

Carbon fluxes were estimated by fitting the cumulative C stocks ver-
sus derived-ages to the general equation provided by Clymo's model 
for peat growth (Clymo, 1984). This model assumes that the net 
change in the C storage in a peat deposit is given by the imbalance 
between annual C inputs (I) and decomposition losses (kC):

Other C losses (e.g. leaching or dissolved organic matter export) 
are considered negligible. When solved, the temporal variation in the 
cumulative C is given by:

where C represents the cumulative C stock (g C/m2) at a certain time t, I 
is the annual C input (g C m−2 year−1) at the surface and k is the first-or-
der decomposition constant (year−1).

We fitted Equation (2) to curves of cumulative C stocks ver-
sus decadal (past century; Figures S4 and S5) and old ages (up to 
10,000 years; Figure S6) using the nls function in R (R Core Team, 
2017). The best fitting determined C inputs (I) and decomposition 
constants (k) estimated for both decadal and millennial timescale. 
Estimated I and k at millennial timescales for cores without avail-
able 14C dates were an average of the 14C-dated parameters of peat 
cores.

2.7 | Ecosystem C balance: Net ecosystem  
production

We used the above estimates of C inputs and decomposition con-
stants to calculate the annual ecosystem C balance (net ecosystem 
production [NEP]; Trumbore, Bubier, Harden, & Crill, 1999), and its 
response to 10 years winter-warming. We estimated NEP as the dif-
ference between decadal C inputs and C losses from both shallow 
(young) and deep (old) soil:

where Idecadal and kdecadal correspond to the C inputs and decompo-
sition constant derived from the decadal C accumulation model,  
kmillennnial is the decomposition constant from the millennial C accu-
mulation model and Cdecadal and Cmillennial are the cumulative C stocks 
in the shallow and the deep soil respectively. Cdecadal was obtained 
by integrating all layers with measurable activities of 210Pb (i.e. C ac-
cumulated over the past 100–150 years). Cmillennial corresponded to 
the amount of C accumulated from the end of the modelled decadal 
depths until the shallowest permafrost layer, where decomposition 
was assumed to be minimal due to frozen conditions. According to this 
notation, a positive/negative NEP indicates that the system is acting 
as a net sink/source.

2.8 | Statistical analyses

We tested the effects of winter-warming on our response vari-
ables (i.e. C stocks, C accumulation rates, C inputs, decomposi-
tion rates and NEP) using generalized linear mixed effects models 
(GLMMs). We ran the analyses with ‘treatment’ and ‘depth/age’ 
and their interaction as fixed factors. We added ‘plot’ as a ran-
dom factor to account for non-independency between sampling 
depths within a profile. In case of interactions between depth/
age and treatment, we further investigated the responses to win-
ter-warming within each compartment using one-way ANOVAs. 
Treatment effects on the C stocks in the total active layer (i.e. 
total unfrozen compartment) were also analysed using one-way 
ANOVA.

All data were visually checked for normality and heterosce-
dasticity. Data were log-transformed if model assumptions were 
not met (Tables S1–S5). If no interactions were found, models 
were simplified and the interaction term was removed to increase 
statistical power. All statistical analyses were conducted in R  
(version 3.5.1: R Core Team, 2018) with additional pack-
ages (lme4 package, Bates, Mächler, Bolker, & Walker, 2015; 
for the GLMMs and ggplot2, Wickham, 2009) for graphical  
illustrations.

3  | RESULTS

3.1 | Carbon stocks and accumulation rates

Carbon stocks for compartments of equal depth for both treat-
ments (i.e. ambient active layer, intermediate layer and upper 
meter) did not differ between treatments (F = 0.264, p = .616; 
Figure 1; Table S1). In contrast, winter-warming increased C stocks 
accumulated in the current total active layer (i.e. 36 cm thicker in 
winter-warming plots) by up to 81% (F = 9.284, p = .012; Figure 1). 
Because C content was not affected by the treatment (F = 1.448, 
p = .256; Table S2), increased C stocks in the current total active 
layer are due to the 36 cm thicker active layer in the winter-warm-
ing plots.

When C stocks were calculated as a function of peat age, over-
all lower C stocks were observed in the winter-warming plots com-
pared to control conditions (F = 8.20, p = .014; Figure 2; Table S3). 
The response varied with age (treatment × age interactions 
F = 8.87, p = .002; Table S3), with the strongest and only significant 
reduction (−35%) for the recent (past 10 years) C stocks (F = 5.18, 
p = .0461).

Similarly, winter-warming overall reduced C accumulation rates 
across recent, decadal and millennial timescales (F = 6.53, p = .025; 
Figure 3; Table S4), with responses that varied depending on the 
covered temporal scale (treatment × age interaction F = 5.325, 
p = .0058; Table S4). The strongest and only significant response 
(−33%) was found for the recent (<10 years) C accumulation rates 
(F = 6.16, p = .0324).

(1)��

��
= I−kC.

(2)C(t)=
I

k
(1−e−kt),

(3)NEP= Idecadal−kdecadal ⋅Cdecadal−kmillennial ⋅Cmillennial,
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3.2 | Modelled C inputs and decomposition rates

In contrast to what we expected, winter-warming decreased (dec-
adal) C inputs at the uppermost peat layers, with a reduction of 31% 
of the total amount of C being incorporated to the palsa surface 
(F = 5.257, p = .0448; Figure 4). Decadal decomposition constants 
were one order of magnitude higher than those inferred over a mil-
lennial timescale (F = 333, p < .001; Figure 4; Table S5). Also here, 

the effect of winter-warming on decomposition constants differed 
between temporal compartments (treatment × age interaction 
F = 13.6, p = .00167; Table S5). While winter-warming strongly de-
creased (−53%) decomposition constants in the uppermost (young) 

F I G U R E  1   Carbon (C) stocks (mean ± SD) at different depth 
compartments in a subarctic permafrost peat plateau subjected 
to long-term winter-warming (grey; n = 6) or ambient (white) 
conditions (n = 6). Different lower-case letters indicate differences 
between treatments within the same compartment. Notice that 
differences in the current total active layer were evaluated with an 
individual test
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F I G U R E  2   Carbon (C) stocks (mean ± SD) at recent (past 
10 years), decadal (past 100 years) and millennial (past 7,000 years) 
timescales in a subarctic permafrost peat plateau subjected to long-
term winter-warming (grey; n = 6) or ambient (white) conditions 
(n = 6). Different lower-case letters indicate differences between 
treatments within the same temporal compartment
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F I G U R E  3   Carbon (C) accumulation rates (mean ± SD) at 
recent (past 10 years), decadal (past 100 years) and millennial (past 
7,000 years) timescales in a subarctic permafrost peat plateau 
subjected to long-term winter-warming (grey; n = 6 for recent 
and decadal values, n = 3 for millennial values) or ambient (white) 
conditions (n = 6 for recent and decadal values, n = 3 for millennial 
values). Different lower-case letters indicate differences between 
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peat (F = 15.79, p = .00263), no effect was observed for layers ac-
cumulated over the past millennia (F = 1.81, p = .242). The reduced 
decadal decomposition constants led to 47% lower young C loss 
rates from the upper 20 cm of the active layer in the winter-warm-
ing plots than controls (F = 10.80, p = .0082; Figure 5). Although 
millennial decomposition constants did not vary with the treat-
ment, winter-warming effects on active layer thickness (F = 8.625, 
p = .0149) resulted in a threefold increase in old C losses (F = 16.50, 
p = .00228; Figure 5).

3.3 | Net ecosystem production

Estimates of NEP averaged −10 ± 9 g C m−2 year−1, with no 
statistically significant differences between winter-warming 
(−19 ± 17 g C m−2 year−1) and control (−12 ± 5 g C m−2 year−1) condi-
tions, whether based on all fully dated cores only (n = 6, F = 0.3851, 
p = .568) or including all cores based on interpolated millennial ages 
(see Section 2, n = 12, F = 1.020, p = .3362; Figure 5).

4  | DISCUSSION

A decade of experimental snow addition and active layer deepen-
ing of a peat plateau induced contrasting effects on the shallow and 
deep processes that drive the C balance of permafrost ecosystems. 
In the uppermost active layer, both C inputs by plants and losses 
of young C by decomposition were reduced by winter-warming and 
associated permafrost thaw effects. At depth, in contrast, decom-
position constants of old C were unaffected by winter-warming, but 

the higher amount of thawed C in the active layer available for de-
composition dramatically increased old C losses. Despite the clear 
deceleration in short-term turnover of young C and acceleration in 
turnover of old C, the long-term net C balance (NEP) was not af-
fected. Several indirect effects associated to permafrost thaw were 
likely driving the contrasting responses of C fluxes and are discussed 
below.

4.1 | Winter-warming effects on C losses

In contrast to our hypothesis, we found that winter-warming de-
creased decadal C losses, while millennial C losses increased as 
expected. The unexpected strong decrease in decadal C losses 
was partially caused by the smaller size of the C stocks accumu-
lated during the 10 years of experimental manipulation, but was 
primarily due to a lower decadal decomposition constant. This 
contrasts with field and laboratory incubations studies where en-
hanced decomposition of organic matter was found with warming 
(Dutta, Schuur, Neff, & Zimov, 2006; Kirschbaum, 1995; Rustad 
et al., 2001). The negative response may, in part, be due to indi-
rect effects of the extra snow and thawing of permafrost on soil 
conditions. Firstly, soil temperatures in our snow fence plots in-
creased overall, but the effects strongly differed in different parts 
of the year. In winter (October–May), thicker snow cover increased 
shallow peat temperatures by 1.8°C (Blume-Werry et al., 2019; 
Johansson et al., 2013). Although such increase might enhance 
winter respiration (Natali, Schuur, Webb, Pries, & Crummer, 2014; 
Nobrega & Grogan, 2007; Walker et al., 1999), the absolute in-
crease in winter respiration may have only caused a marginal in-
crease in young C losses, because temperatures in winter-warming 
plots were only at or below 0°C during winter (Figure S1). In line 
with this, Grogan (2012) found negligible snow-fence effects on 
soil respiration when higher soil temperatures were restricted to 
the deep cold phase of winter. Instead, lower shallow soil tempera-
tures during the warm growing season (Figure S1; Blume-Werry 
et al., 2019; Johansson et al., 2013) may have strongly reduced 
absolute microbial activity during the most active season, which 
may explain part of the lower decomposition constant of shallow/
young C in the winter-warming plots.

A second explanation for the reduced decadal decomposition 
constant likely stems from changes in moisture/waterlogging con-
ditions and associated anoxia, both indirect effects of increases in 
snow depth and associated permafrost thaw. Thawing of both the 
excess snow as well as the segregated ice layers in the uppermost 
permafrost followed by surface subsidence increased water content 
at the surface of the mire in our study system. Ground surface sub-
sidence and increasing soil water content are typical characteristics 
of thermokarst systems (Osterkamp et al., 2009) and have been ob-
served in other snow manipulation experiments (Blanc-Betes, Welker, 
Sturchio, Chanton, & Gonzalez-Meler, 2016; Hinkel & Hurd, 2006; 
Natali et al., 2011, 2014), even when the excess of snow was re-
moved in spring (Natali et al., 2011, 2014). Low oxygen availability 

F I G U R E  5   Gross C inputs as well as loss rates (mean ± SD) 
at decadal (n = 6) and millennial (n = 6) timescales (left panel)  
and resulting net ecosystem production (right panel) in a 
subarctic permafrost peat plateau subjected to long-term winter  
compared or ambient conditions. Different lower-case letters 
indicate differences between treatments between the gross 
C fluxes
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in water saturated soils inhibit microbial activity and thereby re-
duce decomposition and C losses below the water table (Schädel 
et al., 2016; Treat et al., 2014; Voigt et al., 2019). Both decreased 
summer soil temperatures and increased waterlogging likely explain 
the reduced decomposition rates of young C in the shallow part of 
the active layer. Our findings suggests that reduced decomposition 
rates of young C may occur in lowland permafrost sites in northern 
Scandinavia and Eurasia, where permafrost monitoring revealed 
an ongoing shift towards wetter conditions (Christensen, 2004; 
Johansson, Christensen, Akerman, & Callaghan, 2006; Jorgenson, 
Racine, Walters, & Osterkamp, 2001). A projected increase in winter 
snow depth during the latter part of the 21st century seems likely 
to amplify this trend further (Callaghan et al., 2011). However, other 
regions may see contrasting trends as peat plateaus and better-drain 
thermokarst bogs in the North American Arctic may experience 
a drop on the water table position upon thawing, which is likely to 
lead to higher decomposition losses of C from shallow layers (Hick 
Pries et al., 2013; Schuur et al., 2015). Note that peatlands within the 
sporadic and discontinuous permafrost zones are disproportionately 
likely to be inundated and affected by anoxic conditions following 
permafrost thaw (Koven, Lawrence, et al., 2015; Koven, Schuur, et al., 
2015; Schuur et al., 2015). Our results clearly highlight the impor-
tance of recognizing these region-specific responses in surface peat 
hydrology when predicting the fate of young C accumulated in arctic 
mires underlain by permafrost.

The threefold higher old C losses, as observed here, are in line 
with our hypothesis and previous observations in arctic and sub-
arctic ecosystems (Dorrepaal et al., 2009; Schuur et al., 2009). This 
effect was primarily due to the deepened active layer, while the 
winter-warming treatment did not (significantly) increase the de-
composition constant of the old C. In contrast to the shallow active 
layer, deeper layers of the studied peat plateau were permanently 
water saturated for both control and manipulated plots during the 
whole experiment. Furthermore, the additional snow increased peat 
soil temperatures in winter by 1.3°C at 30 cm compared to controls 
(primarily during short, severe cold spells), but caused no clear dif-
ference between treatments at greater depths during the summer 
(Figure S1; Blume-Werry et al., 2019; Johansson et al., 2013). The 
similar deep soil temperatures in all plots for an important part of the 
year may thus partly explain the absence of difference in decompo-
sition constants for the old C pool. In addition, a rapid consumption 
of the pool of labile C substrates, initially available following thaw-
ing, may have left only the more recalcitrant C fraction in the long 
term (Monteux et al., 2018; Semenchuk et al., 2019), thus potentially 
rendering the millennial decomposition constants insensitive to 
thawing. Our results therefore suggest that previously observed in-
creases in old C losses with permafrost thaw (Dorrepaal et al., 2009; 
Hick Pries et al., 2013) are likely primarily caused by the increased 
thickness of the active layer, rather than a high thermal sensitivity of 
old C decomposition. In addition, the marked differences in the re-
sponse and driving mechanisms of decomposition rates of deep (old) 
versus shallow (young) peat underscores the need of recognizing 
and understanding specific factors (e.g. soil temperature, moisture, 

active layer depth) at different depths (shallow/deep) and at differ-
ent temporal scales (seasonal, decadal, millennial) when evaluating 
the fate of permafrost C.

4.2 | Winter-warming effects on C inputs

We hypothesized that winter-warming would increase incorporation 
of C at the surface of permafrost peatlands due to enhanced plant 
production. Instead, we found a strong decrease in decadal C inputs 
(i.e. net primary production [NPP], Trumbore et al., 1999), which 
suggests that gross primary production (GPP) was reduced and/or 
plant respiration enhanced. Reduced GPP upon thawing contrasts 
to previous studies on interactions between thaw and vegetation 
from experiments in tussock tundra in Alaska (Natali et al., 2012, 
2014; Wahren et al., 2005). The discrepancy may arise from differ-
ences in plant community composition and the relative contribution 
of different plant types to total primary production, combined with 
hydrological responses. The vegetation in the Storflaket peat plateau 
is characterized by low vascular plant cover and dominated by peat 
mosses, especially Sphagnum fuscum (Wielgolaski, 1972). Bryophytes 
such as S. fuscum are the main peatformers in ombrotrophic peatlands 
(Malmer & Wallen, 1999; Rosswall & Granhall, 1980), and can account 
for up to 45% of the total above-ground NPP (Chapin, Shaver, Giblin, 
Nadelhoffer, & Laundre, 1995; Svensson & Rosswall, 1980). Soil sub-
sidence and the formation of seasonal ponds during spring and early 
summer in our winter-warming plots tended to increase alkalinity in 
the active layer (Monteux et al., 2018), which can limit growth rate and 
photosynthesis of the hummock-adapted S. fuscum (Udd, Sundberg, 
& Rydin, 2015; Williams & Flanagan, 1996, 1998). The high loss of 
bryophyte cover (−75%) observed in our experiment (Blume-Werry 
et al., 2019), and a likely lower relative production of peat moss in the 
winter-warming plots, may thus explain the lower input of newly fixed 
C in response to snow addition and permafrost thaw.

Increased plant respiration may have further contributed to the 
observed reduction in C inputs, although likely to a lesser extent. 
Higher ecosystem respiration rates were measured in our win-
ter-warming plots compared to controls after 6 years of treatment 
(Njuabe, 2011), which could have partly resulted from higher plant 
respiration. Indeed, in nearby ombrotrophic Sphagnum peatlands in 
Abisko, experimental warming increased respiration by living plants 
more than heterotrophic respiration (Dorrepaal et al., 2009; Hick 
Pries, van Logtestijn, et al., 2015). Overall, the net reduction in the 
incorporation of new C in the upper active layer with thawing ob-
served in our permafrost mire likely results from the combination 
of an increase in autotrophic respiration and a stronger decrease in 
bryophyte production than an increase in vascular plant biomass.

4.3 | Warming effects on NEP

In contrast to our expectations, 10 years of winter-warming and 
thawing permafrost did not significantly affect the net C balance of 
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the studied peat mire. This is surprising, given the observed strong 
deceleration of the short-term turnover of young C (lower C input 
and C losses at decadal timescale) and acceleration in turnover 
of old C (higher C losses at millennial timescale). Winter-warming 
thus strongly reduced the C sink capacity of the ecosystem but 
that was entirely compensated by a similar decrease in young C 
losses from the upper 15–20 cm of the active layer. Unaffected 
C stocks and net C balance with permafrost thawing were also 
observed in warming experiments (Sistla et al., 2013) and natu-
ral thawing gradients (Heffernan et al., 2020; Schuur et al., 2009). 
Unlike what we observed, in these cases the higher release of old 
C was offset by increased plant C uptake during the growing sea-
son. The discrepancy in the response of surface C inputs is due to 
large differences in surface hydrologic conditions between sites. 
While winter-warming and associated permafrost thawing resulted 
in water ponding in Storflaket (Johansson et al., 2013; Keuper 
et al., 2012), well-drained tundra uplands experienced a deepen-
ing of the water table and became drier, likely stimulating primary 
production when soils became warmer (Keuper et al., 2017; Natali 
et al., 2012; Salmon et al., 2016). Therefore, our results highlight 
not only the fundamentally different role of the upper active layer 
and the permafrost C below in regulating net C exchange of peat 
plateau ecosystems, but also how the functioning of different pro-
cesses in these ecosystems can respond differently depending on 
topographic and vegetation characteristics and reflect changes in 
environmental conditions without necessarily altering their over-
all, long-term C balance.

Predicting the overall winter-warming effects on greenhouse 
gas forcing is difficult as our method does not distinguish between 
the different forms of C emissions (e.g. CO2, CH4, dissolved organic 
C, volatile organic C), which strongly differ in greenhouse poten-
tial (Knoblauch, Beer, Liebner, Grigoriev, & Pfeiffer, 2018; Schädel 
et al., 2016). However, CH4 production and emission were almost 
negligible during the first years of the experiment (Njuabe, 2011) 
and it seems reasonable to assume that most gaseous losses oc-
curred as CO2. The reduced decadal C losses observed here to-
gether with the lower potential of respiration rates measured in 
the active layer (Monteux et al., 2018), suggest lower losses of CO2 
from younger C pools upon thawing. The higher CO2 respiration 
rates observed in the first years of the experiment (Njuabe, 2011), 
was thus likely a short-term response driven by the initial loss 
of labile C pool (Monteux et al., 2018; Semenchuk et al., 2019). 
The latter study identified a lower potential respiration from the 
deeper parts of the active layer for the winter-warming plots 
(Monteux et al., 2018). Low losses of CO2 from the old, previously 
frozen C stocks following thawing is in line with mesocosm ex-
periments and field observations that showed limited contribution 
of permafrost C to surface CO2 (Estop-Aragonés, Cooper, et al., 
2018; Estop-Aragonés, Czimczik, et al., 2018). Considering that 
our model captures the long-term effects and the highly sensi-
tive response of short-term C release (Voigt et al., 2019), we sug-
gest that previous studies likely reflect seasonal CO2 emissions 
rather than the long-term permafrost C-feedback. However, we 

do not rule out the possibility of higher CH4 emission rates mostly 
from the uppermost layers when the system becomes wetter and 
sedge-dominated (Cooper et al., 2017). Integrated long-term mea-
surements of CO2 and CH4 fluxes together with 14C dates of the 
released C would be necessary to accurately projecting future cli-
mate feedbacks of winter-warming and permafrost thaw.

Overall, experimental winter-warming in a permafrost peat 
plateau in the subarctic Sweden affected processes controlling ac-
cumulation and release of C from the shallow active layer and the 
deeper newly thawed permafrost. These results clearly demon-
strate that determining the trajectory of ecosystem C balance 
cannot be based on short-term process studies but requires quan-
tification of all integrating effects (short- and long-term) on young 
and old C stocks. Surprisingly, peat soil temperatures during the 
growing season had only a minor effect on the annual balance, 
emphasizing the necessity of year-round measurements integrat-
ing whole seasons. Finally, our age modelling approach revealed 
that the overall magnitude of the current permafrost C imbalance 
depends largely on near-surface hydrologic conditions and plant 
cover. Integrating whole-year C fluxes and the effects of (exper-
imental) winter-warming and permafrost thaw along the whole 
peat continuum (i.e. active layer and newly thawed permafrost),  
as done here, will help to better constrain the long-term net  
C balance and climate change feedbacks between the permafrost 
C pool and the global climate system.
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