
6276  |     Glob Change Biol. 2020;26:6276–6295.wileyonlinelibrary.com/journal/gcb

 

Received: 19 July 2019  |  Revised: 26 October 2019  |  Accepted: 5 June 2020

DOI: 10.1111/gcb.15297  

P R I M A R Y  R E S E A R C H  A R T I C L E

Parasitoids indicate major climate-induced shifts in arctic 
communities

Tuomas Kankaanpää1  |   Eero Vesterinen1,2,3  |   Bess Hardwick1 |   Niels M. Schmidt4,5  |    
Tommi Andersson6 |   Paul E. Aspholm7  |   Isabel C. Barrio8  |   Niklas Beckers9 |   
Joël Bêty10,11 |   Tone Birkemoe12  |   Melissa DeSiervo13 |   Katherine H. I. Drotos14  |   
Dorothee Ehrich15  |   Olivier Gilg16,17  |   Vladimir Gilg17 |   Nils Hein9 |    
Toke T. Høye4,5  |   Kristian M. Jakobsen4,5 |   Camille Jodouin14 |   Jesse Jorna18 |   
Mikhail V. Kozlov19  |   Jean-Claude Kresse4,5  |   Don-Jean Leandri-Breton11 |   
Nicolas Lecomte20,21 |   Maarten Loonen18 |   Philipp Marr9 |   Spencer K. Monckton14  |   
Maia Olsen22 |   Josée-Anne Otis20 |   Michelle Pyle14 |   Ruben E. Roos12  |   
Katrine Raundrup22  |   Daria Rozhkova23 |   Brigitte Sabard17 |   Aleksandr Sokolov24  |   
Natalia Sokolova24  |   Anna M. Solecki14  |   Christine Urbanowicz13 |   
Catherine Villeneuve11 |   Evgenya Vyguzova23 |   Vitali Zverev19 |   Tomas Roslin1,3

1Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
2Biodiversity Unit, University of Turku, Turku, Finland
3Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
4Department of Bioscience, Aarhus University, Rønde, Denmark
5Arctic Research Centre, Aarhus University, Aarhus, Denmark
6Kevo Subarctic Research Institute, Biodiversity Unit, University of Turku, Turku, Finland
7NIBIO, Norsk Institutt for Bioøkonomi, Norwegian Institute of Bioeconomy Research, Ås, Norway
8Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
9Department of Geography, University of Bonn, Bonn, Germany
10Centre d'études nordiques, Université du Québec à Rimouski, Rimouski, QC, Canada
11Département de biologie, chimie et géographie, Université du Québec à Rimouski, UQAR, Rimouski, QC, Canada
12Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
13Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
14Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
15Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
16Laboratoire Chrono-environnement, UMR 6249 CNRS-UFC, Université de Franche-Comté, Besançon, France
17Groupe de Recherche en Écologie Arctique, Francheville, France
18Arctic Centre, University of Groningen, Groningen, The Netherlands
19Department of Biology, University of Turku, Turku, Finland
20Department of Biology, Université de Moncton, Moncton, NB, Canada
21Canada Research Chair in Polar and Boreal Ecology and Centre d'etudes, Moncton, NB, Canada
22Greenland Institute of Natural Resources, Nuuk, Greenland
23Perm State University, Perm, Russia
24Arctic Research Station of Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Sciences, Labytnangi, Russia

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd

www.wileyonlinelibrary.com/journal/gcb
mailto:﻿
https://orcid.org/0000-0003-3269-0299
https://orcid.org/0000-0003-3665-5802
https://orcid.org/0000-0002-4166-6218
https://orcid.org/0000-0002-6352-1781
https://orcid.org/0000-0002-8120-5248
https://orcid.org/0000-0002-4692-6154
https://orcid.org/0000-0003-3983-2958
https://orcid.org/0000-0002-3028-9488
https://orcid.org/0000-0002-9083-4492
https://orcid.org/0000-0001-5387-3284
https://orcid.org/0000-0002-9500-4244
https://orcid.org/0000-0002-5978-2073
https://orcid.org/0000-0002-9879-9118
https://orcid.org/0000-0002-1580-6424
https://orcid.org/0000-0002-2110-3709
https://orcid.org/0000-0002-1521-3856
https://orcid.org/0000-0002-6692-4375
https://orcid.org/0000-0003-4717-7674
https://orcid.org/0000-0002-2957-4791
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15297&domain=pdf&date_stamp=2020-09-11


     |  6277KANKAANPÄÄ et Al.

Correspondence
Tuomas Kankaanpää, Department of 
Agricultural Sciences, University of Helsinki, 
Latokartanonkaari 5, 00790 Helsinki, Finland.
Email: tuomas.kankaanpaa@helsinki.fi

Present address
Isabel C. Barrio, Department of 
Environmental Sciences and Natural 
Resources, Agricultural University of Iceland, 
Árleyni 22, Reykjavík, IS-112, Iceland

Spencer K. Monckton, Department of 
Biology, York University, 4700 Keele St., 
Toronto, ON M3J 1P3, Canada

Daria Rozhkova, N.K. Koltzov Institute of 
Developmental Biology, Russian Academy 
of Sciences, Vavilova Str. 26, Moscow, 
119991, Russia

Catherine Villeneuve, Centre for Wildlife 
Ecology, Simon Fraser University, 8888 
University Drive, Burnaby, BC V5A 1S6, 
Canada

Evgenya Vyguzova, Department of Natural 
History, Perm Museum of Local History, 
Monastyrskaya st., 11, Perm, 614000, Russia

Funding information
Parks Canada; University of Guelph; 
Societas pro Fauna et Flora Fennica; Maj 
ja Tor Nesslingin Säätiö, Grant/Award 
Number: 201500090, 201600034 and 
201700420; Polar Knowledge Canada; 
Icelandic Centre for Research, Grant/Award 
Number: 152468-051; Fonds Québécois 
de la Recherche sur la Nature et les 
Technologies; The Danish Environmental 
Protection Agency; Churchill Northern 
Studies Centre; Entomological Society of 
Canada; Canadian Polar Commission; Polar 
Continental Shelf Project; Biotieteiden 
ja Ympäristön Tutkimuksen Toimikunta, 
Grant/Award Number: 276671, 276909 and 
285803; Natural Sciences and Engineering 
Research Council of Canada; Academy of 
Finland, Grant/Award Number: 276909, 
285803 and 276671; Nessling Foundation, 
Grant/Award Number: 201700420, 
201600034 and 201500090; Jane and 
Aatos Erkko Foundation; French Polar 
Institute; INTERACT; Research Council of 
Norway, Grant/Award Number: 249902/
F20; ArcticNet; Russian Foundation for Basic 
Research, Grant/Award Number: 18-05-60261

Abstract
Climatic impacts are especially pronounced in the Arctic, which as a region is warming 
twice as fast as the rest of the globe. Here, we investigate how mean climatic condi-
tions and rates of climatic change impact parasitoid insect communities in 16 localities 
across the Arctic. We focus on parasitoids in a widespread habitat, Dryas heathlands, 
and describe parasitoid community composition in terms of larval host use (i.e., parasi-
toid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups dif-
fering in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, 
we expect idiobionts—as being less fine-tuned to host development—to be generally 
less tolerant to cold temperatures, since they are confined to attacking hosts pupat-
ing and overwintering in relatively exposed locations. To further test our findings, we 
assess whether similar climatic variables are associated with host abundances in a 
22 year time series from Northeast Greenland. We find sites which have experienced 
a temperature rise in summer while retaining cold winters to be dominated by para-
sitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The 
rate of summer temperature rise is further associated with higher levels of herbivory, 
suggesting higher availability of lepidopteran hosts and changes in ecosystem func-
tioning. We also detect a matching signal over time, as higher summer temperatures, 
coupled with cold early winter soils, are related to high herbivory by lepidopteran lar-
vae, and to declines in the abundance of dipteran pollinators. Collectively, our results 
suggest that in parts of the warming Arctic, Dryas is being simultaneously exposed to 
increased herbivory and reduced pollination. Our findings point to potential drastic 
and rapid consequences of climate change on multitrophic-level community structure 
and on ecosystem functioning and highlight the value of collaborative, systematic 
sampling effort.

K E Y W O R D S

Arctic, climate change, DNA barcoding, Dryas, food webs, functional traits, host–parasitoid 
interactions, insect herbivory, pollinators

1  | INTRODUC TION

Climate change can affect species distributions (Hickling, Roy, 
Hill, Fox, & Thomas, 2006; Jepsen et al., 2011; Parmesan, 2006; 
Parmesan & Yohe, 2003), phenology (Høye et al., 2014), and fecun-
dity (Bowden et al., 2015), with knock-on effects on community 
composition (Habel et al., 2016; Koltz, Schmidt, & Høye, 2018), on 
the strength and identity of biotic interactions (Both, van Asch, 
Bijlsma, van den Burg, & Visser, 2009; Van Nouhuys & Lei, 2004), 

and ultimately on ecosystem functioning (Ammunét, Kaukoranta, 
Saikkonen, Repo, & Klemola, 2012; Memmott, Craze, Waser, & 
Price, 2007; Schmidt et al., 2016; Schmidt, Mosbacher, et al., 2016; 
Tiusanen, Hebert, Schmidt, & Roslin, 2016). The Arctic region has, on 
average, been warming about twice as fast as the rest of the globe, 
making it an important observatory for climate change impacts 
(IPCC, 2007; Walsh, 2014). The arctic fauna is dominated by arthro-
pods (Høye & Culler, 2018; Schmidt et al., 2017; Wirta et al., 2016), 
yet temporal data on arthropod diversity and abundance are sparse, 
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limiting current insights into how rapid environmental change is af-
fecting arthropod community structure and functioning (Gillespie 
et al., 2020). In a rare case where such data are available, a dramatic 
decline and species turnover have been reported among one of the 
key pollinating taxa (Diptera: Muscidae; Loboda, Savage, Buddle, 
Schmidt, & Høye, 2018).

To circumvent the current shortage of arctic arthropod data, 
we can substitute temporal gradients with geographic ones (Blois, 
Williams, Fitzpatrick, Jackson, & Ferrier, 2013; Elmendorf et al., 
2015; Körner, 2007), comparing regions currently characterized 
by different climate regimes. The responses of species to gra-
dients over time are likely to mimic their occurrence patterns 
in space (Romero et al., 2018). This approach does have funda-
mental limitations in a world where novel communities and envi-
ronments are formed (Damgaard, 2019). However, in regions of 
rapid change, recent shifts in climate may already have remodeled 
insect communities (Rafferty, 2017). This offers an opportunity 
for a new type of space-for-time approach: a comparison among 
regions experiencing different rates and types of change. (i.e., a 
space-for-change approach). However, few studies to date have 
exploited such contrasts (but see Prevéy et al., 2017; Scarpitta, 
Vissault, & Vellend, 2019). In this context, the Arctic offers a rare 
opportunity, as it simultaneously encompasses strong gradients in 
climatic conditions and regional variation in the recent rate and 
mode of climate change, even at a subcontinental scale (Abermann 
et al., 2017).

In this study, we examine the impacts of both regional mean 
climate and recent shifts in climate on trophically structured in-
sect communities. As our model system, we use a tritrophic food 
web, which includes a widespread flowering plant, the mountain 
avens (genus Dryas in family Rosaceae), its lepidopteran herbi-
vores and dipteran pollinators, and the parasitoids of these her-
bivores and pollinators. Here, we define parasitoids as predators 
developing in close association with a single individual of its host 
species, typically killing it in the process (Hawkins, 2005). We 
refer to Lepidoptera as herbivores, as the vast majority of lepi-
dopteran species of the Arctic have plant-feeding larvae, and since 
we quantify lepidopteran herbivory on our focal plant species 
(Dryas). We define pollinators as the large array of flower-visiting 
Diptera, which provide the main visitors and pollinators of Dryas 
(Tiusanen et al., 2016, 2019). Our focus on these particular guilds 
and taxa is motivated by a series of simple considerations. First, 
insect herbivores are key players in the tundra biome in terms of 
species richness (Wirta et al., 2016) and biomass (Bar-On, Phillips, 
& Milo, 2018). Second, herbivores influence arctic vegetation 
both through low-level background damage (Barrio et al., 2017; 
Rheubottom et al., 2019) and severe episodic and occasional pop-
ulation outbreaks (Lund et al., 2017; Post & Pedersen, 2008), with 
defoliators such as moth and sawfly larvae causing most of the 
loss of plant biomass. Third, a large proportion of arctic plants are 
insect-pollinated (Kevan, 1972), making plant–pollinator interac-
tions some of the main determinants of arctic insect communities 
(Tiusanen et al., 2016, 2019). Fourth, both insect herbivore and 

pollinator populations are at least to some degree regulated by 
generalist predators, and especially by parasitoids (Letourneau, 
Jedlicka, Bothwell, & Moreno, 2009). Fifth, parasitoids for their 
part are expected to be especially sensitive to environmental 
change due to their high trophic level (Voigt et al., 2003). Based on 
these considerations, we expect climatic impacts to exert a major 
effect on arctic parasitoid communities through direct impacts on 
species and through knock-on effects mediated by biotic interac-
tions (Schmidt et al., 2017). As groups of parasitoid species show 
affinities for hosts of certain phylogenetic branches (e.g., Diptera, 
Lepidoptera, etc.), they are indeed likely to reflect changes in 
widely different parts of the arctic arthropod food web, effec-
tively serving as sentinels of the arthropod community.

In this paper, we use the structure of parasitoid communities 
as a surrogate for the structure of the total insect community, and 
infer the relative abundances of different host taxa from the abun-
dance of different parasitoid taxa for which the hosts are known. 
This approach is underpinned by a body of literature showing a pos-
itive correlation between parasitoid and host abundances across the 
community (Askew & Shaw, 1986; Godfray, 1994; Hassell, 2000). 
We explore climatic impacts on two key dimensions of ecological 
variation among parasitoids: on host-use taxonomy (i.e., the use 
of hosts in order Diptera vs. Lepidoptera) and host-use strategy 
(Figure 1). To characterize host-use strategy, we use the simple di-
chotomy between idiobionts and koinobionts, of which idiobionts 
kill or paralyze their host at parasitism, whereas koinobionts allow 
the host to feed and grow during the interaction. Idiobionts often 
attack non-growing host stages such as eggs and pupae, whereas 
koinobiont often attack growing stages (larvae). The koinobiont 
strategy requires physiological adaptation and therefore restricts 
the host range (Godfray, 1994). The two groups have been shown 
to differ also in their overwintering ability in favor of koinobionts. 
(Hance, van Baaren, Vernon, & Boivin, 2007; for further details, see 
Section 2.2).

Overall, we ask:

1. How do mean multidecadal climatic conditions affect arctic 
parasitoid community structure?

We hypothesize that the harsh arctic winter is the main environ-
mental filter dictating insect community composition. If this is the 
case, then we expect to see regional climatic conditions reflected 
in the predominance of particular life-history traits within parasit-
oid communities. We expect parasitoid species that use dipteran 
(rather than lepidopteran) larval hosts to be more common toward 
the High Arctic, mirroring the diversity patterns of the host groups 
(Böcher, Kristensen, & Pope, 2015). In addition, we expect parasitoid 
communities of colder sites to be dominated by a koinobiont life-his-
tory strategy, which is associated with increasing specialization and 
cold-hardiness. Such a trend in parasitoid community composition 
with climate would match patterns found across elevation gradi-
ents (Maunsell, Kitching, Burwell, & Morris, 2015), as well as previ-
ously suggested latitudinal trends among parasitoids (Quicke, 2012; 
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Timms, Schwarzfeld, & Sääksjärvi, 2016) and across mutualistic in-
teractions (Schleuning et al., 2012). 

2. How does recent climate change affect the host use of para-
sitoid communities?

We expect an increase in dominance of parasitoid species using 
lepidopteran versus dipteran larvae as hosts in areas where summer 
temperatures have risen more. Such a prediction is supported by re-
cent findings that warmer and drier conditions in parts of the tundra 
biome result in dramatic population declines among flies (Loboda 
et al., 2018), while many lepidopteran species may conversely bene-
fit from warming conditions (Habel et al., 2016; Hunter et al., 2014; 
Klapwijk, Csóka, Hirka, & Björkman, 2013). We reiterate that arctic 
pollinators are dominated by adult Diptera (Kevan, 1972; Tiusanen 
et al., 2016, 2019), whereas larval Lepidoptera are dominant herbi-
vores in our focal Dryas heath habitat. Thus, changes in parasitoid 
host use will also reflect climatic impacts on the two guilds of polli-
nators and herbivores, respectively.

3. How does recent climate change affect life-history strategies 
within parasitoid communities?

We hypothesize that recent climatic change in the Arctic has 
considerably impacted parasitoid community composition, which 
should thus reflect regional differences in the rate and mode of 
warming. Specifically, we expect the functional composition of com-
munities in faster warming areas to have shifted more toward that of 
communities occurring at lower latitudes, that is, an increase in id-
iobiont strategies. Importantly, this ratio can be examined both with 
respect to diversity and abundance, where counts of species reflect 
slower evolutionary and biogeographical processes, and counts of 
individuals reflect ecological processes. Thus, we expect the effects 
of recent climate change to be more pronounced in the relative num-
ber of idiobiont individuals in the community, but less so in the rela-
tive number of idiobiont species, as more generally suggested by the 
work by Menéndez et al. (2006).

4. How is the level of herbivory on Dryas associated with mean 
climate and recent change?

Based on the predictions of shifts in parasitoid community com-
positions and their life-history traits (see questions 1–3), we expect 
a shift toward more idiobiont parasitoid communities to weaken pre-
dation pressure on herbivorous Lepidoptera, as idiobionts typically 

F I G U R E  1   Conceptual summary of parasitoid life-history strategies, host group preferences, and their links to multidecadal mean climate and 
climate change and its implications. For each of three aspects of parasitoid ecology, that is, parasitoid life-history strategy, parasitoid host group 
taxonomy, and associated host abundances, we identify the expected responses to mean climate and recent climate change. We identify the 
response categories (classes) scored as Attributes contrasted, the biological features of each class as Distinguishing features, and expectations in 
terms of responses in terms of two types of patterns: changes in the dominance of the respective group with a change in mean conditions (column 
Mean climate), and changes in the dominance of the respective group with recent trends in a warming Arctic (column Recent change). Finally, we 
summarize the results obtained in terms of contemporary patterns across the Arctic (Spatial results) and matching patterns in the 22 year time 
series from Zackenberg, Northeast Greenland (temporal results). Given the dominance of Diptera among arctic pollinators and Lepidoptera among 
arctic herbivores, we note that changes in host use provide a window to the relative abundance of these key guilds. For clarity, we color code the 
taxonomically and ecologically separate Lepidoptera- and Diptera-based food web modules in green and blue, respectively, reminding the reader 
that larval Lepidoptera form the dominant herbivores of Dryas, whereas adult Diptera form the dominant pollinators
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have relatively lower fecundity (Price, 1972). We also expect her-
bivores to gain direct benefits from warmer temperatures. Both of 
these processes would translate into increased levels of herbivory 
(de Sassi et al., 2012).

2  | MATERIAL S AND METHODS

2.1 | Study system

The focal systems within this study were heathlands dominated 
by species of mountain avens (genus Dryas in the Rosaceae fam-
ily). Such heathlands are common and widespread throughout the 
arctic biome (Welker, Molau, Parsons, Robinson, & Wokey, 1997). 
All three Dryas species (native to the arctic and alpine regions of 
Europe, Asia, and North America, i.e., D. octopetala, D. integrifo-
lia, and D. drummondi; see Tiusanen et al., 2019) are perennial, 
cushion-forming evergreen dwarf shrubs. The flowering phenol-
ogy and other characteristics of Dryas have been shown to be 
sensitive to temperature both experimentally (Welker et al., 1997) 
and through monitoring (Panchen & Gorelick, 2015). Snow and 
water availability are also key factors modulating the phenologi-
cal response of Dryas (Bjorkman, Elmendorf, Beamish, Vellend, & 
Henry, 2015), as is also the nutritional content of the plant (Welker 
et al., 1997).

Dryas plays a central role in several plant–insect interactions. 
First, it is a food source to many herbivorous noctuid moth species 
(Lepidoptera: Noctuidae). In particular, moths of the genus Sympistis 
are specialized herbivores of Dryas. These moths have a 2 year 
life cycle, first hibernating as an egg and then as a pupa (Ahola & 
Silvonen, 2005). Importantly, insect herbivory on Dryas (by Sympistis 
as well as other species) is concentrated on the flowers, directly 
affecting the reproductive success of the plants (Figure 1). In this 
study, we therefore define herbivory as florivory, measured as the 
proportion of damaged Dryas flowers. Second, a major part of insect 
taxa (most notably Diptera) within high-arctic insect communities 
visit Dryas flowers (Tiusanen et al., 2016, 2019) and subsequently 
aid its pollination. Dryas has therefore been identified as an intercon-
necting node at the core of arctic food webs (Schmidt et al., 2017). 
Because pollination can be directly linked to the reproductive output 
of plants, any loss of specialist pollinators can have dramatic effects 
on seed production (Auw, 2007), which applies also to the primarily 
insect-pollinated Dryas (Tiusanen et al., 2016).

Both the lepidopteran herbivores and dipteran pollinators of 
Dryas serve as host species to parasitoid wasps (Hymenoptera) 
and flies (Diptera: Tachninidae; Várkonyi & Roslin, 2013; Wirta 
et al., 2015). These parasitoid species may shape the abundance and 
community composition of herbivores and pollinators, and therefore 
the performance of Dryas. To clearly distinguish between “parasitic 
Diptera” (i.e., species in family Tachninidae) and “parasitoids using 
Diptera as hosts”, we henceforth refer to the former as “dipteran 
parasitoids” (or “tachinids”) and the latter as “parasitoids of Diptera” 
or Diptera-using parasitoids.

2.2 | Parasitoid biology

Parasitoids are organisms living in close association with a single 
host individual, which they kill at some stage of their development. 
The physical association with host species varies, but is broadly cate-
gorized into two strategies (Figure 1): idiobionts, which halt develop-
ment of their hosts, and koinobionts, which allow host development 
to continue, residing within through successive developmental 
stages (Askew & Shaw, 1986; Godfray, 1994). These strategies are 
correlated with a suite of other traits, with ramifications for degree 
of specialization, potential for top-down control of host populations, 
overwintering ecology, and phenology (Quicke, 2015). Compared to 
koinobionts, idiobionts typically have a wider diet (i.e., attack more 
diverse host taxa). These parasitoids may not need to track their host 
as they can rely on other host species. While koinobionts can ex-
ploit the overwintering behavior of their mobile hosts, idiobionts are 
restricted to overwintering either as adults or inside hosts in more 
exposed habitats (Hance et al., 2007). As a likely consequence, idi-
obionts are more sensitive to winter conditions (Figure 1), and show 
more pronounced drop in diversity toward higher latitudes than do 
koinobionts (Timms et al., 2016).

Beyond the koino- versus idiobiont dichotomy, parasitoids vary 
with respect to their specialization for host phylogeny or lifestyle 
(Figure 1; Quicke, 2015). Some parasitoid groups are tightly as-
sociated with certain host groups like cyclorraphous flies for ex-
ample, while others prey on the silky structures spun by nearly 
any arthropod. Parasitoid communities are thus expected to re-
flect underlying geographical patterns of host taxa. Different 
groups of insect herbivores show distinct diversity patterns, with 
Lepidoptera (moths and butterflies) dominating at low latitudes 
(Kerr, Vincent, & Currie, 1998) and Symphyta (sawflies) reaching 
their highest diversity toward higher latitudes (Kouki, Niemelä, & 
Viitasaari, 1994). The same applies for other functional groups, 
such as pollinators. In the High Arctic, pollinator communities 
predominantly consist of Diptera, while at lower latitudes, hy-
menopteran pollinators (bees) are regarded as the most important 
(Böcher et al., 2015). A conceptual summary of parasitoid strate-
gies and host associations and their spatial and temporal implica-
tions is presented in Figure 1.

2.3 | Empirical data

To resolve how climate shapes plant–insect–parasitoid interac-
tions across the Arctic, we set up a distributed, standardized sam-
pling design (Figure 2). We used molecular species identification 
to characterize parasitoid communities, and globally available re-
mote-sensed climate data to examine how these communities are 
structured relative to long-term abiotic conditions and to recent 
climate change. To assess the links between food web structure 
and ecosystem functioning, we quantified herbivory on a key plant 
resource (larval feeding damage on flowers in the genus Dryas). 
We then used a local time series of plants, herbivory, and insects 
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to confirm that the predictions derived from large-scale patterns 
of parasitoid community composition and herbivory are also ob-
servable through time.

2.3.1 | Distributed study design

To measure herbivory and sample parasitoid communities across 
the Arctic, we joined together through the arctic research net-
works INTERACT (https://eu-inter act.org/) and NEAT (http://neat.
au.dk/). The former is a large-scale consortium specifically aimed 
at tackling large questions in arctic research by drawing on its 70+ 
member stations, and the latter is a recent collaboration of arctic 
arthropod ecologists. Before the summer of 2016, we sent com-
prehensive sampling sets to teams in 21 field locations (Figures 2 
and 3; see http://www.helsi nki.fi/foodw ebs/paras itoid s/inter actsa 
mplin ghires.pdf). This sampling was either cancelled or relocated 
in three of the intended locations due to unexpectedly early spring 

phenology in Alaska, western Canada, and southernmost Greenland. 
Thus, the dataset comprises of data from 19 sampling localities, all 
of which are used in the analyses of community structure and 16 in 
the analysis of herbivore damage (see Supporting Information S1 for 
details).

Participants were instructed to begin sampling when Dryas 
started flowering widely in the landscape. Each participant set up 
three to four sampling plots of 10 white sticky traps (4.5 × 5 cm 
each), covered by individual wire cages to exclude bird predation on 
insect catches. Depending on the abundance of Dryas flowers, three 
to five of these cages acted as landmarks for circular plant monitor-
ing sub-plots with a radius of 27 cm (52 cm in Zackenberg). Within 
these subplots, participants counted and scored Dryas inflores-
cences in four different developmental stages: dark buds, buds with 
visible petals, open flowers, and senescent flowers. Participants 
also counted the number of flowers damaged by insect herbivores. 
During three visits, typically interspersed by 6 days, the sticky traps 
were set up, changed, and collected, and plant data were collected. 

F I G U R E  2   The structure of the dataset and the links between data sources. The box on the left summarizes data collected across the 
Arctic on parasitoid community composition and level of herbivory. Parasitoid communities were characterized by host use and parasitoid 
life-history strategy (as nested within host use). These spatial data were collected at each of 19 field sites, identified by pink markers on the 
central map. For each of these sites, we also extracted two types of climate data: variables describing mean temperature and precipitation 
over the time period 1970–2000 (illustrated in upper hemispheres) and variables describing the rate of the recent temperature change 
during 2000–2017 (illustrated in lower hemisphere). The box on the right summarizes data used to analyze temporal patterns of host 
availability at one of the study locations (Zackenberg, Northeast Greenland). The data encompass local climatic data since 1996–2017, 
counts of muscid flies in insect traps, and annual peak fractions of damaged Dryas flowers on permanent monitoring plots. For clarity and 
consistency with Figure 1, we show parasitoids in black, pollinators in blue and herbivores in green. Numbers identify sampling localities: 1. 
Zackenberg, 2. Churchill, 3. Igloolik, 4. Bylot Island, 5. Qeqertarsuaq/Disko Island (low and high altitudes), 6. Kangerlussuaq (low and high 
altitudes), 7. Kangerluarsunnguaq/Kobbefjord, 8. Hochstetter Forland, 9. Snæfellsnes, 10. Ny-Ålesund, 11. Svare/Vågå, 12. Finse, 13. Kevo, 
14. Finnmark (two different mountains), 15. Monchegorsk, 16. Yamal. For detailed site-specific information, see Table S1. We note that 
data from the Russian-Canadian Arctic are very sparse, reflecting logistic challenges during the focal study period (summer of 2016). For 
consistency with Figure 1, we color code the taxonomically and ecologically separate Lepidoptera- and Diptera-based food web modules 
in green and blue, respectively, reminding the reader that larval Lepidoptera form the dominant herbivores of Dryas, whereas adult Diptera 
form the dominant pollinators

https://eu-interact.org/
http://neat.au.dk/
http://neat.au.dk/
http://www.helsinki.fi/foodwebs/parasitoids/interactsamplinghires.pdf
http://www.helsinki.fi/foodwebs/parasitoids/interactsamplinghires.pdf
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Thus, in total, 351 plant plots were surveyed three times each, with 
a sum of 1,500 sticky traps deployed.

2.3.2 | Climatic variables of geographic scale

To characterize multidecadal mean environmental conditions of each 
sampling site (henceforth “mean climate”), we used climatic data ex-
tracted from the online database WorldClim (Fick & Hijmans, 2017) 
at 0.05° (1.9 × 5.6 km at 70°N) resolution, based on the coordinates 
of the field collections, including a 0.05° buffer zone. These data 
were used to characterize the mean climatic conditions (1970–2000; 
Figure 2), which naturally cover a wide range of values as our study 
sites span from subarctic to high-arctic conditions. For a validation 
of these data, see Figure S3.

To describe recent changes in climate, we calculated linear 
temperature trends for the past 18 years. For this, we used the 
monthly average daytime land-surface temperature supplied by the 
MODIS satellite platform at a spatial resolution of 0.05° (https://
doi.org/10.5067/MODIS/ MOD11 B3.006; Wan, 2014; Wan, Zhang, 
Zhang, & Li, 2004), from which we extracted the values including 
a 0.05° buffer zone around sampling sites. These data describe 
the changes in land-surface temperature between 2000 and 2017 
(Figure 2). To find clues on possible mechanistic underpinnings 
of observed patterns, we focus on the summer period (June–
August), during which insect reproduction takes place. To account 

for climatic variation during insect overwintering, we also use 
the rate of surface temperature change during the winter period 
(September–May).

Due to the arctic amplification, temperature rise is higher at 
higher latitudes. In our dataset, this is evident especially in the sum-
mer period temperatures, which have risen more at localities with 
colder mean summer temperatures. Winter temperature changes 
show a more idiosyncratic pattern with a hot spot region around the 
Barents Sea. The rates of temperature change during different parts 
of the year are often correlated at the site level. Surprisingly, the 
recent temperature change of the summer and the autumn periods 
was negatively correlated with each other (r = −.74). This correlation 
is considerably reduced when considering the whole winter period 
(for a summary of all explanatory variables used during modeling, 
see Table S3).

To validate that the remote-sensed metrics used in the analyses 
are actually reflective of local conditions, we compared our metrics 
to ground-level measurements where available (Figures S3 and S4), 
and compared multiple metrics of recent climate change to each 
other (Figure S4). Many of these metrics proved highly correlated, 
providing evidence that they provide consistent and biologically rel-
evant measures of local conditions.

Finally, to control for effects of weather during sampling, we 
recorded temperature in situ during the trapping period using  
EL-USB-2 temperature loggers (Lascar Electronics) exposed close  
to the soil surface (see Supporting Information S1).

F I G U R E  3   Relationship between host use (y axes), the rate of temperature change in the winter period (x axes) and in the summer period 
(in panel c), with the three curves corresponding to the models estimates for low, mean, and high values occurring in the data as indicated in 
the right-hand side box, and the colored areas around them showing 95% confidence intervals. The colors of the data points show the local 
rate of temperature change for the summer period, adhering to the color scheme of the left-hand legend. Panels (a) and (b) show the effects 
of these variables on the fraction of parasitoid species and individuals, respectively, which mainly use lepidopteran hosts. Panels (c) and  
(d) visualize the same trends but for parasitoids of Diptera. The size of the data points is proportional to the number of species or individuals, 
respectively whereas the colors of data points represent local rate of temperature change for the summer period

(a)

(c)

(b)

(d)

https://doi.org/10.5067/MODIS/MOD11B3.006
https://doi.org/10.5067/MODIS/MOD11B3.006
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2.3.3 | Sample management and 
molecular workflow

Samples of insects on sticky traps were stored at −20°C until used 
for DNA extraction. We then used orange oil (Romax Glue Solvent; 
Barrettine) to dissolve the glue, moving parasitoid wasps and flies 
individually onto 96 deep well lysis plates for DNA extraction 
(NucleoSpin® 96 Tissue kit, REF 740741.4; Macherey-Nagel; Data1; 
for a summary of individual datasets, see Supporting Information S1, 
section “Sequence data processing”). The same traps were subse-
quently rechecked for parasitoids, and additional samples processed 
using a salt extraction protocol following Kaunisto, Roslin, Sääksjärvi, 
and Vesterinen (2017; Data 2; for details, see Supporting Information 
S1). These two DNA extraction methods yielded comparable results 
(success rates in final data 91.1% and 94.9%, respectively).

To identify the parasitoids, we used primer pair BF and 
HCO2198, as targeting a variable region of the mitochondrial COI 
(cytochrome oxidase 1) gene (Table S2). All samples were sequenced 
using Illumina technology, with the exact workflow and bioinfor-
matics pipeline identified in the Supporting Information (Figure S2). 
Sequences were assigned to operational taxonomic units (OTUs; 
henceforth “species”) with at least family-level taxonomic affinities, 
and the site-by-taxon data were used for downstream analyses of 
taxonomic diversity, biotic niches, and functional composition.

2.3.4 | Scoring of parasitoid life-history traits

Since our sampling sites shared relatively few species, species-
level analysis is less informative for detecting climatic impacts 
on community-level patterns. Instead, we describe the functional 
community composition as (a) the prevalence of parasitoid taxa 
with different parasitism strategies (idiobionts vs. koinobionts) 
and (b) the prevalence of parasitoid taxa using different main host 
groups (Lepidoptera vs. Diptera; Figures 1 and 2). To classify para-
sitoids by their host-use and parasitism strategy, we gathered in-
formation on these traits from the literature (Böcher et al., 2015; 
Quicke, 2015; Stireman, O'Hara, & Wood, 2006; Timms, Bennett, 
Buddle, & Wheeler, 2013; Várkonyi & Roslin, 2013; Yu, Van 
Achterberg, & Horstmann, 2005). Parasitoids of taxa other than 
Lepidoptera and Diptera, such as Araneida, Coleoptera, Hemiptera 
(aphids in particular), Symphyta, or other parasitoids, were not ana-
lyzed separately (i.e., as was done for parasitoids of Diptera and 
Lepidoptera) since their numbers were too low—accounting for 
0.7%–7.1% (mean 3.3%) of species and 0.03%–4.3% (mean 1.9%) 
of individuals per host order. A bigger group left outside of the two 
focal diet categories were those parasitoids with very wide diets or 
those that use various hosts within the taxonomic resolution of our 
identification, accounting for 31.5% of species and 20.1% of indi-
viduals. To make our response variables representative of the full 
parasitoid community, parasitoids of taxa other than Lepidoptera 
and Diptera were still included in the denominator of our re-
sponse variables (i.e., within the totals of parasitoid species and 

individuals, respectively). The sources and criteria used in the trait 
classifications are further specified in the Supporting Information 
(Appendix S4).

2.3.5 | Temporal data

The pan-arctic data described above provide a single view of current 
patterns, all derived within a single year. To supplement this snap-
shot with data on temporally resolved changes within a particular 
site (Figure 2), we used herbivory and arthropod abundance data 
collected from 1996 to 2017 at Zackenberg (74°28ʹN, 20°34ʹW) 
by the BioBasis monitoring program (Schmidt, Hansen, et al., 2016; 
Schmidt, Mosbacher, et al., 2016). These data were provided by 
ZERO (Zackenberg Ecological Research Operations) and Asiaq—
Greenland Survey and are available in the GEM database (http://g-
e-m.dk/) and summarized in annual reports of the Zackenberg 
Research Station (http://g-e-m.dk/gem-local ities/ zacke nberg/ publi 
catio ns/annua l-repor ts/). For each year, they encompass standard-
ized observations of herbivore damage, insect abundance, and asso-
ciated environmental variables, including site-specific snow cover at 
six regularly monitored plots originally selected to represent differ-
ent snow conditions. Weekly observations from each plot provide a 
detailed description of herbivory on Dryas, including counts of buds, 
fresh flowers, and senescent flowers, and feeding marks by herbi-
vores. For levels of herbivory, we used the annual peak herbivory 
rates (across the three sampling events) reported annually.

To quantify changes in the dominant host taxa available to para-
sitoids in the Zackenberg insect community, and of pollinators avail-
able to plants, we extracted data on the abundance of muscid flies 
(Diptera: Muscidae), measured as the number of individuals caught 
in two window traps and 20 pitfall traps each summer before 26th of 
August (data available at GEM database; Figure 2).

As potential determinants of the level of flower damage and pol-
linator abundance, we used the date of snow melt available at the 
plot level, and yearly values of summer and autumn soil minimum 
temperatures at 10 cm depth (measured at the nearby climate sta-
tion). Here, we note that the monitoring plots were originally chosen 
to represent an environmental gradient from snow-accumulating 
depressions to windswept areas (Schmidt, Hansen, et al., 2016; 
Schmidt, Mosbacher, et al., 2016), and that they thus vary substan-
tially in the relative timing of snow melt. To characterize local tem-
perature conditions, we use soil temperatures, since they capture 
the summer temperatures as experienced by insects. By integrating 
the combined effect of ambient temperatures, solar warming, and 
water content, these temperature data are akin to the surface in-
frared reflectance captured by satellites in our large-scale data (see 
climatic variables above). For the autumn period, soil temperatures 
record overwintering temperatures experienced by the insects due 
to combined effects of ambient temperatures and the presence or 
absence of snow cover. To fully account for the temperatures expe-
rienced by the insects, we also included the focal summer ambient 
air temperature (at 2 m height), which is the most important factor 

http://g-e-m.dk/
http://g-e-m.dk/
http://g-e-m.dk/gem-localities/zackenberg/publications/annual-reports/
http://g-e-m.dk/gem-localities/zackenberg/publications/annual-reports/
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in explaining the activity of flying insects within the season (Høye & 
Forchhammer, 2008).

2.4 | Statistical analyses

To quantify the effects of mean climate and recent climate change 
on functional descriptors of parasitoid community composition, we 
used generalized linear modeling, with the fraction of parasitoids 
adhering to a given main host (Diptera or Lepidoptera) or host-use 
strategy (prevalence of the idiobiont strategy) as our response varia-
bles (see Figure 1). As we expected differential responses at the level 
of species and individuals (see Section 1), we modeled the fraction of 
individuals in the community and the fraction of species in the com-
munity as separate responses. All in all, we modeled eight response 
variables (Table S4). The first four of these reflect parasitoid host 
use: the fraction of species (model 1A) and individuals (model 1B) of 
parasitoids associated with Lepidoptera, and the fraction of species 
(model 2A) and individuals (model 2B) of parasitoids associated with 
dipteran hosts. The last four models focus on the parasitism strat-
egy, reflecting the fraction of parasitoid species (models 3A and 4A) 
and individuals (models 3B and 4B) adhering to an idiobiont strategy 
for parasitoids of Lepidoptera and Diptera, respectively.

In modeling each of these response variables, our overarching 
objective was to evaluate the evidence for imprints of both baseline 
climatic conditions and recent change. Since climatic impacts may re-
late to multiple different climatic descriptors as calculated for several 
parts of the year, there is a nontrivial risk of overfitting. To this aim, we 
placed special emphasis on the logic and sequence of model building, 
as further explained in Appendix S9. In brief, we first used univariate 
analysis to assess individual explanatory variables describing mul-
tidecadal mean climatic conditions independently from each other. 
We then tested if adding a second variable describing mean climatic 
conditions improved the fit. Finally, we tested for added effects of 
recent climate change. These variable families were then brought into 
a joint model in a hierarchical manner, starting from the longer term 
impact (averages of winter temperature, summer temperature, winter 
precipitation, and summer precipitation) and progressing to recent 
change (rate temperature change in winter and summer). Variables 
were retained for the final model based on the reduction in QAICc 
observed (Lebreton, Burnham, Clobert, & Anderson, 1992). QAICc is a 
quasi-likelihood counterpart to the corrected Akaike information cri-
terion (AICc), and is better suited for modelling overdispersed count 
or binary data. QAICc values were calculated with R package MuMIn 
(Barton, 2016), calculating a global dispersion parameter from a model 
containing all of the variables included in the models being compared 
at a time. By this overall approach, we specifically answer the fol-
lowing chain of questions: First, do long-term conditions affect the 
focal community descriptor (response)? Second, with these impacts 
accounted for, do metrics of recent change add additional explanatory 
power? The model selection process is summarized in Table S5.

To model the level of herbivory in sampling plots across arctic lo-
calities, we fitted a binomial mixed-effects model (model 5) with the 

maximum fraction of herbivore-damaged flowers recorded for each 
sampling subplot as the dependent variable. We used the same selec-
tion of fixed climatic effects as in the models of functional parasitoid 
community composition (see Table S3) and constructed the model 
sequentially starting from mean climate variables and subsequently 
testing if variables describing climatic change improve the overall 
fit. Since it is difficult to distinguish damage from senescent flowers, 
and large altitude differences between plots is bound to affect un-
recorded local conditions, we included the mean phenological phase 
when plant surveys were done and the relative altitude within a local-
ity as additional fixed effects. Furthermore, since the abundance of 
Dryas might affect either the presence of specialist herbivores or sat-
urate damage in dense flower stands, we also included the logarithm 
of flowers recorded for each subplot as a fixed effect. We introduced 
these three methodological variables as the null model prior to the 
sequential model construction. To account for random variance in the 
intercept between sites and plots, we introduced plots within locali-
ties as a random effect. To correct for overdispersion, we also included 
a random intercept effect at the observation level (random residual). 
The model selection process is summarized in Table S6. To facilitate 
the interpretation of the results, we report the effect sizes as odds 
ratios (OR), which are calculated by exponentiation of the linear pre-
dictor. In other words, the OR identifies the change in the odds of the 
modeled outcome for each unit increase of the explanatory variable 
(1 SD in the case of standardized variables; Rita & Komonen, 2008).

To evaluate whether the inferred drivers of flower herbivory 
patterns in space (model 5) also generate similar patterns in time, 
we used the 22 year time series of Dryas damage from Zackenberg, 
Greenland. Here, the fraction of Dryas flowers damaged per year in 
each of the six monitoring plots was modeled by logistic regression 
(model 6), using matching climatic descriptors as above (see Section 
2.3.5 above): mean air and soil temperatures for summer months 
(June–August) and mean soil temperature during the previous au-
tumn (September–November). To account for the 2 year develop-
ment of the most abundant herbivore species (Sympistis zetterstedtii 
(Staudinger, 1857), Lepidoptera: Noctuidae), we included time-
lagged versions of the summer and autumn soil temperatures, shifted 
either by a year or two. The autocorrelative effect of the response 
variable was also modeled by including time-lagged counts of dam-
aged flowers. Finally, we included the relative snow melt date of the 
monitoring plot in a given year (see Section 2.3.5 above). To account 
for repeated measures from the same plot, we introduced a random 
intercept at the level of the monitoring plot, and a random residual 
effect at the level of observations, to account for overdispersion.

Finally, to evaluate how the same climatic variables as above 
affected the abundance of key pollinators (muscid flies) over time, 
we fitted a generalized mixed-effects model to the number of flies 
caught per season per trapping station (model 7). As explanatory 
fixed factors we used the mean air and soil temperatures for the 
summer months (June–August), the mean soil temperature during 
the previous autumn (or early high-arctic winter; September–
November), and the 1 and 2 year time-lagged versions of summer 
and autumn soil temperatures (used to catch carry-over effects of 
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soil moisture and population trends). In addition to temperature vari-
ables, we included the relative snow melt date on the trapping sta-
tions, the trap type (window traps at one trapping station compared 
to pitfall traps at the other four), and the total number of trapping 
days, which varied slightly between years and trapping stations. To 
account for repeated measures from the same site, we introduced 
a random intercept at the level of the trapping station. To scale the 
residual variance to match a Poisson error distribution, we included 
an observation-level random intercept effect. To facilitate the inter-
pretation of the results, we also report the effect sizes by exponen-
tiation of the linear predictors, which gives the multiplicative change 
with every unit (here: with each standard deviation) increase in the 
explanatory variable.

All mixed-effects models (summarized in Table S4) were fitted 
with R (R Core Team, 2019) package lme4 (Bates, Mächler, Bolker, 
& Walker, 2014). We note that the modeling approach followed a 
clear-cut logical structure: for explanatory variables measured at the 
level of the sampling locality only (models 1–4), we modeled data at 
the site level only. Models 5–7 concern fractions of units observed 
sharing a particular fate. Model 5 includes plot-level flower numbers, 
possible local altitudinal gradients, and senescence data, which is 
why we explicitly modeled effects at both hierarchical levels (site 
and plot). Models 6 and 7 focus on data of an entirely different struc-
ture, as they were adopted from the Zackenberg time series data, 
with multiple hierarchical levels.

3  | RESULTS

Altogether, we collected 6,009 parasitoid specimens from the 19 
sampling locations across the Arctic (Figure S1a; Table S1; Supporting 
Information S1). Locations differed greatly in the number of parasi-
toid individuals caught during the trapping period (Figure S1b; Table 
S1; Supporting Information S1), a pattern partially explained by local 
weather conditions during the specific sampling days (Tables S1, S7, 
and S8). The success rates of parasitoid identification from molecular 
data were high (Table S1), with 93% of a total 4,699 samples yielding 
an identifiable DNA barcode sequence. In this material, we detected 
460 parasitoid OTUs, of which 80% (90% of successfully barcoded 
individuals) were attributable to a named genus. The proportion of 
taxa identified to levels above species did not vary systematically 
among sites.

3.1 | Climatic impacts on parasitoid community 
composition

We detected strong impacts of both mean climatic conditions and 
recent climatic change on the composition of parasitoid communities 
across the Arctic (for a summary, see Figure 1).

The colder the mean summer temperature at a site was, the larger 
was the proportion of Lepidoptera-using parasitoid species in its 
parasitoid species pools. On top of this, there was a stronger effect 

of climate change than of mean climate: parasitoid communities at 
sites experiencing recent warming in winter period demonstrated 
a low relative abundance of parasitoids of Lepidoptera. This pat-
tern was evident at the level of parasitoid species (OTUs; Figure 3a; 
Table 1: M1a) and suggested for individuals (Figure 3b; Table 1: M1b). 
Conversely, parasitoids of Diptera showed the opposite trend, with 
a larger fraction of Diptera-using parasitoid species in areas where 
winter temperatures have risen the most, while rate of temperature 
change in the summer period had a negative effect on the propor-
tion of Diptera-using parasitoid species (Figure 3c; Table 1: M2a). At 
the level of individuals, the rate of temperature change in the winter 
had the single largest explanatory effect on Diptera use (Figure 3d; 
Table 1: M2b). Both effect size and uncertainty were higher at the 
level of individuals than species.

In terms of parasitism strategies, the fraction of idiobiont 
species varied as hypothesized (question 3) among the parasit-
oids of Lepidoptera. On average, communities at warmer climates 
and at lower latitudes were characterized by a higher fraction of 
idiobionts. Yet, on top of this trend, areas that had experienced 
stronger increases in summer temperatures held more idiobiont 
species than expected based on their mean climate (Figure 4a; 
Table 1: M3a). At the level of individuals, the fraction of idiobionts 
was still restricted by low minimum temperatures, but increased 
more steeply with faster summer temperature changes than did 
the number of species (Figure 4b; Table 1: M3a). This suggests that 
a recent change in species abundances rather than a long-stand-
ing status quo is responsible for the observed pattern. As for the 
species proportions among parasitoids of Diptera, we detected no 
significant impact of climate on the fraction of idiobionts (Table 1: 
M4a). In the total pool of Diptera-using parasitoid individuals, the 
dominance of idiobionts quickly diminished toward warmer mean 
temperatures and areas where winter temperatures showed higher 
rates of increase.

3.2 | Herbivory levels across the Arctic

Across the Arctic, the fraction of Dryas flowers damaged by lepidop-
teran larvae varied substantially but was more closely associated with 
patterns of recent climate change than with the mean regional cli-
mate (for a summary, see Figure 1). A part of the variation observed 
in herbivory was attributable to the rate of summer temperature 
change (Table 2; Figure 5), while accounting for the effects of the al-
titude of the subplots and/or their abundance of flowers. Uncertainty 
with respect to the exact effect of summer temperature change was 
considerable (OR of 1 SD step [OR] 9.21, confidence limits 2–41).

3.3 | Temporal patterns of lepidopteran and 
dipteran host availability

Large-scale impacts of climatic variation in space were matched 
by impacts of year-to-year variation in the Zackenberg time series  
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(for a summary of patterns detected, see Figure 1). Here, Dryas 
damage by lepidopteran larvae increased significantly during sum-
mers with warm air temperatures (OR 1.82) and warm (dry) soils (OR 
1.44), which were preceded by warm summers (OR 2.72) and cold 
(snow-free) autumns affecting the previous generation of moths (OR 
0.28; Table 3; Figure 6). Furthermore, the level of flower damage 
was higher in early-melting, exposed plots (OR 0.51). The previous 
years' abundance of moth larvae had no detectable effect on the 
focal year's damage level.

The same environmental variables that were associated with 
high lepidopteran herbivore abundance in the Zackenberg time 

series were also related to decreases in the abundance of muscid 
flies (Figure 6c). Warmer air temperatures in the current summer 
were associated with low abundance of muscid flies, with a 13.4% 
reduction per centigrade. Also opposite to the patterns found for 
herbivory, muscid flies benefitted from consecutive years with 
warm autumn soils (i.e., soils insulated by snow: 10.2% and 10.5% 
per °C increase for the autumn preceding the previous year and 
the year before that, respectively; Table 4; Figure 6). Against ex-
pectation, a higher number of trapping days were associated with 
fewer individuals caught per season, with a 4% decrease for every 
additional week of trapping (28 trap days). The trends observed 

F I G U R E  4   Relationship between the functional community composition of the parasitoids of Lepidoptera as the fraction of idiobionts 
(y axes), the average of mean winter temperatures (x axes), and the rate of change in summer temperatures (with the three curves 
corresponding to the models estimates for low, mean, and high values occurring in the data, and the colored areas around them showing 
95% confidence intervals). Panel (a) shows the model-fitted effects of these variables on the fraction of idiobionts out of all species of 
primary parasitoids of Lepidoptera and panel (b) shows the same relationship, but for the fraction of idiobionts out of all individuals of 
primary parasitoids of Lepidoptera. The size of each data point is proportional to the number of (a) species or (b) individuals, respectively. 
The colors of data points represent the rate of summer temperature change at the respective locality (see legend on the right) 

(a) (b)

TA B L E  2   Factors affecting the fraction of Dryas flowers damaged by herbivores across arctic sites (Model 5; see Tables S3 and S4). 
Shown are coefficient estimates, standard errors, and 95% credible intervals for fixed effects. Rows show the full set of variables considered 
in model selection, whereas cell values identify estimates for terms retained on the basis of their QAICc values, with parameter estimates 
from the resulting, final model (see Section 2 for details). For this table, the values of explanatory variables have been standardized to a 
mean of 0 and an SD of 1. Variables for which no values are shown were not retained during model selection. The statistical significance of 
intercept and slope estimates is given as p value, with significant values (p < .05) highlighted in bold face

Response: Fraction of Dryas 
flowers eaten

Estimate

SE 95% CI

p value OR

OR 95% CI

Covariate Lower Upper Lower Upper

Intercept −4.59 0.57 −5.71 −3.48 <.0001

Winter temperature 0.15 0.67 −1.17 1.47 .828 1.16 0.31 4.34

Summer temperature

Winter precipitation

Summer precipitation

Winter temperature change

Summer temperature change 2.22 0.77 0.71 3.73 .004 9.21 2.03 41.74

Mean percentage of senescent 
flowers

−0.37 0.25 −0.86 0.13 .151 0.69 0.42 1.14

Altitude difference within from 
locality mean

−0.37 0.25 −0.86 0.13 .269 0.69 0.42 1.14

Log(flowers in the plot) −0.82 0.26 −1.32 −0.31 .001 0.44 0.27 0.73
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in muscid fly abundances were the same in both window and pit-
fall traps, suggesting that abundance rather than activity (e.g., the 
frequency with which flies walk on the ground) was effectively 
measured.

4  | DISCUSSION

In this study, we found a distinct imprint of climatic conditions on the 
parasitoid communities of the Arctic. A priori, we had hypothesized 

that the harsh arctic winter would be the main environmental fil-
ter dictating insect community composition (Section 1; Figure 1). In 
terms of host use, we found our hypothesis to be too simplistic. In 
terms of lifecycle strategies, warmer localities across the Arctic were 
characterized by parasitoid communities with a higher prevalence of 
the idiobiont parasitoid strategy, thus supporting the pattern found 
by Timms et al. (2016)—at least for parasitoids of Lepidoptera. Our 
second hypothesis, that recent climate change would already have 
affected parasitoid community composition proportionately to the 
magnitude and mode of the change, was indeed supported: We 

F I G U R E  5   The relationship between 
the fraction of flowers damaged by 
lepidopteran herbivores in Dryas plots and 
the rate of summer temperature change 
across arctic localities. The size of the 
marker illustrates the number of Dryas 
flowers in the survey plot. Color shades 
illustrate overlapping data points. 

TA B L E  3   Factors affecting the fraction of Dryas flowers damaged by herbivores in the Zackenberg time series (Model 6; Tables S3 and 
S4). Shown are coefficient estimates, standard errors of those estimates, 95% confidence intervals, and p values for fixed effects. To facilitate 
interpretation, estimates at the logit scale are also converted to odds ratios (OR) and associated confidence intervals. For this table, variable 
values have been standardized to a mean of 0 and an SD of 1. Variables for which no values are shown were dropped during model reduction. 
The statistical significance of intercept and slope estimates is given as p value, with significant values (p < .05) highlighted in bold face

Covariate Estimate

SE 95% CI

p value OR

OR 95% CI

Lower Upper Lower Upper

Intercept −4.14 0.23 −4.59 −3.69 <.0001

Summer air temperature 0.60 0.17 0.27 0.93 .0003 1.82 1.31 2.54

Summer soil temperature 0.37 0.16 0.04 0.69 .03 1.44 1.04 1.99

Summer soil temperature t-1 1.00 0.17 0.67 1.33 <.0001 2.72 1.95 3.79

Summer soil temperature t-2

Previous autumn soil temperature

Previous autumn soil temperature t-1

Previous autumn soil temperature t-2 −1.27 0.16 −1.59 −0.95 <.0001 0.28 0.20 0.39

Relative timing of snowmelt −0.67 0.22 −1.09 −0.25 .002 0.51 0.34 0.78

Flower damage t-1

Flower damage t-2
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F I G U R E  6   Temporal patterns in herbivory and pollinator abundances as observed at Zackenberg, Northeast Greenland. Panel a) shows 
chronological patterns in the level Dryas damage by Sympistis larvae and the abundance of muscid flies caught at Zackenberg. The solid 
lines show the actual mean peak percentage of damage recorded and the mean number of muscid flies caught in a trapping station during 
a summer season. The shaded areas show the confidence intervals of fitted values from models 6 and 7, respectively. The Dryas damage by 
lepidopteran larvae is shown separately for early plots (light green) and late plots (dark green). For comparison, surfaces in panels (b) and  
(c) illustrate the effects of two explanatory climatic variables shared between the two models: the air temperature during the focal summer 
and the soil temperature of the summer 2 years earlier, for Dryas damage and muscid fly abundance, respectively. Note that in panel  
(a), there is a gap in the line for muscid flies at year 2010. In this year, all arthropod samples were unfortunately and mysteriously lost in 
transit between Zackenberg and Aarhus, before being sorted, counted, or databased

(a)

(b) (c)

1,400

Autum
n m

ean soil tem
perature °C

 (t-2)

Autum
n m

ean soil tem
perature °C

 (t-2)

1,200

1,000

TA B L E  4   Factors affecting the number of muscid flies caught in yellow pitfalls across time at Zackenberg (Model 7; Tables S3 and S4). 
Shown are coefficient estimates, standard errors of those estimates, 95% confidence intervals, and p values for fixed effects. To facilitate 
interpretation, estimates at the log-scale are exponentiated and associated confidence intervals. For this table, variable values have been 
standardized to a mean of 0 and an SD of 1. Variables for which no values are shown were dropped during model reduction. The statistical 
significance of intercept and slope estimates is given as p value, with significant values (p < .05) highlighted in bold face

Covariate Estimate

SE 95% CI

p value eβ

OR 95% CI

Lower Upper Lower Upper

Intercept 6.38 0.05 6.28 6.48 <.0001

Summer air temperature −0.13 0.05 −0.22 −0.04 .006 0.88 0.80 0.96

Summer soil temperature

Summer soil temperature t-1 −0.08 0.06 −0.19 0.03 .13 0.92 0.82 1.03

Summer soil temperature t-2

Previous autumn soil temperature

Previous autumn soil temperature t-1 0.19 0.06 0.08 0.30 .0009 1.21 1.08 1.36

Previous autumn soil temperature t-2 0.18 0.05 0.07 0.28 .0007 1.19 1.08 1.32

Relative timing of snowmelt

Number of trap-days −0.09 0.05 −0.18 0.00 .043 0.91 0.83 1.00

Trap type
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found that localities which have experienced a faster rise in summer 
temperatures are currently dominated by parasitoids of Lepidoptera 
(question 2), exhibit a higher prevalence of idiobionts (question 3), 
and experience higher levels of herbivory (question 4; for a sum-
mary see Figure 1).We also detected a similar signal over time: in a 
22 year time series of herbivore damage and pollinator abundance in 
North-East Greenland, we found that higher summer temperatures, 
coupled with cold autumn soils, are linked with increased herbivory 
by lepidopteran larvae, and with declines in the abundance of dip-
teran pollinators. This suggests that rapid environmental change in 
the Arctic is increasing herbivory and reducing pollination of Dryas, a 
widespread plant species utilized by many arthropods. However, the 
effect of the total climate change on insects depends on the distri-
bution of warming effects between the summer and winter periods.

4.1 | Rapid summer warming changes prevailing 
host use

Our results demonstrate the impact of climate change on parasi-
toid communities through host associations, as patterns of recent 
changes override the much larger differences in the regional mean 
climate (question 1 vs. question 2). At the level of parasitoid spe-
cies numbers (OTU diversity), winters remaining cold coupled with 
warming summers were associated with a higher proportion of 
lepidopteran host use (Figure 3a), while the opposite was found for 
parasitoid use of Diptera (Figure 3c). At the level of parasitoid in-
dividuals (abundance), the effects proved more pronounced, with 
steeper slopes predicting communities consisting mainly of parasi-
toids of either Lepidoptera or Diptera at the extremes of our data 
range (Figure 3b,d). Our estimates (slopes) of such effects came with 
substantial uncertainty (i.e., wide confidence limits). One reason 
for this is likely the noise caused by the fact that we used a single 
proportion to characterize the local dominance of a given host use 
(individuals representing the focal parasitoid group out of all para-
sitoid individuals). In reality, this summary fraction is composed of 
individuals of several different taxa, which may differ substantially in 
species-specific abundances. Our focal parasitoid communities also 
include parasitoids of, for example, aphids or fungus gnats. Since 
such parasitoids can track the abundances of their hosts even within 
a season (Mukai & Kitajima, 2019; Nakata, 1995), they may occasion-
ally appear in great numbers (T. Kankaanpää, personal observation), 
thereby adding noise to local estimates.

How host-use composition ties into local community structure 
is illustrated by the time series collected at Zackenberg, Greenland. 
We found qualitatively similar responses of host taxa (Figure 6) to 
the same type of climatic variables, which were found to affect host 
use (Figure 3) in the large, pan-arctic data: warming summer time 
temperatures translate into increases in lepidopteran herbivory 
and decreases in the abundance of dipteran pollinators (Figure 1). 
Warmer autumn soil has the opposite effect of decreasing lepi-
dopteran herbivory and increasing muscid fly abundance. Together 
these factors result in opposing temporal population patterns in 

herbivore and pollinator populations (Figure 6a). For dipteran polli-
nators, and specifically for the muscid flies, part of the effects here 
attributed to soil temperatures is perhaps more likely reflective 
of other factors covarying with temperature, such as the amount 
of snow and more specifically soil water content during summer. 
Hence, soil temperature serves as a proxy of other corollaries of 
climate change. A more detailed analysis of the muscid fly commu-
nities at Zackenberg was provided by Loboda et al. (2018) and re-
viewed in Gillespie et al. (2019). Their species-specific assessment 
showed that some species fail to recover after bad years, thus alter-
ing the community composition. Such dynamics could explain why 
our family-level analysis underestimates fly abundances in the early 
years and overestimates them for the most recent years, and high-
lights the need for taxonomic resolution in examining community 
responses to environmental change. Reponses to soil water may 
also account for an added and somewhat counterintuitive pattern 
detected: that a higher number of trapping days were associated 
with fewer fly individuals caught per season. Here, the underlying 
reason is simple: long trapping seasons are generated by early snow 
melt. Thus, the relationship between time period and fly counts is 
not a causal one, but generated by an indirect association between 
the length of the local trapping season, the habitat, and the fly abun-
dances caught.

4.2 | Climate change effects on large spatial scales

The key insights delivered here build on a new type of space-for-time 
approach, where regions are characterized not only by different cli-
mates but also by the rate and mode of recent climate change, that is, 
a space-for-change approach. We further support these inferences 
by comparison of our spatial data with local time series (Figure 2). 
In support of our overall interpretation that recent climate change 
has affected the community composition of parasitoids, we stress 
two considerations emanating from this unique combination of data 
sources (Figure 2). First, the rate of temperature change during sum-
mer and winter explains more of the observed variation than does 
any metric of mean climatic conditions examined. Second, the time 
series data (Figure 2) corroborate the trends observed for two dif-
ferent host arthropod guilds (herbivores and pollinators) and pro-
duce a strikingly similar pattern of correlations with environmental 
variation.

Overall, the possibility of measuring climate change conse-
quences by comparing regions of contrasting recent climate changes 
histories offers hope for filling crucial knowledge gaps. Given the 
rapid changes in arctic climates, there is an urgent need for func-
tionally meaningful descriptions of parasitoid communities in the 
Arctic, and of arctic arthropod communities in general (Gillespie 
et al., 2020). Systematically collected long-term datasets of insect 
abundance from the Arctic are rare, limiting current insights into 
how climate change affects community structure, dynamics, and 
functioning. To our knowledge, temporal change in arctic parasitoid 
community composition over time has been assessed in only two 



     |  6291KANKAANPÄÄ et Al.

instances: by Fernandez-Triana et al. (2011) at Churchill, Canada and 
by Timms et al. (2013) on Ellesmere Island, Canada. The two stud-
ies found contrasting results, with the study by Fernandez-Triana 
et al. (2011) reporting high species turnover at a subarctic site, 
whereas Timms et al. (2013) observed practically no change in spe-
cies composition on an isolated island in the High Arctic. This pattern 
is in part expected also based on the sites' climate change histories, 
which Churchill having experienced faster change. However, these 
studies both made comparisons across datasets resulting from dif-
ferent methodologies, limiting their analysis to a presence/absence 
approach. The functional consequences of these two different com-
munity level responses remain unknown, but we believe that future 
studies utilizing the space-for-time approach presented here may 
help resolve them.

4.3 | Both mean climate and recent change shape 
functional community composition

In our exploration of parasitoid community structure, we targeted 
two different aspects of community composition among the para-
sitoids of Lepidoptera: the proportion of idiobiont species, which is 
likely to change more slowly over time, and the proportion of idi-
obiont individuals, which can change at a timescale of only some 
year(s) (Figure 1). We show that against the backdrop set by regional 
climate, the idiobiont strategy is more common than expected in 
rapidly warming areas. We interpret this as a sign of recent commu-
nity change (question 3). While ideally we would have validated this 
finding against changes over time in the Zackenberg time series, this 
remains out of reach—as the Zackenberg samples remain to be iden-
tified to a taxonomic level allowing assignment of taxa to idiobionts 
versus koinobionts (but see Ji et al., 2019).

In terms of responses at species level, differential responses 
among idiobionts and koinobionts are consistent with what we know 
about their biology. As such, the number of idiobiont species drops 
more sharply with winter temperature than does the number of 
koinobiont species (Quicke, 2012; Timms et al., 2016). This pattern 
fits well with the trade-offs association with parasitoid life-history 
strategies, where some koinobionts benefit from the sheltered over-
wintering burrows of their hosts. This effect was found in taxa par-
asitizing predominantly Lepidoptera, whereas such trends were not 
detected in the dominance of idiobiont species within the species 
pool of Diptera-using parasitoids. Such a contrast makes sense, as 
dipteran larvae tend to relatively less mobile, and will hardly spend 
much time seeking for suitable sites for pupation. Thus, koinobiont 
and idiobiont parasitoids of Diptera may be faced with approximately 
the same overwintering conditions. The strong negative response to 
winter warming observed in the proportion of idiobiont individuals 
among parasitoids of Diptera is likely explainable by stronger associ-
ations between parasitism strategy and different host lifestyles. As 
an example, the most abundant parasitoids of fungus gnats (Diptera: 
Mycetophilidae) are koinobiont. Thus, among parasitoids of Diptera, 
host abundance changes are liable to override the independent 

effect of parasitism strategy, unlike in Lepidoptera-using parasitoids, 
in which koino- and idiobiont species commonly share host species 
(in our dataset).

In terms of responses at the population level among the parasit-
oids of Lepidoptera, winter temperature was a key driver restricting 
the relative abundance of idiobionts. However, recent changes in cli-
matic conditions emerged as a potent force overriding mean condi-
tions. The more a location has warmed during the past 18 years, the 
higher the fraction of idiobiont lepidopteran parasitoids—relative to 
what would be expected based on the regional mean climate. The 
trend is likely explained by species traits associated with koino- or 
idiobiontism. Not only will warming winters favor idiobiont survival 
(Hance et al., 2007) but also an increase in the summer tempera-
tures may improve their host searching (Gu & Dorn, 2001; Menon, 
Flinn, & Dover, 2002). In contrast, koinobionts are more likely to 
suffer from phenological mismatches with their hosts as the time 
windows conducive to development get shorter (Duan, Jennings, 
Williams, & Larson, 2014; Van Nouhuys & Lei, 2004). Warming may 
also disrupt host immunosuppression, on which species with a koi-
nobiont lifestyle rely (Seehausen et al., 2016; Seehausen, Régnière, 
Martel, & Smith, 2017). This would lower the overall mortality to 
parasitism, but also disproportionately affect koinobionts. All in all, 
we consider the idiobiont-to-koinobiont ratio to be an accurate, tem-
perature-sensitive metric for tracking functional community change 
among parasitoid communities.

4.4 | Determinants of herbivory in the Arctic

Judging from both the large-scale data and the especially the local 
Zackenberg time series, our results point to increasing arctic her-
bivory with warming summers (question 4) and the opposite with 
warming winters. These findings are consistent with those from 
a pan-arctic survey of background leaf herbivory, which revealed 
summer temperature as a key driver of insect herbivory levels 
across the whole arctic plant community (Rheubottom et al., 2019) 
although with large variability. This pattern was previously ob-
served in more detailed study on dwarf birches (Betula glandulosa-
nana complex; Barrio et al., 2017). Contrasting with our results, the 
largest effects in that study were found at locations with warm-
est mean temperatures. This difference may perhaps be due to 
contrasting features in the plant–herbivore systems examined. 
For the dwarf birch system, a positive correlation between snow 
cover and levels of herbivory has been suggested (Torp, Olofsson, 
Witzell, & Baxter, 2010). In contrast, for Dryas, herbivores seem 
to benefit from snow-free conditions, either directly due to lower 
energy consumption during overwintering (Bowden et al., 2015) 
or indirectly due to a prolonged growing season. Furthermore, the 
latitudinal abundance patterns of Dryas and Betula are contrasting: 
as, with Dryas increasing northwards, and Betula declining. Finally, 
the primary herbivores of Dryas are Lepidoptera (which presum-
ably decline in number northward), whereas dwarf birches host 
various herbivore taxa, some of which remain relatively diverse 
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and abundant at higher latitudes (i.e., sawflies; Kouki et al., 1994). 
In conclusion, climate change may have different consequences for 
different plant–herbivore systems, depending on the relative ef-
fects of temperature, snow, and precipitation. This complexity may 
explain why effects of summer warming were not as clear across 
the Arctic as they were in a single locality experiencing particular 
type of change.

We reveal a joint impact of mean climate and recent climate 
change, with important repercussions for arctic ecosystem func-
tioning. Consistent with the general pattern of a community shift 
from dipteran to lepidopteran host use with a change in climate, 
we show that the same climatic factors that benefit lepidopteran 
herbivores are detrimental to dipteran pollinators. As our results 
are mostly derived from relatively undisturbed arctic sites, they 
offer a rare view of climate-driven processes largely untainted by 
other (anthropogenic) impacts. As such, they provide insights into 
climate-driven effects on biotic interactions, and point to a general 
instability of community structure and to increasing trends in herbi-
vore damage. We thus call for further arthropod community studies 
in the Arctic, to better understand community-level impacts at the 
leading edge of climate change. In addition, we highlight the benefit 
of using distributed study designs drawing on a network of collabo-
rators, thereby allowing standardized sampling across diverse field 
sites.

ACKNOWLEDG EMENTS
We are grateful for data from the Greenland Ecosystem Monitoring 
Programme provided by the Department of Bioscience, Aarhus 
University, Denmark, in collaboration with Greenland Institute 
of Natural Resources, Nuuk, Greenland, and the Department of 
Biology, University of Copenhagen, Denmark, and data from the 
Greenland Ecosystem Monitoring Programme provided by Asiaq—
Greenland Survey, Nuuk, Greenland. We acknowledge CSC–IT 
Center for Science Ltd., Espoo, Finland, for the allocation of com-
putational resources. Rósa Erlendsdóttir kindly provided access 
to the sampling site in Votilækur, Iceland. We thank Marie-Andree 
Giroux and Kristen Peck for their assistance in Igloolik and Marjo 
Kilpinen, Eija Takala and Emma Hakanen for their hard work in the 
laboratory. We gratefully acknowledge funding from the Academy 
of Finland (grants 276909, 285803 to T.R., and 276671 to M.V.K.), 
Nessling Foundation (grants 201700420, 201600034, 201500090 
to T.K.), Jane and Aatos Erkko Foundation, Societas pro Fauna 
et Flora Fennica, The Danish Environmental Protection Agency 
(N.M.S.), French Polar Institute-IPEV (program “Interactions 1036” 
to O.G. and B.S.), INTERACT, Russian Foundation for Basic Research 
(grant 18-05-60261 to A.S. and N.S.), Research Council of Norway 
(grant 249902/F20), the Natural Sciences and Engineering Research 
Council of Canada (PGS-D award to S.K.M., CGS-D award to 
A.M.S., Discovery Grant to J.B.), Churchill Northern Studies Centre 
(Northern Research Fund Award to A.M.S. and M.P.), Canadian Polar 
Commission (Northern Scientific Training Program Award to D.L.B., 
K.H.I.D., S.K.M., A.M.S., and M.P.), ArcticNet, Polar Continental 
Shelf Project, Parks Canada, Fonds Québécois de Recherche 

- Nature et Technologies, Polar Knowledge Canada, Entomological 
Society of Canada, University of Guelph. The Icelandic Research 
Fund (Rannsóknasjóður, grant nr 152468-051 to I.C.B.). Thanks to 
PhyloPic contributors Gareth Monger and Melissa Broussard.

DATA AVAIL ABILIT Y S TATEMENT
The data collected for this publication by the authors are available 
in the accompanying Dryad dataset (https://doi.org/10.5061/dryad.
xgxd2 54dk). All environmental data are included in the Dryad sub-
mission in the format used in analyses. The data used to describe 
the multidecadal mean climatic conditions were obtained from data 
available at https://www.world clim.org. The temperature change 
data were derived from dataset https://doi.org/10.5067/MODIS/ 
MOD11 C3.006, which is available at https://lpdaac.usgs.gov/. Data 
produced in the Zackenberg monitoring program are available at 
https://data.g-e-m.dk.

ORCID
Tuomas Kankaanpää  https://orcid.org/0000-0003-3269-0299 
Eero Vesterinen  https://orcid.org/0000-0003-3665-5802 
Niels M. Schmidt  https://orcid.org/0000-0002-4166-6218 
Paul E. Aspholm  https://orcid.org/0000-0002-6352-1781 
Isabel C. Barrio  https://orcid.org/0000-0002-8120-5248 
Tone Birkemoe  https://orcid.org/0000-0002-4692-6154 
Katherine H. I. Drotos  https://orcid.org/0000-0003-3983-2958 
Dorothee Ehrich  https://orcid.org/0000-0002-3028-9488 
Olivier Gilg  https://orcid.org/0000-0002-9083-4492 
Toke T. Høye  https://orcid.org/0000-0001-5387-3284 
Mikhail V. Kozlov  https://orcid.org/0000-0002-9500-4244 
Jean-Claude Kresse  https://orcid.org/0000-0002-5978-2073 
Spencer K. Monckton  https://orcid.org/0000-0002-9879-9118 
Ruben E. Roos  https://orcid.org/0000-0002-1580-6424 
Katrine Raundrup  https://orcid.org/0000-0002-2110-3709 
Aleksandr Sokolov  https://orcid.org/0000-0002-1521-3856 
Natalia Sokolova  https://orcid.org/0000-0002-6692-4375 
Anna M. Solecki  https://orcid.org/0000-0003-4717-7674 
Tomas Roslin  https://orcid.org/0000-0002-2957-4791 

R E FE R E N C E S
Abermann, J., Hansen, B., Lund, M., Wacker, S., Karami, M., & Cappelen, J. 

(2017). Hotspots and key periods of Greenland climate change during 
the past six decades. Ambio, 46(s1), 3–11. https://doi.org/10.1007/
s1328 0-016-0861-y

Ahola, M., & Silvonen, K. (2005). Larvae of Northern European Noctuidae. 
Vaasa, Finland: Kuvaseppälä Yhtiöt Oy.

Ammunét, T., Kaukoranta, T., Saikkonen, K., Repo, T., & Klemola, T. 
(2012). Invading and resident defoliators in a changing climate: 
Cold tolerance and predictions concerning extreme winter cold as a 
range-limiting factor. Ecological Entomology, 37(3), 212–220. https://
doi.org/10.1111/j.1365-2311.2012.01358.x

Askew, R. R., & Shaw, M. R. (1986). Parasitoid communities: Their size, 
structure and development. In J. Waage & D. Greathead (Eds.), Insect 
parasitoids (pp. 225–264). London, UK: Academic Press.

Auw, A. N. P. (2007). Collapse of a pollination web in small conserva-
tion areas. Ecology, 88(7), 1759–1769. https://doi.org/10.1890/06- 
1383.1

https://doi.org/10.5061/dryad.xgxd254dk
https://doi.org/10.5061/dryad.xgxd254dk
https://www.worldclim.org
https://doi.org/10.5067/MODIS/MOD11C3.006
https://doi.org/10.5067/MODIS/MOD11C3.006
https://lpdaac.usgs.gov/
https://data.g-e-m.dk
https://orcid.org/0000-0003-3269-0299
https://orcid.org/0000-0003-3269-0299
https://orcid.org/0000-0003-3665-5802
https://orcid.org/0000-0003-3665-5802
https://orcid.org/0000-0002-4166-6218
https://orcid.org/0000-0002-4166-6218
https://orcid.org/0000-0002-6352-1781
https://orcid.org/0000-0002-6352-1781
https://orcid.org/0000-0002-8120-5248
https://orcid.org/0000-0002-8120-5248
https://orcid.org/0000-0002-4692-6154
https://orcid.org/0000-0002-4692-6154
https://orcid.org/0000-0003-3983-2958
https://orcid.org/0000-0003-3983-2958
https://orcid.org/0000-0002-3028-9488
https://orcid.org/0000-0002-3028-9488
https://orcid.org/0000-0002-9083-4492
https://orcid.org/0000-0002-9083-4492
https://orcid.org/0000-0001-5387-3284
https://orcid.org/0000-0001-5387-3284
https://orcid.org/0000-0002-9500-4244
https://orcid.org/0000-0002-9500-4244
https://orcid.org/0000-0002-5978-2073
https://orcid.org/0000-0002-5978-2073
https://orcid.org/0000-0002-9879-9118
https://orcid.org/0000-0002-9879-9118
https://orcid.org/0000-0002-1580-6424
https://orcid.org/0000-0002-1580-6424
https://orcid.org/0000-0002-2110-3709
https://orcid.org/0000-0002-2110-3709
https://orcid.org/0000-0002-1521-3856
https://orcid.org/0000-0002-1521-3856
https://orcid.org/0000-0002-6692-4375
https://orcid.org/0000-0002-6692-4375
https://orcid.org/0000-0003-4717-7674
https://orcid.org/0000-0003-4717-7674
https://orcid.org/0000-0002-2957-4791
https://orcid.org/0000-0002-2957-4791
https://doi.org/10.1007/s13280-016-0861-y
https://doi.org/10.1007/s13280-016-0861-y
https://doi.org/10.1111/j.1365-2311.2012.01358.x
https://doi.org/10.1111/j.1365-2311.2012.01358.x
https://doi.org/10.1890/06-1383.1
https://doi.org/10.1890/06-1383.1


     |  6293KANKAANPÄÄ et Al.

Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on 
Earth. Proceedings of the National Academy of Sciences of the United 
States of America, 115(25), 6506–6511. https://doi.org/10.1073/
pnas.17118 42115

Barrio, I. C., Lindén, E., Te Beest, M., Olofsson, J., Rocha, A., Soininen, 
E. M., … Kozlov, M. V. (2017). Background invertebrate herbivory on 
dwarf birch (Betula glandulosa-nana complex) increases with tem-
perature and precipitation across the tundra biome. Polar Biology, 
40(11), 2265–2278. https://doi.org/10.1007/s0030 0-017-2139-7

Barton, K. (2016). MuMIn: Multi-model inference. R package.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear 

mixed-effects models using lme4. ArXiv, 67(1), 51. https://doi.org/ 
10.18637/ jss.v067.i01

Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M., & Henry, 
G. H. R. (2015). Contrasting effects of warming and increased snow-
fall on Arctic tundra plant phenology over the past two decades. 
Global Change Biology, 21(12), 4651–4661. https://doi.org/10.1111/
gcb.13051

Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., & Ferrier, S. 
(2013). Space can substitute for time in predicting climate-change ef-
fects on biodiversity. Proceedings of the National Academy of Sciences 
of the United States of America, 110(23), 9374–9379. https://doi.
org/10.1073/pnas.12202 28110

Böcher, J., Kristensen, N. P., & Pope, T. (2015). Chapter 11, Hymenoptera; 
chapter 17.27, Calliphoridae, Oestridae, Tachinidae. In L. Vilhelmsen 
(Ed.), Fauna Entomologica Scandinavica/The Greenland Entomofauna, 
an identification manual of insects, spiders and their allies (pp. 155–156; 
658–664). Leiden, The Netherlands/Boston, MA: Brill.

Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B., & Visser, M. 
E. (2009). Climate change and unequal phenological changes across 
four trophic levels: Constraints or adaptations? The Journal of Animal 
Ecology, 78(1), 73–83. https://doi.org/10.1111/j.1365-2656.2008. 
01458.x

Bowden, J. J., Eskildsen, A., Hansen, R. R., Olsen, K., Kurle, C. M., & 
Høye, T. T. (2015). High-Arctic butterflies become smaller with ris-
ing temperatures. Biology Letters, 11(10), 20150574. https://doi.
org/10.1098/rsbl.2015.0574

Damgaard, C. (2019). A critique of the space-for-time substitution prac-
tice in community ecology. Trends in Ecology & Evolution, 34(5), 416–
421. https://doi.org/10.1016/j.tree.2019.01.013

de Sassi, C., Tylianakis, J. M., Chapin, F., Zavaleta, E., Eviner, V., Naylor, R., 
… Takanashi, M. (2012). Climate change disproportionately increases 
herbivore over plant or parasitoid biomass. PLoS One, 7(7), e40557. 
https://doi.org/10.1371/journ al.pone.0040557

Duan, J. J., Jennings, D. E., Williams, D. C., & Larson, K. M. (2014). 
Patterns of parasitoid host utilization and development across a 
range of temperatures: Implications for biological control of an inva-
sive forest pest. BioControl, 59(6), 659–669. https://doi.org/10.1007/
s1052 6-014-9604-9

Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Fosaa, A. M., Gould, W. 
A., Hermanutz, L., … Walker, M. D. (2015). Experiment, monitoring, 
and gradient methods used to infer climate change effects on plant 
communities yield consistent patterns. Proceedings of the National 
Academy of Sciences of the United States of America, 112(2), 448–452. 
https://doi.org/10.1073/pnas.14100 88112

Fernandez-Triana, J., Smith, M. A., Boudreault, C., Goulet, H., Hebert, P. 
D. N., Smith, A. C., & Roughley, R. (2011). A poorly known high-lati-
tude parasitoid wasp community: Unexpected diversity and dramatic 
changes through time. PLoS One, 6(8), 2–9. https://doi.org/10.1371/
journ al.pone.0023719

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial reso-
lution climate surfaces for global land areas. International Journal of 
Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Gillespie, M. A. K., Alfredsson, M., Barrio, I. C., Bowden, J. J., Convey, 
P., Culler, L. E., … Høye, T. T. (2020). Status and trends of terrestrial 

arthropod abundance and diversity in the North Atlantic region of 
the Arctic. Ambio, 49(3), 718–731. https://doi.org/10.1007/s1328 
0-019-01162 -5

Godfray, H. C. J. (1994). Monographs in behavior and ecology; parasit-
oids: Behavioral and evolutionary ecology. Princeton, NJ: Princeton 
University Press.

Gu, H., & Dorn, S. (2001). How do wind velocity and light intensity influence 
host-location success in Cotesia glomerata (Hym., Braconidae)? Journal 
of Applied Entomology, 125(3), 115–120. https://doi.org/10.1046/ 
j.1439-0418.2001.00520.x

Habel, J. C., Segerer, A., Ulrich, W., Torchyk, O., Weisser, W. W., & 
Schmitt, T. (2016). Butterfly community shifts over two centuries. 
Conservation Biology, 30(4), 754–762. https://doi.org/10.1111/cobi. 
12656

Hance, T., van Baaren, J., Vernon, P., & Boivin, G. (2007). Impact of ex-
treme temperatures on parasitoids in a climate change perspec-
tive. Annual Review of Entomology, 52(1), 107–126. https://doi.org/ 
10.1146/annur ev.ento.52.110405.091333

Hassell, M. P. (2000). Host–parasitoid population dynamics. Journal of 
Animal Ecology, 69, 543–566. https://doi.org/10.1046/j.1365-2656. 
2000.00445.x

Hawkins, B. A. (2005). Pattern and process in host–parasitoid interactions. 
Cambridge, UK: Cambridge University Press.

Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The 
distributions of a wide range of taxonomic groups are expand-
ing polewards. Global Change Biology, 12(3), 450–455. https://doi.
org/10.1111/j.1365-2486.2006.01116.x

Høye, T. T., & Culler, L. E. (2018). Tundra arthropods provide key insights 
into ecological responses to environmental change. Polar Biology, 
41(8), 1523–1529. https://doi.org/10.1007/s0030 0-018-2370-x

Høye, T. T., Eskildsen, A., Hansen, R. R., Bowden, J. J., Schmidt, N. M., 
& Kissling, W. D. (2014). Phenology of high-arctic butterflies and 
their floral resources: Species-specific responses to climate change. 
Current Zoology, 60(2), 243–251. https://doi.org/10.1093/czool o/ 
60.2.243

Høye, T. T., & Forchhammer, M. C. (2008). The influence of weather con-
ditions on the activity of high-arctic arthropods inferred from long-
term observations. BMC Ecology, 8(1), 8. https://doi.org/10.1186/ 
1472-6785-8-8

Hunter, M. D., Kozlov, M. V., Itämies, J., Pulliainen, E., Bäck, J., Kyrö, E. 
M., & Niemelä, P. (2014). Current temporal trends in moth abundance 
are counter to predicted effects of climate change in an assemblage 
of subarctic forest moths. Global Change Biology, 20(6), 1723–1737. 
https://doi.org/10.1111/gcb.12529

IPCC. (2007). Climate change 2007: Synthesis report. Contribution of 
working groups I, II and III to the fourth assessment report of the 
Intergovernmental Panel on Climate Change [Core Writing Team, R. K. 
Pachauri, & A. Reisinger (Eds.)]. Geneva, Switzerland: IPCC, 10.

Jepsen, J. U., Kapari, L., Hagen, S. B., Schott, T., Vindstad, O. P. L., Nilssen, 
A. C., & Ims, R. A. (2011). Rapid northwards expansion of a forest 
insect pest attributed to spring phenology matching with sub-Arc-
tic birch. Global Change Biology, 17(6), 2071–2083. https://doi.
org/10.1111/j.1365-2486.2010.02370.x

Ji, Y., Huotari, T., Roslin, T., Martin-Schmidt, N., Wang, J., Yu, D., & 
Ovaskainen, O. (2019). SPIKEPIPE: A metagenomic pipeline for 
the accurate quantification of eukaryotic species occurrences and 
abundances using DNA barcodes or mitogenomes. BioRxiv, 533737. 
https://doi.org/10.1101/533737

Kaunisto, K. M., Roslin, T., Sääksjärvi, I. E., & Vesterinen, E. J. (2017). 
Pellets of proof: First glimpse of the dietary composition of adult 
odonates as revealed by metabarcoding of feces. Ecology and 
Evolution, 7(20), 8588–8598. https://doi.org/10.1002/ece3.3404

Kerr, J. T., Vincent, R., & Currie, D. J. (1998). Lepidopteran richness 
patterns in North America. Écoscience, 5(4), 448–453. https://doi.
org/10.1080/11956 860.1998.11682483

https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1007/s00300-017-2139-7
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/gcb.13051
https://doi.org/10.1111/gcb.13051
https://doi.org/10.1073/pnas.1220228110
https://doi.org/10.1073/pnas.1220228110
https://doi.org/10.1111/j.1365-2656.2008.01458.x
https://doi.org/10.1111/j.1365-2656.2008.01458.x
https://doi.org/10.1098/rsbl.2015.0574
https://doi.org/10.1098/rsbl.2015.0574
https://doi.org/10.1016/j.tree.2019.01.013
https://doi.org/10.1371/journal.pone.0040557
https://doi.org/10.1007/s10526-014-9604-9
https://doi.org/10.1007/s10526-014-9604-9
https://doi.org/10.1073/pnas.1410088112
https://doi.org/10.1371/journal.pone.0023719
https://doi.org/10.1371/journal.pone.0023719
https://doi.org/10.1002/joc.5086
https://doi.org/10.1007/s13280-019-01162-5
https://doi.org/10.1007/s13280-019-01162-5
https://doi.org/10.1046/j.1439-0418.2001.00520.x
https://doi.org/10.1046/j.1439-0418.2001.00520.x
https://doi.org/10.1111/cobi.12656
https://doi.org/10.1111/cobi.12656
https://doi.org/10.1146/annurev.ento.52.110405.091333
https://doi.org/10.1146/annurev.ento.52.110405.091333
https://doi.org/10.1046/j.1365-2656.2000.00445.x
https://doi.org/10.1046/j.1365-2656.2000.00445.x
https://doi.org/10.1111/j.1365-2486.2006.01116.x
https://doi.org/10.1111/j.1365-2486.2006.01116.x
https://doi.org/10.1007/s00300-018-2370-x
https://doi.org/10.1093/czoolo/60.2.243
https://doi.org/10.1093/czoolo/60.2.243
https://doi.org/10.1186/1472-6785-8-8
https://doi.org/10.1186/1472-6785-8-8
https://doi.org/10.1111/gcb.12529
https://doi.org/10.1111/j.1365-2486.2010.02370.x
https://doi.org/10.1111/j.1365-2486.2010.02370.x
https://doi.org/10.1101/533737
https://doi.org/10.1002/ece3.3404
https://doi.org/10.1080/11956860.1998.11682483
https://doi.org/10.1080/11956860.1998.11682483


6294  |     KANKAANPÄÄ et Al.

Kevan, P. G. (1972). Insect pollination of high arctic flowers. Journal of 
Ecology, 60(3), 831–847. 

Klapwijk, M. J., Csóka, G., Hirka, A., & Björkman, C. (2013). Forest insects 
and climate change: Long-term trends in herbivore damage. Ecology 
and Evolution, 3(12), 4183–4196. https://doi.org/10.1002/ece3.717

Koltz, A. M., Schmidt, N. M., & Høye, T. T. (2018). Differential arthro-
pod responses to warming are altering the structure of Arctic 
communities. Royal Society Open Science, 5(4), 171503. https://doi.
org/10.1098/rsos.171503

Körner, C. (2007). The use of “altitude” in ecological research. Trends 
in Ecology & Evolution, 22(11), 569–574. https://doi.org/10.1016/j.
tree.2007.09.006

Kouki, J., Niemelä, P., & Viitasaari, M. (1994). Reverse latitudinal gradient 
in species richness of sawflies (Hymenoptera: Symphyta). Annales 
Zoologici Fennici, 31, 83–88.

Lebreton, J.-D., Burnham, K. P., Clobert, J., & Anderson, D. R. (1992). 
Modeling survival and testing biological hypotheses using marked 
animals: A unified approach with case studies. Ecological Monographs, 
62(1), 67–118. https://doi.org/10.2307/2937171

Letourneau, D. K., Jedlicka, J. A., Bothwell, S. G., & Moreno, C. R. (2009). 
Effects of natural enemy biodiversity on the suppression of arthro-
pod herbivores in terrestrial ecosystems. Annual Review of Ecology, 
Evolution, and Systematics, 40(1), 573–592. https://doi.org/10.1146/
annur ev.ecols ys.110308.120320

Loboda, S., Savage, J., Buddle, C. M., Schmidt, N. M., & Høye, T. T. (2018). 
Declining diversity and abundance of High Arctic fly assemblages 
over two decades of rapid climate warming. Ecography, 41(2), 265–
277. https://doi.org/10.1111/ecog.02747

Lund, M., Raundrup, K., Westergaard-Nielsen, A., López-Blanco, E., 
Nymand, J., & Aastrup, P. (2017). Larval outbreaks in West Greenland: 
Instant and subsequent effects on tundra ecosystem productivity 
and CO2 exchange. Ambio, 46, 26–38. https://doi.org/10.1007/s1328 
0-016-0863-9

Maunsell, S. C., Kitching, R. L., Burwell, C. J., & Morris, R. J. (2015). 
Changes in host-parasitoid food web structure with elevation. Journal 
of Animal Ecology, 84(2), 353–363. https://doi.org/10.1111/1365- 
2656.12285

Memmott, J., Craze, P. G., Waser, N. M., & Price, M. V. (2007). Global warm-
ing and the disruption of plant-pollinator interactions. Ecology Letters, 
10(8), 710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x

Menéndez, R., Megías, A. G., Hill, J. K., Braschler, B., Willis, S. G., 
Collingham, Y., … Thomas, C. D. (2006). Species richness changes 
lag behind climate change. Proceedings of the Royal Society B: 
Biological Sciences, 273(1593), 1465–1470. https://doi.org/10.1098/
rspb.2006.3484

Menon, A., Flinn, P. W., & Dover, B. A. (2002). Influence of temperature on 
the functional response of Anisopteromalus calandrae (Hymenoptera: 
Pteromalidae), a parasitoid of Rhyzopertha dominica (Coleoptera: 
Bostrichidae). Journal of Stored Products Research, 38(5), 463–469. 
https://doi.org/10.1016/S0022 -474X(01)00050 -9

Mukai, H., & Kitajima, H. (2019). Parasitoid wasps regulate population 
growth of fungus gnats genus Neoempheria Osten Sacken (Diptera: 
Mycetophilidae) in shiitake mushroom cultivation. Biological Control, 
134(March), 15–22. https://doi.org/10.1016/j.bioco ntrol.2019.03.016

Nakata, T. (1995). Population fluctuations of aphids and their natural en-
emies on potato in Hokkaido, Japan. Applied Entomology and Zoology, 
30(1), 129–138. https://doi.org/10.1303/aez.30.129

Panchen, Z. A., & Gorelick, R. (2015). Flowering and fruiting responses 
to climate change of two Arctic plant species, purple saxifrage 
(Saxifraga oppositifolia) and mountain avens (Dryas integrifolia). Arctic 
Science, 1(2), 45–58. https://doi.org/10.1139/as-2015-0016

Parmesan, C. (2006). Ecological and evolutionary responses to recent 
climate change. Annual Review of Ecology, Evolution, and Systematics, 
37(1), 637–669. https://doi.org/10.1146/annur ev.ecols ys.37.091305. 
110100

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of cli-
mate change impacts across natural systems. Nature, 421(6918), 
37–42. https://doi.org/10.1038/natur e01286

Post, E., & Pedersen, C. (2008). Opposing plant community responses 
to warming with and without herbivores. Proceedings of the National 
Academy of Sciences of the United States of America, 105(34), 12353–
12358. https://doi.org/10.1073/pnas.08024 21105

Prevéy, J., Vellend, M., Rüger, N., Hollister, R. D., Bjorkman, A. D., Myers-
Smith, I. H., … Rixen, C. (2017). Greater temperature sensitivity of 
plant phenology at colder sites: Implications for convergence across 
northern latitudes. Global Change Biology, 23(7), 2660–2671. https://
doi.org/10.1111/gcb.13619

Price, P. W. (1972). Parasitoids utilizing the same host: Adaptive nature 
of differences in size and form. Ecology, 53(1), 190–195. https://doi.
org/10.2307/1935729

Quicke, D. L. J. (2012). We know too little about parasitoid wasp distribu-
tions to draw any conclusions about latitudinal trends in species rich-
ness, body size and biology. PLoS One, 7(2). https://doi.org/10.1371/
journ al.pone.0032101

Quicke, D. L. J. (2015). The braconid and ichneumonid parasitoid wasps: 
Biology, systematics, evolution and ecology. Chichester, UK: John 
Wiley & Sons Ltd.

R Core Team. (2019). R: A language and environment for statistical comput-
ing. Retrieved from https://www.r-proje ct.org/

Rafferty, N. E. (2017). Effects of global change on insect pollinators: 
Multiple drivers lead to novel communities. Current Opinion in Insect 
Science, 23, 22–27. https://doi.org/10.1016/j.cois.2017.06.009

Rheubottom, S. I., Barrio, I. C., Kozlov, M. V., Alatalo, J. M., Andersson, 
T., Asmus, A. L., … Hik, D. S. (2019). Hiding in the background: 
Community-level patterns in invertebrate herbivory across the tun-
dra biome. Polar Biology, 42(10), 1881–1897. https://doi.org/10.1007/
s0030 0-019-02568 -3

Rita, H., & Komonen, A. (2008). Odds ratio: An ecologically sound tool to 
compare proportions. Annales Zoologici Fennici, 45(1), 66–72.

Romero, G. Q., Gonçalves-Souza, T., Kratina, P., Marino, N. A. C., 
Petry, W. K., Sobral-Souza, T., & Roslin, T. (2018). Global preda-
tion pressure redistribution under future climate change. Nature 
Climate Change, 8(12), 1087–1091. https://doi.org/10.1038/s4155 
8-018-0347-y

Scarpitta, A. B., Vissault, S., & Vellend, M. (2019). Four decades of 
plant community change along a continental gradient of warming. 
Global Change Biology, 25(5), 1629–1641. https://doi.org/10.1111/
gcb.14568

Schleuning, M., Fründ, J., Klein, A.-M., Abrahamczyk, S., Alarcón, R., 
Albrecht, M., … Blüthgen, N. (2012). Specialization of mutual-
istic interaction networks decreases toward tropical latitudes. 
Current Biology, 22(20), 1925–1931. https://doi.org/10.1016/j.
cub.2012.08.015

Schmidt, N. M., Hansen, L. H., Hansen, J., Berg, T., & Meltofte, H. 
(2016). Zackenberg ecological research operations: BioBasis manual – 
Conceptual design and sampling procedures of the biological monitoring 
programme within Zackenberg Basic (19th ed.). Denmark: Roskilde.

Schmidt, N. M., Hardwick, B., Gilg, O., Høye, T. T., Krogh, P. H., Meltofte, 
H., … Roslin, T. (2017). Interaction webs in arctic ecosystems: 
Determinants of arctic change? Ambio, 46(S1), 12–25. https://doi.
org/10.1007/s1328 0-016-0862-x

Schmidt, N. M., Mosbacher, J. B., Nielsen, P. S., Rasmussen, C., Høye, T. 
T., & Roslin, T. (2016). An ecological function in crisis? The tempo-
ral overlap between plant flowering and pollinator function shrinks 
as the Arctic warms. Ecography, 39(12), 1250–1252. https://doi.
org/10.1111/ecog.02261

Seehausen, M. L., Cusson, M., Régnière, J., Bory, M., Stewart, D., 
Djoumad, A., … Martel, V. (2016). High temperature induces down-
regulation of polydnavirus gene transcription in lepidopteran host 
and enhances accumulation of host immunity gene transcripts. 

https://doi.org/10.1002/ece3.717
https://doi.org/10.1098/rsos.171503
https://doi.org/10.1098/rsos.171503
https://doi.org/10.1016/j.tree.2007.09.006
https://doi.org/10.1016/j.tree.2007.09.006
https://doi.org/10.2307/2937171
https://doi.org/10.1146/annurev.ecolsys.110308.120320
https://doi.org/10.1146/annurev.ecolsys.110308.120320
https://doi.org/10.1111/ecog.02747
https://doi.org/10.1007/s13280-016-0863-9
https://doi.org/10.1007/s13280-016-0863-9
https://doi.org/10.1111/1365-2656.12285
https://doi.org/10.1111/1365-2656.12285
https://doi.org/10.1111/j.1461-0248.2007.01061.x
https://doi.org/10.1098/rspb.2006.3484
https://doi.org/10.1098/rspb.2006.3484
https://doi.org/10.1016/S0022-474X(01)00050-9
https://doi.org/10.1016/j.biocontrol.2019.03.016
https://doi.org/10.1303/aez.30.129
https://doi.org/10.1139/as-2015-0016
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1038/nature01286
https://doi.org/10.1073/pnas.0802421105
https://doi.org/10.1111/gcb.13619
https://doi.org/10.1111/gcb.13619
https://doi.org/10.2307/1935729
https://doi.org/10.2307/1935729
https://doi.org/10.1371/journal.pone.0032101
https://doi.org/10.1371/journal.pone.0032101
https://www.r-project.org/
https://doi.org/10.1016/j.cois.2017.06.009
https://doi.org/10.1007/s00300-019-02568-3
https://doi.org/10.1007/s00300-019-02568-3
https://doi.org/10.1038/s41558-018-0347-y
https://doi.org/10.1038/s41558-018-0347-y
https://doi.org/10.1111/gcb.14568
https://doi.org/10.1111/gcb.14568
https://doi.org/10.1016/j.cub.2012.08.015
https://doi.org/10.1016/j.cub.2012.08.015
https://doi.org/10.1007/s13280-016-0862-x
https://doi.org/10.1007/s13280-016-0862-x
https://doi.org/10.1111/ecog.02261
https://doi.org/10.1111/ecog.02261


     |  6295KANKAANPÄÄ et Al.

Journal of Insect Physiology, 98, 126–133. https://doi.org/10.1016/j.
jinsp hys.2016.12.008

Seehausen, M. L., Régnière, J., Martel, V., & Smith, S. M. (2017). 
Developmental and reproductive responses of the spruce budworm 
(Lepidoptera: Tortricidae) parasitoid Tranosema rostrale (Hymenoptera: 
Ichneumonidae) to temperature. Journal of Insect Physiology, 98, 38–
46. https://doi.org/10.1016/j.jinsp hys.2016.11.008

Stireman, J. O., O'Hara, J. E., & Wood, D. M. (2006). TACHINIDAE: 
Evolution, behavior, and ecology. Annual Review of Entomology, 51(1), 
525–555. https://doi.org/10.1146/annur ev.ento.51.110104.151133

Timms, L. L., Bennett, A. M. R., Buddle, C. M., & Wheeler, T. A. 
(2013). Assessing five decades of change in a high Arctic par-
asitoid community. Ecography, 36(11), 1227–1235. https://doi.
org/10.1111/j.1600-0587.2012.00278.x

Timms, L. L., Schwarzfeld, M., & Sääksjärvi, I. E. (2016). Extending un-
derstanding of latitudinal patterns in parasitoid wasp diversity. Insect 
Conservation and Diversity, 9(1), 74–86. https://doi.org/10.1111/
icad.12144

Tiusanen, M., Hebert, P. D. N., Schmidt, N. M., & Roslin, T. (2016). One 
fly to rule them all – Muscid flies are the key pollinators in the Arctic. 
Proceedings of the Royal Society B: Biological Sciences, 283(1839). 
https://doi.org/10.1098/rspb.2016.1271

Tiusanen, M., Huotari, T., Hebert, P. D. N., Andersson, T., Asmus, A., Bêty, 
J., … Roslin, T. (2019). Flower-visitor communities of an arcto-alpine 
plant – Global patterns in species richness, phylogenetic diver-
sity and ecological functioning. Molecular Ecology, 28(2), 318–335. 
https://doi.org/10.1111/mec.14932

Torp, M., Olofsson, J., Witzell, J., & Baxter, R. (2010). Snow-induced 
changes in dwarf birch chemistry increase moth larval growth rate 
and level of herbivory. Polar Biology, 33(5), 693–702. https://doi.
org/10.1007/s0030 0-009-0744-9

Van Nouhuys, S., & Lei, G. (2004). Parasitoid-host metapopulation dy-
namics: The causes and consequences of phenological asynchrony. 
Journal of Animal Ecology, 73(3), 526–535. https://doi.org/10.1111/ 
j.0021-8790.2004.00827.x

Várkonyi, G., & Roslin, T. (2013). Freezing cold yet diverse: Dissecting 
a high-Arctic parasitoid community associated with Lepidoptera 
hosts. The Canadian Entomologist, 145(02), 193–218. https://doi.org/ 
10.4039/tce.2013.9

Voigt, W., Perner, J., Davis, A. J., Eggers, T., Schumacher, J., Bährmann, R., 
… Sander, F. W. (2003). Trophic levels are differentially sensitive to cli-
mate. Ecology, 84(9), 2444–2453. https://doi.org/10.1890/02-0266

Walsh, J. E. (2014). Intensified warming of the Arctic: Causes and impacts 
on middle latitudes. Global and Planetary Change, 117, 52–63. https://
doi.org/10.1016/j.glopl acha.2014.03.003

Wan, Z. (2014). New refinements and validation of the collection-6 
MODIS land-surface temperature/emissivity product. Remote 
Sensing of Environment, 140, 36–45. https://doi.org/10.1016/j.rse. 
2013.08.027

Wan, Z., Zhang, Y., Zhang, Q., & Li, Z. L. (2004). Quality assessment 
and validation of the MODIS global land surface temperature. 
International Journal of Remote Sensing, 25(1), 261–274. https://doi.
org/10.1080/01431 16031 00011 6417

Welker, J. M., Molau, U., Parsons, A. N., Robinson, C. H., & Wokey, P. A. 
(1997). Responses of Dryas octopetala to ITEX environmental manip-
ulations: A synthesis with circumpolar comparisons. Global Change 
Biology, 3(S1), 61–73. https://doi.org/10.1111/j.1365-2486.1997.gcb 
143.x

Wirta, H., Várkonyi, G., Rasmussen, C., Kaartinen, R., Schmidt, N. 
M., Hebert, P. D. N., … Roslin, T. (2016). Establishing a com-
munity-wide DNA barcode library as a new tool for arctic re-
search. Molecular Ecology Resources, 16(3), 809–822. https://doi.
org/10.1111/1755-0998.12489

Wirta, H. K., Vesterinen, E. J., Hambäck, P. A., Weingartner, E., Rasmussen, 
C., Reneerkens, J., … Roslin, T. (2015). Exposing the structure of an 
Arctic food web. Ecology and Evolution, 5(17), 3842–3856. https://
doi.org/10.1002/ece3.1647

Yu, D., Van Achterberg, K., & Horstmann, K. (2005). World ichneu-
monoidea 2004: Taxonomy biology, morphology and distribution. CD/
DVD. Vancouver, BC, Canada: Taxapad.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Kankaanpää T, Vesterinen E, 
Hardwick B, et al. Parasitoids indicate major climate-induced 
shifts in arctic communities. Glob Change Biol. 2020;26:6276–
6295. https://doi.org/10.1111/gcb.15297

https://doi.org/10.1016/j.jinsphys.2016.12.008
https://doi.org/10.1016/j.jinsphys.2016.12.008
https://doi.org/10.1016/j.jinsphys.2016.11.008
https://doi.org/10.1146/annurev.ento.51.110104.151133
https://doi.org/10.1111/j.1600-0587.2012.00278.x
https://doi.org/10.1111/j.1600-0587.2012.00278.x
https://doi.org/10.1111/icad.12144
https://doi.org/10.1111/icad.12144
https://doi.org/10.1098/rspb.2016.1271
https://doi.org/10.1111/mec.14932
https://doi.org/10.1007/s00300-009-0744-9
https://doi.org/10.1007/s00300-009-0744-9
https://doi.org/10.1111/j.0021-8790.2004.00827.x
https://doi.org/10.1111/j.0021-8790.2004.00827.x
https://doi.org/10.4039/tce.2013.9
https://doi.org/10.4039/tce.2013.9
https://doi.org/10.1890/02-0266
https://doi.org/10.1016/j.gloplacha.2014.03.003
https://doi.org/10.1016/j.gloplacha.2014.03.003
https://doi.org/10.1016/j.rse.2013.08.027
https://doi.org/10.1016/j.rse.2013.08.027
https://doi.org/10.1080/0143116031000116417
https://doi.org/10.1080/0143116031000116417
https://doi.org/10.1111/j.1365-2486.1997.gcb143.x
https://doi.org/10.1111/j.1365-2486.1997.gcb143.x
https://doi.org/10.1111/1755-0998.12489
https://doi.org/10.1111/1755-0998.12489
https://doi.org/10.1002/ece3.1647
https://doi.org/10.1002/ece3.1647
https://doi.org/10.1111/gcb.15297

