
Acta Universitatis Agriculturae Sueciae

Doctoral Thesis No. 2020:62

The aim of this thesis was to explore the genetic diversity within and between local strains of 

Nile tilapia (Oreochromis niloticus) in Tanzania. Growth performance of these strains was then 

compared in a common garden experiment in two different environments. Genetic parameters 

for growth traits in the strains were estimated and significant genotype by environment 

interaction between strains in two environments was investigated. The results provide an

important starting point for planning a structured breeding program for Nile tilapia in Tanzania.

Redempta Athanas Kajungiro received her doctoral education at the Department of 

Animal Breeding and Genetics, SLU. She obtained her MSc in Aquaculture from Ningbo 

University, China and BSc in Fisheries & Aquaculture from University of Dar es Salaam, 

Tanzania.

Acta Universitatis Agriculturae Sueciae presents doctoral theses from the Swedish University 

of Agricultural Sciences (SLU).

SLU generates knowledge for the sustainable use of biological natural resources. Research, 

education, extension, as well as environmental monitoring and assessment are used to

achieve this goal.

Online publication of thesis summary: http://pub.epsilon.slu.se/

ISSN 1652-6880

ISBN (print version) 978-91-7760-642-0 

ISBN (electronic version) 978-91-7760-643-7

D
octoral T

h
esis N

o. 2020:62  •  Tow
ards a sustainable tilapia breeding program

…
  •  R

edem
pta A

thanas K
ajungiro

Doctoral Thesis No. 2020:62
Faculty of Veterinary Medicine and Animal Science

Towards a sustainable tilapia breeding
program in Tanzania

Redempta Athanas Kajungiro





Towards a sustainable tilapia breeding 
program in Tanzania 

Redempta Athanas Kajungiro 
Faculty of Veterinary Medicine and Animal Science 

Department of Animal Breeding and Genetics 
Uppsala 

DOCTORAL THESIS 
Uppsala 2020 



Acta Universitatis agriculturae Sueciae 
2020:62 

Cover: Aquaculture facilities at Kunduchi campus 
(photo: Redempta Athanas Kajungiro) 

ISSN 1652-6880 
ISBN (print version) 978-91-7760-642-0 
ISBN (electronic version) 978-91-7760-643-7 
© 2020 Redempta Athanas Kajungiro, Swedish University of Agricultural Sciences 
Uppsala 
Print: SLU Service/Repro, Uppsala 2020 



Abstract 
A structured breeding program is an important step towards sustainable tilapia 
aquaculture in Tanzania. The aim of the thesis was to generate baseline information 
for the establishment of tilapia breeding program in Tanzania.  

In the first study of this thesis we determined the genetic diversity between and 
within local and exotic Nile tilapia (Oreochromis niloticus) and Rufiji strains 
(Oreochromis urolepis urolepis) in Tanzania. Strains of FETA, Victoria, Igunga and 
TAFIRI had low genetic variation ranging from 0.057 to 0.1 while Kunduchi, 
Karanga and Ruhila showed highest genetic diversity from 0.214 to 0.212. Strong 
genetic differentiation was revealed between Karanga and the closely related strains 
of FETA, Lake Victoria, and Igunga with values from 0.533 to 0.548. STRUCTURE 
analysis revealed highly admixture among Karanga, Kunduchi, and Ruhila strains 
while FETA, Victoria, Igunga and TAFIRI showed no admixture. Higher genetic 
variation was also revealed among Rufiji strains compared to exotic and local Nile 
tilapia strains. High FST values (0.6- 0.8) were observed between Rufiji strains and 
the local or exotic Nile tilapia strains.  

The second part of this thesis based on a common garden experiment where the 
different strains of tilapia were compared in two environments with differing 
salinity. Differences in growth performance for all body traits were significant 
among Nile tilapia strains (P< 0.001) and strains ranked differently across the two 
environments. In freshwater environment, Karanga strain ranked first while TAFIRI 
strain ranked last. Regarding brackish water environment, Igunga strain was ranked 
first and the Victoria strain ranked last. Heritability estimates for harvest weight were 
low in both freshwater (0.10) and brackish water (0.09) environments compared to 
weight at tagging. Genetic correlations were low (0.35) for harvest weight and 
families ranked differently across the two environments indicating the existence of 
substantial GxE. Our results suggest that some strains are better suited than others 
to form the basis of a selective breeding program of Nile tilapia in Tanzania. Base 
population for the breeding program needs to strike the right balance between 
picking the best performing strains and having a broad genetic basis. Caution though 
is needed due to the high GxE across the tested environments. 

Keywords: Aquaculture, genetic diversity, Nile tilapia, ddRADseq, common garden, 
genetic parameters, brackish environment, freshwater environment 
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Abstract 
Ett välstrukturerat avelsprogram är ett viktigt steg mot en ökad och hållbar odling av 
tilapia i Tanzania. Syftet med avhandlingen var att ta fram grundläggande 
information för att kunna upprätta ett avelsprogram för tilapia i Tanzania. 
I den första delen av avhandlingen undersökte vi den genetiska variationen mellan 
och inom lokala och exotiska stammar av niltilapia (Oreochromis niloticus) och 
rufijitilapia (Oreochromis urolepis urolepis).  Bland de lokala niltilapia-stammarna 
hade FETA, Victoria, Igunga och TAFIRI låg genetisk variation (från 0,057 till 0,1) 
medan stammarna Kunduchi, Karanga och Ruhila hade störst genetisk variation 
(från 0,214 till 0,212). Stor genetisk differentiering sågs mellan Karanga och de 
närliggande stammarna FETA, Lake Victoria och Igunga med värden från 0,533 till 
0,548. STRUCTURE-analys visade på stor genetisk inblandning i stammarna 
Karanga, Kunduchi och Ruhila, medan FETA, Victoria, Igunga och TAFIRI inte 
hade någon inblandning. Större genetisk variation sågs bland rufiji-stammarna 
jämfört med de exotiska och lokala stammarna av niltilapia. Höga FST-värden, från 
0,6 to 0,8, observerades mellan Rufiji-stammarna och de lokala eller exotiska 
niltilapia-stammarna.  
Den andra delen av avhandlingen baserades på ett common-garden-försök i vilket 
de olika tilapia-stammarna jämfördes i två miljöer med olika salthalt. Signifikanta 
skillnader mellan niltilapia-stammarna avseende tillväxt sågs för alla studerade 
kroppsegenskaper (P< 0.001) och stammarna rankades olika i de två studerade 
miljöerna. I sötvattensmiljön rankades Karanga-stammen högst medan TAFIRI-
stammen rankades lägst. I brackvattenmiljön rankades Igunga-stammen högst och 
Victoria-stammen rankades lägst. Heritabiliteten för skördevikt var låg i både 
sötvatten- (0,10) och brackvattenmiljön (0,09) jämfört med vikt vid PiT-märkning. 
Den genetiska korrelationen var låg (0,35) för skördevikt och familjerna rankades 
olika i de två miljöerna, vilket indikerar förekomst av betydande GxE. Våra resultat 
tyder på att vissa stammar är mer lämpliga som basgeneration i ett avelsprogram än 
andra. Vid val av basgeneration för avelsprogrammet krävs rätt balans mellan hög 
tillväxt och stor genetisk variation. Försiktighet krävs dock på grund av hög GxE i 
de båda testade miljöerna.  

Keywords: Akvakultur, genetisk variation, niltilapia, ddRADseq, common garden, 
genetiska parametrar, brackvattenmiljö, sötvattenmiljö 
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1.1 Global aquaculture 
Aquaculture is the fastest growing food production sector. In 2018, 
aquaculture production reached 82.1 million tonnes of the total global fish 
production (179 million tonnes), (Figure 1) mostly dominated by finfish 
culture of which 47 million tonnes originated from inland aquaculture and 
7.3 million tonnes from marine and coastal aquaculture. The production 
accounted for 52% of fish used for human consumption (FAO, 2020).  

Figure 1 World capture fisheries and aquaculture production, 1950-2018. (Source: FAO, 
2018)  

 The world aquaculture production of farmed fish is dominated by Asia. In 
the last 20 years, Asia has contributed about 88.69% of the global total 
aquaculture production (FAO, 2020). China is the main producer in Asia 

1. General Introduction
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contributing about 57.9% of the total aquaculture production, followed by 
India (8.61%), Indonesia (6.61%), Vietnam (5.04%) and Bangladesh 
(2.93%) (FAO, 2020).   

The major three fish species produced in the world aquaculture are Grass 
carp, Ctenopharyngodon idellus (10.5%), Silver carp, Hypophthalmichthys 
molitrix (8.8%) and Nile tilapia, Oreochromis niloticus (8.3%) (FAO, 2020). 

Fish farming in Africa has increased in the last 20 years, from 
contributing 0.45% of the world aquaculture production in 1995 to 2.67% in 
2018 (Halwart, 2020). Currently Egypt is the main producer in Africa 
followed by Nigeria, contributing 1.90% and 0.35% respectively to the world 
aquaculture production. Countries of sub-Saharan Africa excluding Nigeria 
contributed only about 0.37% of the total aquaculture production in Africa 
in 2018 (FAO, 2020). 

The sub-Saharan region has a notable increase in terms of aquaculture 
production from 110,200 tonnes in 1995 to 2,196,000 tonnes in 2018 with 
annual increase of 15.55% (FAO, 2020; Halwart 2020). Most of the 
production comes from inland freshwater aquaculture, which accounts for 
about 99% of the total production while marine aquaculture contributes only 
about 1%. The main cultured species are African catfish (Clarias gariepinus) 
and tilapia (FAO, 2016, 2018). Top aquaculture producers in Africa are 
Egypt, Nigeria, Uganda, Ghana, Tunisia, Kenya, Zambia, Madagascar, 
Malawi and South Africa (Satia, 2011). Among them the leading producers 
in 2018 were Egypt, Nigeria and Uganda which contribute about 90% of the 
total aquaculture production in Africa (Adeleke et al., 2020) (Figure 2). 
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Figure 2 Top seven aquaculture producers in Africa in 2018 by production (metric 
tonnes). (Source: Adeleke, 2020) 

This notable growth and development of aquaculture in these leading 
countries is a result of many factors such as capacity building in aquaculture, 
good governance, research and development, access to credit facilities, 
promotion of private sector (Satia, 2011), interventions from the government 
and aids from development partners (Cai et al.,  2017). Despite the fact that 
aquaculture industry continues to grow in these countries, the sector still 
faces many challenges such as capital, inadequate quantities and quality of 
seed and feeds and land, and water and feed competition (Adeleke et al., 
2020). 

1.2 Aquaculture in Tanzania 
Aquaculture in Tanzania started in the late 1920s, with the culturing of trout 
introduced from Scotland in the regions of Kilimanjaro and Mbeya (Balarin, 
1985). Since in 1950s, aquaculture was practiced at experimental level in 
ponds at Korogwe (in the Tanga Region) and Malya (in the Mwanza Region) 
with tilapia fingerlings sourced from Lake Victoria, Congo and Pangani 
Rivers (FAO, 2012; Rothuis et al., 2014). Later government stations started 
distributing fingerlings supplied by Hombolo Fish farm center to fish farms 
and public water reservoirs (Coche et al., 1994 ; Madalla, 2008). However, 
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the production was not promising and lied dormant due to poor management, 
inadequate good quality fish feeds and seeds (Coche et al., 1994). From the 
1950s onwards, aquaculture in Tanzania has been practiced at small scale in 
earthen ponds (Shoko et al., 2011), largely in extensive or semi-intensive 
farming systems and more recently in tanks, hapas and cages (Chenyambuga 
et al., 2014). Furthermore, in recent years aquaculture production has 
increased because of rise in awareness to people about aquaculture. Fish 
farming has been enlarged and the number of ponds in the country have 
increased, from 19,860 ponds, producing 2,979 MT of fish in 2012 (Figure. 
3) to 26,445 fishponds producing 18,082 MT of fish in 2018 (URT, 2019).
Tanzania is among the top 10 producers of aquatic algae worldwide
producing 103,200 MT of seaweed in 2018 (FAO, 2020). The most common
finfish species farmed in the country are the African catfish (Clarias
gariepinus) and Nile tilapia (O. niloticus). Farming of Nile tilapia has
increased for the past five years contributing largely to aquaculture
production (Figure. 3).

Nevertheless, tilapia farming in the country is still considerably low in 
comparison with the country’s potential. The main challenges for the 
industry are poor quality and inadequate supply of seeds, poor management 
of broodfish, insufficient investment capital and government support and 
scarcity of experts in fish genetic and breeding (Kajungiro et al., 2019a). 

Figure 3 Trends of Aquaculture production, number of ponds and tilapia Production, 
2012-2018. (Source: URT, 2019)
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1.3 Breeding Program 
Genetic improvement in aquaculture started in the mid-1970s with the 
initiation of selective breeding program in Norwegian salmon (Gjedrem, 
2000). Since then, selective breeding has been one of the most common 
traditional approaches used in tilapia genetic improvement programs in most 
countries (Uraiwan, 1988). Selective breeding is based on the underlying 
principle that genetic variations present in desirable traits within a population 
are directly heritable from parent to offspring (Ansah et al., 2014). 

Selective breeding has a very high potential for improving the genetic 
makeup of fish usually focuses on the improvement of economically 
important traits (Gjedrem et al.,  2012). Selective breeding of growth related 
traits are usually among the first trait considered for improvement (Tave, 
1995). Preferred traits for selection should have moderate to high levels of 
heritability (Gjedrem, 2005). Lind et al., 2012, reported the advantages of 
selective breeding over other genetic approaches (hybridization, 
crossbreeding, chromosome manipulation, sex control and transgenesis) 
such as continuous genetic gain which can be transmitted from one 
generation to the next. Therefore, genetic improvement is an important 
option for increasing the productivity and profitability of aquaculture 
production (Gjedrem et al.,  2012).  

Several selective breeding programs for Nile tilapia have been 
established, mainly focused on growth rate and body traits (Ambali & 
Malekano, 2004), starting with the GIFT (Genetically Improved Farmed 
Tilapia) (Eknath & Hulata, 2009) and SEAFDEC-selected  GET-EXCEL, 
GenoMar Supreme Tilapia (GST) and Progift in Hainan, China (Zak et al., 
2014).  

The strain from the GIFT program set an example of the most successful 
tilapia selective breeding program in aquaculture. The GIFT strain is the 
most widely farmed tilapia variety across the Asia because of its fast growth 
and high yield (Hamzah et al., 2014).  GIFT was developed by ICLARM 
now World fish Center in from 1988 to 1997 in the Philippines (Eknath et 
al., 1993). In addition, the GIFT strain was developed under genetic 
improvement program through selective breeding from wild Nile tilapia 
populations brought from Ghana, Egypt, Kenya and Senegal and four strains 
of tilapia from Israel, Singapore, Taiwan and Thailand  (Eknath et al., 1993). 

More recently, two genetically improved strains of Nile tilapia that grow 
30% faster than non-improved strains have been established in West Africa 
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and Egypt. A collaboration between the WorldFish with partners from Ghana 
and Egypt resulted in two breeding programs in the aforementioned 
countries. In particular, the Abbassa (Ibrahim et al., 2013) and the Akosombo 
strains of Nile tilapia (Oreochromis niloticus) (Ansah et al., 2014). 

1.4 Tilapia 
Tilapia is the common name for the species belonging to the Tilapiine group 
of the family cichlidae, native to Africa and Middle East and the most 
cultured species worldwide after Carp species (FAO, 2020; Watanabe et al., 
2002). Several tilapia species such as Nile tilapia (O niloticus), blue tilapia 
(O. aureus) and Mozambique tilapia (O. mossambicus) are cultured in more 
than 90 countries (Lim & Webster, 2006). Tilapia species are suitable for 
aquaculture because of their tolerance to handling, fast growth, tolerance of 
wide range of environmental conditions such as pH, temperature and salinity 
and high marketability (El-Sayed et al., 2005; Klett & Meyer, 2002).  O. 
aureus and O. mossambicus have higher range of salinity tolerance than O. 
niloticus species which is confined to reproduction, survival and growth in 
saline conditions (Suresh & Lin, 1992). Tilapia species can be cultured in a 
broad range of aquaculture production systems from extensive, semi-
intensive (earthen ponds) to intensive (cages, tanks, raceways and 
recirculation systems) (El-Sayed, 2006).  

Tanzania is a hotspot for diversity of Oreochromis including more than 
30 Oreochromis species and 11 of which are only found in the country 
(Shechonge et al., 2019). Nile tilapia is the most cultured species in Tanzania 
and locally known as sato in the regions around Lake Victoria or perege in 
other regions. In Tanzania, Nile tilapia is believed to be native from Lake 
Tanganyika catchment (Trewavas, 1983) and in 1950s the species was 
introduced in Lake Victoria (Goudswaard et al., 2002). Since then the Nile 
tilapia population from Lake Victoria is widely farmed and distributed across 
the country (Shechonge et al., 2018). 
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Figure 4 Nile tilapia (Oreochromis niloticus) at Kunduchi campus, University of Dar es 
Salaam, Tanzania. (Source: Redempta) 

1.5 Genetic Diversity 
Genetic diversity is an essential feature for the robustness and the viability 

of animal populations (Mukhopadhyay & Bhattacharjee, 2014). Genetic 
diversity between populations explains the ability of a population to adapt to 
a certain environmental condition (Markert et al., 2010). The success of 
natural selection or artificial selection depends on the amount of genetic 
diversity present in the population (García-Ballesteros et al.,  2017). For a 
breeding program, the genetic diversity between and within breeds or 
populations should be known as this will influence the response to selection 
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(Oldenbroek, 2017). Knowledge of genetic diversity in fish species is 
important for understanding their potential adaptation to various aquaculture 
techniques (Houston et al., 2020). High genetic diversity allows populations 
to adapt to new conditions in changing environments and inbreeding results 
in the reduction of genetic diversity by increasing homozygosity in the 
genomes of individual (D’Ambrosio et al., 2019). Establishing a good base 
population determines the success of any aquaculture breeding program 
(Fernández et al., 2014). Genetic variation within breeds can decrease as a 
result of selection for economically important traits which can lead to an 
increase of inbreeding (Howard et al., 2017). Starting a breeding program 
with sufficient genetic variation between and within breeds and monitoring 
and managing the levels of inbreeding (per generation) are important as raw 
materials for genetic improvement (D’Ambrosio et al., 2019). Therefore it is 
very important to assess  the genetic variation within and between 
populations and detect similarities as well as differences between 
individuals/ populations (Dudu et al., 2015). 

1.5.1 Genetic Markers 

The genetic diversity of cultured tilapia strains must be identified for better 
understanding of genetic structure of the selected strains to design effective 
breeding program and conserve their diversity. DNA-based genetic markers 
allow the characterization of the genetic variation and divergence between 
and within populations (Ditta et al., 2018; Romana-Eguia et al., 2004).  
Molecular markers have been used to determine genetic diversity in Nile 
tilapia, these include mitochondrial DNA, restriction fragment length 
polymorphisms (mtDNA‐RFLPs) (Agnèse et al., 1997; Romana-Eguia et al., 
2004), random amplified polymorphic DNA (RAPD (Hassanien et al., 2004; 
Mahboob et al., 2019), microsatellite markers, simple sequence repeats 
(SSRs) (Dias et al., 2016; Hassanien & Gilbey, 2005; Romana-Eguia et al., 
2004; Tibihika et al., 2020) and single nucleotide polymorphisms (SNPs) 
(Delomas et al., 2019; Kajungiro et al., 2019b; Lind et al., 2019).  

For genetic diversity studies more SNPs need to be genotyped compared 
to microsatellites. However, SNPs have several advantages, which have led 
to a rapid increase in their popularity over recent years. Some attributes that 
make SNPs to be mostly used are; simplicity in detection and cost-effective 
genotyping per locus (Houston et al., 2014), highly  abundant in the genome 
(Van Bers et al., 2012), simple to use for scoring in large numbers in the form 
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of SNP arrays and their existence in both coding and non-coding regions 
(Yáñez et al., 2014).  

1.5.2 Restriction-site associated DNA sequencing (RADseq) and 
double digesting RAD sequencing (ddRADseq) 

Next-generation sequencing technologies (NGS) are making a substantial 
impact on many areas of biology, including the analysis of genetic diversity 
in populations. NGS combined with restriction enzymes (REs) have proven 
most valuable for genotyping purposes (Guo et al., 2014). Restriction-site 
associated DNA sequencing (RADseq) technique sequence the regions 
around RE recognition sites and produce a reduced representation of the 
genome (Wang et al., 2013). RADseq is performed mainly using Illumina 
sequencing and can identify large numbers of SNP markers for quantitative 
trait locus (QTL), linkage mapping (Kai et al., 2014) and population genetics 
analysis (Kakioka et al., 2013). A main advantage of RADseq is that it can 
be applied in species that lack an available reference genome (Pfender et al., 
2011). Conventional RADseq generates random sheared fragments from 
genomic DNA and this creates high DNA loss steps that allow little control 
over the fragments that are sequenced. A lot of RADseq data has to be 
discarded due to variable site sequencing coverage (Peterson et al., 2012). 
ddRADseq uses two restriction enzymes which consist of a rare-cutting one 
and a frequently-cutting one and this avoids random shearing of the DNA 
(Peterson et al., 2012). The resulting fragments undergo adaptor ligation and 
precise size selection before sequencing. RADseq and ddRADseq have been 
applied in several studies of aquaculture species. For example, to generate 
high-density linkage maps e.g. Japanese eel (Kai et al., 2014), Cichlid fishes 
Amphilophus spp (Recknagel et al., 2013), cutthroat and rainbow trout 
(Amish et al., 2012). SNPs detection and identification e.g marine snail (Kess 
et al., 2016) and perform genome wide association studies e.g Coho salmon 
Oncorhynchus kisutch (Barría et al., 2018), genetic diversity e.g salmon) 
(Antoniou et al., 2017; Houston et al., 2012), tilapia (Kajungiro et al., 2019b; 
Moses et al., 2020; Nyinondi et al., 2020). 

1.6 Genomic work in Nile tilapia 
Following the recent evolution in next generation sequencing (NGS), SNPs 
markers have been identified in large numbers. Currently, SNPs covering the 
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entire genome and SNP chips are available and have been identified in Nile 
tilapia (Joshi et al., 2018; Peñaloza et al., 2020; J. M. Yáñez, Joshi, & 
Yoshida, 2020). The application of dense SNPs distributed across the entire 
genome have allowed the advance from traditional breeding program of 
using phenotypic and pedigree information to genomic selection (Meuwissen 
et al., 2001). The use of SNP panels has accelerated the discovery of QTL 
(quantitative trait locus) for harvest weight and fillet yield traits and speeded 
up the genetic progress in breeding program of commercial Nile tilapia from 
Costa Rica (Yoshida et al., 2019). Dense SNP genotypes have also been used 
for characterizing regions associated with signatures of selection in tilapia 
species, for example Hong Xia et al., (2015) reported the identification of 
100 putative selective sweep regions in Nile tilapia from South Africa, China 
and Singapore. Several studies describing regions involved in sex 
determination has been reported in Nile tilapia using SNP markers, for 
example Palaiokostas et al., (2015) described significant QTLs in regions 
LG20 and LG1 in sex determination in Nile tilapia. 

1.7 Common Garden 
Common garden refers to a variety of experimental designs where organisms 
from different locations or strains are grown and exposed to a common 
environment of the same conditions (Berend et al., 2019; Moloney et al., 
2009). Common garden studies are conducted so as to reduce the influence 
of environmental conditions on trait variation and provide a way to compare 
the performance of different strains for a given environment (Hutchings, 
2011). Therefore common garden experiments can help to distinguish the 
effects and contributions of genetic and environmental factors to the physical 
appearance of the trait of interest (Guèye, 2016). Common garden 
experiments can be designed to explore phenotypic plasticity (Liu & El-
Kassaby, 2019; Rajkov et al., 2018), local adaptation (Gradil et al., 2016), 
compare population’s growth performance (Guèye, 2016; Harvey et al., 
2016) and genotype x environment interaction (GxE) (Klápště et al., 2020). 
Common garden experiments have been broadly used in a range of 
organisms including fish to evaluate genetic differences and performance 
comparison among strains, and individuals have been communally cultured 
in different production systems and environments for example in tilapia 
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(Guèye, 2016; Mcginty, 1983) and salmon (Ljungfeldt et al., 2014; Solberg 
et al., 2013). 

Traits such as growth which are controlled by many genes are strongly 
influenced by the environment (Vasemägi et al., 2016). The phenotype of an 
individual is the function of its genotype, the environment and the interaction 
between them (GxE). GxE exist if the individual’s genotype performance 
changes due to the changing environment, that’s when its higher 
performance in one environment might be lower in another environment 
(Falconer and Mackay, 1996; Li et al.,  2017). 

Common garden experiment can estimate the effect of genotype by 
environment interaction (GxE) by rearing individual from different strains in 
two environments It resolves the genetic basis of quantitative physical 
expression of DNA of the populations in the absence of confounding effects 
of the analogous environment (De Villemereuil et al., 2016). There are two 
types of GxE interaction: re-ranking or scaling effects. Re-ranking effects is 
when the individuals of given strain or genotype, rank differently in different 
environments, based on their performance. The scaling effect occurs when 
the magnitude differences between genotypes varies across environment 
without changing their rank (Falconer and Mackay 1996; Wakchaure et al., 
2016). For the efficiency of a breeding program, the existence of GxE should 
be determined as it can affect the genetic gain. Scaling interaction is of a less 
importance compared to re-ranking effects because the best performing 
individuals in one environment can still perform the best in other 
environments (Wakchaure et al., 2016). Re-ranking interaction is a critical 
component for breeding programs because there is a chance that higher 
ranking genotypes in one environment will not be higher ranking genotypes 
in another environment (Li et al., 2019).  

For two different environments the interaction between genotype and 
environment can be evaluated by measuring the same traits in two 
environments and consider them as different traits and estimate the genetic 
correlation between these traits (Falconer and Mackay 1996). Genetic 
correlation for a target trait in two environments is the measure of genotypes’ 
performance in two environments and a key factor to consider in breeding 
programs (Falconer, 1952). GxE interaction is of great importance and 
should be contemplated when genetic correlation is lower than 0.8 
(Robertson, 1959). In fish breeding a separate breeding program was 
suggested when genetic correlation is lower than 0.7 (Sae-Lim et al., 2013). 
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A rich variety of tilapia species is encountered in Tanzania (Genner et al., 
2018) with Nile tilapia (Oreochromis niloticus) being the most cultured 
species in the country. Most of the Nile tilapia strains that are farmed in 
Tanzania are either pure local, exotics from other countries or hybrids 
between the above categories. The high morphological similarities between 
tilapia strains and species causes difficulties in their identification by the fish 
farmers. As most people in the country depend on aquaculture for their 
livelihoods, there is a great need for a faster-growing and better performing 
strain of Nile tilapia, which can be cultured successfully in great varieties of 
production environments. To improve aquaculture production and livelihood 
of fish farmers in Tanzania, there is a need to identify pure strains and know 
which strains of local Nile tilapia are available in the country. Furthermore, 
the performance of these strains in different culture environments needs to 
be assessed. 

The general aim of this thesis was to produce information for establishing 
a future breeding program of Nile tilapia in Tanzania.  

Specific Objectives were to: 
 Evaluate the population structure and genetic diversity of local

Nile tilapia (O. niloticus) strains using ddRAD sequencing.
 Assess population differentiation of local and exotic Nile tilapia

and local Rufiji tilapia strains in Tanzania.
 Conduct a common garden experiment and compare the growth

performance of local Nile tilapia strains (O. niloticus) at two
environments.

 Estimate genetic parameters for growth in local Nile tilapia
strains in two environments and estimate gene by environment
interaction.

2. Aims of the thesis
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This thesis is comprised of the following papers: 
Paper I focused on comprehending the population structure and genetic 
diversity within and between seven local Nile tilapia strains in Tanzania 
(Karanga, Igunga, Ruhila, FETA, TAFIRI, Kunduchi, and Lake Victoria). 
This study was followed by paper II that evaluated genetic diversity of both 
introduced and local strains of Nile tilapia and Rufiji tilapia. Paper III was 
based on a common garden experiment, which evaluated the performance of 
the Nile tilapia strains in two environments (Pangani and Kunduchi). This 
investigation was followed by the estimation of genetic parameters and the 
magnitude of the genotype by environment interaction for growth traits of 
local Nile tilapia strains reared in two environments (Pangani and Kunduchi). 

3.1 Genetic diversity study 
Population Structure and Genetic Diversity of Nile Tilapia (Oreochromis 
niloticus) Strains Cultured in Tanzania 
In this study, fish samples were collected from seven sites: TAFIRI, FETA, 
Karanga, Igunga, Kunduchi, Ruhila and Lake Victoria. A total of 140 fish, 
twenty fish from each strain, were sampled and fin clips were collected for 
genomic analysis.  

ddRAD Library Preparation, Sequencing and SNP Genotyping 
DNA was extracted from fin clip using a spin column (QIAsymphony DSP 
DNA Mini Kit; Qiagen, Hilden, Germany). ddRAD library preparation was 
performed according to Peterson et al. (2012), with minor modifications 
described in Palaiokostas et al. (2015). The libraries were sequenced at 
Edinburgh Genomics Facility, University of Edinburgh on an Illumina HiSeq 

3. Summary of studies and main results
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4000 instrument. Reads were aligned to the O. niloticus reference genome 
assembly [Genbank accession number GCA_001858045.2 (Conte et al., 
2017)] using bowtie2 (Langmead & Salzberg, 2012). Stacks v2 (Catchen et 
al.,  2011; Rochette et al.,  2019) was used to identify and extract single 
nucleotide polymorphisms (SNPs) using gstacks (settings: –var-alpha 
0.001 –gt-alpha 0.001 –min-mapq 40). 

Results revealed a total of 2,180 SNPs with a MAF above 0.05 across all 
samples. 

Genetic diversity and Structure among strains 
Genetic diversity parameters were estimated using Stacks v2 (Rochette et al., 
2019). The R package StAMPP (Pembleton et al., 2013) was used to 
calculate pairwise FST values using the stamppFst function according 
to Cockerham and Weir (1984). Principal component analysis (PCA) was 
carried out using the R package ADEGENET version 2.1.1 (Jombart et al., 
2018). Discriminant analysis of principal components (DAPC) and 
Bayesian-model-based approaches implemented in the program Structure 
v2.3.4 (Pritchard et al., 2000), were used determine genetic structure and 
admixture of seven O. niloticus strains. 

 Results showed that the Kunduchi strain had a high expected 
heterozygosity value (0.214) and high inbreeding coefficient (Fis) value 
(0.557). FETA strain had the lowest value of expected heterozygosity (0.057) 
and lowest Fis value (0.006). Principal component analysis (PCA) grouped 
together individual fish from FETA, Lake Victoria, Igunga and most 
individuals from Kunduchi strains. TAFIRI strain formed a distinct cluster 
while Karanga and Ruhila showed evidence of mixed individuals (Figure. 5). 
Lowest FST values were observed between Igunga, Lake Victoria and FETA. 
The highest FST values were between Karanga and FETA, Lake Victoria and 
Igunga (FST = 0.548, 0.538, and 0.533 respectively). Admixture analysis 
suggested K=7 as the most probable number of genetically distinct strains. 
The strains of FETA, Lake Victoria, Igunga and most of individual fish from 
Kunduchi shared the same genetic cluster, while the TAFIRI strain formed a 
unique group. Finally, the strains, Karanga and Ruhila provided evidence of 
admixture. 
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Figure 5 Principal components analysis (PCA) of the strains for 139 individual fish based 
on 2,180 single-nucleotide polymorphisms (SNPs). The genetic relationships among 
individual fish as seen when plotting the first and second principal components (PCA1 
and PCA2). Each individual is represented by one dot, with its symbol color 
corresponding to the assigned strain. 

Using ddRAD sequencing to assess genetic differentiation within and 
between introduced and local strains of Nile tilapia and Rufiji tilapia 
In this study, a total number of 550 animals and twenty seven farmed and 
wild strains of exotic and local Nile tilapia and Rufiji tilapia were sampled 
across Tanzania in 2017 from privately owned hatcheries, government 
Aquaculture Development Centre hatcheries, lake, dams, river basins, 
swamp, and estuary. Fish were kept separate for 4 months in hapas (2 m × 2 
m) within an earthen pond and plastic tanks (1.5 m × 1.5m × 1.5 m) at
Kunduchi Campus in Dar es Salaam and at the Institute of Marine Sciences
Mariculture Centre (IMS-MC), Pangani Tanga, respectively. A total of 550
fish weighing from 50 to 200 g were fin clipped. A total of 1583 SNPs from

33



34 

a de novo assembly with a MAF above 0.05 across all samples and found in 
more than 75% of the genotyped fish in each strain were retained for 
downstream analysis.  

Genetic Diversity and relationship among tilapia strains 
Rufiji tilapia strains appeared to be more diverse than the exotic and local 
tilapia strains with the average genetic diversity (He) ranging from 0.078 to 
0.326. The local Nile tilapia revealed moderate diversity, while the exotic 
Nile tilapia strains showed low to average genetic diversity (He) compared 
to local Rufiji tilapia (Table 1). 
Table 1. Genetic diversity parameters for local Rufiji tilapia (O. urolepis urolepis), local 
and exotic Nile tilapia (O. niloticus). Ho, observed heterozygosity; He, expected 
heterozygosity; Fis, inbreeding coefficient 

Species Ho (mean ± SE) He (mean ± SE) Fis (mean ± SE 

Rufiji tilapia strains 

Mindu 0.228 ± 0.004 0.233 ± 0.004 0.034 ± 0.028 

Wami 0.188 ± 0.004 0.326 ± 0.005 0.337 ± 0.033 

Bwawani 0.084 ± 0.004 0.084 ± 0.004 0.010 ± 0.030 

Kibasila 0.075 ± 0.004 0.080 ± 0.004 0.017 ± 0.035 

Chemchem 0.092 ± 0.005 0.090 ± 0.004 -0.001 ± 0.033

Kilola 0.078 ± 0.004 0.083 ± 0.004 0.028 ± 0.022 

Mansi 0.174 ± 0.004 0.169 ± 0.003 -0.012 ± 0.028
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Nyamisati 0.095 ± 0.005 0.096 ± 0.004 0.010 ± 0.027 

Ruaha 0.091 ± 0.004 0.093 ± 0.004 0.010 ± 0.028 

Utete 0.117 ± 0.004 0.115 ± 0.004 0.006 ± 0.026 

Pangani_Rufiji 0.080 ± 0.004 0.078 ± 0.004 0.002 ± 0.043 

Exotic Nile tilapia strains 

Silver-YY 0.125 ± 0.007 0.088 ± 0.004 -0.074 ± 0.029

Big-Nin 0.132 ± 0.005 0.141 ± 0.005 0.044 ± 0.038 

Chitralada-N 0.137 ± 0.004 0.149 ± 0.004 0.047 ± 0.033 

Chitralada-E 0.140 ± 0.005 0.145 ± 0.004 0.029 ± 0.033 

Ruvu Farm-R 0.086 ± 0.004 0.086 ± 0.004 0.006 ± 0.022 

GIFT 0.135 ± 0.005 0.137 ± 0.005 0.018 ± 0.044 

Chifive-C 0.073 ± 0.005 0.068 ± 0.004 -0.003 ± 0.037

Muleba-M 0.082 ± 0.005 0.086 ± 0.004 0.034 ± 0.046 

Local Nile tilapia strains 

Pangani_Nile 0.190 ± 0.007 0.153 ± 0.005 -0.077 ± 0.039
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TAFIRI 0.106 ± 0.005 0.108 ± 0.004 0.015 ± 0.035 

Ruhila 0.130 ± 0.004 0.216 ± 0.005 0.242 ± 0.037 

FETA 0.067 ± 0.004 0.067 ± 0.004 0.005 ± 0.032 

Lake Victoria 0.075 ± 0.004 0.075 ± 0.004 0.004 ± 0.035 

Karanga 0.111 ± 0.003 0.218 ± 0.006 0.259 ± 0.038 

Igunga 0.079 ± 0.004 0.079 ± 0.004 0.005 ± 0.026 

Kunduchi 0.083 ± 0.004 0.215 ± 0.004 0.505 ± 0.026 

The PCA analysis revealed a clear distinction between local Nile tilapia and 
exotic Nile tilapia. However, there is a distinction between Nile and local 
Rufiji tilapia species but with partial overlap. There are some animals though 
from Rufiji strains that appear as potential hybrids. The results also showed 
that local Nile tilapia are not genetically divergent from exotic Nile tilapia 
(Figure.6). Local Nile tilapia from Tanzania seemed to overlap with exotic 
strains from Thailand and Uganda. 
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Figure 6 Principal components analysis (PCA) showing genetic relationships among 
exotic Nile tilapia, local Nile tilapia and Rufiji tilapia species. Individual fish are 
represented by one dot, with its symbol colour corresponding to the assigned strain 

Population Structure and Differentiation 
The highest FST values (FST = 0.6- 0.8) were found between Rufiji strains and 
the local or exotic Nile tilapia strains. Low FST values were observed between 
strains of the same geographic location, for example between Kibasila and 
Kilola (FST < 0.001) of local Rufiji tilapia and Chitralada-N and Chitralada-
E (FST =0.010) of exotic Nile tilapia. The Ruvu farm-R exotic Nile tilapia 
strains showed lowest FST values with all local Nile tilapia strains except 
TAFIRI, Ruhila and Karanga. Furthermore, local Nile tilapia and exotic Nile 
tilapia showed moderate FST values amongst them except between Karanga 
and Silver YY (FST =0.485), Ruvu Farm- R (0.503) Chifive-C (FST =0.505) 
and Muleba-M (FST =0.498)  

STRUCTURE analysis suggested K = 9 as the most probable number of 
clusters for the tilapia strains. The analysis showed that Rufiji tilapia strains 
were more distinct and homogeneous than the Nile tilapia. YY silver strain 
from exotic Nile tilapia and TAFIRI strain from local Nile tilapia each 
formed a unique cluster. Strains of Mindu, Wami, Ruhila, Karanga and 
Kunduchi were highly admixed. Local Nile tilapia strains (Victoria, Igunga 
and FETA shared the same cluster with exotic Nile tilapia strains (Chifive-

37



38 
 

C, Muleba-M and Ruvu Farm-R). Nile tilapia Strains from Tanzania 
provided evidence of admixture with individuals from Uganda. Discriminant 
analysis demonstrated the existence of two separate groups of Nile and Rufiji 
tilapia. 

3.2 Common Garden experiment study 
A common garden experiment was conducted in two locations (Pangani and 
Kunduchi). Pangani has a brackish water environment (2-5 ppt) and is 
located at the Institute of Marine Sciences Mariculture Centre (IMS-MC) in 
Pangani, Tanga region. Kunduchi has a freshwater environment and is 
located at the University of Dar es Salaam, Kunduchi campus in Kunduchi, 
Dar es Salaam region. The study aimed to evaluate the growth performance 
of growth traits (body weight, total length, standard length, body depth and 
perimeter) in six Nile tilapia, Oreochromis niloticus, and strains, to estimate 
genetic parameters, and determine the magnitude of genotype by 
environment interaction in the two environments.  

 
Origin of Strains 
Nile tilapia from five farmed strains and one wild strain were used in the 
study. Fingerlings were collected in 2017 and kept separately in hapas (2 m 
x 2 m x 1.5m) within an earthen pond at Kunduchi campus. The founder 
strains were reared communally until they reached an average body weight 
of about 150–400 g where mating was initiated. 
 
Production and rearing of fry  
Single matings (one male × one female) and spawning were carried out 
separately in 1×1×1.5 m breeding hapas for four weeks from June to July 
2019. After a week, fertilized eggs were collected from the mouth of fish and 
were artificially incubated until hatching. Fry hatched after about 5–7 days 
and were thereafter fed on a feed containing 44% with 60 mg of methyl 
testosterone (Sigma Aldrich, Germany) for one month. From each full-sib 
family, 50-70 fry were stocked separately in nursing hapas (1.5 x 1.5 x 1.5 
m) in the same pond to reduce environmental differences between families. 
Families were kept separately until fish reached an average size of about 15-
25 g, at which tagging took place.  About 25-30 randomly sampled 
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fingerlings per full-sib family were tagged using Passive Integrated 
Transponders (PIT) (BTS-ID, Sweden). 

A total of 1,368 fingerlings, 650 at Kunduchi and 718 at Pangani, were 
tagged. At tagging, the identification code, body weight (BW), total length 
(TL), standard length (SL), body depth (BD), and body perimeter (BP) were 
recorded. Tagging was conducted first at Kunduchi followed by Pangani. 

Production environments 
After conditioning for about 7 days all tagged fingerlings were pooled 
together and communally stocked in hapas (12m x 8.5m) installed in a pond 
(20m x 20m) in either fresh or brackish water. In the latter case, fish were 
stocked approximately two weeks later. Representatives of each full-sib 
family were assigned at random and communally grown in the test 
environments in hapas installed in the pond at a stocking density of 5 fish per 
square meter. Each pond contained two hapas and four hapas in total were 
used at each testing environment.  

Stocking and Harvest 
Fry were fed three times (8am, 12pm and 4pm) daily on a commercial feed 
starter (Aller Aqua) with a crude protein level of 44%. Juveniles and adults 
were fed two times (8am and 4pm) per day with 36% and 30% crude protein 
respectively. Fish were harvested after a grow-out period of about 94 days 
(84 to 90 days in freshwater and 99 to 102 days in brackish water), (October 
– December 2019) in the test environments. During harvest body
measurements of each individual fish including body weight, total length,
standard length, and body width and body depth were recorded.

Water Quality 
The salinity concentration at Pangani’s water ranged from 2 to 5ppt (brackish 
water). At Kunduchi, the average temperature during the growth period was 
about 31

o
C with a range from 28

o
C to 36

o
C while at Pangani, the average

temperature was about 33
o
C with a range from 29

o
C to 38

o
C.  During the

experiment, ¼ of water in the pond was changed every 3 days to maintain 
water quality. Water quality parameters (dissolved oxygen (DO) and 
temperature) were measured twice a day, using a HI98193 Waterproof 
Portable Dissolved Oxygen and BOD Meter (Hanna Instruments, 
HannaNorden, Sweden).   
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Common garden comparison of native Nile tilapia (Oreochromis niloticus) 
strains in brackish and freshwater environments 
Data analysis 
Strain performance and environment comparison using a fixed effect model  
After three months of grow-out (October- December 2019), body traits of all 
fish were recorded at both environments. All descriptive statistics for body 
traits were computed using R (R Core Team 2019). 

A linear model was fitted to the data as shown below: 
Yijklmn =μ + Ei + Sj +Ak + Pl+ (SE) ij +Hm(l)+ eijklmn 
where: 
Yijkn   is the recorded trait of the nth individual, 
μ         is the intercept, 
Ei       is the fixed effect of the ith test environment, 
Sj        is the fixed effect of the jth strain, 
Ak       is the post-hatching age covariate  
Pl        is the fixed effect of the lth pond  
(SE) ij is the interaction effect between strain and test environment  
Hm(l)      is the fixed effect of hapa nested within pond 
eijklmn   is the residual random error with mean 0 and variance σ2 
The results from this study showed that there were significant (P< 0.001) 

variations regarding growth performance for all the recorded body traits 
among the six Nile tilapia strains across the two environments.  In the case 
of the freshwater environment across the six strains, the growth performance 
of Karanga strain (225g) ranked first followed by Igunga strain (206g), while 
TAFIRI strain (163g) ranked last. Moreover, the Ruhila, FETA and Victoria 
strains (188,187,187g) had a similar performance.  In the case of the brackish 
water environment, Igunga strain (268g) was ranked first followed by 
TAFIRI strain (252g), while Ruhila and Karanga strain (231g) had a similar 
performance. Finally, the Victoria strain had the lowest performance (223g) 
(Figure 7). 
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Figure 7 Comparison of growth performance in six strains of Nile tilapia in two 
environments: Kunduchi (freshwater) and Pangani (brackish water) 

Genetic Parameter Estimates and Genotype by Environment Interaction in 
Nile Tilapia (Oreochromis niloticus) strains Cultured in Tanzania 
Statistical Analysis 
A univariate model was used to estimate heritability for traits across 
production environments, while bivariate model was used for estimating 
genetic correlation between body traits at different measurements points 
during the growth period. The models were fitted using the BLUPF90 
(Misztal et al., 2018). The magnitude of the genotype by environment 
interaction was quantified either as the genetic correlation of harvest body 
weight between the freshwater (Kunduchi) and the brackish environment 
(Pangani) or by inspecting the ranking of families between the two 
environments. 

The model was written as: 

�
𝐲𝐲₁
𝒚𝒚₂ � = �𝒙𝒙₁       𝟎𝟎𝟎𝟎      𝒙𝒙₂�  �𝐛𝐛₁𝒃𝒃₂ � + �𝒛𝒛₁       𝟎𝟎𝟎𝟎      𝒛𝒛₂�  �

𝐮𝐮₁
𝒖𝒖₂ � + �

𝐞𝐞₁
𝒆𝒆₂ �
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Where,  �
𝐲𝐲₁
𝒚𝒚₂ � is a vector of observations for body traits in the two

production environments,  �𝐛𝐛₁𝒃𝒃₂ � is a vector of fixed effects (site, strain, pond

and hapa ),  �
𝐮𝐮₁
𝒖𝒖₂ � is a vector of random effects,  �

𝐞𝐞₁
𝒆𝒆₂ �   is a vector of residuals

effects, �𝒙𝒙₁       𝟎𝟎𝟎𝟎      𝒙𝒙₂�   𝑎𝑎𝑎𝑎𝑎𝑎 �𝒛𝒛₁       𝟎𝟎𝟎𝟎      𝒛𝒛₂� are the design matrix relating the

observations in the two production environments to the fixed and additive 
effects , respectively. 

In this study, lower heritability estimate for harvest weight was found for 
the animals reared in the freshwater (0.10 ± 0.06) and brackish water (0.09 
± 0.07) environments. Overall, an estimated heritability of 0.11 (SE 0.06) 
was found across production environments. The estimate of genetic 
correlation for harvest body weight between the two environments was low 
(0.35 ± 1.37), with large standard errors. Low genetic correlation implies 
high GxE between two environments. High GxE indicates a strong re-
ranking of strains in terms of their growth performance between the two 
production environments. However, due to the very high standard errors we 
cannot make conclusions about the actual genetic correlations. Nevertheless, 
most families ranked differently across the two environments with only 
families 9 and 10 from the FETA strain having a similar performance 
between the two environments (Figure 8). 
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Figure 8  Barplot of average estimated breeding values showing families ranking for a 
trait in the two locations (Kunduchi and Pangani). Numbers 1-24 represent families in 
both environments  
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Developing better fish strains with genetic supremacy for aquaculture require 
long term breeding programs (Bentsen and Gjerde, 1994). Selective 
breeding of Nile tilapia involves the selection of the best performing parents 
so as to build a base population with a broad genetic diversity upon which 
selection can be practiced (Eknath et al., 1998). Therefore, a good knowledge 
of the genetic diversity of available strains and their performance under 
prevailing production environments is a prerequisite for developing a tilapia 
breeding program in Tanzania. In this thesis i performed the groundwork to 
provide basic information for the establishment of a structured breeding 
program for Nile tilapia in Tanzania. 
SNPs markers developed from ddRAD-seq were applied to study the genetic 
diversity of Nile tilapia strains (FETA, TAFIRI, Igunga, Kunduchi, Ruhila, 
Victoria and Karanga). Subsequently, a common garden experiment was 
conducted in brackish and freshwater environments to test their growth 
performance and estimate genetic parameters for growth related traits. 

4.1 Genetic Diversity 
Characterizations of genetic diversity of wild and stocked strains of tilapia 
in Tanzania provides valuable knowledge both for aquaculture and for 
conservation purposes of wild strains. Strains of Kunduchi, Karanga and 
Ruhila showed the highest levels of genetic diversity. This may be due to a 
higher degree of admixture as revealed by the STRUCTURE analysis and 
the existence of non-random mating (Huff et al., 2011). 

Curiously, strong genetic differentiation was observed between highly 
admixed strains of Karanga, Ruhila and Kunduchi and three closely related 
strains of FETA, Igunga, and Lake Victoria. The differences could be 

4. General discussion
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explained by geographical distance which has acted as a barrier to gene flow 
between those strains and resulted into genetic structure revealed by 
STRUCRURE analysis. However, the possibility of hybrids amongst the 
studied strains cannot be excluded. 

 Igunga, FETA, Lake Victoria and TAFIRI strains, showed no admixture 
and thus could be considered as pure strains. However, Igunga, FETA, Lake 
Victoria revealed relatively low level of genetic diversity, while TAFIRI 
showed moderate genetic variation. Therefore, despite the fact that Karanga, 
Ruhila, and Kunduchi strains were very diverse, the strains are also admixed 
making them unfit for the selective breeding. Although admixture has many 
benefits including increased genetic variation in isolated populations through 
segregation and recombination, formation of heterosis (hybrid vigour) 
(Verhoeven et al., 2011), admixture has been also reported to have negative 
effects (Allendorf et al., 2001). Hybridization resulted from anthropogenic 
activities causes hybrid swarms as explained by Allendorf et al. (2001). 
Hybrid swarms are characterized by extensive admixture which results into 
unique population of hybrids. This could explain the admixtures in strains of 
Kunduchi, Karanga and Ruhila.  It is important to note that hybridization 
with introgression can contribute to outbreeding depression through dilution 
of alleles important for local adaptations (Roberts et al.,  2010). For the case 
of GIFT tilapia, the base population was developed from known best 
performing pure bred of Nile tilapia from 8 strains, 4 wild strains from Africa 
and 4 domesticated strains from Asia. Thereafter a planned crossbreeding in 
full diallel cross design under controlled ratio of female and males was 
conducted. Crossbreeding programs allows to combine genetic advantages 
from multiple breeds that have dramatically different environmental 
adaptations and traits, this is different from just mixed strains of unknown 
origin, source and performance. Hence, strains with high genetic variation 
and high degree of admixture give some alerts supporting their avoidance for 
a future tilapia breeding program because their origin is unclear.  

In this thesis, we also used ddRADseq to assess genetic differentiation 
within and between exotic and local strains of Nile tilapia and Rufiji tilapia. 
The results revealed higher genetic diversity among the Rufiji strains 
compared to exotic and local Nile tilapia. Wami, Mindu and Mansi strains of 
Rufiji tilapia species were more diverse, however these strains demonstrated 
evidence of admixture (Nyinondi et al., 2020). In addition, Ruhila, Karanga 
and Kunduchi strains of local Nile tilapia also revealed high value of 
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expected heterozygosity (0.216, 0.218 and 0.215 respectively). Admixture 
and possible hybridization with other tilapia species could have contributed 
to genetic divergence in those strains of Rufiji and Nile tilapia. This have 
further been confirmed by high FST values (FST = 0.6- 0.8) between Rufiji 
strains and the local or exotic Nile tilapia strains.  

Weak genetic differentiation was revealed between strains of 
geographically similar strains, for example between Kibasila and Kilola of 
local Rufiji and Chitralada-N and Chitralada-E of exotic Nile tilapia. 
Furthermore, local and exotic Nile tilapia strains showed moderate genetic 
differentiation between them except some few strains that exhibited different 
trend. This was further explained by a PCA analysis, which showed that local 
Nile tilapia are not genetically divergent from exotic Nile tilapia. In addition, 
the main consequence  could be introgression (Huff et al., 2011) which has 
resulted into admixture  between cultured local and exotic strain of Nile 
tilapia. 

Local strains (Victoria, Igunga and FETA) shared the same genetic cluster 
with exotic Nile tilapia strains (Chifive-C, Muleba-M and Ruvu Farm-R). 
This was confirmed by (Discriminant Analysis of Principal Components) 
DAPC admixture analysis, which revealed that Nile tilapia strains from 
Tanzania provided evidence of admixture with individuals from Uganda. 
Tanzania and Uganda being in the same region of East African could have 
contributed to admixture between strains due to nearby geographical 
location. Tibihika et al. (2020) reported that admixture and hybridization 
could have contributed to genetic structure of farmed Nile tilapia strains in 
Uganda.  

In this thesis, ddRADseq a reasonably cheap molecular tool not only was 
able to differentiate between Nile tilapia and Rufiji tilapia but also between 
exotic and local strains of Nile tilapia in Tanzania.  In addition, the tool 
enabled clear verification of local tilapia strains whether are pure or admixed. 
This implies that ddRADseq is a good tool to test the provenance of potential 
breeding strains. 

4.2 Strains growth performance in two environments 
Forming a base population with the best performing strains in different 
production environments is the main objective for the development of a 
future Nile tilapia breeding program in Tanzania. A common garden 
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experiment was conducted to compare the growth performance of six local 
Nile tilapia strains in brackish (2-5ppt) and freshwater environments. 

The results indicated that there was significant variation in growth 
performance of local Nile tilapia strains across the production environments. 
Strains ranked differently in two environments. In particular, in the case of 
freshwater, the Karanga strain had the highest growth, whereas in the 
brackish water the top ranked strain was the Igunga strain. Nevertheless, in 
both fresh and brackish water, the growth of Karanga strain did not differ 
significantly.  These findings were similar to the work reported by Pongthana 
et al. (2010) in Thailand who reported that the growth performance of red 
tilapia strain cultured in freshwater and saline water was significantly 
different. However, our results differ from a study by Eknath et al.  (1993) 
which reported consistency in growth performance with small changes in the 
ranking of eight strains of Nile tilapia cultured in a range of environments.  

Furthermore, our findings revealed that the performance of all strains was 
significantly higher in the brackish water than in the freshwater environment. 
Nevertheless, other environmental factors except of salinity (e.g. 
temperature) could have contributed to the growth performance between the 
tested strains across the two environments. Most interestingly, the interaction 
between strains and environments were significantly high resulting in strain 
re-ranking in the testing environments.  

4.3 Genetic parameters 
Knowledge regarding genetic parameters such as heritability, genetic 
correlation and estimated breeding value (EBV) are very important for the 
success of any breeding program. For highly heritable traits with heritability 
above 0.4, animals’ phenotypic performance could be a good measure of 
their ability to produce best offspring compared when heritability is below 
0.15 (Toghiani, 2012). Our results revealed low heritability estimates for 
harvest body weight in Nile tilapia across the freshwater (0.10) and brackish 
(0.09) environments 

The estimates of heritability were higher for all tested traits at stocking 
and at the one-month time point of measurement in freshwater environment 
than brackish environments where zero heritability estimates were observed 
for total length and standard length. Heritability close to zero suggests that 
all the variations among individuals are due to environmental and non-
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additive genetic effect of genes.  For the case of freshwater environment, 
higher heritability suggests for the early selection of fish individual when the 
heritability is high with large response to selection at stocking than when 
heritability is low at harvest.  The greater the superiority of the individuals 
selected for breeding purposes and the higher the heritability of the trait the 
more selection will be successful.  

The genetic correlation is important in designing and developing breeding 
strategies. It can accelerate genetic gain for the correlated traits through 
indirect selection and can be used in estimating the magnitude of genotype-
environment interaction. Our findings showed higher genetic correlation 
between the second and the final time point of measurements for body weight 
in the freshwater (0.64) than brackish water (0.12) environments. In addition, 
high positive genetic correlation was observed for body traits between first- 
and second-point measurements in brackish water (0.99) than freshwater 
(0.25) environments. The genetic correlation could be very large close to one 
with high standard error as in our case for growth traits between first- and 
second-point measurements in brackish water and between second and the 
final time point of measurements in freshwater environment. According to 
Falconer and Mackay (1996), the estimates of genetic correlations with small 
standard errors require large sample sizes because correlations represent the 
ratio of the covariance across environments over the additive genetic 
variances, all measured with error. In our study we acknowledge the small 
sample size (~1,007 animals) which might have contributed to the observed 
high standard errors in our analysis.  On the other hand, the genetic 
correlation close to one implies that most genes are shared between the two 
traits with fewer genes that can be selected for independently, this means that 
selection on one trait will cause changes in the other. 

We also noticed change in strength and sign of genetic correlations across 
production environments over different time of measurements and at harvest 
the overall genetic correlation was low for body weight between two 
environments. In the case of the brackish water environment positive and 
high genetic correlation was observed between the first- and second-point 
measurements and negative correlation between second and the final time 
point of measurements. On the other hand in the freshwater, the results 
showed high genetic correlation between the second and the final time point 
of measurements, moderate between the between first and second  time point 
of measurements and low genetic correlation between first and final  time 
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point of measurements for body traits in the freshwater. A negative 
correlation means that as one-trait increases the other decreases while 
positive correlation means that the two traits tend to change in the same 
direction. When fish were moved from freshwater environment (Kunduchi) 
to brackish water environment (Pangani), there was slight change in 
environment which also affected gene expression of the trait as stated by de 
Jong (1995) that as environments differ, gene expression changes and the 
contribution of a new set of environment‐specific genes, cause a change in 
gene effects on a trait which result changes in genetic correlation. Genetic 
correlations between environments change gradually by altering the 
covariance between environments and the additive genetic variances in each 
environment. The change depends on trait under selection, since most of 
growth related traits are controlled by genes whose effects are affected by 
environment, environmental factors such as extreme high or low 
temperatures as was observed in our study for the case of brackish water 
environments, may activate gene expression and affect genetic correlation 
(Schou et al., 2019). Therefore, the differences in genetic correlation for 
body traits between different time points of measurements in two 
environments, suggests the best time for the trait selection as genetic 
correlations evolve over time across the two environments. 

4.4 Genotype by environment interaction (GxE) 
GxE can affect the overall genetic gain of a breeding program. 
Understanding the consequences of GxE to the performance of Nile tilapia 
strains cultured at Pangani and Kunduchi can help in making appropriate 
decisions regarding the design of a future breeding program. The genetic 
correlation for harvest body weight between the two environments was low 
(0.35) with large standard errors. In general, genetic correlations below 0.8 
suggest a significant genotype × environment interaction effects (Robertson, 
1959). For aquaculture species, when genetic correlation between two 
environments is lower than 0.70 (Sae-Lim et al., 2013), separate breeding 
programs are suggested. Our findings were consistent with the values 
reported by Dinh Luan et al., (2008) were a genetic correlation of 0.45 for 
fresh water and brackish environments was found. 

Our genetic correlations estimate (0.35 ± 1.37) was different to other 
estimates of GxE for harvest weight of Nile tilapia from previously studies: 
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0.81  between aerated and non-aerated ponds (Mengistu et al., 2020),  0.76–
0.99 between different pond environments (Eknath et al., 2007), 0.86–0.94 
between nucleus, cage and low input pond (Trong et al.,  2013), 0.74 between 
mixed sex and mono sex Nile tilapia (Omasaki et al., 2016), and 0.74 
between low input and high input pond environments (Khaw et al., 2009). 
Nevertheless, in our study we acknowledge the very high standard errors, 
therefore the evidence of a GxE interaction in our study might not be 
significant based on genetic correlation due to large standard errors. 
However, when the environment where animals were selected is different 
from where they will be tested then GxE is anticipated. Estimated breeding 
value (EBV) is a key parameter to a breeding program because it makes an 
estimate of the genes the parents convey to their offspring. The existence of 
GxE cause EBV re-ranking in families, this was confirmed by strong family 
re-raking observed in two cultured environments. Interestingly, families 9 
and 10 both from FETA strain were less affected by GxE. 

Based on genetic diversity study, pure strains (Igunga, FETA and Lake 
Victoria) exhibited low genetic variation while TAFIRI was moderate. 
Strains (Karanga, Ruhila and Kunduchi) showed highest level of diversity 
and provided evidence of admixture. Therefore, from the genetic analyses, 
the most promising strains are Igunga, FETA, Lake Victoria and TAFIRI.  

During the common garden experiment, we observed clear ranking of 
strains but differences between Kunduchi and Pangani. The Igunga strain 
appeared to be the most robust, while the TAFIRI strain showed a high 
variation across the two environments. This may suggest the presence of 
GxE which could argue for a separate breeding program for each 
environment in Tanzania if we choose TAFIRI strain as a base population. 
However, the Igunga strain which has showed evidence of being vigorous 
and fast growing, provides evidence that the environmental differences did 
not have much influence on this strain. 

Genetic variation in the population, heritability and genetic correlation 
(Bentsen and Gjerde, 1994) determine the final phenotypic performance 
in a breeding program. Nevertheless, higher heritability at one-month time 
point of measurement was observed at Kunduchi and lower heritability at 
Pangani. Therefore, the differences observed at Pangani could be non-
genetic. In addition, lower heritability at Pangani suggest that environmental 
factors such salinity in brackish water could have restrained the fish from 
manifesting their full potential to utilize additive genetic for growth 
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performance. These restrictions most likely resulted in strong re-raking of 
strain and family as revealed by lower genetic correlation between two 
environments.  

However, heritability estimates the genetic variation within population or 
strains, that’s individual genetic differences within a strain and not genetic 
differences between strains. Therefore, the estimation of genetic parameters 
in this thesis have corrected away the genetic variation differences between 
strains. 
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In this thesis we have generated the basic information for the establishment 
of future sustainable breeding program for tilapia strains in Tanzania.  

We have provided information about the genetic diversity of the strains, 
their performance in brackish and freshwater production environments, 
estimates of genetic parameters and the magnitude of GxE interaction 
between two environments. Genetic analysis revealed greater genetic 
diversity within than among strains. Genetically closed strains of Igunga, 
FETA and Lake Victoria TAFIRI, suggests that these could be pure strains 
without admixture. The gained information is useful for wild strains 
conservation practices and formation of a base population for the selective 
breeding purposes. In addition, the aforementioned information could help 
in making breeding decisions for the sustainable development of tilapia 
breeding programs in Tanzania. Our study presents the first estimate of 
genetic diversity of Nile tilapia strains in Tanzania based on SNP markers 
developed from ddRADseq, this provide the important baseline as SNP 
increasingly become the marker of choice for strain studies and for 
aquaculture breeding programs. 

We communally reared Nile tilapia strains under common garden 
experiment and use pedigree and phenotypic information to estimate genetic 
parameters and GxE interactions. We observed lower heritability estimates 
for body weight between fish farmed brackish environments than those 
farmed in freshwater environments. Our results also revealed the occurrence 
of significant GxE interaction effects on traits based on weak genetic 
correlations and strong strain and family re-ranking between two 
environments. Nevertheless, in our analyses we observed genetic correlation 
with large high standard errors. Therefore, we cannot form conclusions about 
the actual genetic correlations.  

5. General conclusions
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Most of the strains ranked differently across two environments, however 
Igunga strain performed better in both environments. Since Tanzania is a 
developing country with inadequate resources, in this circumstance 
suggesting for having multiple breeding programs for Nile tilapia would be 
burdensome. Therefore, there is no need to for a separate breeding program 
as suggested by the existence of GxE interaction. Thus, the future breeding 
program can work with a robust strain. 
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Nile tilapia culture in Tanzania is rapidly growing and increasing to meet the 
increased demand for farmed fish due to the growing population. The 
situation has escalated the need for high quality fish seed and brooders at 
reasonable and cost-effective prices. This thesis has provided information on 
suitable strains to be used in brackish and freshwater environments. 
Therefore, based on the findings of this thesis, the next step forward should 
superscribe the following issues related to Nile tilapia farming in Tanzania  

Maintain available broodstock population which have known genetic 
diversity and have been tested for their performance in production 
environments, therefore the next step should focus on designing a selective 
breeding scheme based on the suggested strain (Igunga strain) and tested 
production environments. Because broodstock numbers may decline through 
attrition over time, leading to loss of both genetic diversity and pedigree 
information. 

Develop a cost‐benefit analysis for a tilapia breeding program including 
traits that are of value 

Since in this thesis we have already developed genotype and phenotypic 
data of available strains in Tanzania, then the commencing and 
implementation of selective breeding program is now economically viable.  

Avoid the direct transfer of improved strains from Asia such as GIFT 
tilapia because of possible potential harmful impact on native germplasm in 
Tanzania and undiscovered effects of gene-environment interactions.  

Better to adapt the technology demonstrated in Asia for use in the genetic 
improvement of tilapia in Tanzania and study the potential environmental 
effects of improved stocks on local Nile tilapia stocks 

6. Future perspectives
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The Nile tilapia (Oreochromis niloticus) is the most cultured fish species in 
Tanzania. The main challenge of Nile tilapia culture in Tanzania is the 
availability of better performing strain which can be reared in a wide range 
of production environments. The choice of suitable starting strains for the 
breeding program is important for a sustainable breeding program. Tanzania, 
as one of fortunate countries with several species of tilapia, needs to produce 
fast growing high yielding tilapia strains that will adapt wide range of local 
farming environments and that can be grown as low a cost as possible to 
benefit smallholders and to alleviate poverty and malnutrition. This thesis 
aimed at providing fundamental information for the establishment of a tilapia 
breeding program in Tanzania. The thesis consists of two main studies; 
genetic diversity study and common garden study presented in four papers.   

In paper I, genetic diversity experiment was carried out using ddRADseq 
to study population structure and genetic diversity of local Nile tilapia strains 
cultured in Tanzania. Seven strains (TAFIRI, FETA, Kunduchi, Igunga, 
Karanga, Ruhila and Victoria) of local Nile tilapia were genotyped resulting 
into 2,180 informative SNPs. Strong genetic differentiation was revealed 
between closely related populations (FETA, Igunga and Victoria) and 
Karanga and TAFIRI. Karanga, Kunduchi and Ruhila strains showed genetic 
admixture while strains of FETA, Victoria, Igunga and TAFIRI showed no 
admixture. Admixed strains are not useful as the basis for a breeding program 
as segregation may make their performance less predictable.   

In paper II, we studied the genetic differentiation within and between 
local and exotic Nile tilapia and Rufiji tilapia (Oreochromis urolepis 
urolepis) strains. The results showed high differentiation between Rufiji 
tilapia and exotic and local Nile tilapia but low differentiation between local 
and exotic Nile tilapia. Higher genetic variation was revealed among Rufiji 
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strains compared to exotic and local Nile tilapia. Wami, Mindu and Mansi 
strains of Rufiji tilapia species were most diverse but also highly admixed. 
The results also showed high genetic differentiation between Rufiji 
populations and the local or exotic Nile tilapia strains. Local strains 
(Victoria, Igunga and FETA) formed one genetic group with some exotic 
Nile tilapia strains (Chifive-C, Muleba-M and Ruvu Farm-R) from Uganda. 
The six strains of TAFIRI, FETA, Karanga, Igunga, Ruhila and Victoria 
were then compared for growth performance in two environments.  

Therefore, in paper III, common garden experiment was conducted in 
Kunduchi (freshwater 0ppt) and Pangani (brackish water 2-5ppt). The 
animals were reared communally for a period of three months in hapas (12m 
x 8.5m) installed in a pond. The results showed that the differences in 
performance between the different strains were significant (P< 0.001) in the 
two environments and the strains ranked differently for growth between the 
two environments. In brackish water environment, the Igunga strain ranked 
first and lastly was Victoria strain while in freshwater Karanga strain ranked 
first in performance whereas TAFIRI was the lowest performing strain. 
However, the Igunga strain appeared to be the most robust across the two 
environments.   

Paper IV was also based on the common garden experiment. We used 
pedigree and family information to estimate genetic parameters for the 
measured growth traits. Heritability estimates for harvest body weight were 
low in both the freshwater (0.10) and brackish water (0.09) environments 
compared to weight at tagging. Genetic correlations between the two 
environments were low (0.35) for body weight at harvest and families ranked 
differently across the two environments indicating the existence of 
substantial GxE. 

In conclusion, genetic diversity study revealed that some of the tested 
local Nile tilapia strains are pure without admixture. Moreover, the local Nile 
tilapia and Rufiji tilapia are still genetically distinct while exotic and local 
Nile tilapia showed some degree of admixture in some strains. Common 
garden experiment showed that there are differences in growth performance 
among tested Nile tilapia strains and that strains ranked differently for 
growth between the two environments. The best performing strain in both 
environments, which was identified as Igunga strain, can be chosen for the 
planned tilapia breeding program in Tanzania. Overall, the obtained results 
from this thesis can be used as a guideline for selecting the strain to work 
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with as a base population for the future breeding program. Significant GxE 
interaction between freshwater and brackish water environments was found 
based on weak genetic correlations between two environments, strong family 
re-ranking and lower heritability in brackish water compared to freshwater 
environments. Therefore, the future tilapia breeding program in Tanzania 
should be based the statistical evidence on GxE, environmental conditions, 
and economic aspects of the country in relation to resources available for 
genetic improvement programs. 
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Niltilapia (Oreochromis niloticus) är den mest odlade fisken Tanzania. Den 
största utmaningen för odling av niltilapia i Tanzania är att hitta en stam som 
presterar bra och som kan odlas i många olika typer av miljöer. Valet av stam 
att utgå ifrån är avgörande för ett hållbart avelsprogram. Tanzania, som har 
turen att ha många olika tilapiaarter, behöver producera snabbväxande och 
högavkastande tilapia som kan anpassas till flera olika lokala odlingsmiljöer 
och som kan odlas till en så låg kostnad som möjligt för att gynna småskaliga 
fiskodlare och bidra till mindre fattigdom och undernäring. 
Den här avhandlingen syftade till att ge grundläggande information för att 
kunna upprätta ett avelsprogram för tilapia i Tanzania. Avhandlingen består 
av två huvudstudier, en studie om genetisk diversitet och en common-
garden-studie, som presenteras i fyra delstudier.  

I studie I utfördes ett experiment med hjälp av ddRADseq för att 
undersöka populationsstruktur och genetisk diversitet hos lokala stammar av 
niltilapia som odlas i Tanzania. Sju lokala stammar av niltilapia (TAFIRI, 
FETA, Kunduchi, Igunga, Karanga, Ruhila och Victoria) genotypades, vilket 
resulterade i 2180 informativa SNP:ar. Stor genetisk differentiering sågs 
mellan närbesläktade populationer (FETA, Igunga och Victoria) och 
Karanga och TAFIRI. Karanga, Kunduchi och Ruhila visade sig ha genetisk 
inblandning (admixture) medan FETA, Victoria, Igunga och TAFIRI inte 
uppvisade någon genetisk inblandning. Genetiskt blandade stammar kan inte 
användas som bas för ett avelsprogram eftersom segregering kan göra deras 
prestanda mindre förutsägbar.  

I studie II undersökte vi genetisk differentiering inom och mellan lokala 
och exotiska stammar av niltilapia och rufijitilapia (Oreochromis urolepis 
urolepis). Resultaten visade på stor genetisk differentiering mellan stammar 
av rufijitilapia och exotiska och lokala stammar av niltilapia men liten 
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genetisk differentiering mellan lokala och exotiska stammar av niltilapia. 
Större genetisk variation sågs hos rufijitilapia jämfört med exotiska och 
lokala stammar av niltilapia. De stammar bland rufijitilapia som hade störst 
genetisk variation men även stor genetisk inblandning var Wami, Mindu och 
Mansi. Resultaten visade också på stor genetisk differentiering mellan rufiji-
stammarna och de lokala eller exotiska niltiapia-stammarna. Lokala stammar 
av niltilapia (Victoria, Igunga och FETA) visade sig tillhöra samma 
genetiska grupp som ett antal exotiska niltilapia-stammar (Chifive-C, 
Muleba-M och Ruvu Farm-R) från Uganda.  

I studie III jämfördes de sex stammarna TAFIRI, FETA, Karanga, 
Igunga, Ruhila och Victoria med avseende på tillväxt i två olika 
odlingsmiljöer (common garden): i Kunduchi (sötvatten 0ppt) och Pangani 
(brackvatten 2-5ppt). Försöksupplägget var detsamma i de båda 
odlingsmiljöerna; fiskarna hölls och utfodrades i en gemensam damm men i 
olika nätkassar (hapas, 12m x 8,5m) under en period av tre månader. 
Resultaten visade att skillnaderna i tillväxt mellan de olika stammarna var 
signifikant (P< 0,001) i båda miljöerna samt att stammarna rankades olika i 
de två miljöerna vad gäller tillväxt. I brackvattenmiljön rankades Igunga 
högst och Victoria lägst, medan Karanga rankades högst och TAFIRI lägst i 
sötvattensmiljön. Igunga-stammen verkade dock vara den mest robusta i de 
två miljöerna sammantaget.  

Även studie IV baserades på common-garden-försöket. Vi använde 
stamtavla och familjeinformation för att uppskatta genetiska parametrar för 
de uppmätta tillväxtegenskaperna. Uppskattad heritabilitet för skördevikt var 
låg i både sötvatten- (0,10) och brackvattenmiljön (0,09) jämfört med vikt 
vid PiT-märkning. Den genetiska korrelationen mellan de två miljöerna var 
låg (0,35) för skördevikt och familjerna rankades olika i de två miljöerna, 
vilket tyder på förekomsten av betydande GxE. 

Sammanfattningsvis visade studien om genetisk diversitet att några av de 
testade lokala niltilapia-stammarna är rena utan genetisk inblandning. 
Studien visade också att de lokala stammarna av niltilapia och rufijitilapia 
fortfarande är genetiskt åtskilda, medan genetisk inblandning till viss del 
förekommer i några av de exotiska och lokala niltilapia-stammarna. 
Common-garden-försöket visade att det är skillnader i tillväxt bland de 
testade niltilapia-stammarna samt att stammarna rankades olika med 
avseende på tillväxt mellan de två odlingsmiljöerna. Den stam som 
presterade bäst i båda miljöerna, Igunga-stammen, kan väljas för det 
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planerade avelsprogrammet för tilapia i Tanzania. Sammantaget kan 
resultaten från denna avhandling användas som riktlinjer för val av stam att 
arbeta med som baspopulation för ett framtida avelsprogram. Signifikant 
GxE-interaktion mellan sötvatten- och brackvattenmiljön noterades, vilket 
beror på svag genetisk korrelation mellan de två miljöerna, stor familje-re-
ranking och lägre heritabilitet i brackvatten- jämfört med sötvattenmiljön. 
Mot bakgrund av detta bör ett framtida avelsprogram för tilapia i Tanzania 
baseras på statistiskt bevis på GxE, miljöförhållanden samt ekonomiska 
aspekter för landet i relation till tillgängliga resurser för genetiska 
förbättringsprogram.  
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