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Individual tree detection using template matching of multiple 
rasters derived from multispectral airborne laser scanning 
data
Langning Huo and Eva Lindberg

Department of Forest Resource Management, Swedish University of Agriculture Sciences, Ume Å, Sweden

ABSTRACT
Multispectral airborne laser scanning (MS-ALS) provides informa
tion about 3D structure as well as the intensity of the reflected light 
and is a promising technique for acquiring forest information. Data 
from MS-ALS have been used for tree species classification and tree 
health evaluation. This paper investigates its potential for individual 
tree detection (ITD) when using intensity as an additional metric. To 
this end, rasters of height, point density, vegetation ratio, and 
intensity at three wavelengths were used for template matching 
to detect individual trees. Optimal combinations of metrics were 
identified for ITD in plots with different levels of canopy complexity. 
The F-scores for detection by template matching ranged from 0.94 
to 0.73, depending on the choice of template derivation and raster 
generalization methods. Using intensity and point density as 
metrics instead of height increased the F-scores by up to 14% for 
the plots with the most understorey trees.
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1. Introduction

Individual tree detection (ITD) can be used to derive forest information from airborne laser 
scanning (ALS) data. Existing ITD methods are generally based on two-dimensional (2D) or 
three-dimensional (3D) canopy segmentation. 2D segmentation involves image processing 
of rasters using a canopy height model (CHM) or a normalized digital surface model (nDSM). 
Conversely, 3D segmentation extracts information directly from the laser point cloud. 
Methods used for 2D segmentation include watershed segmentation (Tang et al., 2007; 
Ene et al., 2012), region growing (Hyyppä et al., 2001; Solberg et al., 2006), and neural 
networks (Kestur et al. 2018). Methods used for 3D segmentation include k-means clustering 
(Lindberg et al. 2013), mean shift (Xiao et al. 2019), and adaptive and agglomerative 
clustering (Lee et al., 2010; Gupta et al., 2010). Existing 2D and 3D methods typically only 
use the spatial information in the point cloud; the intensity data are rarely exploited.

To compensate for the lack of spectral information provided by traditional one-channel 
laser scanning, multispectral laser scanning systems (MS-ALS) have been developed in 
recent years. Such systems include multiple scanners, enabling recording of the intensity 
of reflected laser pulses at more than one wavelength when scanning (Junttila et al. 2018, 
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2017). For example, the commercial Optech Titan (Teledyne Optech, Canada) system 
scans at wavelengths of 532 nm, 1064 nm, and 1550 nm (Wichmann et al. 2015; Yu 
et al. 2017; Ahokas et al. 2016; Axelsson, Lindberg, and Olsson 2018; Matikainen et al. 
2017). MS-ALS has been applied in land use classification and land cover mapping 
(Matikainen et al. 2017; Morsy et al. 2016; Wichmann et al. 2015), plant physiological 
and health evaluation (Junttila et al. 2018, 2017; Wallace et al. 2014), and tree species 
classification (Yu et al. 2017; Axelsson, Lindberg, and Olsson 2018; Budei et al. 2018). 
However, the applications of MS-ALS reported to date have involved detecting plants’ 
chlorophyll and moisture content or distinguishing between artificial and natural targets 
(Gong et al. 2015) rather than segmentation of targets such as individual trees.

Previous studies have used spectral information to improve ITD based on ALS data by 
applying combined analysis of multispectral images and ALS-derived layers (Leckie et al., 
2003; Breidenbach et al., 2010; Ke et al., 2010), or by analysing multispectral images to check 
ALS segmentations and detect under-segmentation by recognizing different tree species 
(Heinzel and Koch 2012). The additional information provided by intensity measurements 
can complement spatial data, making it easier to distinguish tree crown edges. This could be 
particularly valuable in situations that are challenging for ITD, such as when trees of different 
species are located in close proximity and many understorey trees are present. While the use 
of spectral information by combining multispectral images with ALS data has been shown 
to enhance ITD, the usefulness of MS-ALS in this context remains to be determined.

Template matching was originally developed to detect treetops from aerial images by 
measuring the similarity between the tree templates and targets (Pollock 1996; Larsen and 
Rudemo 1998). The technique has since been improved and compared with other methods 
for the ITD (Larsen et al. 2011) used to separate tree crowns of multiple trees (Leckie et al. 
2016). After the introduction of laser scanning in forestry, template matching methods 
suitable for use with laser data were developed. For example, Pirotti (2010) extracted 65% 
of all trees present when detecting individual trees from a CHM, while Nyström et al. (2014) 
detected 38% of windthrown trees from an object height model (OHM) created by subtraction 
from a digital elevation model (DEM). A similar approach has been used to detect fallen logs 
by analysis of high-resolution unmanned aerial vehicle (UAV) images (Panagiotidis et al. 2019).

Previous studies have demonstrated the effectiveness of template matching in target 
detection when using spectral and spatial information separately, but its use with com
bined datasets remains unexplored. In addition, template matching can detect patterns 
and textures, enabling the use of diverse metrics in ITD (e.g. height, point density, the 
vegetation ratio, and intensity values for multiple channels). Using template matching, 
features representing spatial, texture, and spectral information can be fused from inter
mediate results at the pixel level.

In this study, MS-ALS data were used for ITD by template matching. The method was 
applied to sites with varying understorey vegetation densities to answer the following 
questions:

(1) How does the accuracy of ITD based on airborne MS-ALS data compare to that 
achieved using single-wavelength ALS?

(2) Is height the best metric for ITD?
(3) Are there differences in the tree maps generated based on intensity data from 

various channels, and can these differences be exploited in ITD?
(4) What metrics should be selected for specific forest structures?
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To improve template matching performance, the method was also refined by 
developing:

(1) A processing flow for raster image generalization, which contained the compensa
tion of local low values that benefited different metrics with different levels.

(2) A method of deriving templates from the target plots instead of field data or manual 
selection was proposed.

2. Materials

2.1. Study area

The study area is located in Remningstorp (Figure 1), Västra Götaland, Sweden (58°27′ 
18.35″N, 13°39′8.03″E) and covers an area of 1602 ha. The forest in this area is mainly 
managed spruce (Pinus Sylvestris) and pine (Picea Abies) for wood production.

2.2. Field data

A field inventory was conducted in 2014 in 40 circular plots with diameters of 80 m. Each 
plot was divided into 16 subplots (20 × 20 m, Figure 3), and the positions of the subplot 
centres were determined with an RTK-GPS (Trimble Inc., Sunnyvale, CA, USA). The posi
tion, diameter at breast height (DBH), and species of each tree in each subplot was 
recorded. Individual-tree positions were determined using a Postex system (Lämås 
2010) and calibrated using TLS data acquired in 2016. The height of a subsample of 
trees in the plots was also measured and recorded.

In the time between the field inventory and laser scanning, selective cutting and clear 
cutting were performed in 28 of the total 40 plots; only data for the 12 unchanged plots 
are considered here. Descriptive statistics for these plots are presented in Table 1. Because 
detecting understorey trees is challenging, an index was created to quantify the propor
tion of small trees. Here, small trees are defined as trees with DBH smaller than T, where 

Figure 1. Study area and plot positions. Red polygon on the right is the laser-scanned area.
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T is the mean of the largest and smallest measured DBH for the plot. The reason for 
creating the index is further discussed later related to the performance of the ITD 
algorithm. For presentational purposes, the plot numbers were ordered according to 
the proportion of small trees. DBH distributions and cumulative curves are presented in 
Figure 2.

The precision of the tree positions in each subplot relative to the subplot centres 
was high when using a Postex ultrasound system (Lämås 2010), but the accuracy of 
the subplot centres position had potentially larger errors due to the errors in the 
RTK-GPS measurements below the canopy (Olofsson, Lindberg, and Holmgren 2008). 
Consequently, all tree positions in the same subplot had an identical shift relative to 
the ALS data. These shifts were detected and eliminated by visual interpretation of 
the tree positions relative to the local maxima of the ALS data. A shift vector was 
added to the coordinates of all trees in each subplot, as shown in Figure 3.

Table 1. Basic information about the 12 plots, including mean DBH and height, stem density, 
proportion of pine trees, and proportion of small trees. SD refers to standard deviation.

Plot 
no.

Mean 
DBH (cm)

SD DBH/ 
Mean DBH

Mean 
height 

(m)
SD height/ 

Mean height
Number of 
stems/ha

Proportion of spruce/ 
pine/deciduous 

(%)
Proportion of 

small trees (%)

1 30.2 0.24 21.8 0.16 615 93/1/6 24
2 28.3 0.24 21.2 0.17 704 95/0/5 27
3 24.4 0.24 19.7 0.17 921 68/3/29 28
4 22.6 0.33 18.3 0.25 905 85/0/15 29
5 28.8 0.29 21.2 0.2 740 91/0/9 31
6 27.4 0.22 19.5 0.15 635 49/49/2 32
7 28.2 0.29 20.9 0.21 543 93/0/7 35
8 28.3 0.36 20.7 0.25 820 92/0/8 38
9 21.5 0.38 17.6 0.28 899 77/1/22 44
10 22.2 0.35 17.9 0.25 808 49/0/51 46
11 17.1 0.42 14.7 0.33 1068 86/0/14 60
12 20.2 0.69 14.0 0.51 800 52/40/8 60

Figure 2. The DBH distribution of plots 1 − 12.
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2.3. MS-ALS data

The study area was scanned on the 21 July 2016 with an Optech Titan (Teledyne Optech, 
Canada) commercial multispectral airborne laser scanner. This instrument scans at three laser 
wavelengths: 1550 nm (channel 1; short-wave infrared), 1064 nm (channel 2; near-infrared), 
and 532 nm (channel 3; green). To collect point cloud data with high resolution and high 
intensity, scanning was conducted at an altitude of around 400 m above ground level, 
generating 10 returns per m2 in each channel, and up to four returns for each emitted pulse.

3. Methods

The framework of the ITD method and the study purpose are shown in Figure 4.

3.1. Preprocessing of laser data and raster derivation

The MS-ALS data were cut out with a 5 m buffer around the boundary of each 80 m 
diameter plot. The height was normalized to the ground and points lower than 2 m above 
the ground were removed using LAStools (2007–2020, rapidlasso GmbH, Germany) with 
the default settings. Range correction was done by multiplying the intensity by the 
squared distance to the scanner for each point.

Six raster images with 0.25 m resolution were derived from the point clouds based on 
the maximum height (H), point density (D), vegetation ratio (V), and average intensity 
from three channels (I1, I2, and I3). To minimize the number of missing data cells in the 
raster images, the point clouds from the three channels were combined when calculating 
the maximum height, point density and vegetation ratio. Points less than 2 m above 
ground level were excluded from the point clouds when computing metrics, and the 

Figure 3. Corrections of the single-tree positions in a representative plot. (a) Measured tree positions. 
(b) Corrected tree positions. The background rasters represent the output of the smoothed nDSM. The 
black solid lines indicate the plot’s boundary. The dotted lines show the boundaries of the 
20 m × 20 m subplots.
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vegetation ratio was calculated as the ratio of the number of points 2 m or more above 
ground level to the total number of points.

3.2. Individual tree detection

3.2.1. Image generalization
Before template matching, raster cells with missing data and local minima were filled in 
the raster images and then smoothed to improve performance. Because of the chosen 
flight and scanning directions, there were missing data and minimal values between 
adjacent scan lines. Figure 5a depicts the scanning process and shows how the raster 
images are orientated with respect to the flight and scanning directions, as well as the 
missing data and minimal value stripes in a representative raster. To prevent the missing 
data and minimal values from affecting template matching, missing data cells were filled 

Figure 4. Framework of the ITD method tested here and questions considered when analysing the 
results.
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by computing the mean of all data-containing neighbouring cells in a 3 × 3 grid centred 
on the cell with missing data. Cells with values lower than their transverse two neighbour 
were replaced by the average of the two neighbours. Finally, the raster images were 
smoothed using a 3 × 3 mean filter.

3.2.2. Template derivation
Template raster images with trees were derived directly from the rasters without using 
field measurements as reference data. According to the principle that a local height 
maximum has a high probability of being a tree top, a number of local maxima were 
defined as the centres of template images. For the plot size considered in this study, an 
n × n grid was created and the positions of the nodes were set as the initial seeds. The 
seeds were repeatedly moved to the adjacent raster cell with the highest value in a 2 m

× 2 m neighbourhood until their positions no longer changed. Seeds whose initial 
placements corresponded to a gap in the canopy were excluded. Finally, 4 m × 4 m 
template images were defined based on the metric images of the plot, using the retained 
seeds as the centre (see Figure 6 for an example). During this process, it was possible for 
multiple initial seeds to converge onto the same local maximum, so the final number of 
templates could be lower than the initial one. The number of grid nodes used to create 

Figure 5. The flight and scanning direction of the MS-ALS data used in this study and the generated 
point cloud. (a) Flight and scanning direction (i) shown on a maximum height raster (ii). (b) The 
corresponding point cloud seen from different directions.
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the initial seeds was varied from 1 to 15 × 15 to determine how such variation affected 
detection accuracy.

3.2.3. Template matching
For each 90 m × 90 m plot, a similarity map with 0.25 m resolution was created using 
a moving window to illustrate the probability of each pixel being a tree position based on 
the templates (Figure 7). For a given pixel Ii; j in a plot image I a 4 m × 4 m subimage Si; j 

centred on Ii; j was compared to each of the templates T1, T2 . . . Tm generated from a fixed 
number of nodes. The similarity was then calculated using Equations (1) and (2) 

Dm i; jð Þ ¼
XA

a¼1

XB

b¼1

Si; j a; bð Þ � Tm a; bð Þ
� �2 (1) 

P i; jð Þ ¼ 1 � Dm i; jð Þf gmin; m ¼ 1; 2; . . . ; n (2) 

where Dm i; jð Þ is the difference between subimage Si; j and template Tm, Dm i; jð Þf gmin is 
the minimum difference for all n templates, and P i; jð Þ is the similarity of the pixel i; jð Þ to 
a tree position. S and T were normalized against their maximum values, respectively, 
before calculating differences.

Using the same method, similarity maps (Figure 8) were derived from H, D, V, I1, I2, and 
I3. To synthesize the similarities for different metrics, new similarity maps were created by 
averaging different combinations of H, D, V, I1, I2 and I3. The averaged combinations are 
denoted P with used variables (H, D, V, I1, I2, and I3) marked as subscript, e.g. PH, D 

represents that the similarity maps from H and D are averaged for the template matching.
Finally, tree positions were detected from the similarity maps. The similarity maps were 

smoothed using a 3 × 3 Gaussian function, and a 3 × 3 moving window was used to detect 

Figure 6. Templates (9 × 9) on a height raster image. (a) Initial positions of the nodes. (b) Final 
positions of the templates. Red boxes delineate the borders of the templates and blue spots indicate 
their centres. The background rasters are the MDSM processed after the image generation steps 
proposed in.Section 3.2.1
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the local maxima. For comparative purposes, tree positions were also detected directly 
from the nDSM generated using the preprocessing method described in section 3.1. The 
resulting tree positions are indicated by the label MDSM in the results section.

Figure 7. The similarity calculation process.

Figure 8. Similarly maps derived from different metrics by template matching. (a – e) H, D, V, I1, I2 and 
I3. Red and blue indicate high and low values, respectively. Histogram equalization was performed to 
improve the visualization of the results.
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3.3. Validation

To validate the detection accuracy, tree positions derived from ALS (ALS-trees) were 
matched to the field measurements (field-trees). The ALS-trees were first linked to all 
possible field-trees within a certain distance, then only the linked pairs with the smallest 
distances were retained for each tree. For trees with DBH values below 25 cm, the 
maximum linking distance was 3 m horizontally, while for larger trees the maximum 
distance was 12 × DBH (Olofsson, Lindberg, and Holmgren 2008). After matching, only 
trees within 35 m of the plot centres were used to assess the detection accuracy to reduce 
the statistical impact of trees close to the plot boundary. Precision, recall, and F-scores 
were calculated using Equations (3) – (5): 

P ¼
Number of matched trees

Number of trees detected by ALS
(3) 

R ¼
Number of matched trees

Number of trees recorded in the field inventory
(4) 

F ¼
2� P� R

Pþ R
(5) 

In this study, F-scores were used for parameter comparison and selection in Section 4.1 
and 4.2 because it is a comprehensive evaluation of the commission and omission effects. 
In Section 4.3 where presenting the detection accuracy, detection rate (RD, same value as 
R in Eq. 4) was used for better cross-interpretation of results from different studies. 
Specially, the detection rate of the small trees (RD,s) was also presented to show the 
performance of understorey detection.

4. Results

4.1. Generalization of raster images

Figure 9 shows representative rasters generated during each of the generalization steps 
based on data for Plot 1. For height rasters, replacing missing data values had a clear 
effect in that it eliminated striped texture from the images. However, the striped texture in 
the density and vegetation ratio rasters only disappeared after replacing low values. In the 
case of the intensity rasters (particularly those for channels 1 and 2), it was difficult to 
distinguish tree crowns in the original images, and all generalization steps improved the 
detection of treetops and crown boundaries.

The quantitative description of how each generalization step improved the detection 
performance was conducted using F-scores (Figure 10). Consistent with Figure 9, different 
metrics showed significant different improvements within each step. For MDSM and H, F-scores 
increased most obviously when only replacing default values, while replacing the low values 
and mean filter did not contribute much. However, for density, only replacing default values 
showed little improvements compared to the raw data, while replacing low values was the 
most crucial step for all plots. For intensity, especially I2 and I3, F-scores improved significantly 
after every step, illustrating the necessity of conducting every step in the generalization.
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4.2. Template derivation

The numbers of templates generated using different numbers of nodes, and the corre
sponding precision values, are given in Table A1 and Table A2 in Appendix. Higher 
numbers of nodes resulted in the generation of more templates and increased the 
probability of fake templates emerging (i.e. templates that could not be matched to field- 
measured trees). However, such fake templates did not reduce the detection accuracy, as 
shown in Figure 11. For example, even when one in three templates was fake for Plot 10, 

Figure 9. The effects of the processing steps on rasters based on different metrics within a 25 × 25 m 
area.
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the F-scores were not appreciably lower than in cases without fake templates. However, 
additional templates did not improve the detection accuracy; broadly speaking, the 
detection was insensitive to the number of templates.

4.3. Detection accuracy

The detection accuracy values presented in this section are based on rasters obtained 
after applying all generalization steps and a 9 × 9 grid for template derivation. All results 
for individual and combined metrics for the 12 plots are presented in Figure 12. For all 

Figure 10. F-scores for all plots based on individual metrics: MDSM, H, V, D, I1, I2 and I3.

Figure 11. F-scores for detection using different numbers of templates.
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plots, template matching from H improved accuracy relative to detecting local maxima 
directly from the generalized nDSM. The effects of combining metrics on accuracy differed 
between plots. For plots 1–7 (see blue lines in Figure 12), the F-scores were highest using 
combinations containing H and particularly low for combinations including D. For plots 
11–12 (green lines), performance was best for combinations including D but not H. Plots 
8–10 (red lines) behaved similarly to plots 1–7 but yielded better performance when 
template matching was done using I instead of H or D.

The different performances of H, D and I for plots with different structures could be 
explained by the raster textures (Figures 13 and 14). Figure 13 presents an example of 
a small tree standing beside a dominant tree in Plot 12, which had 60% small trees. The 
H raster (Figure 13b) shows significantly lower values for the small tree compared to the 
surroundings, leading to difficulty of detection. However, in the rasters of density and 
intensity, the pixel values of small trees were influenced only slightly by the dominant 
tree. This example illustrates that the rasters of density and intensity provided more 
possibilities for detecting small trees beside dominant trees.

For the cases of understorey trees, Figure 14 shows an example of how D and 
I improved the detection rate. The returns from the understorey trees changed D and I, 
causing more fragmentized texture compared to H, improving the probability of detect
ing understorey trees. Instead of only focusing on the top layer as H, D and I were more 
sensitive to the point cloud from different vertical layers.

Figure 15 shows the similarity maps for the height (H), intensity of the 1064 nm channel 
(I2), and point density (D) for Plot 12. The similarity map for H looks similar to the nDSM, only 
showing the tallest layer of the canopy. The similarity map for I2 exhibits higher values 
connecting the tree crowns around small trees, and the similarity map for D exhibits greater 
variation in the regions containing small trees, resulting in more local maxima. Although 
D provided more information that could be used to detect understorey trees, it was less easy 
to generalize than H, as shown in Figure 11; the D rasters had too much texture inside the 
tree crowns (Figure 9), which also might lead to over-segmentation.

When combining the similarity maps from different metrics, the performance of 
detection improved with the average effects among different metrics. Figure 16 
depicts the linkage of ALS-trees and field-trees for Plot 12; the yellow boxes highlight 
regions with notable differences. It is clear that PI2, I3 was better at detecting small 

Figure 12. F-scores using different metrics/combined metrics for 12 plots.
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trees standing at the edges of big tree crowns. However, for clusters of small trees 
under big tree crowns (highlighted using green boxes), intensity was insufficient for 
detection. In such cases, the density and vegetation ratio were excellent for detect
ing clusters of small trees.

To identify metric combinations suitable for use in plots with different forest 
structures, we considered the combinations with the highest and second highest 
accuracy for each plot (collectively referred to as top accuracies). We then selected 
the metric combinations with the most top accuracy results for plots with similar 
proportions of small trees. Table 2 summarizes the accuracies achieved with different 
combinations and the optimal combinations selected for different plot types. When 
detailed information on the plot conditions is available, the metric combinations 
listed under Option 1 in Table 2 are recommended; this option provides five different 
metric selections for five kinds of plot conditions. Option two represents a simplified 
solution for three levels of canopy complexity. For comparative purposes, Table 2 
also shows the accuracy achieved using local maxima detection, which is 
a commonly used ITD method.

Figure 13. An example for a small tree standing beside a dominant tree in Plot 12. (a) 3D point cloud 
from laser data. (b) rasters of (i) H, (ii) D, (iii) I2 and (iv) I3. Red asterisks and blue circles indicate field- 
measured trees and detected trees, respectively; blue lines represent the links between them. Yellow 
cycle makes out the small tree in different rasters.
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5. Discussion

In this study, the individual tree detection (ITD) performance of MS-ALS was tested in plots 
with varying forest structures. ITD performance was evaluated on the basis of six metrics 

Figure 14. An example for several understorey trees standing under a dominant tree in Plot 12. (a) 3D 
point cloud from laser data. (b) rasters of (i) H, (ii) D, (iii) I2 and (iv) I3. Red asterisks and blue circles 
indicate field-measured trees and detected trees, respectively; blue lines represent the links between 
them.

Figure 15. Similarity maps for (a) H, (b) I2 and (c) D in Plot 12. Red and blue indicate high and low 
values, respectively; black points indicate the positions of trees according to field measurements.
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(height, point density, vegetation ratio, and intensity from three channels) and various 
combinations of these metrics. Height is the metric most commonly used for ITD based on 
ALS data (Eysn et al. 2015; Sačkov, Kulla, and Bucha 2019; Aubry-Kientz et al. 2019) even 
though its limitations with respect to detecting understorey trees have been widely 
noted. The results presented here show that this deficiency can be overcome by using 
additional metrics. The inclusion of intensity substantially improved ITD performance for 
some plots, demonstrating the advantages of MS-ALS over single-wavelength ALS.

In this study, the best metric differed between the plots. Therefore, rules for metric 
selection were proposed based on an analysis of the plots’ forest structure. Two main 
groups of plots were identified: ITD based on H yielded the best performance for plots 
1–7, which had a typical sigmoidal cumulative DBH distribution curve (shown in Figure 2), 
whereas for plots with more small trees, ITD based on intensity or density yielded better 
results. To provide quantitative guidance when selecting metrics for ITD, an index was 
defined based on the proportion of small trees in a plot. When this index was low, height 

Figure 16. Linkage between trees detected by template matching and field-measured trees using the 
(a) H, (b) PI2, I3 and (c) PD, V metrics for Plot 12. Red asterisks and blue circles indicate field-measured 
trees and detected trees, respectively; blue lines represent the links between them. The background 
rasters are the nDSM processed after the image generation steps proposed in.Section 3.2.1

Table 2. Summary of the plot attributes, optimal metric combinations for single tree detection in each 
plot, the accuracy achieved using these combinations, and the accuracy achieved by direct detection 
based on local maxima for each plot.

Plot 
no.

Proportion of small 
trees (%)

Template matching Local maxima 
detectionOption 1 Option 2

Metrics F-scores RD RD,s Metrics F-scores RD RD,s F-scores RD RD,s

1 24 H 0.94 0.90 0.82 PH, I2, I3 0.93 0.90 0.82 0.91 0.87 0.72
2 27 H 0.93 0.89 0.68 PH, I2, I3 0.92 0.89 0.72 0.91 0.86 0.61
3 28 H 0.88 0.83 0.67 PH, I2, I3 0.88 0.86 0.73 0.87 0.81 0.64
4 29 H 0.83 0.73 0.42 PH, I2, I3 0.83 0.72 0.42 0.83 0.73 0.39
5 31 H 0.93 0.89 0.69 PH, I2, I3 0.93 0.89 0.75 0.93 0.89 0.72
6 32 PH, I2, I3 0.90 0.88 0.83 PH, I2, I3 0.90 0.88 0.83 0.89 0.87 0.84
7 35 PH, I2, I3 0.91 0.89 0.77 PH, I2, I3 0.91 0.89 0.77 0.87 0.90 0.75
8 38 PV, I2, I3 0.85 0.79 0.60 PH, I2, I3 0.84 0.75 0.52 0.83 0.72 0.47
9 44 PV, I2, I3 0.85 0.77 0.65 PI2, I3 0.85 0.81 0.72 0.80 0.73 0.52
10 46 PV, I2, I3 0.85 0.84 0.74 PI2, I3 0.84 0.87 0.81 0.84 0.73 0.56
11 60 I3 0.78 0.69 0.59 I2 0.77 0.70 0.61 0.74 0.61 0.46
12 60 PD, V 0.73 0.68 0.56 I2 0.69 0.59 0.46 0.59 0.44 0.24
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was sufficient to identify most trees. Conversely, in plots with high values of this index, 
intensity should be included to improve the detection of small trees beside or beneath 
the crowns of large trees, and height should have less weight. When this index reached 
60%, performance was improved by including the point density metric because of the 
high point density associated with small tree groups. The index used in this study was 
derived from the DBH, but indicators reflecting the vertical complexity of the canopy 
structure could also be derived from the ALS point cloud (Coops et al. 2016; Wilkes et al. 
2016). Future studies could use such indices as criteria for selecting raster metrics for ITD.

The template matching method developed in this study involves generating templates from 
the target data. In other studies on ITD using template matching, templates were created using 
simulation models (Gulbe and Mednieks 2013; Holmgren and Lindberg 2013; Nyström et al. 2014; 
Pirotti 2010) or by selecting sample trees manually in the image (Gulbe and Mednieks 2013). Gulbe 
and Mednieks reported detection rates of 56% and 71%, respectively, using these two types of 
templates. In this study, the templates were automatically derived from the height rasters. Local 
height maxima have a rather high probability of corresponding to tree positions, as shown in 
Table A2. This approach enabled fully automated detection without requiring manual interaction. 
Another benefit of the consistent generalization strategy was that crown shape deviations in both 
templates and the target plot data were eliminated to the same degree, reducing sensitivity to 
template shapes and textures. Figure 11 shows that using generalized rasters made the detection 
accuracy sufficiently stable with respect to variation in the number of templates, eliminating the 
need to determine the optimal number of templates.

Generalization of rasters has been a common preprocessing step in ITD, while the step of 
compensation of local low values used in this study was newly proposed for template matching 
for ITD. Although the local low values contained certain texture information of individual crowns, 
the additional texture within crowns might disturb the detection of the crown edges, which were 
more crucial for ITD. In addition, the random local low values also decreased the generalized level 
of templates. In this study, similarity maps based on different metrics were averaged by applying 
the same weighting to all the included metrics. In the future, it may be desirable to optimize the 
weightings of the metrics based on the forest structure and to thoroughly assess the similarity 
between target and template rasters for height, point density, and intensity distribution.

6. Conclusion

In this study, ITD from MS-ALS data was conducted, resulting in a detection rate of 0.90 to 0.68 
for different forest structures. The performance of ITD was compared for different metrics, 
including height, point density, vegetation ratio, and intensity from three channels. For 
homogeneous forest stands, height remained the best and most easily used metric for ITD, 
but metrics such as intensity and density yielded better performance than height for forests 
with complex structures. For the plot with the most understorey trees in this study, ITD based 
on point density and vegetation ratio yielded 0.32 higher detection rate of small trees than 
local maxima detection based on height.

In addition, a framework for ITD based on a template matching algorithm was developed. 
Deriving templates from the target plot instead of field data or manual selection was shown to 
be feasible. The image generalization flow presented here increased the robustness among 
different metrics. The compensation for the local low values was shown to be crucial for 
generalizing density and intensity metrics.
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This study has confirmed that the additional spectral information provided by MS-ALS 
compared to single-wavelength ALS can significantly improve the detection of under
storey trees. Using intensity metrics from laser data can be a basis for other ITD algo
rithms. Future studies can be conducted on forests with even more layers to explore how 
the intensity metrics respond to the canopy layers. Additionally, more ITD methods can be 
developed using the point density distribution, which showed annular textures for 
individual trees in this study. The pixels with abnormal increasing density in the annular 
textures have high potential to be used for detecting understorey trees.
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