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Abstract

Chloroflexales (Chloroflexi) are typicalmembersof theanoxygenicphotosynthesizingcomponentofmicrobialmatsandhavemostly

been characterized from communities associated to hot springs. Here, we report the assembly of five metagenome-assembled

genomes (MAGs) of a novel lineage of Chloroflexales found in mesophilic lithifying microbial mats (microbialites) in Lake Alchichica

(Mexico). Genomic and phylogenetic analyses revealed that the bins shared 92% of their genes, and these genes were nearly

identical despite being assembled from samples collected along a depth gradient (1–15 m depth). We tentatively name this lineage

Candidatus Lithoflexus mexicanus. Metabolic predictions based on the MAGs suggest that these chlorosome-lacking mixotrophs

share features in central carbon metabolism, electron transport, and adaptations to life under oxic and anoxic conditions, with

members of two related lineages, Chloroflexineae and Roseiflexineae. Contrasting with the other diverse microbialite community

members, which display much lower genomic conservation along the depth gradient, Ca. L. mexicanus MAGs exhibit remarkable

similarity. This might reflect a particular flexibility to acclimate to varying light conditions with depth or the capacity to occupy a very

specific spatial ecological niche in microbialites from different depths. Alternatively, Ca. L. mexicanus may also have the ability to

modulate its gene expression as a function of the local environmental conditions during diel cycles in microbialites along the depth

gradient.
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Introduction

Investigations of the structure of bacterial populations have

shown that genetically similar organisms often display distinct

ecological features (Luo et al. 2011), an observation that has

been linked to the existence of an extensive pan-genome

(Tettelin et al. 2005; Kashtan et al. 2014). Obtaining such

structural genomic information for a broad range of lineages

and in multiple ecosystems is essential to identify fine-tuning
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evolutionary drivers of microbial diversification. However,

knowledge about the genomic heterogeneity for specific lin-

eages in wild populations is restricted to a few abundant

lineages in marine (Kashtan et al. 2014) and freshwater

(Garcia et al. 2018) environments.

Microbial mats offer an interesting natural target for pop-

ulation genomics studies. Due to their collective metabolic

activity, these phylogenetically and functionally diverse ben-

thic microbial communities (Des Marais 1990) generate and

maintain steep vertical biogeochemical gradients (van

Gemerden 1993; Dupraz and Visscher 2005) that act as

strong environmental selectors. Moreover, contemporary mi-

crobial mats are often used as analogs of past microbial eco-

systems (Ward et al. 1998; Stal 2001). Indeed, the observed

functional shifts of conserved core metabolic pathways in mat

metagenomes across redox gradients might reflect early met-

abolic transitions during the oxidation of the atmosphere

(Guti�errez-Preciado et al. 2018). Depending on the specific

hydrochemical conditions, these light- and redox-stratified

communities can be lithifying, favoring (usually) carbonate

precipitation and leading to the formation of microbialites.

Although microbialites are relatively uncommon today, they

were abundant and globally distributed during the

Precambrian and until the Cambrian explosion around 540

Ma (Riding 2000; Tice and Lowe 2004; Allwood et al. 2006).

In contemporary mats, photosynthetic microorganisms play

a key role by producing the organic matter that is consumed

by (photo-)heterotrophic members of the community (Dupraz

and Visscher 2005; Klatt et al. 2013; Kim et al. 2015;

Mobberley et al. 2015; Guti�errez-Preciado et al. 2018).

Some evidences of ecological differentiation are available for

Cyanobacteria, which have received the most attention for

both historical (e.g., distinct morphological features used as

evidence of biogenicity in the fossil record, hypothesis that

oxygenic photosynthesis was the main driver of microbialite

formation) and practical (e.g., abundant community members,

relatively simple requirements for cultivation) reasons. Several

culture-based studies thus suggest that different ecotypes of

Synechococcus spp. occur in vertical subsections of individual

mats as thin as 80mm, exhibiting different responses to light

(Allewalt et al. 2006; Bhaya et al. 2007; Kilian et al. 2007;

Becraft et al. 2015; Nowack et al. 2015; Olsen et al. 2015).

Yet, far less is known about the microorganisms capable of

anoxygenic photosynthesis, even though they collectively rep-

resent a substantial fraction of microbial mat communities

(Klatt et al. 2011; Saghaı̈ et al. 2015).

In a previous study, we generated metagenomes of five

microbialite-associated communities from two sites and, at

one of them, along a depth gradient (four depths from 1 to

15 m) in Lake Alchichica, Mexico (Saghaı̈ et al. 2015, 2016).

The corresponding communities were extremely diverse but,

surprisingly, we were able to assemble a noteworthy number

of long contigs (>10 kb; 5–8%) affiliating to Chloroflexi, a

phylum harboring lineages typically found in the anoxygenic

photosynthesizing component of microbial mats (Bryant et al.

2012; Ward et al. 2018). Despite the fact that Chloroflexi

were relatively little abundant as reflected by 16S rRNA and

conserved single-copy genes (1–3%; Saghaı̈ et al. 2015,

2016), most of these contigs were very long (>200 kb) and

represented 40 of the 50 longest contigs across the five meta-

genomes. The assembly of large contigs from relatively few

sequences suggested that these Chloroflexi exhibit little ge-

nomic variation. Here, we present comparative analyses of

this novel lineage with previous genomic, physiological, and

biochemical studies of other Chloroflexi. We also took advan-

tage of the opportunity to assemble genomes directly from

metagenomes to gain insight into the natural genetic diversity

of Chloroflexi populations in Alchichica microbialites.

Materials and Methods

Sample Collection, DNA Purification, and Sequencing

Microbialite fragments were collected in Winter (January

2012) at two different sites of Lake Alchichica: the Western

shore at ca. 0.5–1 m depth (AL-W: 19�2500.1300 N,

97�24041.0700 W) and the Northern shore at 1, 5, 10, and

15 m depth (AL-N: 19�25012.4900 N, 97�24012.3500 W).

Procedures for sample collection, DNA extraction, and shot-

gun sequencing are described in detail in Saghaı̈ et al. (2015).

Assembly and Binning

Primary assembly was carried out from full individual Illumina

AL-W and AL-N read data sets (NCBI Bioproject

PRJNA315555) with MEGAHIT (v. 0.3.3; Li et al. 2015) with-

out further filtering and with default parameters except for

the k-mer range, which was set to k-min¼ 27 and k-

max¼ 123 in 10 k-mer size increments. Candidate

Chloroflexi contigs were identified as described in Saghaı̈

et al. (2016) and corresponded to contigs longer than 10

kbp, where the majority of genes was affiliated to

Chloroflexi and where Chloroflexi genes represented at least

20% of all genes (the actual range was 20–69% of chloro-

flexal genes). Phylogenetic affinity was determined based on

high similarity to sequences in the RefSeq database (minimum

best hit identity>50% over at least 80% of the gene length).

In these contigs, Chloroflexi genes were found to be far more

abundant than genes affiliating to any other taxon (supple-

mentary fig. S1, Supplementary Material online), indicating

that they likely were fragments of Chloroflexi genomes.

Then, each of the initial read data sets were mapped to their

corresponding contig pools with MIRABAIT (MIRA v. 4.9.5, k-

mer size¼ 57; Chevreux et al. 1999) and separately subjected

to another round of assembly with SPAdes (v. 3.6.1, default

settings; Nurk et al. 2013). The resulting contigs longer than

50 kb were clustered using the ESOM clustering procedure

(ESOM tools, v. 1.1; Ultsch and Mörchen 2005) along with

six reference genomes chosen for their close phylogenetic
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relation to our data set and the availability of a complete

genomic sequence: Anaerolinea thermophila UNI-1

(NC_014960), Chloroflexus aggregans DSM 9485

(NC_011831), Chloroflexus aurantiacus J-10-fl

(NC_010175), Roseiflexus castenholzii DSM 13941

(NC_009767), Thermomicrobium roseum DSM 5159

(NC_011959), and Dehalococcoides mccartyi 195

(NC_002936). The clustering was performed on nucleotide

tetramer frequency distributions computed with the tetra-

mer_freqs_esom.pl script (Dick et al. 2009) using a window

size of 5,000 nt. ESOM training parameters were set to k-

batch training method, 140 � 250 mesh size, radius start

50, 20 training epochs. All other parameters were set to their

defaults. The visualization of the ESOM maps was done with a

U-Matrix background and inverse gray-scale gradient coloring

(supplementary fig. S2, Supplementary Material online). The

completeness and contamination of the bins were assessed

using CheckM with Chloroflexi as lineage marker (Imelfort

et al. 2015). Average nucleotide identity (ANI) values were

calculated using the OAU program (v 1.2; Yoon et al.

2017). The five assembled bins are available at NCBI

Bioproject PRJNA579290.

Reciprocal Recruitment

In order to minimize assembly artifacts, a reciprocal recruit-

ment of sequence reads from each data set to another was

performed with the nucmer command implemented in

MUMmer (v. 3.21, default settings; Kurtz et al. 2004).

Original sequence read data sets were mapped to contigs in

each isolated genome bin and used as read pools to cross-

match other genome clusters. To ascertain over/under repre-

sentation of read recruitment, we used the following

procedure: for each contig, identity percent values (%idy) of

nucmer matched reads were summed over 1 kb windows

(
P

%idy), allowing the determination of per contig median

and SD (stddev) values of the
P

%idy distribution (supple-

mentary fig. S3, upper panel, Supplementary Material online).

Thus, any 1 kb range on a contig with a
P

%idy value outside

the (median 6 (2� stddev)) range was marked as having a

coverage anomaly (supplementary fig. S3, lower panel,

Supplementary Material online), thereafter allowing identifi-

cation of genes spanning tagged regions.

Genome Annotation

Gene prediction was performed on the newly assembled con-

tigs using PRODIGAL (v. 2.6.3, “metagenomic” mode; Hyatt

et al. 2010). For a more accurate functional annotation, we

used the amino acid sequence of predicted genes. The anno-

tation was done using the BlastP command implemented in

DIAMOND (v. 0.7.9, with a maximum e-value of 10�5;

Buchfink et al. 2015) with the 2014 edition of the COGs

database (Galperin et al. 2015), supplemented with a set of

genes from available Chloroflexi genomes (supplementary

table 1, Supplementary Material online). In the subsequent

analyses, we retained only the best hit to represent each an-

notated gene.

Phylogenetic Analyses

To reconstruct a reliable phylogenetic tree of the draft

Chloroflexi genomes, we selected a set of 30 conserved genes

present in single-copy in prokaryotic genomes that we

detected in the genome fragments and in publicly available

Chloroflexi genomes (supplementary table 2, Supplementary

Material online). We also built a phylogenetic tree with the

16S rRNA sequences extracted from each of the draft

genomes, together with a selection of the closest Blast hits

(Altschul et al. 1990). Amino acid and nucleotide sequences

corresponding to the conserved genes were concatenated

and then aligned using MAFFT with the L-INS-i algorithm

and default parameters (v. 7.310; Katoh and Standley 2013)

(supplementary files 1 and 2, Supplementary Material online).

16S rRNA sequences were aligned using the SINA aligner (v.

1.6.0; Pruesse et al. 2012; supplementary file 3,

Supplementary Material online). All phylogenetic trees were

built with FASTTREE (v. 2.1.3; Price et al. 2010) using either

the JTT þ CAT approximation for substitution rate heteroge-

neity or the GRTþ CAT model of nucleotide evolution. Finally,

the trees were visualized using FIGTREE (v 1.4.4).

Results and Discussion

Reconstruction and Phylogenetic Affiliation of Chloroflexi
Genomes

We applied compositional binning to sequence reads map-

ping to contigs affiliating to Chloroflexi from five microbialite

metagenomic data sets in Lake Alchichica (AL-W, AL-N-1, AL-

N-5, AL-N-10, and AL-N-15) and several reference genomes.

The ESOM visualization maps (supplementary fig. S2,

Supplementary Material online) of all data sets showed two

major features. First, each reference genome was contained

in a single, well-defined cluster. Second, the candidate

Chloroflexi contigs displayed a similar pattern across all five

data sets, with three to five clusters (named A–E; supplemen-

tary fig. S4, Supplementary Material online). However, com-

parison of the cumulative size of the cluster contigs, estimated

completeness and estimated contamination collectively sug-

gested that only cluster A contigs could be considered as

candidate bins (supplementary tables 1 and 3,

Supplementary Material online). Interestingly, an analysis of

sequence divergence revealed a very high level of similarity

across the five data sets (AL-W and AL-N-1, AL-N-5, AL-N-10,

and AL-N-15) in this cluster. Both amino acid and nucleotide

sequences showed that 92% of all genes were shared be-

tween data sets and nearly identical (i.e., average and median

percentages of gene alignments maximum bitscores

approaching 100% for amino acids and nucleotide
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sequences; fig. 1 and supplementary fig. S5A–F,

Supplementary Material online). Furthermore, computed

ANI values between all draft genome pairs (>99%; supple-

mentary fig. S5G, Supplementary Material online) were

higher than commonly used speciation cutoff values (95–

96%; Goris et al. 2007; Richter and Rossell�o-M�ora 2009).

Even though the contigs could not be merged to form a single

reliable scaffold, a synteny analysis conducted on the individ-

ual contigs at nucleotide level showed that these were highly

conserved along most of their length among the different

data sets (fig. 2 and supplementary figs. S5H, I, and S6,

Supplementary Material online). Altogether, these observa-

tions support the idea that cluster A contigs actually consti-

tuted a set of five highly related chloroflexal genomes that

derived from a single lineage with variable gene content.

Phylogenetic reconstructions based on a set of 30 conserved

single-copy genes supported this hypothesis (at both amino

acid and nucleotide levels), revealing that the five metage-

nomic sequences clustered together within the

Chloroflexales and formed a distantly related sister group to

Roseiflexineae and Kouleothrix aurantiaca (fig. 3A and B). We

tentatively propose to consider this novel Chloroflexi quasi-

clonal lineage as a new species, Candidatus Lithoflexus

mexicanus.

Comparison of Low Coverage Regions

Despite the high similarity of the five Ca. L. mexicanus ge-

nome drafts, they differed in size (7.9–8.4 Mb, table 1). To

understand the origin of these differences, we analyzed con-

tig regions with poor read coverage in the other data sets (see

Reciprocal Recruitment in Materials and Methods). These

regions, and the genes they contain (missing or divergent,

abbreviated M/D hereafter) might represent genomic islands

present in one strain and absent in others (accounting for 8–

25% of the genes), but they might also simply result from

greater sequence divergence in those regions. Individual and

cumulative gene counts (supplementary fig. S7,

Supplementary Material online) showed that there was be-

tween 96 and 600 M/D genes when comparing pairwise

reads/contigs data sets (562–1,844 when comparing the

number of M/D genes in any data set individually compared

with other reads data sets). In brief, these numbers were con-

sistent with the total nucleotide length, contig, and gene

number of each data set, AL-W being the least and AL-N-

15 the most profuse data sets, respectively. However, these

differences did not seem to be randomly distributed among

COG categories (supplementary fig. S8, Supplementary

Material online). Leaving aside the “RNA processing and mod-

ification” category that represents only five genes, the most

salient features were as follows. First, the two largest bins, AL-

W and AL-N-5 (table 1), showed that M/D genes were

A

B

FIG. 1.—Pairwise percentage of genes with 100% identity over

theHSP, as defined by Blast, in (A) nucleotide and (B) amino acid sequences

between the five bins. The genome bins correspond to those forming the

cluster A in ESOM analyses.

FIG. 2.—Cluster A contigs synteny plots between AL-N-1 (vertical

lines) and the four other bins (horizontal lines). Contigs pairs scatter plots

were calculated using nucmer/mummerplot alignment and plotting fea-

tures, and the layout was optimized to simplify the colinear display of

contigs. Note that the apparent ordering of contigs is not related to their

true physical linkage. The full set of synteny plots is available in supple-

mentary fig. S6, Supplementary Material online.
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A

B

C

FIG. 3.—Approximate maximum likelihood phylogenetic tree of concatenated amino acid (A) and nucleotide (B) sequences corresponding to 30

conserved single-copy genes present in the five draft genomes and in closely related genomes. (C) Approximate maximum likelihood phylogenetic tree

of 16S rRNA sequences present in the five draft genomes and their closest environmental sequences in GenBank. Black dots indicate 100% support. A

picture of the AL-N-1 microbialite is shown (scale bar corresponds to 1 cm).
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distributed across all categories, with only a few exceptions.

Second, AL-W appears to have an extra set of genes in the

“Translation, ribosomal structure and biogenesis” and, to a

lesser extent, the “Amino acid transport and metabolism”

categories, which is due to the presence of a duplicated ribo-

somal protein operon in this data set. Third, the pattern of

“Mobilome, prophages and transposons” category of M/D

genes was uneven across data sets, despite the fact that over-

all gene counts in this category remained comparable

(n¼ 30–40, mainly including rayT, IS5, and TnpA transpo-

sases; supplementary table 4, Supplementary Material online).

Photochemical Apparatus

Candidatus Lithoflexus mexicanus lacks homologs of known

chlorosome envelope proteins (csmA, csmM, and csmN) and

genes encoding bacteriochrolophyll c (bchK and bchU), which

are typical of Chloroflexineae (Orf and Blankenship 2013). In

turn, similar to all known Roseiflexineae species (Hanada and

Pierson 2006), Ca. L. mexicanus possesses a light-harvesting

core antenna complex. This protein–pigment complex is as-

sociated with two spectral types (B800–880 in R. castenholzii;

Collins et al. 2009, 2010) of bacteriochlorophyll a (BChl a;

supplementary table 5, Supplementary Material online). In

addition, Ca. L. mexicanus contains genes encoding the three

subunits of type II reaction centers (RC), L (pufL), M (pufM),

and the tetraheme Cyt c554 (pufC; Bryant et al. 2012). Both

pufL and pufM genes are fused as observed in Roseiflexus

spp. (Yamada et al. 2005). Finally, Ca. L. mexicanus can syn-

thetize carotenoids (crtBIOPU and cruA), which are involved in

photoprotection and light harvesting (Maresca et al. 2008).

Whereas some Chloroflexales have CrtY- (Chloroflexineae

and K. aurantiaca) or CrtL-type (Roseiflexus spp.) lycopene

cyclases (catalyzing the final step in carotenoid biosynthesis),

Ca. L. mexicanus encodes a homolog of the CruA-type lyco-

pene cyclase found in the nonphototrophic

Herpetosiphon aurantiacus (Kiss et al. 2011; Bryant et al.

2012).

Proteins Adapted to Aerobic versus Anaerobic Conditions

Consistently with the diel variations in oxygen within the

microbialites, and similar to other mat-inhabiting

Chloroflexales, Ca. L. mexicanus harbors a set of enzymes

specialized to work in the presence or absence of oxygen

(Tang et al. 2011; Bryant et al. 2012). We detected genes

encoding both AcsF and BchE proteins, which catalyze the

isocyclic ring formation of chlorophyll under aerobic and an-

aerobic conditions, respectively (Ouchane et al. 2004; Tang

et al. 2009). Candidatus Lithoflexus mexicanus also encodes

the three subunit of the Mg-chelatase (bchHID), responsible

for the insertion of Mg in porphyrin during the first step of

BChl synthesis. It has been proposed that distinct bchH gene

products may participate to the biosynthesis of different BChl

in some organisms (Eisen et al. 2002). However, BChl-

encoding genes different from BChl a appear to be absent

in Ca. L. mexicanus. Therefore, the presence of two and three

nonidentical homologs of bchH and bchI, respectively, might

rather reflect differential expression under aerobic and anaer-

obic conditions. Likewise, Ca. L. mexicanus encodes two

forms of the cobalt chelatase, a key component in the syn-

thesis of cobalamin, acting under both aerobic (cobNST) and

anaerobic (cbiK) conditions. Last, we also identified genes

encoding protein pairs functioning in either aerobic or anaer-

obic conditions involved in pyruvate metabolism and the TCA

cycle (supplementary table 5, Supplementary Material online).

Table 1

Genome Statistics of Ca. Lithoflexus mexicanus

AL-W AL-N-1 AL-N-5 AL-N-10 AL-N-15

No. of paired end readsa 306,787,264 130,153,392 110,282,579 97,849,068 131,562,915

No. of reads in cluster A 5,919,172 1,835,724 6,039,184 5,387,044 2,244,450

Prop. cluster A reads (%) 0.96 0.71 2.74 2.75 0.85

No. of contigs 41 49 37 42 40

Cumulative contig length (bp) 8,288,841 8,154,893 8,421,798 8,242,010 7,914,973

Mean contig size (bp) 202,166 166,426 227,616 196,238 197,874

N50 (bp) 370,194 279,010 375,049 367,192 405,938

% GC 49.14 49.01 49.06 48.92 48.84

No. of predicted genes 7,423 7,266 7,522 7,331 7,040

No. COG hits 5,355 5,210 5,395 5,233 5,055

Perc. COG hits 72.14 71.70 71.72 71.38 71.80

No. of single-copy gene familiesb 39 39 39 38 38

Total occurrences of single-copy gene families 68c 44 43 42 43

.Raw number of total pairs of reads produced (it implies the same number of forward and reverse sequences).
bSee supplementary table 2, Supplementary Material online.
cDue to the presence of a partially duplicated ribosomal proteins operon.
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Electron Transport

Candidatus Lithoflexus mexicanus encodes core electron

transport components, including a succinate dehydroge-

nase/fumarate reductase (sdhBAC) and a cytochrome c oxi-

dase (supplementary table 5, Supplementary Material online).

Similar to many anoxygenic photosynthetic bacteria

(Proteobacteria and other Chloroflexales), Ca. L. mexicanus

harbors two sets of loosely arranged genes (nuoA to nuoN)

encoding enzymes for the NADH: quinone oxidoreductase,

which catalyzes the transport of electrons in the oxidative

phosphorylation pathway. In addition, it possesses an electron

transport complex named alternative complex III (ACIII), which

uses menaquinone as liposoluble electron and proton carrier

(Hale et al. 1983; Gao et al. 2009, 2010; Majumder et al.

2013). In Ca. L. mexicanus, like in Roseiflexus spp., the ACIII

is encoded by a single six-gene operon (actABCDEF) that lacks

the gene encoding the component G in Chloroflexus spp.

(Hanada et al. 2002; Tang et al. 2011). It has been proposed

that the electrons from this complex reduce auracyanin, a

blue-copper protein serving as mobile electron carrier from

ACIII to the RC, where it could act as an electron donor for the

cytochrome c (Trost et al. 1988; McManus et al. 1992;

Tsukatani et al. 2009). We also detected genomic fragments

containing Ni–Fe hydrogenases suggesting that Ca. L. mexi-

canus can oxidize hydrogen and use it as an electron source

(van der Meer et al. 2010). Carbon monoxide could represent

another electron source in aerobic and semiaerobic condi-

tions, as the draft genomes encoded a putative

molybdopterin-containing carbon monoxide dehydrogenase

(coxLM).

Mixotrophy in Ca. L. mexicanus

Comparative genomic analyses of the five draft Ca. L. mex-

icanus genomes and those of other Chloroflexales readily

allowed the detection of genes involved in the first cycle of

the 3HP pathway (supplementary table 5, Supplementary

Material online). However, a deeper mining in the five full

metagenomic data sets revealed the presence of sequences

>50% identical at amino acid level with known

Chloroflexales proteins involved in the second cycle of this

pathway, suggesting that Ca. L. mexicanus likely has the ge-

netic capacity to use the complete 3HP bicycle. In contrast,

genes encoding key proteins involved in the Calvin-Benson

cycle (e.g., ribulose 1,5-biphosphate carboxylase) were

lacking.

We detected a complete set of genes for the oxidative TCA

cycle as well as genes involved in the assimilation of low-

molecular weight organic compounds typically released by

mat-associated cyanobacteria during, for instance, photores-

piration (e.g., glycolate; Bateson & Ward 1988) and fermen-

tation (e.g., lactate; Anderson et al. 1987; Nold and Ward

1996; Kim et al. 2015; supplementary table 5,

Supplementary Material online). Candidatus Lithoflexus

mexicanus might thus share the ability to simultaneously in-

corporate organic and inorganic carbon with Roseiflexus and

Chloroflexus spp., in which both 3HP and TCA cycles have

been shown to share similar gene and protein expression

patterns over a diel period (Klatt et al. 2013; Kim et al.

2015). We also found genes encoding both phosphoenolpyr-

uvate carboxykinase (pckA) and phosphoenolpyruvate car-

boxylase (ppc), suggesting that Ca. L. mexicanus can

assimilate inorganic carbon and also refuel the TCA cycle

through CO2-anaplerotic pathways, as shown in other photo-

trophic bacteria (Evans et al. 1966; Tang and Blankenship

2010; Tang et al. 2011).

Nitrogen and Sulfur Metabolism

Candidatus Lithoflexus mexicanus harbors genes encoding an

ammonia transporter (amtB) and a set of typical enzymes in-

volved in ammonia production (supplementary table 5,

Supplementary Material online) but lacks genes related to

both nitrogen fixation and nitrate reduction. In that regard,

it is more similar to Chloroflexus spp., which only use ammo-

nia and some amino acids as nitrogen sources (Hanada and

Pierson 2006; Tang et al. 2011), whereas Roseiflexus spp.

encode a nitrogenase (van der Meer et al. 2010).

Candidatus Lithoflexus mexicanus is unlikely to grow auto-

trophically on sulfide given the absence of homologs to genes

involved in dissimilatory sulfur metabolism (e.g., dsr, sox).

However, our findings suggest that Ca. L. mexicanus has

the potential to perform assimilatory sulfate reduction in a

similar way to other Roseiflexus and Chloroflexus spp.

(Bryant et al. 2012). Indeed, its genome encodes a fusion of

a Sat-type ATP-sulfurylase and a CysC-type APS kinase that

can transform sulfate directly into 30-phosphoadenosine-50-

phosphosulfate (PAPS; Bryant et al. 2012). PAPS may be

used to produce a variety of cellular sulfate compounds or

be reduced to sulfite by the PAPS reductase (cysH; Tang et al.

2011). This sulfite can then be reduced into sulfide by a sulfite

reductase and incorporated into cysteine using cysteine syn-

thases (cysKM).

Ecological implications of the low genetic variation in
Ca. L. mexicanus

Our phylogenetic and functional prediction analyses show

that the chloroflexal bins reconstructed from five metage-

nomes coming from two sites and four different depths cor-

respond to a single, low abundant (0.7–2.8% of the reads;

table 1) and highly similar population (table 2). The 16S rRNA

gene fragments extracted from Ca. L. mexicanus bins were

closely related to a sequence recovered in a shallow micro-

bialite sampled in a previous campaign in Lake Alchichica,

AL_31_2_1B_35 (Couradeau et al. 2011) and formed a clade

with two environmental sequences from endolithic commu-

nities (fig. 3C; Roush et al. 2017). This suggests that this clade

is specialized in endolithic lifestyle.

A Novel Microbialite-Associated Phototrophic Chloroflexi Lineage GBE

Genome Biol. Evol. 12(7):1207–1216 doi:10.1093/gbe/evaa122 Advance Access publication 16 June 2020 1213

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/12/7/1207/5858136 by Sveriges Lantbruksuniversitet user on 15 Septem

ber 2020



Because Ca. L. mexicanus is phototrophic and largely

depends on light to grow, several alternative hypotheses

can be evoked to explain its apparent low genetic diversity.

First, Ca. L. mexicanus could be able to grow at various light

intensities, as observed in chlorosome-containing

Chloroflexales (Taisova et al. 2014). However, antenna

equipped with BChl a absorb light only in a narrow range

of the infrared (Taisova et al. 2014) and all five bins display

100% identity at the nucleotide level for various compo-

nents of the photosynthetic apparatus (e.g., crtB, cruA, al-

pha and beta subunits of the core antenna; data not

shown), suggesting a similar potential for light harvesting.

More likely hypotheses might thus be that Ca. L. mexicanus

occupies slightly different depths within microbialites

(deeper in upper microbialites, more superficial in deeper

microbialites) or regulates its metabolic activity according to

the fluctuations in resource availability (e.g., light, low-

molecular weight organic compounds) and chemical gra-

dients (e.g., oxygen) occurring over the diel cycle.

Interestingly, metatranscriptomic and metabolomic studies

conducted over entire microbial mats have suggested that

both Chloroflexales and Cyanobacteria exhibit maximal

metabolic rates for specific processes at different times dur-

ing the diel cycle (Klatt et al. 2013; Kim et al. 2015). One can

thus hypothesize that the timing of the regulation patterns

of Ca. L. mexicanus could differ depending on the micro-

bialite depth in the water column. Alternatively, differenti-

ated diel migration patterns could also explain the presence

of a highly similar population along the depth gradient.

Further metatranscriptomic studies combining both spatial

(i.e., different microbialite depth/layers) and temporal (i.e.,

different time points in the diel cycle) scales could give valu-

able indications on the spatial distribution and metabolic

activity of Ca. L. mexicanus within Alchichica microbialites.

Conclusions

The present study expands our knowledge on the diversity

and ecology of an important group of anoxygenic photo-

trophs in contemporary microbial mats. Candidatus

Lithoflexus mexicanus forms an ecologically coherent clade

with organisms specialized from endolithic communities,

which is distinct from the well-characterized Chloroflexus

and Roseiflexus spp. typically associated to nonlithifying

mats. More similar to Roseiflexineae in its light-harvesting ap-

paratus and electron transport pathways, it carried all the

genes necessary to a mixotrophic lifestyle under both aerobic

and anaerobic conditions. Finally, Ca. L. mexicanus displayed

unique population genomics features compared with other

community members, as reflected by the high degree of ge-

nomic conservation along the depth gradient, suggesting

adaptations to a very specific ecological niche within

Alchichica microbialites.
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