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Environmental context. A diverse range of materials contain organofluorine chemicals, some of which are
hazardous andwidely distributed in the environment.We investigated an inventory of over 4700 organofluorine
compounds, characterised their chemical diversity and selected representatives for future testing to fill
knowledge gaps about their environmental fate and effects. Fate and property models were examined and
concluded to be valid for only a fraction of studied organofluorines.

Abstract. Many per- and polyfluoroalkyl substances (PFASs) have been identified in the environment, and some have

been shown to be extremely persistent and even toxic, thus raising concerns about their effects on human health and the
environment. Despite this, little is known aboutmost PFASs. In this study, the comprehensive database of over 4700 PFAS
entries recently compiled by the OECD was curated and the chemical variation was analysed in detail. The analysis

revealed 3363 individual PFASs with a huge variation in chemical functionalities and a wide range of mixtures and
polymers. A hierarchical clustering methodology was employed on the curated database, which resulted in 12 groups,
where only half were populated by well-studied compounds thus indicating the large knowledge gaps. We selected both a
theoretical and a procurable training set that covered a substantial part of the chemical domain based on these clusters.

Several computational models to predict physicochemical and environmental fate related properties were assessed, which
indicated their lack of applicability for PFASs and the urgent need for experimental data for training and validating these
models. Our findings indicate reasonable predictions of the octanol-water partition coefficient for a small chemical

domain of PFASs but large data gaps and uncertainties for water solubility, bioconcentration factor, and acid dissociation
factor predictions. Improved computational tools are necessary for assessing risks of PFASs and for including suggested
training set compounds in future testing of both physicochemical and effect-related data. This should provide a solid basis

for better chemical understanding and future model development purposes.
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Introduction

Per- and polyfluoroalkyl substances (PFASs) are man-made
high production-volume chemicals that have been used in

industry and consumer products worldwide since the 1950s
(Buck et al. 2011). PFASs are a broad group of chemicals with
different properties and applications. The chemical and bio-

logical knowledge is generally based on rather a limited number
of specific substances given the large number and range of
different PFASs. Numerous PFASs are being used in non-stick

cookware, water-repellent clothing, stain-resistant fabrics and
carpets, cosmetics, firefighting foams, and products that resist
grease, water, and oil (Buck et al. 2011). These compounds have

received increasing public attention owing to their persistence,
bioaccumulation, and possible adverse effects in humans and

wildlife (Ahrens and Bundschuh 2014; Giesy et al. 2010;Martin
et al. 2003; Patlewicz et al. 2019). Certain PFASs are ubiquitous
chemicals in the environment and have been detected in the air,

surface water, groundwater, soil, sediment, biota, and food
(Blaine et al. 2014; Gewurtz et al. 2013). Shorter chain PFASs
(C, 8) dominate in the aqueous phase and in plants (Ahrens and

Bundschuh 2014; Gobelius et al. 2017), whereas longer chain
PFASs (C $ 8) are mainly associated with soils and sediments
(Higgins and Luthy 2006). However, PFASs, such as fluor-

otelomer alcohols (FTOHs), fluorotelomer acrylates (FTACs),
perfluorooctane sulfonamides (FOSAs), and sulfonamidoetha-
nols (FOSEs), are generallymore volatile and can be transported

in the atmosphere (Ahrens et al. 2011; Jahnke et al. 2007). Some
of these PFASs can be degraded via gas-phase peroxy radical
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cross-reactions or bio-degraded under aerobic and anaerobic
conditions to perfluoroalkyl carboxylates (PFCAs) or per-
fluoroalkane sulfonates (PFSAs), which result in degradation

products with significantly higher persistence in the environ-
ment (Ellis et al. 2004; Lee et al. 2010; Liu andMejia Avendaño
2013). Production of PFASs has changed significantly in recent

years after the voluntary phasing-out and banning of the
C8-based PFASs, such as perfluorooctane sulfonate (PFOS) and
perfluorooctanoic acid (PFOA), and manufacturers have shifted

to alternative fluorinated substances (Mejia-Avendaño et al.
2017; Xiao et al. 2017). Currently PFOS, PFOA and their related
salts and precursors are regulated by the Stockholm Convention
(Paul et al. 2009; Stockholm Convention 2019) as persistent

organic pollutants, and recently, the European Food Safety
Authority (EFSA) suggested lower tolerable weekly intake
levels for PFOA and PFOS (EFSA 2018). In addition, PFOA,

perfluorononanoic acid (PFNA), and, most recently, per-
fluorodecanoic acid (PFDA) and perfluorobutanesulfonic acid
(PFBS) have been added to the European Chemicals Agency

(ECHA)Candidate List of Substances of VeryHigh Concern for
authorisation (ECHA 2019).

TheDanish EPA (Kjølholt et al. 2015) and theNordic Council

of Ministers (Posner et al. 2013), as well as the US Agency for
Toxic Substances and Disease Registry (ATSDR 2018) have
concluded that there are considerable knowledge gaps regarding
PFASs other than PFOS and PFOA, and that there is an urgent

need to acquire data on the physical and chemical properties as
well as on the toxicity for a broader range of PFASs. The
Organization for Economic Co-operation and Development

(OECD) has recently published a compilation of 4730 PFASs
for which the environmental and human health risks are mostly
unknown (OECD 2018a, 2018b). To address the lack of data, the

US EPA recently completed a study on a large range of PFASs
with the aim to create a library of PFASs for high-throughput
screening based on a chemical category approach (Patlewicz et al.

2019). Computational approaches are a means to rank and
prioritise such large chemical inventories based on their mobility,
persistence, and bioaccumulation potential (Brown and Wania
2008; Dürig et al. 2019; Pizzo et al. 2016), which has previously

been done only for smaller datasets of PFASs (Arp et al. 2006;
Ding andPeijnenburg 2013;Gomis et al. 2015;Wang et al. 2011).

The present study aims to increase our understanding of the
chemical and structural variation of PFASs of the recently
compiled OECD database. Curated structural data in combina-

tion with multivariate statistics and hierarchical clustering was
used to guide the selection of structurally diverse training sets of
PFASs. Chemicals were selected for possible future testing

aiming for the largest structural variation possible while also
taking into consideration commercial availability. Lastly, the
performance of available models for estimating physicochemi-

cal properties and environmental fate characteristicswas studied
related to their applicability domain and predictive accuracy in
regard to PFASs.

Experimental

OECD database and data curation

This study was based on the data inventory of PFASs published
by the OECD/UNEP Global PFC Group (OECD 2018a). The
comprehensive database includes chemicals that have per-

fluoroalkyl moieties with three or more carbons or a per-
fluoroalkylether moiety with two or more carbons. This data
inventory contains a total of 4730 entries with CAS numbers,

chemical names, and structural categorisation. The open-source
software packageKonstanz InformationMiner (KNIMEVersion
3.6.0 and 4.0) (KNIME 2019a) was used for data curation and as
a generic modelling framework.

The data curation was performed in four steps (Fig. 1). The
first step was to omit entries labelled as mixtures or polymers
because they were unsuitable for the computational approaches

applied in this project. Among the 3809 chemicals remaining
after the first step, 1208 had simplified molecular-input line-
entry systems (SMILES) primarily provided by the Swedish

Chemicals Agency (KEMI), while the rest were missing and
therefore had to be acquired from other sources. The second step
of the process was to generate and check the quality of the
structural information. The chemical identifier resolver node in

KNIME (National Cancer Institute 2019) was used to acquire
SMILES based on compound name and CAS information,
which resulted in 2252 and 64 additional structures, respec-

tively. A randomly selected subset of 225 was inspected for
quality assessment and an error rate of 0.5% was determined.

Filtered out
4730 PFASs 

918 polymers & mixtures

35 structures not found

1208 SMILES provided2316 acquired via CIR 253 downloaded manually

1. Filtering of 
polymers or mixtures

- 64 from CAS
- 2252 from Name Manual quality check: <0.5 % error

3777 PFASs 

3. Data cleaning
Standardise Aromatise

- Neutralise
- Remove counter-ions

31 structures with rare 
Ions (Cr, Eu, Yb, Dy etc.)

414 multiples 
(duplicates or triplicates)

Generate molecular descriptors3636 PFASs

4. Multiples 
removal

Steps

2 . Structure 
generation

Fig. 1. PFASs database pre-processing methodology.

Investigating the OECD database of PFAS

499



Furthermore, 288 structures could not be acquired using the

method above, and therefore had to be manually downloaded
from SciFinder (CAS 2019) based on the CAS registry number.
Among these, 35 (Table S1, Supplementary Material) did not

have any structural information available on SciFinder, Pub-
Chem (National Center for Biotechnology Information 2019), or
ChemSpider (ChemSpider 2018), and therefore were excluded
from the dataset. Details on data correction and quality checking

can be found in the Supplementary Material. In total, 3777
curated structures were converted to SDF MOL format using
OpenBabel (KNIME 2019b).

The third step of the data processing involved structure
standardisation using the Indigo Toolkit (EPAM Systems
2019) standardizer node to remove single atoms, charges, and

smaller ions, to neutralise zwitterions, and to standardise cis/
trans structural information. The Indigo Aromatizer was used to
harmonise aromatic structures.

The cheminformatics software used was not able to process

rare atoms (such as Eu, Dy, Yb, etc.); therefore, 31 structures
from the PFASs database had to be omitted (Fourches et al.
2010) (Table S2, SupplementaryMaterial). The remaining 3734

cleaned SDF structures contained many duplicates with a
majority resulting from salts with the same PFAS ion but
different counter-ions and some arising from stereoisomers.

Because these PFASs will dissociate in the environment and
form identical ions, the fourth and final step of the curation
process was to identify and eliminate duplicate entities. To

identify these, the SDFs were converted to InChIKeys, and then
the GroupBy (KNIME 2019c) node in KNIME was used to
merge all identical InChIKeys, which resulted in 3363 unique
structures (Table S3, Supplementary Material).

Descriptor generation, principal component analysis, and
clustering

A total of 64 chemical descriptors (Table S4, Supplementary
Material) were generated in MOE (ver. 2015.1001) (Chemical
Computing Group 2019) and were used as previously described

(Rännar and Andersson 2010; Stenberg et al. 2009). These
descriptors were selected owing to their interpretability, which
made it relatively simple to discuss the chemistry in the multi-
variate statistical analysis. Descriptors for the log octanol-water

partition coefficient (named logP(o/w) and SlogP in MOE),
water solubility (logS) and molecular refractivity (name SMR
and mr in MOE) (Table S4, Supplementary Material), were

removed to avoid possible predictive errors arising from PFASs
being out of the domain for these models. The 59 remaining
descriptors were log-transformed (log(1þj)) with the exception

of PEOE_PC� (total negative partial charge), which was neg-
ative log-transformed (log(�jþ1)).

Principal component analysis (PCA) was used to analyse the

chemical variation of PFASs and the hierarchical clustering
in the selection of representative compounds (Rännar and
Andersson 2010). PCA was performed using the PCA nodes
in KNIME, and, before analysis, the log-transformed chemical

descriptors were scaled by decimal scaling and then normalised
using z-score normalisation.

The agglomerative hierarchical clustering was based on a

distance matrix using the first five principal components (PCs)
and Euclidean distances. Single-, complete-, and average link-
age methods (Yim and Ramdeen 2015) of hierarchical cluster-

ing were used to test how evenly the data were split between the
clusters set at 12 clusters. Complete linkage resulted in the most
even spread and was therefore chosen for further analysis.

We strived to identify an optimum number of clusters with a

high variance ratio criterion (VRC) (Caliński and Harabasz
1974; Downs and Barnard 2002), a low number of clusters
and a low root mean square error (RMSE) for even cluster

distribution (Fig. S1, Supplementary Material). The final num-
ber of clusters and the distribution of PFASs within them are
shown in Table 1.

Environmental fate properties

The EPI Suite 4.1 (US EPA 2015) package was used for the
prediction of log octanol-water partition coefficient (KOW), water
solubility (Sw), bioconcentration factor (BCF) and vapour pres-

sure (Vp) (model name and version are shown in Table 2). Pre-
dictions could not be performed for two compounds (Fig. S2,
Supplementary Material) owing to the very large, complex

structures, and, therefore, the property calculations were only
performed on 3361 structures. In addition, log D and acid dis-
sociation constant (pKa) values were predicted using the JChem

extension in ChemAxon version 19.21.0 (ChemAxon 2019a;
ChemAxon 2019b) for Microsoft Office 2016 and pKa was also
estimated using MOE (Chemical Computing Group 2019). Fur-
thermore, three BCF models (CAESAR, Meylan and KNN)

available in VEGA QSAR ver. 1.1.5 (VEGA HUB 2019) were
applied for BCF prediction to assesswhether performance varied.

For the models where training set information was available,

the range ofmolecular weights and the number of fluorine atoms
or fluorine-containing fragments were considered as the basis
for three different evaluations of the applicability domains. For

the first evaluation, PFASs with molecular weights higher or
lower than the training set were considered to be out of the
domain. For fragment-basedmodels, PFASswere defined as out
of the domain if they had a greater number of any fluorine-

containing fragments than the maximum in the training set, for
which correction factors were applied in the model. The same
approach was used for the number of fluorine atoms, i.e. PFASs

with a greater number of fluorine atoms than members of the
training set were considered to be out of the domain with an
exception for the Vp model. For the Vp models, one extreme

compound was found in the training set with 10 fluorine atoms
more, as compared with the second most fluorinated compound.
In this case, the second most fluorinated compound was used to

set the upper limit. Information on the training set of the applied
log D model was lacking, but personal communication with the
developer confirmed that no fluorinated compounds were used
in the model development (ChemAxon 2018).

Results and discussion

Chemical variation of PFASs

The comprehensive OECD database of 4730 entries was curated

and resulted in an inventory of 3363 unique PFAS structures.
Around 19% of the original OECD set (n¼ 918) was composed
of mixtures (4%, n¼ 196) or polymermixtures (15%, n¼ 724).
The remaining PFASs (81%) in the database had molecular

weights ranging from 150 Da to 3217 Da (mean¼ 502 Da), and
the number of fluorine atoms varied between 5 and 102. These
PFASs contained a large number of molecular functionalities

including acids, esters, ketones, aldehydes, linear and branched
structures, aromatic ring structures, and in some cases, other
halogens such as chlorine, bromine, and iodine.

A detailed investigation of the chemical variation of the
3363 PFASs was undertaken using PCA and 59 chemical
descriptors (Table S4, Supplementary Material) purely based
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Table 1. Cluster summary including number of compounds (N), well-studied PFASs and one representative structure per cluster
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(Continued)
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on non-empirical structural features (Fig. 2 for PC1 and 2; Fig. S3

(Supplementary Material) for PC3 and 4). Chemical structures of
PFASs with extreme values for each PC are shown in Fig. S4
(Supplementary Material) and the descriptors with highest

weights for each PC are shown in Table S5 (Supplementary
Material). The first principal component (PC1) explained 45% of
the variance and had, in general, high weights for descriptors
related tomolecular size and surface area such as theWiener path

number (wienerPath) (Balaban 1979), the area of van der Waals
surface (vdw_area) or the first kappa shape index (Kier 1) (Hall
and Kier 1991). In this first dimension, small PFASs showed high

PC1 values (e.g. CAS 697–11–0) and large PFASs showed low
values (e.g. CAS 956790–67–3). The second PC (17% of
variance) was mostly related to relative density, number of

fluorine atoms and aromaticity, which meant that poorly fluori-
nated, low density molecules with aromatic rings had high values
(e.g. CAS 862133–14–0) while dense perfluorinated or other

PFAS also containing other halogens (e.g. CAS 335–48–8)

displayed low values. The third PC (13% of variance) was related
to polarity descriptors, where polar PFASs with acidic groups
showed high values (e.g. CAS 109669–84–3) in contrast to more

nonpolar and hydrophobic PFASs (e.g. CAS 190394–25–3). The
fourth PC (8% of variance) described a variance in the number of
rotatable bonds and ring structures with high values for aromatic
(e.g. CAS 956790–67–3) and low values for linear PFASs (e.g.

CAS 400–57–7). The fifth PC (3% of variance) was related to
double bonds and hydrogen bond donors, with high values for
PFAS with a large number of H-donors, e.g. sulfonic acid groups

(e.g. CAS 375–73–5), and low values for PFASs with many C-C
double bonds and a lack of ionisable groups (e.g. CAS685–63–2).

Clustering and selecting training sets of PFASs

Clustering of the PFASs was performed based on the first five
principal components aimed at finding groups of chemicals

Table 1. (Continued)

Cluster N Well-studied PFASA Representative compoundB
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APFASs that have been previously studied and have more than 10 citations according to Wang et al. (2017).
BMolecular structures of compounds located closest to the centre of each cluster based on Euclidian distance.
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sharing structural and chemical properties. The distribution was
shown to be most even at 10 and above clusters, while the VRC,

also known as the Calinski-Harabasz (CH) index (Caliński and
Harabasz 1974; Downs and Barnard 2002), showed local max-
ima at 12 and 15 clusters (Fig. S1, Supplementary Material);
therefore, 12 was selected as it was the lowest optimum number

of clusters. Half of the clusters included well-studied PFASs
(Table 1) (Wang et al. 2017), defined as those with more than 10
citations in the recent review byWang et al. (2017). These have

been detected in various environmental compartments such as
air (Ahrens et al. 2011), surface water (Munoz et al. 2017;

Pan et al. 2018), groundwater (Gobelius et al. 2018), and soil

(Dalahmeh et al. 2018; Plassmann and Berger 2013). Notably
the six clusters including the well-studied PFASs were large and
covered 78% (n¼ 2634) of the database, and these represented
mainly small to medium-sized, linear, highly fluorinated, and

non-polar or bipolar PFASs. This means that considerable
knowledge gaps exist regarding environmental fate and effects
and human health risks of, for example, aromatic, large, highly

polar, and branched PFASs. The centroid chemical per cluster,
calculated using Euclidean distances, is presented in Table 1 as a
cluster representative.

To select a representative set of PFASs for future testing, all
chemicals in each cluster were studied in cluster-specific PCA
models (Rännar and Andersson 2010). The 5% (alternatively,
one compound if n , 20) of compounds found closest to the

centre were selected as representatives of that particular chemi-
cal domain, which yielded, in total, 165 chemicals spread over
1–37 individual chemicals per cluster proportional to the cluster

size (Table S6, SupplementaryMaterial). This approach enabled
us to represent the chemical space by cluster-typical chemicals
and thus to avoid more unique chemicals that might be found at

the cluster edge (Rännar and Andersson 2010). This large
number of suggested chemicals offers several options for the
design of structurally varied training sets considering possible

constraints such as commercial availability, experimental
design, ease of chemical analysis, etc. The number of com-
pounds can be varied as long as each cluster is represented and
most of the chemical space is covered, and here, we denote this

as the theoretical training set.
A large share of the chemicals in the OECD data inventory is

not likely to be procurable because these include, for example,

patent records, and thus commercial availability should be
addressed in a procurable training set as opposed to the theoreti-
cal set. Recently, an initiative to select PFASs for toxicity testing

has been communicated by Patlewicz et al. (2019), which
addresses issues such as availability and solubility for testing
purposes. The methodology for selecting diversity was expert-
based, in contrast to the cheminformatics-based approach dis-

cussed in this study, and the selection was based on a different
PFAS inventory. The test set suggested by Patlewicz et al.

Table 2. Applicability domain and accuracy for models predicting physicochemical and fate data

Parameter Model Domain (F)A Domain (MW)B R2 C Experimental data

F Fragments (%) No. of F (%) (%) Total TrainingD

log KOW KOWWIN ver. 1.68E 1.0 0.8 87 0.8 22 2

Sw (mg L�1) WSKOWWIN ver. 1.42E 1.1% 0.1 80 �0.4 14 3

pKa JChem for Excel ver. 18.27.0.403F - G - - 6 0

log D JChem for Excel ver. 18.27.0.403F NAH 0.0 - 0.8 7 0

log KOC KOCWIN ver. 2.00E 0.0 0.0 84 0.8 17 0

BCF BCFBAF ver. 3.01E 0.0 22 95 �2.1 11 0

Vp (mm Hg) MpbpWIN ver. 1.43E NA 78 94 0.9I 20 18

APercentage of compounds (out of 3363)within the domain based on F count. Different domainswere calculated depending on fragments or number of F atoms,

as explained in the Methods section.
BPercentage of PFASs within the domain based on the molecular weight (MW) range of the training data for each model.
CPredicted versus experimental data (that was not used in model training).
DNumber of experimental data, which was included in model development and therefore not used for comparison with predicted data.
EUS EPA (2015).
FChemAxon (2019b).
GData not available.
HNot applicable.
ICalculated using all data including that used for model development.
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Fig. 2. Principal component analysis of the PFASs database including

3363 chemicals and 59 descriptors with the first two principal components

(PC1 and PC2) indicating, in colour, the 12 clusters defined in the

hierarchical cluster analysis.
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(2019) was inspected in terms of cluster distribution and showed

representation in 5 of the 12 clusters, similar to the well-studied
PFASs. Furthermore, we inspected the Norman suspect screen-
ing list for PFASs (Trier and Lunderberg 2015) and found

matches in 10 of the clusters (3–12) with a similar distribution
of compounds as for the whole OECD database. To select a
procurable training set with a larger coverage of the chemical
domain of PFASs, information provided by Patlewicz et al.

(2019) and an inventory provided by the Swedish Chemicals
Agency, KEMI (KEMI 2019) was used (details in the SI) and
1–3 PFASs were selected from each cluster. In the cases where

more than three compounds were available for one cluster, those
found closest to the centre of the cluster were selected. Clusters 2
and 3 were not represented in the above-mentioned inventories,

but procurable compounds were found and included in the test
set. These two clusters, however, only contained very large
structures that were unlikely to be water soluble, thus would not
be suitable for many laboratory tests. Nonetheless, the procur-

able set contained 23 PFASs spanning overmost of the chemical
space (Table S7, Supplementary Material) because all 12
clusters were represented. Including the chemicals of the pro-

curable or the theoretical training set in future screening pro-
grams on critical environmental and human health endpoints
would increase our understanding of an important group of

chemicals in relation to their structural and chemical variation
and would form a basis for the development of new predictive
models including fate and effect models.

Physicochemical data and fate properties of PFASs

Several commonly used computational models for predicting
physicochemical properties and fate characteristicswere studied

to determine their applicability and accuracy for PFAS.Notably,
molecular size as a determinant of the applicability domain of
the models showed that the majority of studied PFASs were

within the domain (53–95%) (Table 2). Using molecular frag-
ments with fluorine atoms or the number of fluorine atoms
yielded a much stricter assessment of domain inclusion. It

should also be stressed that much more rigorous estimations of
the applicability domain are typically used in modelling
(Tropsha 2010) and most of these models were developed for
neutral organic compounds, thus unlikely to be suitable for

ionisable molecules.
Using the fluorine-based applicability domain criteria, none

of the PFASs were considered within the domain of the models

predicting log Koc and log D, whereas only 0.1–1.1% and only
0.8–1.0% of the PFASs were in the domain of the Sw and log
KOWmodels, respectively (Table 2). However, the Vpmodel had

a much larger applicability domain that included 78% of the
PFASs. Training data for the pKa model was not publicly
available and therefore domain estimation was not possible.

The BCF model does not incorporate any adjustment factors for
fluorine-containing fragments; therefore, no compounds were
considered in the domain for that assessment. However, some
fluorinated chemicals were used to train that model yielding a

representation of 22% of chemicals within the database consid-
ering the number of fluorine atoms (same or lower).

The studied software used for predicting KOW have only a

few PFASs in their training sets, which likely yields uncertain
and inaccurate results (Arp et al. 2006). A literature survey on
the available experimental data on KOW resulted in data for, in

total, 18 PFASs (Arp et al. 2006; Carmosini and Lee 2008; de
Voogt et al. 2012; Xiang et al. 2018). Several PFASs can possess
both hydrophobic and hydrophilic character (Rayne and Forest

2009), which makes the KOW difficult to measure experimen-

tally (Xiang et al. 2018). Another issue withKOW of PFAS is that
they are ionisable, an issue that is further discussed below. The
literature investigation showed low variability of log KOW

measurements between different studies of the same PFAS
(Fig. 3). Furthermore, data seem to be linearly correlated with
alkyl chain-length (Fig. S5, Supplementary Material). The
experimental data correlated well with the estimated data from

SLogP (R2 ¼ 0.81) and KOWWIN (R2 ¼ 0.77), while logP(o/w)
highly overestimated KOW (R2 ¼ �1.56) (Fig. 3 and Fig. S6,
Supplementary Material). However, the experimental data

cover PFASs only from four clusters and, to approximate the
chemical representativity of these chemicals in more detail, a
K-nearest neighbours analysis was performed. Euclidean dis-

tances were calculated and the five nearest neighbours identified
(square root of data points rounded to the nearest integer
(Jonsson and Wohlin 2004)) for each experimental data set,
which resulted in a list of 65 PFASs after exclusion of the 18

initial data points and overlapping neighbours. This meant that
2% of the PFASs in the entire dataset could assumingly be
predicted with a high accuracy considering that the log KOW

predictions of the experimental data fitted well with both the
SLogP and KOWWIN estimates. Estimated log KOW by KOW-
WIN of these 65 PFASs ranged from 1.2 to 11 with a mean of

5.1, while the SlogP prediction ranged from 1.3 to 9.3 with a
mean of 4.6 (Table S8, Supplementary Material).

Another critical physicochemical property that can be used to

assess themobility of emerging contaminants iswater solubility.
However, our inventory only revealed experimental data on 14
chemicals (Inoue et al. 2012; QSAR Toolbox Coordination
Group 2019; US EPA 2015), and the correlation with predic-

tions was poor (Table 2) and thus not reliable. Mobility and
solubility are heavily dependent on the ionizability of studied
chemicals, and a large share of PFASs are acids; therefore,

reliable pKa values are critical. Our inventory revealed six
experimental pKa values (Burns et al. 2008; López-Fontán
et al. 2005; Moroi et al. 2001; QSAR Toolbox Coordination

Group 2019) and, in addition, limits of acidity have been
reported for three PFASs (i.e. no exact values) (Vierke et al.
2013). The performance of the applied prediction tools (MOE
and JChem) was analysed using the six reported values (for

PFBA, PFHxA, PFOA, PFDA, PFUnDA and EtFOSA) (the
limit values were excluded in the analysis). Four were predicted
by JChem below the reliability limit set at –1 (defined by

JChem) and could therefore not be used for the estimation of
model performance. MOE, however, predicted the pKa of
EtFOSA to 9 (reported 9.5) but assigned a value of around 1

for the remaining five PFASs. The variation in experimental
data between different studies was very high (Fig. S7, Supple-
mentaryMaterial) with, for example, pKa values of PFOA being

reported between 0.5 and 3.8 (Burns et al. 2008; Vierke et al.
2013). Overall, the reliability of the pKa models could not be
assessed mainly owing to lacking and unreliable experimental
data. Nevertheless, the calculated pKa values indicated that 37%

of the PFASs (among the 1125 which were identified as
ionisable by the model) had a pKa below 6, which suggested
that they might be in ionic form in both natural water bodies and

human blood. This adds to the uncertainty of several physico-
chemical property predictions because most models are only
valid for neutral species. The pKa values of the studied chemi-

cals were also reflected in the estimated log D values that were,
on average, lower than the predicted log KOW (5.8 and 6.5
respectively). For log D, only seven values (Rayne and Forest
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2009)were found and they correlatedwell with the experimental

data (Fig. S8, Supplementary Material) but represent a very
limited subset.

A data search for KOC was performed, owing to it being a

critical parameter to assess mobility and environmental fate of

PFASs. A total of 17 experimental values (Campos Pereira et al.

2018; Liu and Lee 2007) were identified, which correlated well
with the predicted data (R2¼ 0.76; Fig. 2), but only represented
three of the twelve clusters. BCF predictions based on log KOW

could be overestimated considering the ionisation issue. Few
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Fig. 3. (a) Averagemeasured logKOW for 18 PFASs (Arp et al. 2006; Carmosini and Lee 2008; de Voogt

et al. 2012; Xiang et al. 2018) and their predicted logKOW (KOWWIN). (b) Average measured logKOC for

17 PFASs (Campos Pereira et al. 2018; Liu and Lee 2007). (c)AveragemeasuredBCF for 11 PFASs in fish

(Inoue et al. 2012; Martin et al. 2003; QSAR Toolbox Coordination Group 2019) compared with

predictions of BCFBAF. Error bars represent the minimum and maximum values from at least one study

using one or several methodologies. Line represents a 1 : 1 correlation.
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BCF values were found in the scientific literature (Inoue et al.

2012; Martin et al. 2003; QSAR Toolbox Coordination Group
2019) and the databases reviewed, and the four different BCF
models applied generated data that was poorly correlated with

experimental observations (R2 ¼ �3.4 to �0.5; Fig. 3 and
Fig. S9, Supplementary Material). Some PFASs have been
shown to bind strongly to albumin and other proteins (Jones
et al. 2003) and this could cause this discrepancy between log

KOW and BCF despite a recent review indicating only a minor
impact of protein binding for PFAS and other surfactants
(Schlechtriem et al. 2014).

A rather large set of experimental data was compiled for Vp

(Lei et al. 2004; QSAR Toolbox Coordination Group 2019; US
EPA 2015), which, however, were almost exclusively used in

the Vpmodel in EPI Suite and could therefore not be applied as
a true external test set of the model. Thus, despite a high
correlation with experimental data (R2 ¼ 0.93; Fig. S10,
Supplementary Material), the use of the estimated Vp values

cannot be recommended for PFAS. A search for data for air-
water partitioning (KAW) was also performed but only a small
amount of data was identified (Lei et al. 2004; Rayne and

Forest 2009).
The impressive inventory of PFASs by the OECD includes a

huge variation in chemistry spanning from polymeric PFAS

and mixtures to discrete small organofluorine chemicals. The
curation of the data and the multivariate statistical analysis can
hopefully serve as a starting point for further in-depth studies

on these chemicals. We have clearly illustrated the gaps in the
physicochemical properties and environmental fate data and
also the imbalance in structure-related knowledge. The major-
ity of studies are only performed on a handful of chemicals. The

current study also highlights the need for improving available
in silico fate and property models, which both warrant tailored
models for these types of chemicals and new data for training

said models. Sound models and accurate physicochemical
properties are critical in understanding the environmental fate
characteristics of PFASs and their potential hazards as a group,

but primarily to enable high-throughput screening for the
identification and prioritisation of the potentially most prob-
lematic PFASs.

Supplementary material

Extra information on descriptors, training sets, predicted data
and various model performances are available on the Journal’s
website.
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