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Abstract. Models of soil organic carbon (SOC) storage and
turnover can be useful tools to analyse the effects of soil
and crop management practices and climate change on soil
organic carbon stocks. The aggregated structure of soil is
known to protect SOC from decomposition and, thus, influ-
ence the potential for long-term sequestration. In turn, the
turnover and storage of SOC affects soil aggregation, phys-
ical and hydraulic properties and the productive capacity of
soil. These two-way interactions have not yet been explic-
itly considered in modelling approaches. In this study, we
present and describe a new model of the dynamic feedbacks
between soil organic matter (SOM) storage and soil physical
properties (porosity, pore size distribution, bulk density and
layer thickness). A sensitivity analysis was first performed
to understand the behaviour of the model. The identifiabil-
ity of model parameters was then investigated by calibrat-
ing the model against a synthetic data set. This analysis re-
vealed that it would not be possible to unequivocally estimate
all of the model parameters from the kind of data usually
available in field trials. Based on this information, the model
was tested against measurements of bulk density, SOC con-
centration and limited data on soil water retention and soil
surface elevation made during 63 years in a field trial lo-
cated near Uppsala (Sweden) in three treatments with dif-
ferent organic matter (OM) inputs (bare fallow, animal and
green manure). The model was able to accurately reproduce
the changes in SOC, soil bulk density and surface elevation
observed in the field as well as soil water retention curves
measured at the end of the experimental period in 2019 in

two of the treatments. Treatment-specific variations in SOC
dynamics caused by differences in OM input quality could be
simulated very well by modifying the value for the OM reten-
tion coefficient ε (0.37 for animal manure and 0.14 for green
manure). The model approach presented here may prove use-
ful for management purposes, for example, in an analysis of
carbon sequestration or soil degradation under land use and
climate change.

1 Introduction

As a consequence of intensive cultivation, most agricultural
soils have lost ca. 25 %–75 % of their antecedent store of
SOC (Lal, 2013; Sanderman et al., 2017). Apart from con-
tributing to the increase in atmospheric CO2, this has also de-
graded the inherent physical quality and productivity of soil
(e.g. Lal, 2007; Rickson et al., 2015; Henryson et al., 2018).
This is because many important soil physical and hydraulic
(e.g. water retention and hydraulic conductivity) properties
are strongly influenced by soil organic matter (SOM). For ex-
ample, SOM increases porosity and reduces soil bulk density
(e.g. Haynes and Naidu, 1998; Ruehlmann and Körschens,
2009; Jarvis et al., 2017). This is partly because the den-
sity of organic matter is less than that of soil minerals, but
more importantly, it is a consequence of the aggregated soil
structure induced by the microbial decomposition of fresh or-
ganic matter (Tisdall and Oades, 1982; Young and Crawford,
2004; Cosentino et al., 2006; Feeney et al., 2006; Bucka et
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al., 2019). Changes in the SOM content may also affect the
pore size distribution, although the magnitude of these ef-
fects across different ranges of pore diameter is still a matter
of some controversy (e.g. Hudson, 1994; Rawls et al., 2003;
Loveland and Webb, 2003; Minasny and McBratney 2018;
Libohova et al., 2018).

The relationship between SOM and soil pore space proper-
ties can be characterized as a dynamic two-way interaction.
This is because, in addition to the effects of SOM on soil
pore size distribution and porosity, decomposition rates of
SOM are reduced within microporous regions of soil that are
poorly aerated and where the carbon is physically much less
accessible to microorganisms (e.g. Ekschmitt et al., 2008;
Dungait et al., 2012; Lehmann and Kleber, 2015). Whereas
sorption interactions with mineral surfaces are probably the
dominant mechanisms protecting SOM from decomposition
in coarse-textured soils, the additional physical protection af-
forded by microporous regions of the soil may lead to an en-
hanced long-term storage of SOM in structured fine-textured
soils (e.g. Hassink et al., 1993; Chevallier et al., 2004; Souza
et al., 2017; Dignac et al., 2017). Thus, the turnover of
both particulate and soluble SOM has been shown to depend
on its location in soil pore networks of different diameters
and connectivity and with contrasting microbial communi-
ties (e.g. Strong et al., 2004; Ruamps et al., 2011; Nunan et
al., 2017). Recent studies using novel X-ray imaging tech-
niques have also provided additional insights into how the
soil pore space architecture regulates the physical protection
of SOM in structured soil (Kravchenko and Guber, 2017).
For example, Kravchenko et al. (2015) showed that the de-
composition rates of intra-aggregate particulate SOM were
three to 15 times faster in the presence of connected networks
of aerated soil pores >13 µm in diameter than in the absence
of such pores. Toosi et al. (2017) showed that plant residues
decomposed more slowly in soil microcosms dominated by
pores 5–10 µm in diameter than in those containing a sig-
nificant proportion of pores >30 µm in diameter. Quigley et
al. (2018) showed that pores 40–90 µm in size were associ-
ated with a fast influx of fresh carbon, followed by its rapid
decomposition, whereas soil pores <40 µm in diameter were
associated with reduced rates of carbon decomposition. From
the foregoing, it follows that the turnover of SOM will be
significantly affected by any physical or biological mixing
process which transfers SOM between different pore regions
in soil. For example, soil tillage may promote decomposition
by exposing SOM that was previously effectively protected
from microbial attack within microporous regions of the soil
(e.g. Balesdent et al., 2000; Chevallier et al., 2004). Physical
protection of SOM is also affected by the mixing resulting
from the ingestion and casting of soil by earthworms (e.g.
Martin, 1991; Görres et al. 2001; Angst et al., 2017).

Some widely used models of SOM turnover and storage
attempt to implicitly account for the effects of chemical and
physical protection by introducing a stable or inert pool (e.g.
Falloon and Smith, 2000; Barré et al., 2010). Other models

have also been proposed that explicitly predict the effects
of soil structure on SOM storage and turnover by making
use of the concept of soil micro- and macro-aggregates (e.g.
Stamati et al., 2013; Segoli et al., 2013). An alternative ap-
proach would be to define soil structure in terms of the soil
pore space. The advantage of this is that it allows a straight-
forward coupling to models of flow and transport processes
in soil (e.g. Young et al., 2001; Rabot et al., 2018). From a
mathematical point of view, soil structure can be concisely
described by the volume and connectivity of solids and pore
space and the surface area and curvature of their interface,
all expressed as a function of pore diameter (Vogel et al.,
2010). Of these metrics, we focus here on the pore size dis-
tribution and its integral, the total porosity, since these prop-
erties underlie widely used soil hydrological models based
on the Richards equation. Incorporating such a pore-space-
based approach to the interactions between SOM and soil
structure into a soil–crop model would enable explicit recog-
nition of the feedback links that exist between SOM dynam-
ics, soil hydrological processes and plant growth (Henryson
et al., 2018). Kuka et al. (2007) earlier proposed a pore-
based model of SOM turnover carbon turnover in pore space
(CIPS), although they did not account for any feedbacks to
soil physical properties and hydraulic functions.

Here, we propose and test a new model that describes
the dynamic two-way interactions between SOM storage
and turnover, soil structure and soil physical properties. We
first performed a sensitivity analysis of the proposed model
and also investigated parameter identifiability using a syn-
thetic data set (e.g. Luo et al., 2017). This was done because
the data usually available from field experiments for testing
models of SOM storage and turnover may be insufficient to
uniquely identify the parameters of even the simplest models
(Juston et al., 2010; Luo et al., 2017). Such problems of pa-
rameter non-identifiability or equifinality (Beven, 2006) may
introduce considerable uncertainties into model predictions
under changing agro-environmental conditions (e.g. Sierra et
al., 2015; Bradford, 2016; Luo et al., 2017). Making use of
the results of this sensitivity and uncertainty analysis, we cal-
ibrated the model against field data obtained from two treat-
ments (bare fallow and animal manure) at the Ultuna long-
term frame trial in Uppsala, Sweden, using measurements of
the temporal changes in SOC concentrations and bulk den-
sity and limited data on both the soil pore size distribution
derived from water retention curves and surface elevation.
As a further test, we also compared predictions of the cali-
brated model with independent observations made in a green
manure treatment in the same experiment.
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Figure 1. Schematic illustration of the conceptual model with the
soil pore space comprising macropores (A), mesopores (thin lines;
B) and micropores (C) and with two qualities of organic matter,
namely particulate organic matter (POM; e.g. decaying roots; green
lines; D) and microbially processed organic matter (blue circles; E),
both of which are stored either in contact only with micropores (and
therefore partially protected from decomposition) or in contact with
mesopores.

2 Description of the model

2.1 Conceptual model

The model describes the dynamic two-way interactions be-
tween SOM storage and turnover and soil porosity and pore
size distribution. A simple conceptual model is adopted to
capture how the soil pore space changes as a result of changes
in soil organic matter concentration (Figs. 1 and 2). A list of
all variables and their symbols can be found in Table S1 in
the Supplement. We consider that the total pore volume, Vp,
comprises the sum of a constant textural pore volume, Vtext,
defined as the minimum value of the pore volume found in a
purely mineral soil matrix without SOM (e.g. Fies and Sten-
gel, 1981; Yoon and Gimenéz, 2012) and a dynamic struc-
tural pore volume comprising both macropores, Vmac, and an
aggregation pore volume, Vagg, generated as a consequence
of the microbial turnover of organic matter (OM). The bi-
ological processes underlying the generation of aggregation
pore space (Dignac et al., 2017) would be difficult to model
individually in a mechanistic way, so we make no attempt to
do so in our model. Instead, in our model approach, which
is based on the dynamics of soil pore space, the term aggre-
gation is simply defined as the additional pore space in soil
associated with the presence of organic matter. Based on em-
pirical knowledge, we assume a linear relationship between
this aggregation pore volume, Vagg, and the volume of soil
organic matter (e.g. Emerson and McGarry, 2003; Boivin et
al., 2009; Johannes et al., 2017). Thus, individual soil aggre-
gates are not considered as explicit entities in this model. In
addition to classifying the soil pore space in terms of its ori-
gin, the model also considers three pore size classes (Figs. 1

Figure 2. Schematic illustration of pore volumes and pore classes
in the model (for explanation of symbols, see text). In this exam-
ple, macroporosity has been neglected, and the total pore space is
comprised of 80 % textural pores and 20 % aggregation pores in-
duced by soil organic matter, with a maximum micropore diameter
of 10 µm.

and 2). In addition to macropores, the soil matrix porosity is
partitioned into mesopores and micropores.

The model currently neglects the storage of SOM in
macropores because we expect that SOM, per se, would have
little direct influence on the properties of soil macropore net-
works (e.g. Larsbo et al., 2016; Jarvis et al., 2017), but also
because it would most likely be a minor component of the
long-term SOM balance. The pore size distribution in the soil
matrix influences SOM storage and turnover in the model in
two ways. First, the mineralization rate of SOM in microp-
orous regions is reduced due to physical protection. Second,
the partitioning of OM inputs derived from plant roots be-
tween the two pore classes is determined by their relative vol-
umes in an attempt to mimic, in a simple way, how changes
in soil structure affect the spatial distribution of root prolif-
eration in soil. SOM is transferred between the two pore size
classes using a simple mixing concept to reflect the homog-
enizing effects of soil tillage and faunal bioturbation. In this
sense, the model has some conceptual similarities to the dual-
pore region models that are commonly used to quantify the
effects of soil structure on water flow and solute transport
(e.g. Larsbo et al., 2005).

2.2 Soil organic matter storage and turnover

Four pools of organic matter (kg OM m−2), comprising two
types (qualities) of organic matter stored in the two pore re-
gions of the soil matrix (Figs. 1 to 3), are considered in the
model. The model tracks two pools of young undecomposed
organic matter, with one stored in parts of the soil in contact
with well-aerated mesopore networks and the other stored
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Figure 3. Schematic diagram of the structure of the organic matter model showing storages and flows. For explanations of the symbols, see
the text in connection with Eqs. (1) to (6).

in microporous soil regions (MY(mes) and MY(mic) respec-
tively). Similarly, the model accounts for two pools of older
microbially processed organic matter stored in the meso-
porous and microporous regions of soil respectively (MO(mes)
and MO(mic)). Both types of organic matter are transferred
between the two pore regions by biophysical mixing pro-
cesses such as tillage and bioturbation. The SOM fluxes and
rates of change in storage in the four pools of organic matter
in the model are given by a modified version of the ICBM
model (Andrén and Kätterer, 1997; Wutzler and Reichstein,
2013) extended to account for organic matter storage in two
pore regions, as follows:

dMY(mes)

dt
= Im+

(
φmes

φmes+φmic

)
Ir− kYMY(mes)+ TY (1)

dMO(mes)

dt
=
(
ε kYMY(mes)

)
−
(
(1− ε) kOMO(mes)

)
+ TO (2)

dMY(mic)

dt
=

(
φmic

φmes+φmic

)
Ir− kYFprotMY(mic)− TY (3)

dMO(mic)

dt
=
(
ε kYFprotMY(mic)

)
−
(
(1− ε) kOFprotMO(mic)

)
− TO, (4)

where ϕmic and ϕmes are micro- and mesoporosity (m3 m−3),
kY and kO are the first-order rate constants for the decom-
position of fresh and microbially processed organic matter
(yr−1), Fprot is a response factor (–) varying from zero to
unity that reduces decomposition in the micropore region to
reflect a degree of physical protection, ε is an OM retention
coefficient varying from zero to unity (–), and Ir and Imare
the below-ground (root residues and exudates) and above-
ground (litter and organic amendments, e.g. manure) inputs
of organic matter (kg m−2 yr−1). It can be seen from Eqs. (1)
and (3) that the model assumes that root-derived organic mat-

ter is added to the microporous and mesoporous regions in
proportion to their volumes, while above-ground litter and
organic amendments are added solely to the mesopore re-
gion. Finally, TY and TO are source–sink terms (kg m−2 yr−1)
for the exchange of organic matter (e.g. by tillage or earth-
worm bioturbation) between the two pore classes given by
the following:

TY = kmix

(
MY(mic)−MY(mes)

2

)
(5)

TO = kmix

(
MO(mic)−MO(mes)

2

)
, (6)

where kmix is a rate coefficient (yr−1) determining how much
of the stored organic matter is mixed annually, varying be-
tween zero (no mixing) and unity (complete mixing on an
annual timescale). It should be apparent from Eqs. (1) to (6)
that the effects of soil structure on SOM turnover become
weaker as kmix and/or Fprot tend to unity.

2.3 Soil physical properties

The model of SOM turnover and storage described by
Eqs. (1)–(6) above considers how the soil pore space influ-
ences SOM dynamics. We now derive a simple model of the
feedback effects of SOM on porosity and pore size distribu-
tion. Our starting point is the fundamental phase relation for
the total soil volume, Vt (m3), as follows:

Vt = Vs+Vp = Vs(o)+Vs(m)+Vp

=

{
Axs

(
Ms(o)

γo
+
Ms(m)

γm

)
+Vp

}
, (7)

where Vs, Vs(o), Vs(m) and Vp are the volumes (m3) of solids,
organic matter, mineral matter and pore space, γo and γm are
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the densities (kg m−3) of organic and mineral matter, Axs is
a nominal cross-sectional area in the soil (= 1 m2), Ms(m) is
the mass of mineral matter (kg m−2), and Ms(o) is the total
mass of organic matter (kg OM m−2) given by the following:

Ms(o) =MY(mes)+MO(mes)+ MY(mic)+MO(mic). (8)

The mineral mass, Ms(m), in Eq. (7) is assumed constant
and is obtained from user-defined values of a minimum ma-
trix porosity, ϕmin (m3 m−3), and thickness of the soil layer,
1zmin (m), corresponding to the theoretical minimum soil
volume, Vmin (m3), attained when Ms(o) = 0, as follows:

Ms(m) =1zminγm (1−φmin) (9)
Vt (min) = Axs1zmin. (10)

The volume of organic matter, Vs(o), and thus the total soil
volume, Vt, in Eq. (7) naturally changes as the stored mass
of soil organic matter, Ms(o), changes. The total soil vol-
ume is also affected by changes in the dynamic soil pore
volume, which comprises macropores, Vmac and aggregation
pore space, Vagg, induced by microbial activity, whereas the
textural pore volume linked to soil mineral matter, Vtext (see
Fig. 2), remains constant. For the sake of simplicity, we as-
sume here that the soil macroporosity is also constant, such
that Vmac is maintained in proportion to the total soil volume.
With these assumptions, the total pore volume, Vp, is given
by the following:

Vp = Vagg+Vtext+Vmac

= Axs

{
fagg

(
Ms(o)

γo

)
+1zminφmin+1zφmac

}
, (11)

where fagg is an aggregation factor (m3 pore space m−3 or-
ganic matter) defined as the slope of the linear relationship
assumed between the volume of aggregation pore space,
Vagg, and the volume of organic matter, Vs(o), ϕmac is the
macroporosity (m3 m−3), and 1z is the layer thickness (m).
The constant volume of textural pores, Vtext (m3), is obtained
by combining Eqs. (7), (9) and (10) with Ms(o) = 0.

Temporal variations in Vs(o) and Vp induce changes in
the total soil volume (and therefore the soil layer thickness),
porosity and bulk density. Combining Eqs. (7), (9) and (11),
gives the soil layer thickness, as follows:

1z=
Vt

Axs
=

{(
1+ fagg

)(Ms(o)
γo

)}
+1zmin

1−φmac
, (12)

and the matrix porosity, ϕmat (m3 m−3), total porosity, ϕ
(m3 m−3), and soil bulk density, γb (kg m−3), are as follows:

φmat =
Vagg+Vtext

Vt
=

{
fagg

(
Ms(o)
γo

)}
+{1zminφmin}

1z
(13)

φ =
Vagg+Vtext+Vmac

Vt
= φmat+φmac (14)

γb =
Ms(o)+Ms(m)

Vt
=
Ms(o)+ (1zminγm (1−φmin))

1z
. (15)

It is also helpful to derive expressions for porosity and bulk
density as functions of the soil organic matter concentration,
fsom (kg kg−1), rather than ofMs(o), since fsom is more often
measured in the field. The organic matter concentration is
defined as follows:

fsom =
Ms(o)

Ms(o)+Ms(m)
. (16)

Combining Eqs. (9) and (16) gives the following:

Ms(o) =
fsom1zmin γm (1−φmin)

1− fsom
. (17)

Substituting Eq. (17) into Eqs. (13)–(15) leads to the follow-
ing expressions for the matrix porosity and the soil bulk den-
sity:

φmat =

[{(
fsom
γo

)
fagg+

(
φmin(1−fsom)
γm(1−φmin)

)}
(1−φmac)

]
{(

fsom
γo

)(
1+ fagg

)}
+

(
1−fsom

γm(1−φmin)

) (18)

γb =
1−φmac{(

fsom
γo

)(
1+ fagg

)}
+

(
1−fsom

γm(1−φmin)

) . (19)

In the absence of other governing processes, Eqs. (14), (18)
and (19) enable the identification of the upper and lower lim-
its of porosity and bulk density that occur at limit SOM con-
centrations of zero (i.e. a purely mineral soil) and unity (i.e.
organic soils). Setting fsom to zero defines the maximum and
minimum values of bulk density and porosity respectively, as
follows:

γb(fsom=0) = γm (1−φmin)(1−φmac) (20)
φ(fsom=0) = φmin+φmac (1−φmin). (21)

Conversely, bulk density and porosity attain minimum and
maximum values respectively in an organic soil when fsom =

1 kg kg−1, such that, in the following:

γb(fsom=1) =
γo (1−φmac)

1+ fagg
(22)

φ(fsom=1) =

(
fagg

1+ fagg

)
(1−φmac)+φmac. (23)

Finally, the matrix porosity, ϕmat, is partitioned between
micro- and mesoporosity as follows:

φmic =
Vagg(mic)+Vtext(mic)

Vt

=

{
fagg

( (
MY(mic)+MO(mic)

)
γo

)}
+
{
Ftext(mic)1zminφmin

}
1z

(24)

φmes = φmat−φmic, (25)
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Figure 4. Equation (19) fitted to data from three Swedish field sites.
Ultuna data taken from Kirchmann et al. (1994), Gerzabek et al.
(1997), Kirchmann and Gerzabek, (1999) and Kätterer et al. (2011).
Måtteby data taken from Larsbo et al. (2016), with the soil under
grass. Offer data taken from Jarvis et al. (2017); harrowed soil had
been ploughed and harrowed (samples were taken at 2–6 cm depth)
and ploughed soil was only ploughed (samples were taken at 13–
17 cm depth). Data used in this study are highlighted in red (fal-
low, animal manure and green manure). Soil organic matter con-
tent was estimated from soil organic carbon by multiplying by two
(Pribyl, 2010). Equation (19) was fitted by non-linear least-squares
regression, assuming a priori that γm = 2.7, γo = 1.2 g cm−3 and
ømin = 0.35 cm3 cm−3.

where Vagg(mic) and Vtext(mic) are the volumes (m3) of aggre-
gation and textural micropores respectively (see Fig. 2), and
Ftext(mic) represents the proportion (–) of the textural pore
space that comprises micropores. It should be feasible to es-
timate Ftext(mic) from data on soil texture, since pore and par-
ticle size distributions are similar in the absence of structural
pores (e.g. Arya et al., 1999; Yoon and Gimenéz, 2012; Arya
and Heitman, 2015).

The model described by Eq. (19) was first derived by Stew-
art et al. (1970), albeit in a simpler form in which macrop-
orosity is neglected and γo and fagg are lumped into one pa-
rameter, i.e. the bulk density of a purely organic soil given by
Eq. (22) with ϕmac = 0. This simple model has been shown
to accurately represent the observed relationships between
organic matter concentration and bulk density in forest soils
in Wales (Stewart et al., 1970; Adams, 1973) and northeast-
ern USA (Federer et al., 1993) and agricultural soils in Aus-
tralia (Tranter et al., 2007). More recently, this function has
been incorporated into the Jena model (Ahrens et al., 2015;
Yu et al., 2020). The validity of the extended model approach
presented here, which explicitly incorporates macroporosity
and soil aggregation, is confirmed by Fig. 4, which shows
that Eq. (19) gives reasonably good fits to measurements of

Figure 5. Plots of Eq. (19) for contrasting values of the aggregation
factor, fagg, with γm = 2.7 g cm−3, γo = 1.2 g cm−3 ømac = 0.1
and ømin = 0.35 cm3 cm−3.

bulk density and organic matter concentration made at three
agricultural field sites in Sweden, including the Ultuna frame
trial.

Figure 5 shows the relationship between bulk density and
organic matter concentration predicted by Eq. (19) for val-
ues of fagg lying between zero and four. A comparison of
the curves for values of fagg, similar to those obtained in the
model fitting to the data (ca. 2–4; see Fig. 4), with that of
fagg = 0 (i.e. when no additional pore space is generated due
to the presence of organic matter) demonstrates that aggre-
gation dominates the effects of organic matter on soil bulk
density, while the different densities of organic and mineral
matter (γo and γm) only have a minor effect. It should be
noted that the composition of OM sources may affect the ex-
tent of soil aggregation generated by microbial activity (e.g.
Bucka et al., 2019). In this respect, each of the four OM pools
could have been characterized by a different value of the ag-
gregation factor. However, we have assumed here that the
two qualities of organic matter modify the pore space to the
same extent in both the micropore and mesopore regions so
that only a single aggregation factor, fagg, is required in the
model. As we will see later, this is because unequivocal pa-
rameterization of a more detailed model would be difficult to
achieve given the amount and kinds of data normally avail-
able from field experiments. Alternatively, a model of inter-
mediate complexity can be envisaged in which fagg would
take different values in micropore and mesopore regions.
Such a model would only introduce one additional param-
eter compared with the simplest case assumed here, but even
this modest increase in complexity could cause difficulties
with parameter identifiability.
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2.4 Soil hydraulic properties

Equations (13), (24) and (25) describe a partitioning of the
matrix pore space into two size classes as a dynamic func-
tion of soil organic matter storage. This partitioning can
also be used to estimate continuous model functions for soil
hydraulic properties (water retention and hydraulic conduc-
tivity) to enable a straightforward coupling to hydrological
models based on Richards’ equation. Most commonly used
models of soil water retention employ two shape parameters
to characterize the pore size distribution. Thus, one require-
ment of this approach is that one of these two parameters
must be assumed to remain constant. We illustrate this ap-
proach, taking the widely used van Genuchten (1980) equa-
tion as an example. If residual water is negligible, the water
content θ (m3 m−3) is given by the following:

θ = φmat
(
1+ |αψ |n

) 1
n
−1
, (26)

where ψ (centimeters) is the soil water pressure head, and α
(cm−1) and n (–) are shape parameters that reflect the pore
size distribution. We assume that n can be held constant,
since it is known to be strongly determined by soil texture
(e.g. Wösten et al., 2001; Vereecken et al., 2010), while α is
allowed to vary, as it is more influenced by the nature of the
structural pore space in soil (Assouline and Or, 2013). In this
case, α (cm−1) is given by the following:

α =

[(
φmic
φmat

)− n
n−1
− 1

]1/n

∣∣ψmic/mes
∣∣ , (27)

where ψmic/mes is a fixed user-defined pressure head (cen-
timeters) defining the size of the largest micropore in soil.
This model only considers the two pore size classes com-
prising matrix porosity. However, it is possible to extend this
model to account for macropores by making use of dual-
porosity concepts (Durner, 1994; Larsbo et al., 2005).

3 Application of the model

3.1 Sensitivity analysis

We performed a Monte Carlo sensitivity analysis to better
understand the behaviour of this new model. We ran 500 sim-
ulations with parameter values obtained by Latin hypercube
sampling from uniform distributions. The simulations were
run for 2000 years to make the outputs independent of the
assumed initial conditions. Organic matter was added solely
from below-ground residues at a rate (0.02 g cm−2 yr−1) that
gave a final organic matter concentration of 0.03 kg kg−1 for
the mean simulation. The sensitivity of the model parame-
ters was quantified by the Spearman rank partial correlation
coefficients for three target output variables, namely the fi-
nal values of bulk density, γb, soil organic matter concentra-
tion, fsom, and the micropore fraction of the matrix porosity,

fmic (= ϕmic/ϕmat), as a measure to characterize the soil pore
size distribution (see Eq. 27). Parameter ranges of Fprot and
Ftext(mic) (0.05<Fprot<0.2; 0.5<Ftext(mic)<0.9; see Table 1)
were selected to represent a well-structured loamy to fine-
textured soil, assuming a maximum pore size of the microp-
ores of 5 µm (i.e.ψmic/mes =−600 cm). Our analysis focuses
on matrix pore space properties and SOM, so the macrop-
orosity was fixed at a constant value in these simulations. The
sampled ranges for the remaining model parameters shown in
Table 1 were selected to approximately match their expected
variations based on previous modelling experience.

The partial rank correlation coefficients are shown in Ta-
ble 1. Not surprisingly, the organic matter concentration fsom
was most affected by parameters regulating SOM turnover,
especially the OM retention coefficient, ε, and the first-order
rate coefficient for the microbially processed OM pool, ko.
As expected, the physical protection factor, Fprot, was also
highly significantly (and negatively) correlated with fsom.
Parameters controlling organic matter turnover also strongly
affected the simulated bulk density, γb, along with soil phys-
ical parameters, especially the aggregation factor, fagg, and
the minimum (i.e. textural) porosity, ϕmin. The pore size dis-
tribution, as expressed by the fraction of micropores, fmic,
was most sensitive to changes in the micropore fraction of
the textural pore space, Ftext(mic) (Table 1). This is encourag-
ing because it is well known that soil texture exerts the most
important control on the pore size distribution in soil. The
fraction of micropores was also highly significantly (and neg-
atively) correlated with the mixing coefficient, kmix, presum-
ably because this mixing transferred root-derived OM from
micropores to mesopores. This is also the reason why the
bulk density, γb, and fsom are also strongly correlated with
kmix (Table 1), given that OM decomposition rates differ be-
tween the pore regions.

3.2 Parameter identifiability

The fact that model parameters are sensitive does not im-
ply that they will be identifiable in a calibration procedure,
since their effects on the target outputs may be correlated
(e.g. Luo et al., 2017). We therefore investigated the identi-
fiability of the model parameters using synthetic data gen-
erated by 50-year forward simulations of the model for two
scenarios with different OM inputs, namely a bare fallow sce-
nario with no OM inputs and a scenario with a constant OM
input of 0.06 g cm−2 yr−1. As initial conditions, the organic
matter pools were set to values in equilibrium with a con-
stant OM input of 0.02 g cm−2 yr−1, giving an initial fsom of
0.03 kg kg−1. Simulated bulk density, γb, soil organic matter
concentration, fsom, and the soil microporosity, ϕmic, were
used as target output variables in the calibration. The SOM
concentration was assumed to have been sampled every fifth
year, while data for bulk density and microporosity were as-
sumed to be available only at the start of the experiment and
on two subsequent occasions (after 20 and 50 years). Er-
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Table 1. Sampled parameter ranges and the Spearman rank partial correlation coefficients (r) between parameters and target outputs. Values
marked in bold show a significant correlation (p<0.01). Note: fsom – soil organic matter concentration, γb – bulk density and fmic – fraction
of micropores.

Parameter Sampled range Partial correlation coefficients, r

fsom γb fmic

First-order rate coefficient, ky (yr−1) 0.1–1.0 −0.54 0.37 −0.10
First-order rate coefficient, ko (yr−1) 0.01–0.05 −0.82 0.70 0.32
Physical protection factor, Fprot (–) 0.05–0.20 −0.46 0.28 −0.08
Organic matter retention coefficient, ε (–) 0.1–0.5 0.92 −0.82 −0.30
Mixing coefficient, kmix (yr−1) 0–0.2 −0.68 0.50 −0.60
Fraction of textural micropores, Ftext(mic)(–) 0.5–0.9 0.24 −0.16 0.96
Density of mineral matter, γm (g cm−3) 2.6–2.7 −0.09 0.37 0.01
Density of organic matter, γo (g cm−3) 1.1–1.4 −0.03 0.33 −0.01
Minimum porosity, ϕmin (cm3 cm−3) 0.3–0.4 0.162 −0.85 0.02
Aggregation factor, fagg (–) 2–4 0.0 −0.50 0.02

rors were added to the model-simulated values for all three
target output variables to represent measurement and sam-
pling uncertainties due to spatial variability. We calculated
these errors assuming 10 replicates per sampling occasion
and normally distributed errors with a coefficient of variation
of 10 %. The parameter values used to generate the synthetic
data are listed in Table 2.

The model was calibrated against the synthetic data using
the Powell conjugate gradient method (Powell, 2009), within
given parameter ranges defined by minimum and maximum
values (Table 2), and using the sum of squared errors as the
goal function. The analysis was repeated 100 times for dif-
ferent initial starting values for the parameters in order to
assess the uniqueness of the optimized parameter estimates.
Two relatively insensitive parameters, γo and γm (Table 1),
were assumed to be known and fixed at their true values (Ta-
ble 2). Two further parameters were excluded from the cal-
ibration, namely the aggregation factor, fagg, and minimum
porosity, ϕmin. Instead, they were fixed a priori by a non-
linear least squares regression on the synthetic data gener-
ated for bulk density and fsom using Eq. (19; with ϕmac = 0)
and known values of γo and γm (Table 2). Optimized pa-
rameter sets with goal function values less than 10 % larger
than the global optimum (n= 36) were considered accept-
able (Beven, 2006). Figure 6 shows that the best simulation
with the calibrated model closely matched the synthetic data
for bulk density, SOM and microporosity. Nevertheless, only
three of the six parameters (ε, ko and Ftext(mic)) were identi-
fiable, with values for the 36 best parameter sets limited to
narrow ranges around the true values (Fig. 7). This was not
the case for the three remaining parameters; optimized val-
ues of kmix and ky covered almost the whole tested range,
while optimized Fprot values were restricted to roughly half
of the sampled range (Fig. 7). As can be seen in Table 3, the
mixing coefficient kmix correlated strongly with ky, ko, Fprot
and Ftext(mic) but not with ε. The strongest correlations were

found between the rate constants ky and ko (r = 0.95) and ko
and Fprot (r =−0.91). A strong correlation was also found
between ε, ky and ko and Fprot.

3.3 Model evaluation with data from a long-term field
trial

3.3.1 Field measurements at the Ultuna frame trial

The model was tested against data from the Ultuna long-
term soil organic matter experiment in Uppsala, Sweden
(59.82◦ N, 17.65◦ E; Kirchmann et al., 1994; Witter, 1996;
Herrmann and Witter, 2008; Kätterer et al., 2011). The cli-
mate is cold temperate and subhumid, with an annual mean
air temperature of 6.3 ◦C and a mean annual precipitation of
554 mm (1981–2014). The experiment was started in 1956 at
the Swedish University of Agricultural Sciences in order to
investigate the long-term effects of mineral N fertilizers and
different organic amendments on crop yields, soil organic
matter concentrations and soil physical properties. The soil
texture in the uppermost 20 cm is clay loam (37 % clay, 41 %
silt and 22 % sand).

Of the 15 treatments included in the experiment, the fol-
lowing three were chosen for model testing: a bare soil treat-
ment (bare fallow) that has received neither mineral N fertil-
izer nor any organic amendments since the beginning of the
experiment and two other treatments receiving no mineral N
fertilizer but 4 t ha−1 C as organic amendments every second
year in the form of green manure and animal manure respec-
tively. All three treatments receive P and K fertilizer (20 and
38 kg ha−1 yr−1) and are annually dug by hand, with the or-
ganic amendments mixed into the soil to a depth of 20 cm.
The organic amendments were added irregularly at the be-
ginning of the experiment, i.e. in 1956, 1960 and 1963, but
have since been supplied every second year. Maize has been
grown exclusively on all the cropped plots since 2000. Before
2000, the crop rotation included a sequence of barley, oats,
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Table 2. Parameter values used to generate the synthetic data and the sampled range in the model calibration.

Parameters Value used for data Sampled range
generation (true value) during calibration

First-order rate coefficient, ky (yr−1) 0.40 0.1–1.0
First-order rate coefficient, ko (yr−1) 0.02 0.005–0.1
Mixing coefficient, kmix (yr−1) 0.05 0–0.3
Microbial efficiency, ε (–) 0.3 0.1–0.6
Physical protection factor, Fprot (–) 0.3 0.05–1.0
Fraction of textural micropores, Ftext(mic) (–) 0.5 0.2–0.8
Density of mineral matter, γm (g cm−3) 2.7
Density of organic matter, γo (g cm−3) 1.2
Minimum layer thickness, 1z(min) (centimeters) 16
Minimum porosity, ϕmin (cm3 cm−3) 0.4a / 0.41b

Aggregation factor, fagg (–) 5.0a / 4.92b

a Used for data generation. b Estimated by regression (Fig. 4) and fixed during calibration.

Figure 6. Synthetic data (symbols; bars show standard deviations) for microporosity, bulk density and soil organic matter concentration and
model simulations (lines) after calibration.

Table 3. Correlation matrix for parameter estimates for the 36 best
parameter sets of 100 calibration runs against synthetic data for soil
bulk density, SOC and microporosity (Fig. 6). Values highlighted in
bold show a significant correlation (p<0.01).

kmix ky ε ko Fprot Ftext(mic)

kmix 1
ky 0.50 1
ε 0.27 0.69 1
ko 0.59 0.95 0.81 1
Fprot −0.74 −0.87 −0.49 −0.91 1
Ftext(mic) 0.57 −0.28 −0.13 −0.17 0.06 1

beets (excluded after 1966) and occasionally rape. Samples
for the measurement of SOC were taken after the harvest of
the crops every second year. The three selected treatments
show contrasting temporal trends in SOC during the 63 years
of the experiment. While SOC concentrations have decreased
steadily in the bare fallow treatment, they are still increasing
in the plots fertilized with animal manure. The addition of
green manure led to a slight increase in SOC concentrations
during the first 10–15 years of the experiment, followed by

a period of approximately steady-state conditions and then
a slight decline in SOC concentrations on the most recent
sampling occasions. Soil bulk density was measured occa-
sionally, i.e. in 1956, 1975, 1991 (Kirchmann et al., 1994),
1993 (Gerzabek et al., 1997), 1997 (Kirchmann and Gerz-
abek, 1999), 2009 (Kätterer et al., 2011) and in 2019 (this
study). Kätterer et al. (2011) also reported measurements of
relative surface elevation in 2009, which we utilize as addi-
tional validation data. Of the three treatments, the bare fallow
plots show the largest bulk densities and the animal manure
treatments the smallest. Information on the soil pore size dis-
tribution was provided by the water retention curves mea-
sured on samples taken in the uppermost 10 cm of soil on
three different sampling occasions. As soil water retention
was not measured at the start of the experiment, we made use
of measurements made in 1969 (13 years later) on samples
taken from just outside the experimental plots (Wiklert et al.,
1983) to initialize the model. Soil water retention was also
measured on four replicate undisturbed core samples taken
from the three treatments in 1997, 41 years after the start
of the experiment (Kirchmann and Gerzabek, 1999), and on
eight replicate samples taken in 2019, although on this oc-
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Figure 7. Cumulative frequency distributions of parameter esti-
mates for the 36 best parameter sets of 100 calibration runs against
synthetic data for soil bulk density, SOC and microporosity. The
grey lines mark the true values used to generate the synthetic data.

casion they were only sampled from the animal manure and
bare fallow treatments.

3.3.2 Parameterization and calibration

The model was simultaneously calibrated against data from
the bare fallow and animal manure treatments using the mea-
surements of average soil bulk density and SOC concentra-
tions in the uppermost 20 cm of soil and the microporos-
ity estimated from soil water retention curves, assuming a
value for the maximum pore diameter of micropores of 5 µm
(equivalent to a pressure head ψmic/mes of −600 cm). A fac-
tor of 0.5 (Pribyl, 2010) was used to convert simulated SOM
to measured SOC concentrations. We simulated a soil pro-
file consisting of five soil layers, each initially 4.5 cm in
thickness. The model equations were solved explicitly by
Euler integration at an annual time step. A spin-up phase
of 5000 years with constant root-derived OM input was in-
cluded to initialize the four SOM pools at a steady-state con-
dition. During the 63-year experimental period, annual aver-
age OM inputs from roots and above-ground crop residues
were used in the model. Following Kätterer et al. (2011),
these were calculated for each treatment from annual yield
data and the crop-specific root allocation coefficients re-
ported by Bolinder et al. (2007). The root-derived input of
OM to the simulated soil profile was calculated from an as-
sumed root distribution estimated with a Michaelis–Menten-
type function (Kätterer et al., 2011) and distributed uniformly
among the soil layers. The organic amendments (8 t OM ha−1

every other year in both the animal and green manure treat-
ments) were assumed to be uniformly distributed within the
20 cm depth of soil hand dug by hand. This means that some
of this added OM becomes incorporated into the subsoil be-

low 20 cm (i.e. the depth of digging) if soil layer thicknesses
increase (and bulk density decreases) due to an increase in
SOM concentration (see Eq. 12).

Based on the results of the sensitivity analysis and model
calibration against the synthetic data, we decided to calibrate
only the following four parameters, namely the ones that we
expected to be clearly identifiable: the input of organic mat-
ter during the spin-up period, the fraction of micropores in
the textural pore region Ftext(mic), the OM retention coeffi-
cient ε and the first-order rate coefficient for microbially pro-
cessed organic matter, ko (Table 4). Values for ϕmac and fagg
were estimated using Eq. (19) from non-linear regression be-
tween bulk densities and SOM concentrations, assuming a
value of ϕmin of 0.35 cm3 cm−3 (Nimmo, 2013), and includ-
ing data from all three of the treatments (i.e. bare fallow, ani-
mal and green manure; Fig. 4). Similarly, van Genuchten’s n
was fixed to a value (= 1.073) obtained from a simultaneous
fit of Eq. (26) to the water retention data measured in 2019
in the fallow and animal manure treatments. The remaining
parameters were determined a priori because they were less
well identified in the calibration against the synthetic data.
Given that the micropore region comprises pores smaller than
5 µm in diameter, we set the physical protection factor Fprot
to 0.1, a value which lies within the range observed in the ex-
periments described by Kravchenko et al. (2015). Following
Andrén and Kätterer (1997), we assumed ky = 0.8 yr−1. Es-
timating the mixing coefficient kmix is problematic because it
is highly sensitive for all target outputs (Table 1) but not iden-
tifiable by calibration (Fig. 7). From preliminary simulations,
we also concluded that kmix must be set to a much smaller
value in the spin-up period than during the 63-year experi-
mental period in order to avoid obtaining unrealistically large
calibrated estimates of the OM input prior to the experiment.
A smallerkmix value during the spin-up period presumably
reflects the crop rotation practised at the site prior to the ex-
periment, which included frequent grass leys, so that the soil
was tilled less often. For the sake of simplicity, we set kmix
to zero during the spin-up period and to 0.05 yr−1 during the
experiment. This gave a calibrated value of the OM input dur-
ing the spin-up period (0.0064 g cm−2 yr−1; Table 4) that is
similar to the root OM input estimated for the green manure
and animal manure plots during the experiment (0.0061 and
0.0071 g cm−2 yr−1 respectively).

The calibration method was the same as described earlier
for the synthetic data set. The calibrated model was then ap-
plied to the green manure treatment by running a forward
simulation, using the calibrated parameter values and the
treatment-specific OM inputs. Again, a spin-up period of
5000 years was run in order to bring the SOM pools and
total organic matter concentration to an initial steady-state
condition. The goodness of fit of the model simulations was
evaluated by three criteria, i.e. the Pearson correlation coef-
ficient r , the root mean squared error (RMSE) and the mean
absolute error (MAE; Eqs. 28 to 30). While r is a measure
of the strength of the relationship between the observations

Biogeosciences, 17, 5025–5042, 2020 https://doi.org/10.5194/bg-17-5025-2020



K. H. E. Meurer et al.: Modelling dynamic interactions between soil structure and the storage 5035

Table 4. Fixed parameters and range of parameter values included in the calibration, and the final parameter estimates after calibration. The
range of the best fit parameter values for the calibration runs with goal function values no more than 5 % larger than the value for the best
simulation (n= 85) is given within parenthesis.

Parameters Fixed value Sampled range Calibrated value

First-order rate coefficient, ky (yr−1) 0.80a

First-order rate coefficient, ko (yr−1) 0.01–0.1 0.036 (0.031–0.039)
Mixing coefficient, kmix (yr−1) 0.05
Organic matter retention coefficient, ε (–) 0.2–0.7 0.37 (0.35–0.39)
Physical protection factor, Fprot (–) 0.1b

Fraction of textural micropores, Ftext(mic) 0.5–0.9 0.85 (0.84–0.87)
Density of mineral matter, γm (g cm−3) 2.7
Density of organic matter, γo (g cm−3) 1.2
Minimum layer thickness, 1z(min) (centimeters) 4
Minimum porosity, ϕmin (cm3 cm−3) 0.35c

Macroporosity, ϕmac (cm3 cm−3) 0.152d

Aggregation factor, fagg (–) 2.46d

Organic matter input spin-up (g cm−2 yr−1) 0.005–0.009 0.0064 (0.0061–0.0066)

a Andrén and Kätterer (1997), b Kravchenko et al. (2015), c Nimmo (2013) and d Fig. 4.

and simulations, with a value of 1 showing a perfect positive
linear relationship and a value of −1 showing a perfect neg-
ative linear relationship, RMSE and MAE measure the aver-
age magnitude of the error between observations and simula-
tions. Both of them vary from zero to unity, with smaller val-
ues representing a better agreement. However, for the RMSE
the errors are squared before averaging, which gives compar-
atively greater weight to larger errors.

r =
cov(y, ŷ)
σyσŷ

(28)

RMSE=

√
1
n

∑n

i=1
e2
i (29)

MAE=
1
n

∑n

i=1
|ei |, (30)

where y and ŷ represent the observations and simulation re-
sults respectively, cov is the covariance, σy and σŷ are the
standard deviations of y and ŷ, e is the model error, i.e. y-
ŷ, and n is the number of observations. The analyses were
carried out with R (version 3.5.1; R Core Team, 2018) us-
ing the openxlsx (Walker, 2019) and plyr (Wickham, 2011)
packages.

Figure 8 and Table 5 show that the calibrated model ac-
curately matched the trends observed in soil organic carbon
in the bare fallow and animal manure treatments. The data
suggests that the soil bulk density increased in the bare fal-
low treatment during the experiment, whereas it decreased
in the animal manure treatment. These trends were also rea-
sonably well described by the model (Fig. 8; Table 5). As
the soil organic carbon content was accurately simulated, the
somewhat poorer match sometimes found between the model
predictions of bulk density and the measurements reflects, to
a large extent, the unexplained variation in the relationship

between γb and fsom (Eq. 19). In this respect, it is likely that
the macroporosity, and therefore the bulk density, at the time
of sampling in autumn may vary from year to year, depend-
ing on the way the topsoil was dug and the soil conditions at
the time of cultivation. Kätterer et al. (2011) found that the
elevation of the soil surface in the plots treated with animal
manure was 2.6 cm higher relative to the bare fallow plots
in 2009. In comparison, the model predicted a difference in
the elevation of the soil surface of 2.7 cm between the two
treatments in the same year (2009). The optimized values of
the four calibrated parameters (Table 4) are very well con-
strained and also appear reasonable. The calibrated value of
Ftext(mic) (i.e. the fraction of textural pores smaller than 5 µm)
was 0.85 (Table 4). Calculations with the Arya and Heit-
man (2015) model, based on particle size distribution data
from the site (Kirchmann et al., 1994), give a predicted value
for Ftext(mic) of 0.9, which is in excellent agreement with the
estimate from model calibration.

Figure 9 shows a comparison of the water retention curves
measured in 1997 and 2019 and the corresponding model
predictions using Eqs. (26) and (27), alongside the measure-
ments utilized as an initial condition in 1956. The model
accurately matched the data in 2019 for both treatments
(Fig. 9). However, although the shapes of the water reten-
tion curves measured in 1997 were also successfully repro-
duced, the measured matrix porosity differed significantly
between the treatments in 1997, and this difference could not
be matched by the model (Fig. 9). It is unclear whether this
discrepancy can be attributed solely to model error. Spatial
variability in the field may also have played a significant role,
since only four replicate core samples were taken in 1997.
Regardless of the reason for the discrepancy, the results sug-
gest that it should be a reasonable assumption to hold the
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Table 5. Goodness of fit of the model simulations to observed bulk density and soil organic carbon concentration. Note: r – correlation
coefficient, RMSE – root mean squared error and MAE – mean absolute error.

Parameter r RMSE MAE

Calibration

Fallow

Bulk density (g cm−3) −0.20 0.05 0.04
Soil organic carbon (kg kg−1) 0.95 0.0005 0.0004

Animal manure

Bulk density (g cm−3) 0.99 0.04 0.04
Soil organic carbon (kg kg−1) 0.89 0.0009 0.0007

Validation

Green manure (ε = 0.37)

Bulk density (g cm−3) 0.94 0.08 0.07
Soil organic carbon (kg kg−1) 0.04 0.004 0.004

Green manure (ε = 0.14)

Bulk density (g cm−3) 0.98 0.06 0.05
Soil organic carbon (kg kg−1) 0.37 0.0008 0.0007

Figure 8. Observed (symbols; bars show standard deviations) and simulated (lines) microporosity (cm3 cm−3), bulk density (g cm−3) and
soil organic carbon concentration (kg kg−1) for the fallow and animal manure treatments.

parameter n in van Genuchten’s (1980) equation constant
in dynamic models of soil matrix hydraulic properties. Fig-
ure 9 shows that whilst n is fixed, van Genuchten’s (1980)
α increased in the manure treatment, reflecting an improve-
ment in structure, and decreased in the bare fallow, indicating
structural degradation. The soil microporosity apparently de-
creased during the experiment in both treatments, while the
mesoporosity remained largely unchanged in the fallow plots
and only increased slightly in the manured treatment (Figs. 8
and 9). The model simulations suggest some possible expla-
nations for these results, which are surprising at first. In the
case of the bare fallow plots with no OM input, we might
expect physical protection to lead to a slower decline in the
organic matter stock in the micropore region compared with
the mesopore region (and thus an increase in the proportion
of micropores). However, the bare fallow soil was tilled every
year. The simulation results (Fig. 10) suggest that this leads
to a homogenization of the OM distribution in soil, with a net
transfer of OM from the micropore region to the mesopores

at a rate that exceeds the difference in decomposition rates
between the pore regions. In the case of the manured plots,
the stock of OM in the micropore region decreases in the
model as a result of the significant increase in tillage inten-
sity at the onset of the experiment, despite the large increase
in the OM input as the manure is input solely to the meso-
pore region (Fig. 10). Furthermore, a successively smaller
proportion of the root OM is added to the micropores as the
aggregation mesopore volume increases (Eq. 3).

3.3.3 Model testing using data from the green manure
treatment

The model predictions for the green manure treatment tended
to underestimate bulk density, whilst clearly overestimating
SOC concentrations (Fig. 11). The model predicted a steady
increase in SOC throughout the experiment, which was not
observed in the field. As the animal and green manure treat-
ments only differ slightly in the amount of C provided by
roots and straw, the significant difference in SOC concentra-
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Figure 9. Observed (symbols; bars show standard deviations) and simulated (dashed and dotted lines) soil water retention curves in the
fallow and animal manure treatments using Eqs. (26) and (27). (a) Measurements taken in 1997, and (b) the measurements taken in 2019.
The measurements used as the initial condition in 1956 are also shown, together with a fitted curve. Van Genuchten’s n was fixed at 1.073
for all water retention curves.

Figure 10. Simulated temporal development of young undecomposed (Y) and older microbially processed (O) organic matter (kg m−2)
stored in meso- and microporous regions in the bare fallow (a) and manure (b) treatment.

tions must be related to differences in the quality of the or-
ganic amendments. We therefore recalibrated ε using the data
from the green manure treatment, keeping all other parame-
ters fixed at the values obtained from the calibration against
the other two treatments. The resulting calibrated value for ε
was 0.14, which significantly improved the fit of the model
to the data for both SOC and bulk density (Fig. 11; Table 5).
The difference in the elevation of the soil surface between
the green manure plots and the bare fallow plots measured
by Kätterer et al. (2011) in 2009 (= 1.4 cm) was also accu-
rately simulated by the model (= 1.6 cm). The smaller value
of ε in the green manure treatment implies that less of the
supplied OM is retained in the soil compared to the organic
matter added to the soil as animal manure. This finding is

supported by several previous studies that have analysed data
from this experiment with different approaches (e.g. Wit-
ter, 1996; Paustian et al., 1992; Hyvönen et al., 1996; An-
drén and Kätterer, 1997; Herrmann, 2003). Many studies
have shown that the quantity and quality of organic amend-
ments can strongly affect SOC turnover rates by altering the
biomass, composition and activity of the soil microbial com-
munity (e.g. Blagodatskaya and Kuzyakov, 2008; Dignac et
al., 2017). Herrmann et al. (2014) showed that, despite simi-
lar levels of microbial activity measured by heat dissipation,
the soil from the green manure treatment had a significantly
larger CO2 production for the same energy input than the soil
from the plots receiving animal manure.
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Figure 11. Observed (symbols; bars show standard deviations) and simulated (lines) microporosity (cm3 cm−3), bulk density (g cm−3) and
soil organic carbon concentration (kg kg−1) for the green manure treatment for two different values of the OM retention coefficient, ε.

4 Discussion and conclusions

We presented a new model that describes, for the first time,
the dynamic two-way interactions between SOM, soil pore
space structure and soil physical properties. In this study, we
tested the model against data taken from plots with contrast-
ing OM inputs in a long-term field trial in Ultuna, Sweden.
In a bare fallow treatment, the bulk density increased and
soil profile thickness decreased as the SOC concentration
decreased during the experiment, while the opposite trends
were observed in plots amended with animal manure. Small
changes were also detected during the experiment in the ma-
trix pore size distribution (i.e. the shape of soil water re-
tention curve). Our relatively simple model concept to cou-
ple organic matter storage and turnover with soil pore space
structure was able to satisfactorily simulate these changes in
SOC stocks and soil properties resulting from the contrasting
OM inputs.

A form of the simple two-pool ICBM model (Wutzler and
Reichstein, 2013) is obtained if the interactions between or-
ganic matter and soil structure are removed from our model.
Successful applications of the ICBM model to the data from
the Ultuna frame trial have already been published by Juston
et al. (2010), for data available until 2007, and by Poeplau
et al. (2015), for data until 2013. Although we do not show
the results here, ICBM matches the SOC data until 2019 for
the manure and bare fallow treatments almost as well as the
model described here (RMSE values are slightly larger than
those shown in Table 5), albeit with different parameter val-
ues. The retention efficiency ε is similar (0.35 vs. 0.37) but
ko is much smaller (0.015 vs. 0.036 yr−1), since physical pro-
tection is not modelled explicitly. However, in principle, for
the same parameterization, the predictions of our model must
diverge from those of ICBM for treatments with contrasting
organic matter input rates. This is because ICBM is strictly a
first-order kinetic model, such that steady-state soil organic
matter contents are linearly dependent on the input. In con-
trast, in a similar way to earlier models based on concepts of
carbon saturation (e.g. Hassink and Whitmore, 1997; Stewart
et al., 2007), the extended model described and tested here,

which explicitly incorporates two-way soil structure–SOM
interactions, does not show such a linear response. This non-
linearity of the response of steady-state OM contents to OM
inputs becomes stronger as the mixing between the pore re-
gions becomes weaker.

Even though it may be possible to satisfactorily calibrate
a simple OM model such as ICBM to the time series of
OM measurements at one particular site, a model that ex-
plicitly incorporates soil structure–OM feedbacks has some
important advantages. For example, it potentially enables
direct (forward) simulations of the effects of soil structure
and physical protection on OM turnover in contrasting soil
types (e.g. sand vs. clay) without having to resort to recali-
brating model parameters describing OM turnover for each
soil, as was done, for example, by Poeplau et al. (2015). In
our model, some of the key parameters controlling physi-
cal protection can, in principle, be determined a priori from
measurements. Thus, ømin and fagg can be derived from
paired data on soil organic matter contents and bulk density
(Eq. 19), while Ftext(mic) can be calculated from particle size
distributions (e.g. Arya and Heitman, 2015). In principle, our
model also has a broader range of potential management ap-
plications. For example, it could be used to simulate the ef-
fects of contrasting tillage systems or faunal bioturbation on
SOM dynamics and sequestration potential.

The model currently neglects some processes that may
be important for determining the long-term storage of or-
ganic carbon in soil under changing environmental condi-
tions, such as the interactions of organic carbon with min-
eral phases in soil and the regulation of decomposition rates
by both abiotic factors (i.e. soil temperature and moisture)
and the biomass and the community composition and activ-
ity of microbial populations (Dignac et al., 2017). Moreover,
organic matter inputs to the macropores, either by root in-
growth (Pankhurst et al., 2002) or the incorporation of sur-
face litter by earthworms (e.g. Don et al., 2008), and its
subsequent turnover are not considered in the model. Ex-
tending the model to account for these processes would
be feasible, but it would require more comprehensive data
to ensure effective and reliable results from model calibra-
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tion. The model described here could also be further devel-
oped towards a more complete coupled model of soil struc-
ture dynamics and soil processes by accounting for the dy-
namic effects of other physical (e.g. tillage and/or traffic and
swelling and shrinkage) and biological processes (e.g. root
growth and faunal activity) on soil pore space properties and
OM turnover. It should also be worthwhile to incorporate
our model approach into more comprehensive models of the
soil–crop system that integrate descriptions of hydrological
processes, carbon and nutrient cycling and crop growth. Such
a next-generation soil–crop modelling tool should prove use-
ful in supporting a wide range of analyses related to the long-
term effects of land use and climate change on SOM dynam-
ics, soil hydrological processes and crop production.
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