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The Northern high latitudes are warming twice as fast as the global average, and
permafrost has become vulnerable to thaw. Changes to the environment during
thaw leads to shifts in microbial communities and their associated functions, such
as greenhouse gas emissions. Understanding the ecological processes that structure
the identity and abundance (i.e., assembly) of pre- and post-thaw communities may
improve predictions of the functional outcomes of permafrost thaw. We characterized
microbial community assembly during permafrost thaw using in situ observations
and a laboratory incubation of soils from the Storflaket Mire in Abisko, Sweden,
where permafrost thaw has occurred over the past decade. In situ observations
indicated that bacterial community assembly was driven by randomness (i.e., stochastic
processes) immediately after thaw with drift and dispersal limitation being the
dominant processes. As post-thaw succession progressed, environmentally driven
(i.e., deterministic) processes became increasingly important in structuring microbial
communities where homogenizing selection was the only process structuring upper
active layer soils. Furthermore, laboratory-induced thaw reflected assembly dynamics
immediately after thaw indicated by an increase in drift, but did not capture the long-
term effects of permafrost thaw on microbial community dynamics. Our results did
not reflect a link between assembly dynamics and carbon emissions, likely because
respiration is the product of many processes in microbial communities. Identification
of dominant microbial community assembly processes has the potential to improve
our understanding of the ecological impact of permafrost thaw and the permafrost–
climate feedback.

Keywords: permafrost thaw, microbial community, community assembly, phylogenetic null modeling, ecological
processes
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INTRODUCTION

Permafrost, soil that has been frozen for two or more consecutive
years, underlies approximately one fourth of the northern
hemisphere (Zhang et al., 1999) and is undergoing thaw with
increasing global temperature (Romanovsky et al., 2017). The
Northern high latitudes are experiencing warming twice as fast
as the global average (Overland et al., 2019) with an expected
increase of 5◦C to 6◦C in the surface air temperature by the
end of this century (Stocker et al., 2014). It is estimated that
permafrost stores approximately 1300 Pg of carbon which is equal
to that found in Earth’s atmosphere and above and belowground
vegetation combined (Hugelius et al., 2014). Following thaw, soil
microorganisms decompose this carbon resulting in the release of
greenhouse gases such as carbon dioxide (CO2), methane (CH4),
and nitrous oxide (N2O) to the atmosphere (Schädel et al., 2014;
Treat et al., 2016; Voigt et al., 2017). As a result, these gases
create a positive feedback to global warming, further threatening
permafrost degradation.

Permafrost thaw induces changes to microbial community
composition and functional potential (Mackelprang et al., 2011;
Coolen and Orsi, 2015; Hultman et al., 2015). In microbial
systems, dramatic disturbances of the local environment can
lead to mass extinction and essentially “reset” a community’s
trajectory (Ferrenberg et al., 2013). Simulated permafrost thaw
experiments conducted in a controlled laboratory environment
have shown that thawing over relatively short time scales
(e.g., days to months) results in different microbial community
structure than before thaw (Mackelprang et al., 2011; Ernakovich
et al., 2017). Field thaw experiments indicate that permafrost
community compositions shift over longer time scales to
resemble active layer communities along depth profiles (Deng
et al., 2015; Mondav et al., 2017; Monteux et al., 2018). Functional
shifts have also been observed during permafrost thaw. Frozen
conditions promote genes involved in stress responses and
survival strategies, and thaw results in increases in genes involved
in decomposition of soil organic matter and transport of soil
nutrients (Mackelprang et al., 2011, 2017; Coolen and Orsi, 2015;
Hultman et al., 2015).

Since soil microorganisms regulate many important
biogeochemical processes, such as carbon and nitrogen
cycling, it is critical to understand how microbial communities
are shaped during permafrost thaw and to what degree this
will affect ecosystem level processes. Microbial community
structure is important for ecosystem processes (Graham et al.,
2016), but to what degree it matters depends on the physical and
phylogenetic scale in question (Schimel, 1995). The structure
of microbial communities is influenced by both deterministic
and stochastic ecological assembly processes. Deterministic
processes are driven by abiotic and biotic selection pressures
that influence the fitness of a population in a given environment
(Vellend, 2010; Nemergut et al., 2013). Stochastic processes,
which include inherent randomness, are less predictable and
include diversification (genetic variation), drift (random changes
in species abundances), and dispersal (movement of species
across space) (Vellend, 2010; Nemergut et al., 2013). Many
microbiome studies attribute patterns of community structure

only to deterministic processes (reviewed in Zhou and Ning,
2017). However, stochastic processes play an important role in
structuring communities that is underappreciated in microbial
ecology due to difficulty in defining stochastic processes and the
variety of approaches used to assess stochasticity (Nemergut et al.,
2013; Zhou and Ning, 2017). When communities are shaped by
deterministic processes, variations in the local environment may
directly influence functional outcomes since microbial traits are
selected for by environmental conditions. Alternatively, when
communities are structured by stochastic processes, function
may be dependent on random shifts in trait abundances within
the community, rather than a direct relationship with the
environment (Knelman and Nemergut, 2014).

Assembly processes in permafrost systems provide important
insights into drivers of microbial community structure in
intact and thawed conditions. Bottos et al. (2018) found
that bacterial communities in intact permafrost are structured
by dispersal limitation. The permafrost environment is also
thought to be selective for organisms that can survive subzero
temperatures for extended periods of time (reviewed in Jansson
and Taş, 2014), suggesting deterministic processes may also
play a large role. Increases in soil temperature due to either
experimental warming or long-term permafrost thaw have
resulted in an increase of deterministic processes structuring
active layer microbial communities (Mondav et al., 2017;
Feng et al., 2020). Furthermore, Tripathi et al. (2018, 2019)
found stochastic processes dominate community assembly in
deeper soils compared to surface soils in permafrost systems.
However, these studies lack a direct comparison of assembly
processes in permafrost soils pre- and post-thaw. Upon thaw,
the local environment changes dramatically and may present
a physiological challenge for these microbes that have become
accustomed to living in permafrost conditions. Immediately after
a disturbance, assembly processes are more stochastic likely due
to mass extinction events leading to ecological equivalence of
individuals and immigration with little competition (Ferrenberg
et al., 2013; Dini-Andreote et al., 2015). As succession progresses,
selection begins to play a large role in structuring communities
(Ferrenberg et al., 2013; Dini-Andreote et al., 2015). Therefore,
we speculate that microbial communities in newly thawed
permafrost are likely structured by stochastic processes, but as
time since thaw progresses there is a shift toward deterministic
assembly. In order to develop a robust framework to predict
permafrost community dynamics following thaw, laboratory
and field studies are needed to characterize shifts in microbial
community assembly during thaw in both active layer and
permafrost soils. Since outcomes of stochastic assembly may
be more difficult to predict due to inherit randomness, the
immediate implications of permafrost thaw may be difficult to
understand if stochastic assembly plays a large role in structuring
post-thaw communities.

The overall objective of this study was to determine the
relative contribution of stochastic and deterministic assembly
processes in active layer and permafrost soils pre- and post-
thaw. Specific objectives were to characterize the effect of time
since thaw on assembly processes and evaluate the effect of
increased temperature on assembly dynamics and microbial
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functions. We used the soil depth profile as a proxy of “time
since thaw” by incorporating changes in active layer thickness
over a fourteen-year period at the Storflaket Mire in Abisko,
Sweden. We hypothesized that the uppermost active layer and
permafrost communities would be dominated by environmental
selection and transition zone communities would be dominated
by stochastic assembly due to recent shifts in the abiotic
environment. To test the direct effect of increased temperature on
assembly dynamics we subjected soil samples from four depths
along the depth profile to incubation at 4◦C and 15◦C. We
hypothesized community assembly would be more stochastic at
all depths after lab-induced thaw compared to in situ assembly.
Specifically, the warmer incubation temperature leading to
the most stochastic assembly due to the higher temperature
representing a greater disturbance to the community. Comparing
assembly patterns between field and lab thaw scenarios will
elucidate the potential differences in community assembly at long
versus short timescales after thaw.

MATERIALS AND METHODS

Site Description, Sample Collection, and
Processing
Permafrost and active layer soil samples were collected
from control plots used in a snow manipulation experiment
(Johansson et al., 2013) at the Storflaket Mire in Abisko, Sweden
(68◦20′48′′N, 18◦58′16′E). Active layer thickness measurements
were recorded across experimental plots during peak thaw in
September each year resulting in a detailed record of active layer
thickness over a fourteen-year period. A total of four replicate
cores were collected from control plots at the site. Sampling
locations were chosen to ensure similar active layer thickness and
thaw histories were captured in the replicate cores (Figure 1A).
At the time of sampling in June 2019, active layer soils had only
thawed to approximately 34 cm. The permafrost began at 65 cm
according to the 2018 active layer thickness data that was used to
estimate the permafrost depth.

The thawed active layer was collected using a sterile serrated
knife cleaned with 70% ethanol, DNA Away, and RNAse
Away solutions (Thermo Fisher Scientific, Waltham, MA,
United States) and set aside on a clean plastic tarp. The frozen
active layer and permafrost were collected using a SIPRE corer
(Jon’s Machine Shop, Fairbanks, AK, United States) fitted with
a gas-powered motor. The soil core was reconstructed by laying
each piece on a cleaned plastic tarp. The thawed active layer was
sub-sectioned into 10 cm sections up to 30 cm (0–10 cm, 10–
20 cm, 20–30 cm) and placed in sterile Whirlpak bags. Frozen
active layer and permafrost samples were bagged intact and sub
sectioned back in the lab for the remaining depths: 30–40 cm,
40–50 cm, 50–60 cm, 60–70 cm, and 70–80 cm. All samples were
stored on ice during transit.

All soil samples were subsampled for DNA analysis and soil
incubation in a 2◦C cold room at the Abisko Scientific Research
Station. Tyvek suits and face masks were worn to reduce potential
contamination of samples. All tools were sterilized with 70%
ethanol, DNA Away, and RNAse Away solutions (Thermo Fisher

Scientific, Waltham, MA, United States). Frozen cores were
subsampled every 10 cm by cutting through the core with a sterile
wire hand saw and broken apart with a mallet and sterile chisel.
From each 10 cm segment, three smaller pieces were taken for
DNA analysis of the in situ (“initial”) community using a sterile
hole saw bit and electric drill. All samples were stored at −20◦C
until shipment. Samples used to assess initial communities were
hand carried on dry ice during transit and stored at−80◦C upon
arrival. Remaining samples to be used in the soil incubation
thaw experiment were shipped frozen to the University of New
Hampshire (UNH) and thawed to room temperature during the
12 days in transit. Upon arrival at UNH, these samples were
stored at 4◦C for 3 days prior to incubation set up.

Abiotic Analyses
Physical and chemical properties were characterized for “initial”
samples using the thawed soils. Gravimetric water content
(GWC), pH, total combustible carbon and nitrogen were
measured. Soil GWC was determined by weighing approximately
10–20 g of soil from each biological replicate and drying at
105◦C to a constant mass for 24 h. GWC was calculated on
a per dry mass basis. Soil pH was determined by shaking a
slurry of fresh soil and water (1:10) for 1 h and measured
using an Accumet basic AB 15 pH meter (Thermo Fisher
Scientific, Waltham, MA, United States). Soil was air dried
and ground to a fine powder using a ball mill grinder fitted
with plastic inserts. Ground soils were analyzed for total
combustible carbon and nitrogen via thermal oxidation with gas
chromatographic separation followed by thermal conductivity
detection on a Costech C/H/N/S Elemental Analyzer (Costech
Analytical Technologies, Inc., Valencia, CA, United States).

Soil Incubation
A soil incubation experiment was conducted to assess microbial
community assembly after lab-induced thaw. The soil incubation
was conducted at two different thaw temperatures. The 4◦C
temperature was chosen to reflect near-term thaw conditions
and the 15◦C temperature emulated a more drastic thaw state
representative of the predicted temperature increase for the end
of this century at northern high latitudes (Stocker et al., 2014).
Four depths from each core were chosen to represent upper
active layer (10–20 cm), lower active layer (30–40 cm), transition
zone (50–60 cm), and intact permafrost (70–80 cm). For each
depth, two subsamples of approximately 40 g of fresh soil were
weighed into ethanol-cleaned specimen cups and placed inside
a liter sized glass jar with deionized water at the bottom to
maintain moisture content (Supplementary Figure S1). Lids
were fitted with valves to allow for headspace gas analysis to
monitor heterotrophic respiration throughout the incubation.
Subsamples were preincubated in a controlled incubator in the
dark at either 4◦C or 15◦C for 5 days. After the preincubation,
the jars were flushed with CO2-free air (Airgas, Dover, NH,
United States) for 10 min. Jars were then sealed and incubated
at either 4◦C or 15◦C in the dark. Individual cores served as
replicates for this experiment (4 depths × 2 temperatures × 4
replicates (cores)= 32 samples).
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FIGURE 1 | Changes in active layer thickness and core subsampling. (A) The active layer thickness at sampling locations from 2009 to 2018. In 2009, the average
active layer thickness across locations was 53 cm, and in 2018, it was 65 cm. Active layer thickness did not exceed 70 cm during this time period. (B) Each core
was subsampled every 10 cm. Approximate time since thaw was used to differentiate active layer, transition zone, and permafrost soils.

Headspace gas measurements were analyzed every 2–7 days
to ensure CO2 concentrations remained below 2% and oxic.
Jars were removed individually from the incubator and attached
to a Picarro G2201-i cavity ring down spectrometer (Picarro,
Santa Clara, CA, United States). Once readings stabilized, the
CO2 concentration was recorded, and the jar was flushed with
CO2-free air (Airgas, Dover, NH, United States) for 10 min.
The spectrometer was calibrated using gas standards prepared by
mixing a known volume of CO2 calibration gas and CO2-free air.
Standards were generated to span the operational range of the
instrument 100–4,000 ppm CO2. Methane concentrations did not
exceed the lower limit of the operational range of the analyzer
(1.8 ppm CH4) at any point during the incubation. Respiration

rate was calculated to µg C-CO2 g−1 dry soil h−1 (Equation 1).
Dry weight was calculated using the gravimetric water content of
the samples.

µg C-CO2 g−1dry soil h−1
=

CO2 µmol
mol air

×

P × V ×
1
R
×

1
T
×

1
g dry soil

×
12 µg C

1 µmol C
×

1
t

Equation 1. Respiration rate calculation where P is atmospheric
pressure in atm, V is headspace volume in L, R is ideal gas
constant in L atm K−1 mol−1, T is incubation temperature in K,
and t is incubation length in hours.
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Temperature sensitivity (Q10) was also calculated to
investigate the effect of warming on carbon processing rates, as
measured by CO2 production (Equation 2). Q10 values indicate
the factor by which respiration increases when temperature is
increased by 10◦C.

Q10 =

(
k15

k4

)(
10

15−4

)

Equation 2. Temperature sensitivity (Q10) calculation where k15
and k4 are respiration rates at 15◦C and 4◦C, respectively.

Samples were harvested after 193 days of incubation (“post-
thaw”) to determine microbial community composition and
assembly processes at the two incubation temperatures.

Microbial Community Analysis
Genomic DNA was extracted from both “initial” and “post-
thaw” incubation experiment samples and sequenced to assess
the microbial community composition and dominant assembly
mechanisms. Frozen samples were homogenized prior to analysis
using a mallet to crush large chunks. DNA was extracted using
the Qiagen DNeasy PowerSoil kit (Qiagen, Hilden, Germany)
with minor changes to manufacture’s protocol (Supplementary
Material). Each sample was extracted in triplicate and loaded
onto the same spin filter to concentrate the DNA to increase
yield in the permafrost samples which were expected to have
low biomass. A MoBio PowerClean kit (MoBio, Carlsbad, CA,
United States) was used to remove PCR inhibitors from the
extracted DNA. DNA was then quantified using the Quant-iT
dsDNA High Sensitivity Assay Kit and Qubit 3.0 fluorometer
(Invitrogen, Carlsbad, CA, United States).

DNA was amplified through polymerase chain reaction (PCR)
using the primers 515f-806r of the V4 region of the 16S rRNA
gene to profile the bacterial and archaeal communities (Apprill
et al., 2015; Parada et al., 2016) and the primers ITS1f-ITS2 of
the internal transcribed spacer to profile the fungal community
(White et al., 1990) (Supplementary Table S1). The reactions
were performed separately for the two primer sets as follows.
Each 16S rRNA reaction contained 6 µL DreamTaq Hot Start
Green (Thermo Fisher Scientific, Waltham, MA, United States),
2.6 µL sterile water, 0.7 µL forward primer (5 µM), 0.7 µL reverse
primer (5 µM), and 2 µL template DNA (10× diluted). Each ITS
reaction contained 6 µL DreamTaq Hot Start Green, 3 µL sterile
water, 0.5 µL forward primer (5 µM), 0.5 µL reverse primer
(5 µM), and 2 µL template DNA (10× diluted). Amplifications
were performed using a T100 Thermal Cycler (Bio-Rad, Hercules,
CA, United States). The 16S rRNA conditions were: enzyme
activation at 94◦C for 3 min, followed by 35 cycles of denaturation
at 94◦C for 45 s, annealing at 50◦C for 60 s, and extension at
72◦C for 90 s, followed by final extension at 72◦C for 10 min.
The ITS conditions were: enzyme activation at 95◦C for 3 min,
followed by 35 cycles of denaturation at 95◦C for 30 s, annealing
at 52◦C for 30 s, and extension at 72◦C for 60 s, followed
by final extension at 72◦C for 12 min. No template controls
were included to verify there was no contamination during the
PCR. The presence of PCR product was confirmed through gel
electrophoresis and quantified using the Qubit 3.0 fluorometer.

PCR product concentration ranged from 2–27 ng/µL with
deeper soil samples having lower concentrations than the near
surface soil samples. PCR products were sent to the Hubbard
Center for Genomic Studies (University of New Hampshire,
NH, United States) for sequencing by Illumina HiSeq2500 with
Rapid Run© SBS V2 chemistries (Illumina, San Diego, CA,
United States) and 2 × 250 bp paired-end reads. Reads were
demultiplexed using CASAVA (version 1.8; Illumina, San Diego,
CA, United States).

Sequences were analyzed using QIIME 2 (version 2019.4)
(Bolyen et al., 2019) on the Premise high performance computing
cluster (University of New Hampshire, NH, United States).
Primers were removed using Cutadapt (Martin, 2011) and then
quality filtered with DADA2 (Callahan et al., 2016). For ITS
analysis, ITSxpress (Rivers et al., 2018) was used to remove
conserved regions to improve taxonomic classification (Nilsson
et al., 2009). Taxonomy was assigned to amplicon sequence
variants (ASVs) using scikit-learn naïve Bayes taxonomy
classifier (Pedregosa et al., 2011) against the SILVA 99%
database (Quast et al., 2012) for bacteria and UNITE database
(Nilsson et al., 2019) for fungi. ASVs were filtered to remove
chloroplast, mitochondria, and ASVs without phylum level
classification. Bacteria and archaea were split into separate ASV
tables. Due to low sequencing depth of archaea, it was not
analyzed further in this study. ASVs were aligned with MAFFT
(Katoh and Standley, 2013) and used to construct a phylogeny
with FastTree2 (Price et al., 2010). To assess community
composition along the depth profile, samples were rarefied to
2500 sequences per sample for bacteria and 950 for fungi. For
the incubation study, samples were rarefied to 900 sequences
per sample for bacteria and 950 for fungi. Rarefaction plots
can be found in the Supplemental Material (Supplementary
Figures S4–S7). Rarefication depths were chosen to ensure at
least three replicates remained for each treatment. QIIME 2
artifacts were exported to R (version 3.6.3) (R Core Team,
2018) using the “qiime2R” package (Bisanz, 2018) to conduct
statistical analysis using the “phyloseq” (McMurdie and Holmes,
2013) and “vegan” packages (Oksanen et al., 2019). Rarefied
ASV tables and rooted trees were used for the community
assembly analysis.

Statistical Analysis
All statistical analyses were conducted in R (version 3.6.3) (R
Core Team, 2018). One-way analysis of variance (ANOVA)
was used to assess differences in soil abiotic parameters by
depth. Assumptions of normality and homogeneity were assessed
using the Shapiro–Wilk and Levene tests, respectively. Two-way
ANOVA was used to assess differences in soil respiration rates
by incubation temperature and depth. C:N ratios and respiration
rates were log transformed for statistical analysis to improve
assumptions of normality. Multiple comparisons were conducted
using the Tukey’s HSD test to find which means were significantly
different from one another.

Multivariate statistical analysis of community data
was conducted using the ‘vegan’ package. Non-metric
multidimensional scaling (NMDS) analysis using Bray–
Curtis dissimilarity measure was used to evaluate differences

Frontiers in Microbiology | www.frontiersin.org 5 November 2020 | Volume 11 | Article 596589

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-596589 November 9, 2020 Time: 14:48 # 6

Doherty et al. Permafrost Thaw Bacterial Community Assembly

in microbial community composition with depth and
incubation temperature. Biplot vectors were added to the
“initial” community NMDS plots using the “envfit()” function.
Permutational multivariate analysis of variance (PerMANOVA)
was conducted using the “adonis()” function to determine
significant drivers of community composition for both “initial”
and “post-thaw” communities. Depth and temperature were
included as fixed factors in the PerMANOVA model and
permutations were constrained by the permafrost core the
samples originated from to account for random factors.
PerMANOVA analysis is sensitive to significant differences in
dispersion across groups (Anderson, 2006). Differences between
group dispersion was assessed using the “betadisper()” function
to calculate the average distance of samples to the group spatial
median in multivariate space. Significance was assessed using
a permutation test with the “permutest()” function conducting
999 permutations.

Phylogenetic Signal and Null Modeling
The relative contribution of deterministic and stochastic
assembly processes was determined for bacterial communities
using phylogenetic turnover between samples and null models
(Stegen et al., 2012, 2013). In order to infer ecological processes
from phylogenetic information, there must be phylogenetic
signal (Losos, 2008). Phylogenetic signal occurs when ecological
similarity between species is related to their phylogenetic
similarity. To test this assumption, phylogenetic signal was
evaluated for GWC, pH, percent nitrogen, percent carbon,
and the C:N ratio using the between-ASV difference in
environmental optima and between-ASV phylogenetic distance.
The environmental optima for each ASV was determined
by calculating the abundance weighted mean for each
environmental parameter tested (Stegen et al., 2012) using
the “analogue” package (Simpson and Oksanen, 2020). This
approximates the niche value of each abiotic variable for each
ASV. A matrix of the between-ASV environmental optima
differences was calculated using Manhattan distances for each
abiotic variable. In addition to evaluating each abiotic variable
individually, we calculated the combined ASV environmental
optima using all of the abiotic variables measured. In brief, a
matrix of the between-ASV combined environmental optima
differences was calculated using the Euclidean distance measure
of log normalized optima of all abiotic variables. The between-
ASV phylogenetic distances were calculated using the “adephylo”
package (Jombart and Dray, 2008). A mantel correlogram

was generated using the “vegan” package by comparing each
matrix of between-ASV environmental optima differences and
the second matrix of between-ASV phylogenetic distances
to evaluate the phylogenetic signal. Pearson’s correlation
coefficients were calculated for fifty phylogenetic distance
classes. The Mantel test statistic was determined using 999
permutations with progressive Holm-Bonferroni correction
for multiple testing. Significant positive correlations indicate
ecological similarity among ASVs is higher than expected
by chance within the distance class (Borcard and Legendre,
2012). Alternatively, significant negative correlations indicate
ASVs are more ecologically dissimilar than expected by chance
(Borcard and Legendre, 2012).

Determination of assembly processes was only conducted
for bacterial communities. The ITS region is appropriate for
investigations of fungal community composition, but since
it is not phylogenetically conserved it is inappropriate for
phylogenetic modeling. Using the framework developed by
Stegen et al. (2012, 2013), phylogenetic turnover between
communities was quantified as the β-mean-nearest taxon
distance (βMNTD) using the “picante” package (Kembel et al.,
2010). This quantifies the mean phylogenetic distance between
each member of a community and its closest relative in a
second community. Null modeling of each community was
then performed to create a distribution (n = 999) of βMNTD
values representing a stochastic assembled community. For
each iteration of the model, the tips of phylogeny were
randomized and the βMNTD was recalculated. Deviations
of the observed βMNTD from the null distribution were
quantified in units of standard deviation of the null to
generate the β-nearest taxon index (βNTI). Sample pairwise
comparisons resulting in βNTI < −2 or βNTI > 2 indicates
phylogenetic turnover is less than or greater than expected by
chance, respectively, suggesting niche-based processes. Pairwise
comparisons resulting in −2 > βNTI > 2 indicate stochastic
processes structure turnover between the two communities.
A modified Raup–Crick metric calculated using the Bray–
Curtis dissimilarity measure (RCbray) was used to further
differentiate the stochastic processes structuring the community
(Chase et al., 2011). Table 1 summarizes the βNTI and
RCbray output values and how assembly processes were
defined. The relative contribution of assembly processes was
calculated by taking the fraction of pairwise comparisons
demonstrating a given process and dividing by the total
pairwise comparisons.

TABLE 1 | Assembly processes and respective model conditions referenced from (Stegen et al., 2013).

Deterministic processes Stochastic processes

Homogeneous selection Heterogeneous selection Homogenizing dispersal Dispersal limitation and drift Drift alone

Environment constrains
community composition
through selection

Divergent environmental
conditions result in each
community having ecologically
distinct members

High dispersal rates
outweigh selective
pressures

Movement of individuals is
restricted

Population sizes fluctuate
due to chance events

βNTI < −2 βNTI > 2 −2 < βNTI < 2

– – RCbray < −0.95 RCbray > 0.95 −0.95 < RCbray < 0.95
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RESULTS

Community Assembly Patterns Along
Depth Profile
Soil Properties
Soil abiotic properties were determined at each depth. Average
gravimetric water content exceeded 100% at all depths and was
highest in the upper soil layers and decreased along the soil
depth profile (Figure 2; ANOVA; F = 3.299, P = 0.0133). Soil
pH was acidic (pH < 7) at all depths, with the upper soil
layers being most acidic with an average pH of 3.9 (Figure 2;
ANOVA; F = 6.325, P = 0.0003). Total combustible carbon was
approximately 46% in the first 40 cm and decreased across 40 cm
to 80 cm. Total combustible nitrogen fluctuated throughout the
depth profile, ranging from 0.26% to 2.47%. The soil C:N ratio
was approximately four times higher in the upper active layer
compared to the permafrost and consistently decreased with
depth (Figure 2; ANOVA; F = 7.854, P = 0.0000574).

Phylogenetic Signal
Phylogenetic signal was evaluated using Mantel correlograms
comparing between-ASV environmental optima and between-
ASV phylogenetic distances. All Mantel correlograms showed
significant positive correlations across short phylogenetic
distance (Figure 3). This relationship is consistent with other
studies and indicates closely related species are more ecologically
similar (Stegen et al., 2013; Wang et al., 2013; Dini-Andreote
et al., 2015). Phylogenetic signal over short distances supports
the use of βMNTD in determining the degree of ecological
similarity since it calculates evolutionary distance between
closely related species (Stegen et al., 2012; Wang et al., 2013).
Significant negative correlations over intermediate phylogenetic
distance classes were also observed. This indicates that ASVs at
intermediate distances were more ecologically dissimilar than

expected by chance. This further supports that using βMNTD
is a robust method to infer ecological assembly processes since
closely related taxa are most ecologically similar according to the
Mantel correlogram results.

Microbial Community Dynamics Along the Depth
Profile
Microbial community composition shifted with depth as
indicated by NMDS analysis of bacterial and fungal communities
using Bray-Curtis dissimilarity measures (Figure 4). Bacterial
community composition clustered by depth for samples spanning
the upper active layer: 0–10, 10–20, and 20–30 cm (Figure 4A).
Fungal community composition also shifted with depth, however
more clustering was observed within the deeper soils (60–
70 cm and 70–80 cm) than was for bacterial communities.
Differences in dispersion across depths were non-significant
for both bacteria and fungi (Supplementary Table S1). For
both bacteria and fungi, the core that the samples originated
from was a significant driver of community composition
(PerMANOVA; bacteria: F = 2.003, R2

= 0.2145, P = 0.003;
fungi: F = 2.342, R2

= 0.2201, P = 0.0006) and was
used to constrain permutations when investigating significant
differences in community composition by depth. Depth was a
significant driver of community composition for both bacteria
(PerMANOVA; F = 1.698, R2

= 0.3977, P = 0.0001) and
fungi (PerMANOVA; F = 1.307, R2

= 0.3034, P = 0.0091).
Environmental vectors were fitted onto the NMDS ordinations
and significance of the fitted vectors was assessed using
permutation tests of the environmental variables. The five
environmental variables measured significantly correlated with
bacterial and fungal community compositions, with the exception
of percent nitrogen for fungal communities (P > 0.05). Soil
pH correlated strongly with NMDS axes, reflecting that pH
was a strong driver of the observed differences in community

FIGURE 2 | Abiotic parameters. Gravimetric water content (GWC), pH, total combustible carbon and nitrogen, and soil carbon to nitrogen ratio (C:N) of field soils
along the depth profile. Points represent mean values, and error bars indicate ± standard error of the mean (n = 4). Means with the same letter are not significantly
different within each abiotic parameter as determined by Tukey’s test (α = 0.05). C:N ratios were log transformed for statistical analysis.
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FIGURE 3 | Mantel correlogram using Pearson’s correlation coefficient of between-ASV environmental optima and between-ASV phylogenetic distance for (A) pH,
(B) % GWC, (C) % nitrogen, (D) % carbon, (E) C:N ratio, and (F) combined abiotic variables. Significant correlations (P < 0.05, solid circles) indicate phylogenetic
signal in ASV ecological niche for the associated distance class. Significant positive correlations indicate that ecological similarity among ASVs is higher than
expected by chance within the distance class. Alternatively, significant negative correlations indicate that ASVs are more ecologically dissimilar than expected by
chance (Borcard and Legendre, 2012).

composition (P < 0.003). Likewise, gravimetric water content,
percent carbon, and the C:N ratio were also significant abiotic
drivers (P < 0.01).

Ecological processes structuring bacterial communities were
determined using a phylogenetic null modeling approach.
Assembly processes structuring bacterial communities changed
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FIGURE 4 | Microbial community composition by depth. Non-metric multidimensional scaling analysis using Bray–Curtis dissimilarity of (A) bacterial and (B) fungal
communities along depth profile. Depth was a significant driver of community composition for both bacteria (PerMANOVA; F = 1.698, R2

= 0.3977, P = 0.0001)
and fungi (PerMANOVA; F = 1.307, R2

= 0.3034, P = 0.0091).

FIGURE 5 | Relative contribution of assembly process structuring bacterial communities along the depth profile. Assembly processes were determined across all
pairwise comparisons (“All”; n = 325) and within-group pairwise comparisons (n = 3 to 6) calculated from three to four biological replicates. Specifically, the
10–20 cm and 70–80 cm depth comparisons had n = 6 and the rest were n = 3.

along the depth profile (Figure 5). When looking at all possible
pairwise comparisons in the dataset, results indicate that
approximately 56% of the assembly process were deterministic
with homogeneous selection being the most dominant (Figure 5).
Heterogeneous selection was also observed, likely due to varying
environmental conditions between samples in the pairwise
comparisons. Homogeneous selection indicates constant
selection pressures (e.g., environmental conditions) resulting
in low turnover between communities while heterogeneous
selection suggests there are differences between selection
pressures resulting in a large amount of turnover between
communities (Stegen et al., 2015). We determined the assembly
processes governing community composition at each depth by
including only the within depth pairwise comparisons. Bacterial
communities in the upper to mid active layers (0–10 cm to
30–40 cm) were structured completely by homogenous selection
(Figure 5). There was a shift in assembly processes between the
30–40 cm and 40–50 cm depths where an increase in stochastic

processes was observed, specifically drift. The 60–70 cm depth
was completely dominated by the stochastic processes drift and
dispersal limitation. This depth represents the most recently
thawed soils which transitioned from permafrost to active layer
within the last fourteen years (Figure 1). Permafrost (70–80 cm)
bacterial communities were also structured mostly by stochastic
processes, particularly dispersal limitation which represented
50% of the assembly processes (Figure 5). Drift, homogenizing
dispersal, and homogeneous selection were also important
processes structuring permafrost bacterial communities.

Community Assembly Patterns After
Laboratory Thaw
Effect of Soil Depth and Incubation Temperature on
Microbial Respiration
Microbial respiration was monitored throughout the incubation
to assess general microbial activity and release of CO2 with
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FIGURE 6 | Soil respiration rates by depth of soils incubated at 15◦C (white)
and 4◦C (gray). Respiration rates were determined using stabilized rates from
day 20 to 193 of incubation. Boxplots show median value as a solid line and
upper and lower quartiles at the top and bottom of the boxes, respectively.
Whiskers and points indicate the extent of the data. Respiration rates were log
transformed for statistical analysis. Two-way ANOVA indicated significant
effects of temperature (F = 7.683, P = 0.01060) and depth (F = 5.134,
P = 0.00695) on respiration, but no combined effect.

increased temperature. Respiration rates significantly decreased
with depth (Figure 6; Two-way ANOVA; F= 5.134, P= 0.00695)
where the 10–20 cm rate was four times greater than the 70–
80 cm rate at both temperatures. Average respiration rates were
significantly higher in soils incubated at 15◦C compared to 4◦C
(Figure 6; Two-way ANOVA; F = 7.683, P = 0.01060). In
general, average respiration was two to three times higher at 15◦C
compared to 4◦C.

Temperature sensitivity (Q10) of microbial respiration in
soil samples was calculated to determine the factor by
which heterotrophic respiration increases when temperature is
increased by 10◦C for these samples. No significant difference
in Q10 values were observed between soil layers. The upper
active layer (10–20 cm) and permafrost soils (70–80 cm) showed
similar average Q10 values of 2.88 ± 0.59 and 2.49 ± 0.25,
respectively (Figure 7). The transition zone soils showed the
highest temperature sensitivity of all depths with an average of
4.05± 0.77 (Figure 7).

Microbial Community Dynamics With Incubation
Conditions
Changes to the microbial community with thaw were assessed
by comparing pre- and post-incubation communities at 4◦C and
15◦C. The laboratory incubation allowed us to examine the direct
effect of temperature change on microbial communities found
in each of the soil depth layers. Non-metric multidimensional
scaling (NMDS) analysis using Bray-Curtis dissimilarity
measures was used to determine if increased temperature
resulted in changes to microbial community composition
along the depth profile (Figure 8). Differences in group

FIGURE 7 | Temperature sensitivity (Q10) by soil depth. Q10 is an indicator of
the temperature sensitivity of respiration and were calculated from CO2

respiration rates at 15◦C and 4◦C. Boxplots show median value as a solid line
and upper and lower quartiles at the top and bottom of the boxes,
respectively. Whiskers and points indicate the extent of the data.

dispersion were non-significant for depth and temperature
(Supplementary Table S1). For both bacteria and fungi, core was
a significant driver of community composition (Supplementary
Figures S2, S3; PerMANOVA; bacteria: F = 2.842, R2

= 0.1833,
P = 0.0001; fungi: F = 2.414, R2

= 0.1440, P = 0.0001) and was
used to constrain permutations when investigating community
composition by depth and temperature. A three-dimensional
NMDS solution was found (stress value < 0.2) for bacterial
community structure and indicated strong clustering by depth
with the deeper soils being less clustered compared to the
active layer samples (Figures 8A,B). When looking at NMDS
axes 2 and 3, the 50–60 cm and 70–80 cm depths grouped
by pre- and post-incubation (Figure 8B). Both depth and
temperature were significant drivers of bacterial community
composition (PerMANOVA; depth: F = 2.864, R2

= 0.1876,
P = 0.0001; temperature: F = 1.422, R2

= 0.0621, P = 0.0027);
however, depth seemed to explain more variation in community
composition compared to temperature. Depth and temperature
were also significant drivers of fungal community composition
(PerMANOVA; depth: F = 2.075, R2

= 0.1155, P = 0.0001;
temperature: F = 3.489, R2

= 0.1332, P = 0.0001) with strong
clustering observed by temperature (Figure 8C). In general, the
pre- and post-incubation 10-20 cm samples clustered separately
from the other three depths after incubation. The three samples
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FIGURE 8 | Microbial community composition pre- and post-incubation. Non-metric multidimensional scaling analysis using Bray–Curtis dissimilarity community
composition of (A) bacteria axes 1–2, (B) bacteria axes 2–3, and (C) fungi axes 1–2 before and after incubation at 4◦C and 15◦C. Bacterial communities were
significantly structured by both depth and temperature (PerMANOVA; depth: F = 2.864, R2

= 0.1876, P = 0.0001; temperature: F = 1.422, R2
= 0.0621,

P = 0.0027). Additionally, fungal communities were significantly structured by both depth and temperature (PerMANOVA; depth: F = 2.075, R2
= 0.1155,

P = 0.0001; temperature: F = 3.489, R2
= 0.1332, P = 0.0001).

that did not follow this pattern were all from the same core which
clustered somewhat on its own (Supplementary Figure S3).

We investigated the direct effect of increased temperature on
assembly processes structuring microbial communities in along
the depth profile. Dominant assembly processes were assessed
to determine how assembly may differ based on near-term
versus long-term thaw conditions. When looking at the effect
of temperature on assembly of all depths combined, there was a
slight increase in deterministic assembly between the initial and
4◦C samples, but incubation at 15◦C led to a 16% increase in
stochastic assembly (Figure 9A). Laboratory incubation resulted
in an increase in drift at both temperatures when all comparisons
were considered. Varying shifts in assembly processes with
incubation temperature were observed within each depth
(Figure 9A). Processes structuring bacterial communities in
the 10-20 cm layer remained deterministic after incubation
(Figure 9). Only one of the 4◦C samples for the 10–20 cm
layer made it through quality control of the sequencing data
and therefore pairwise comparisons could not be made for this

treatment. An increase in stochastic processes was observed with
warmer incubation temperature in the 30–40 cm depth. Within
this depth, incubation at 15◦C resulted in an increase from
33% to 66% stochastic assembly with drift being the dominant
process (Figure 9). Both the 50–60 cm and 70–80 cm depths
showed an increase in deterministic assembly from initial to
4◦C samples and then a shift back to mostly stochastic assembly
at 15◦C (Figure 9B). The 50–60 cm depth was dominated by
drift both pre- and post-incubation (Figure 9A). Permafrost
(70–80 cm) bacterial communities were structured mainly by
dispersal limitation in the frozen state, but upon thaw at 4◦C
and 15◦C there was a shift to drift (Figure 9A). Heterogenous
selection also emerged as an important deterministic process
post-thaw for permafrost samples. Dispersal limitation and
homogenizing dispersal were shown to be important processes
structuring bacterial communities in the 50–60 cm and 70–80 cm
samples after incubation in isolated microcosms (Figure 9A).
However, the relative percent contribution of these two processes
was less than that shown for the initial samples in both cases. The
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FIGURE 9 | Relative contribution of assembly process structuring bacterial communities pre- and post-incubation at 4◦C and 15◦C. The (A) relative percent
contribution of each assembly process and (B) percent stochastic assembly are shown by depth. Assembly processes were determined across all pairwise
comparisons (“All”, n = 861) and within-group pairwise comparisons (n = 3 to 6) calculated from three to four biological replicates. The 10–20–4◦C treatment only
had one replicate and therefore pairwise comparisons for that treatment could not be made. Note that the 10–20–4◦C data point on (B) is missing.

presence of these dispersal-based processes after incubation in
isolated containers reflects their initial importance in structuring
the communities in the field.

DISCUSSION

Microbial communities are structured by a combination of
deterministic and stochastic processes, the outcome of which
may have implications for how the community processes
organic matter (Delgado-Baquerizo et al., 2016; Trivedi et al.,
2016). Functional, taxonomic, and phylogenetic beta diversity
are closely correlated in soil microorganisms (Fierer et al.,
2012). Furthermore, Martiny et al. (2013) found that 93% of
functional traits they investigated were non-randomly distributed
across phylogeny with most traits being shared only among
phylogenetically similar taxa. Given this relationship between

phylogeny and function, the use of phylogenetic approaches to
investigate drivers of community structure could be used to
predict how function might change due to disturbance. Our
findings suggest there is a shift toward stochastic assembly
immediately after thaw, particularly the influence of drift, except
in upper active layer soils. The active layer soils that have been
seasonally thawed for many years exhibited mainly deterministic
assembly indicating the importance of selection under long-
term thaw. Understanding the processes controlling community
reorganization after permafrost thaw will improve our ability to
develop a robust framework to predict the ecological impact of
permafrost thaw.

Permafrost Thaw Resulted in Increased
Stochastic Assembly
Assembly processes structuring bacterial communities shifted
along the depth profile. Transition zone soil at the active

Frontiers in Microbiology | www.frontiersin.org 12 November 2020 | Volume 11 | Article 596589

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-596589 November 9, 2020 Time: 14:48 # 13

Doherty et al. Permafrost Thaw Bacterial Community Assembly

layer-permafrost interface represents the most recently thawed
soils, and the active layer soils have been seasonally thawed
for a longer period of time. Permafrost and transition zone
soils were dominated by stochastic community assembly, but
deterministic processes also played a role in permafrost soils
which is unsurprising given that stochastic and deterministic
processes work in combination to influence community
composition (Vellend, 2010). In intact permafrost, bacterial
communities were structured mainly by dispersal limitation,
but homogenizing dispersal, drift, and homogenizing selection
also played a role in structuring permafrost communities.
Bottos et al. (2018) also found dispersal limitation as the
dominant process structuring permafrost bacterial communities
across a permafrost transect in Central Alaska and found
contributions of homogenizing dispersal and homogenous
selection. Homogenizing dispersal describes high dispersal
rates that outweigh selection pressures and is often seen in
combination with dispersal limitation, but generally one is
much more dominant than the other (Bottos et al., 2018;
Tripathi et al., 2019). Homogenous selection occurs when a
homogenous environment selects for ecologically similar taxa,
which demonstrates that the permafrost environment is spatially
homogenous and imposes limitations on the phylogenetic
and functional diversity of the system. Our hypothesis that
permafrost soils would be dominated by selection due to
necessary survival strategies to tolerate adverse conditions was
not supported. Instead, the physical constraints on dispersal
were the dominant ecological process governing permafrost
bacterial community structure. Although dispersal is often
described as a stochastic process, some argue dispersal can
be influenced by both stochastic and deterministic factors
(reviewed in Nemergut et al., 2013; Zhou and Ning, 2017). In
the case of permafrost, dispersal rates are partly dependent on
the frozen environmental conditions and metabolic state of
community members suggesting dispersal limitation may be
partly deterministic. Frozen soil restricts the passive dispersal
of microbes and cold temperature promotes a high degree of
dormancy in the community therefore limiting their active
dispersal abilities.

The transition zone soils, which most recently transitioned
from permafrost to seasonally thawed active layer soils, were
completely dominated by stochastic assembly processes which
supported our hypothesis. Drift (random fluctuations in
population sizes due to chance events) was the dominant
process in the transition zone soils which indicates there may
have been a great amount of turnover and extinction after
thaw. Drift is an important process when local community
size is small, selection is weak, and populations are present
in low-abundances which could lead to local extinction
(Chase and Myers, 2011; Nemergut et al., 2013). We did
not measure population size in our study; however, in the
case of permafrost thaw, it likely decreases due to drastic
changes in the local environment immediately after thaw
resulting in the closing of permafrost-specific niches, affecting
individuals’ ability to survive in the new environment. Future
work should measure population size when assessing the
contribution of assembly processes, particularly in the case

of drift. Dispersal limitation also contributed to community
assembly within transition zone soils suggesting dispersal
between soil layers is still somewhat restricted immediately
after thaw. The large influence of stochastic processes
likely contributed to the observed variation of community
composition in the permafrost and transition zone because
the randomness of these processes allows for different
composition trajectories (Fukami, 2015). These results are
consistent with findings from Monteux et al. (2018) where
the authors also observed more variation in community
composition of the deeper soils at the same field site. Increases
in stochastic assembly have been observed with increased
depth in permafrost systems, particularly the influence of
drift (Tripathi et al., 2018, 2019). Tripathi et al. (2019) also
found dispersal limitation was highest in the deepest soil
horizon in their study.

Active layer soils were dominated by deterministic assembly
processes, suggesting that as time since thaw increases, there
is a shift from stochastic to deterministic assembly. Upper
active layer bacterial communities were completely dominated
by homogenous selection indicating that there was less
turnover between active layer communities than expected
by chance. Tripathi et al. (2019) also found homogeneous
selection was the dominant process structuring upper active
layer bacterial communities which they attributed to minimal
variation in physiochemical properties within this layer. We
also observed little variation in pH and % carbon. Feng
et al. (2020) observed an increase in deterministic assembly
in permafrost-affected surface soils under long term warming
which is consistent with our findings that the longer soils
were thawed, the less stochastic assembly was observed. When
investigating bacterial community assembly along a natural
thaw gradient, Mondav et al. (2017) found there was a slight
increase in deterministic assembly moving from intact to
degraded permafrost sites. This further supports the finding
that soils under long-term thaw transition from stochastic to
deterministic assembly. Our hypothesis that the upper active
layer would be dominated by deterministic assembly was
supported. We observed assembly processes in the transition
zone soils were largely stochastic and as time since thaw
increased up the depth profile, the contribution of deterministic
processes also increased. Our results support the framework
developed by Ferrenberg et al. (2013) that community assembly
immediately after a disturbance is likely to be stochastic and as
succession progresses deterministic processes begin structuring
communities. However, one drawback of using depth as a
proxy of “time since thaw” is that it is difficult to tease
apart the influence of soil physiochemical properties and the
time, but these factors are intimately linked with permafrost
thaw making this approach a reasonable approximation of
in situ processes.

Laboratory Induced Thaw Increased
Relative Contribution of Drift
Our hypothesis that assembly would be more stochastic at all
depths after lab-induced thaw compared to in situ assembly, due
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to the short successional time frame after the disturbance, was not
supported. Instead, we observed similar percent stochasticity at
pre- and post-incubation at 15◦C. The permafrost and transition
zone soils showed a slight decrease in stochastic assembly from
pre- to post-incubation at 4◦C. However, the importance of
drift in structuring communities after thaw—a key finding from
the field study—was confirmed in the laboratory incubations.
The βNTI values from pairwise comparisons of all samples
showed an increase in drift of 13% to 35% after incubation.
Even larger increases in the relative contribution of drift were
observed for the permafrost (70–80 cm) and lower active layer
(30–40 cm) samples with the 15◦C incubation temperature
yielding the highest percent drift. The transition zone (50–
60 cm) was initially dominated by drift, which only increased
with incubation at 15◦C. The observation that there is a large
increase in drift upon thaw is consistent with the finding from
the field study where a large increase in drift was seen in the
transition zone. This suggests that laboratory incubation studies
simulating permafrost thaw are good at showing the immediate
effects of thaw, but that to understand the long-term effects
longer incubations may be necessary. Given that the samples
used in the incubation study thawed in transit, community
trajectories might have been influenced by populations that
emerged at room temperature. However, the large amount of
turnover (i.e., drift) observed even after 193 days of incubation
suggests these community members may not have had a greater
fitness advantage after thaw.

When drift dominates, it may be difficult to predict
the resulting community structure and function due to the
random fluctuations in community member abundance. This
makes inference of long-term effects of community change
with thaw difficult using short-term lab studies (Elberling
et al., 2013; Knoblauch et al., 2013). Lab incubations, at least
those done in the short term, may not completely capture
shifts in assembly at mid to late succession. Furthermore,
laboratory studies usually do not incorporate the interactions
between active layer and permafrost microbes, and since
dispersal limitation is an important process structuring transition
zone and permafrost communities, this should be considered.
Experiments are needed to investigate permafrost thaw under
realistic conditions where natural dispersal and seasonal changes
can occur.

The Influence of Assembly Dynamics on
Community Function
Disturbance events may alter ecosystem functioning when the
disturbance results in a change in community composition—
a common occurrence in microbial systems (Allison and
Martiny, 2008). Different assembly processes can result in
communities with varying compositions that harbor a distinct
suite of functional traits and ultimately influence ecosystem
functions (Knelman and Nemergut, 2014). Furthermore,
assembly processes can influence community function due
to fitness of individuals and their ability to contribute
toward biogeochemical functions versus spending energy
on survival and maintenance (Graham and Stegen, 2017).

Some argue that information on microbial community
composition is not necessary to predict how they will
function (Schimel, 2001), however this is based on the
assumptions that community assembly is controlled by
selection (Nemergut et al., 2013) and that traits are always
selected by the environment. Microbial communities structured
by stochastic processes likely lack a direct link to environmental
parameters and predicting functional outcomes based on
environmental conditions alone may be difficult (Nemergut
et al., 2013). While the synthesis by Allison and Martiny
(2008) found that changes in community composition resulted
in changes in function and the simulation modeling by
Graham and Stegen (2017) show assembly processes can
influence biogeochemical function, the assembly-function link
proposed by Nemergut et al. (2013) is largely untested by
experimental data.

Stochastic assembly in the months after permafrost thaw may
result in decreased fitness of individuals leading to greater release
of carbon from the soil. We speculate that permafrost thaw leads
to a great amount of physiological stress for individuals in the
community. This shift in environmental conditions may result
in a stochastically assembled community dominated by drift
and comprised of unfit taxa that invest most of their energy to
survival and maintenance rather than biogeochemical processes
(Schimel et al., 2007). Alternatively, increased CO2 emissions
could result due to fast-growing taxa proliferating after thaw.
In either instance, unfit and fast-growing taxa are thought to
be less efficient than their counterparts (reviewed in Molenaar
et al., 2009; Roller and Schmidt, 2015) resulting in more carbon
released as CO2 in relation to carbon assimilated into biomass
(Manzoni et al., 2012).

To test the link between assembly processes and carbon
emission from thawing permafrost, we measured CO2 respiration
and compared it with the dominant assembly processes
at each soil layer. We observed significant differences in
microbial respiration along the soil depth profile and with
incubation temperature. The transition zone soil showed
increased temperature sensitivity (Q10) indicating the respiration
rate of these soils was most positively affected by an increase
in temperature; however, this was not significantly higher than
that of the other soil depths. Our results do not indicate
there is a direct link between carbon emission from microbial
respiration and assembly processes structuring communities.
Respiration is conserved across many microbial taxa and
shifts in assembly processes are less likely to affect broad
functions that are redundant in a community. More specific
traits, such as ability to use different carbon substrates, are
less phylogenetically conserved and are only shared between
closely related taxa (Martiny et al., 2013). In the case
of these more specific functions, we would expect to see
a relationship between assembly dynamics and functional
outcomes. While our study suggests that differences in assembly
processes do not have a direct link with CO2 emissions,
future research should investigate the assembly-function link
over a broad suite of functions to better understand the role
of these recently disturbed communities in the permafrost-
climate feedback.
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CONCLUSION

The objective of this study was to determine the ecological
processes structuring microbial communities in permafrost
and active layer soils. We found that depth was a strong
driver of microbial community composition in both pre-
and post-incubation soils. Permafrost and transition zone
soils were dominated by stochastic processes with drift and
dispersal limitation being the main processes controlling bacterial
community structure. Deterministic processes, specifically
homogeneous selection, were dominant in the active layer soils.
Thawed conditions in both the field study and lab incubation
increased the relative contribution of stochastic processes,
particularly the importance of drift, in structuring communities.
This was potentially the result of closing and opening of
niches that lead to a large amount of turnover in community
composition after thaw, particularly those with small population
sizes. The laboratory incubation study reflected community
assembly dynamics immediately after thaw, but precludes
understanding the effect of assembly over long-term succession
post-thaw. Our results suggest stochastic assembly immediately
after thaw did not result in increased carbon emissions; however,
future work should investigate the relationship between assembly
dynamics and functional outcomes, particularly across the range
of broad to specific functions.
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