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ScienceDirect
Focused Identification of Germplasm Strategy (FIGS) has been

advocated as an efficient approach to predict and harness

variation in adaptive traits in genebanks or wild populations of

plants. However, a weakness of the current FIGS approach is

that it only utilizes a priori knowledge of one evolutionary factor:

natural selection. Further optimization is needed to capture

elusive traits, and this review shows that nonadaptive

evolutionary processes (gene flow and genetic drift) should be

incorporated to increase precision. Focusing on plant

resistance to insect herbivores, we also note that historic

selection pressures can be difficult to disentangle, and provide

suggestions for successful mining based on eco-evolutionary

theory. We conclude that with such refinement FIGS has high

potential for enhancing breeding efforts and hence sustainable

plant production.
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Introduction
Pests and pathogens pose major threats to domesticated

crops [1] and optimal strategies are needed to minimize

damage. Intrinsic plant resistance should play a funda-

mental role in these strategies, especially since Integrated

Pest Management (IPM) has been globally embraced as

the future paradigm for plant protection [2]. Unfortu-

nately, the strong contemporary demand for resistant

cultivars cannot be easily met, as important resistance

traits have been lost during domestication [3,4]. Thus,

landraces and wild relatives of crops that still harbor

important resistance traits must often be revisited to meet

needs for resistance [5�,6]. This is because continuous

natural selection (including by herbivores) prevents the

loss of adaptive traits in their wild or cultivated
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environments. Thus, restoring lost resistance traits

(known as ‘rewilding’) in modern cultivars using these

wild genetic resources is a major goal for IPM [7�].

Unfortunately, mining for rare genetic resources in wild

populations and genebanks is often extremely difficult

and time consuming, due to the enormous amounts of

material available for screening ex situ and in
situ. Searching for material with specific rare traits is thus

frequently likened to looking for a needle in a haystack

[8]. Core or representative subsets of germplasm collec-

tions [9] can be established to reduce search efforts.

However, their creation and classification are not typically

based on specific resistance traits, so this approach (in

current formats) does not help breeders to focus on the

most promising material. However, Focused Identification
of Germplasm Strategy (FIGS) provides a new way to

maximize the likelihood of capturing plant genotypes

with specific adaptive traits from genebanks and wild

populations [10]. The rationale is that certain types of

environments mediate natural selection, for or against,

the adaptive evolution of focal plant traits in wild

populations and cultivated landraces. Hence, the spatial

distribution of adaptive plant traits should be predictable

from ecogeographic profiles of plant trait distributions,

allowing trait miners to focus on limited numbers of

georeferenced germplasm samples, originating solely

from evolutionary ‘hotspots’. Thus, the ‘focus’ in FIGS

may refer to both the specific adaptive trait(s) of

interest and specific environmental profiles correspond-

ing to evolutionary hotspots.

In the last decade, the FIGS approach has been used to

harness various traits, including inter alia drought toler-

ance [11], plant size and flower number [12�], as well as

resistance to pathogens [13–15], and herbivores [16–18].

However, as noted by various authors [10,12�,15], FIGS is

still a nascent approach, with scope for significant

improvement. The main weakness of current FIGS is

that it only utilizes a priori knowledge about one evolu-

tionary factor: natural selection. This limits its potential

utility because focal traits may not have been strongly

influenced by natural selection and/or historic selection

pressures (exerted by herbivores for example) may be

difficult to determine. Thus, associations between focal

traits and ecogeographic data may be weaker than

expected [19]. Further challenges are associated with

insect resistance, as the underlying traits must be identi-

fied. Here we discuss these challenges in the light of

recent literature and suggest possible ways to improve

FIGS, particularly in relation to insect resistance.
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2 Pests and resistance
Challenges and opportunities related to
resistance traits
Plants can be resistant to insects in myriad ways, involving

inter alia trichomes, leaf toughness, toxic compounds,

kairomones, or extrafloral nectar [20,21]. While highly

specialized plant–insect interactions may depend on sin-

gle plant traits, most herbivores – especially chewing

species – are sensitive to several types of resistance traits

[22], which may be shaped by multiple selection pres-

sures. Thus, individual plants within their species’ range

may allocate different amounts of resources to specific

resistance traits, just as the overall resistance level typi-

cally varies [18,23��].

As FIGS focuses on individual traits, the first step in a

FIGS process is to identify all known or likely types of

resistance traits in a plant species, then select the most

optimal trait according to several criteria. First, the

selected resistance trait should clearly reduce herbivore

damage as efficiently as possible [24]. Second, it should

be compatible with IPM, and thus not hamper biocontrol

agents or other beneficial organisms [2,25]. Third, it

should be acceptable to human consumers, as consumer

rejection is a major reason for the selection against, and

loss of, some resistance traits during domestication [26�].
Such undesirable traits include, among others, bitterness,

toughness, and some characteristics related to unaccept-

able metabolic costs that may incur yield penalties.

‘Rewilding’ will not necessarily reintroduce these

‘problematic’ traits, as wild relatives of crops and land-

races often have a rich palette of resistance traits from

which breeders can select. Finally, to be compatible with

FIGS the selected trait should, of course, be prone to

adaptation under directional selection.

Identifying specific resistance traits that are particularly

compatible with FIGS is beyond the scope of this review,

but generally we believe that modern crossbreeding

should focus more on indirect resistance, that is, traits

that recruit natural enemies of herbivores [27]. Traits

underlying indirect resistance are typically induced,

rarely require substantial resources from the plant’s met-

abolic budget [28] and are available in landraces and wild

relatives of most crops [29,30]. Moreover, they are adap-

tive [31,32] and the underlying genes are increasingly

being identified, for example, through genome-wide asso-

ciation studies [32].

Predicting historic selection
Generally, biotic selection is a key driver of plants’

evolution [33] and can rapidly shape and reshape their

resistance traits [34,35]. Hence, plant traits related to

insect resistance are among those with the clearest poten-

tial for FIGS. However, although some or most resistance

traits are under selection by herbivores, the same traits

may also respond to other, conflicting selective pressures,

potentially leading to low correlation between historic
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selection by herbivores and resistance [36]. For example,

resistance compounds in floral nectar may deter pollina-

tors, leading to conflicting selection by herbivores and

pollinators, and thus ‘diffuse’ plant evolution [37��,38].
The outcome of such diffuse selection may depend on the

relative importance of the players involved, as well as the

extent of their spatial overlap, which may lead to spatially

divergent plant populations. In other cases, some traits

may have multiple positive roles. For example, a trait may

confer resistance to both herbivory and abiotic stress, like

frost or drought [39,40�]. In such cases, abiotic selection

pressures on resistance traits may lead to strong insect

resistance even in areas where herbivory is low [41].

Thus, knowledge of the multifunctionality of resistance

traits is crucial for robust predictions of historic selection

pressures for use in FIGS.

Nevertheless, although other biotic and abiotic factors are

important, in most cases the historic distribution of key-

stone herbivores is the most important factor for predicting

distributions of historic selection pressures on resistance

traits [42]. Generally, climatic clines (e.g. latitude and

altitude) and resource availability have received the most

attention for their roles in shaping herbivore distributions,

and evolution of plant resistance [23��,43,44]. Latitude and

altitude correlate negatively with temperature and length

of the growing season, and thus are relatively good proxies

for herbivore diversity and herbivore pressure, although no

such relationships (or even opposite patterns) have been

observed in analyses of several plant species’ environmen-

tal interactions [45].

Early reporters of significant associations between host

plant resistance to insects and ecoclimatic profiles of the

collection sites of accessions in genebanks included Flan-

ders et al. [46]. They found that accessions of Solanum
from hot and arid zones showed resistance to Colorado

potato beetle, potato flea beetle and potato leafhopper,

while species from cool or moist areas showed resistance

to potato aphid. In further research involving use of data

pertaining to 92 Solanum species obtained from two

decades of field trials, the same group [47] demonstrated

that insect resistance of the genus was not evenly distrib-

uted in the American continent, but varied with the

altitude and in some cases latitude of their origins.

Although many plant species show higher overall resis-

tance in areas at low latitudes or altitudes, this does not

necessarily mean that these areas are always hotspots for

valuable resistance traits in FIGS. As single resistance

traits rather than overall resistance levels are ideally used

in FIGS, focal individual traits may respond more strongly

in low-diversity communities, where specific herbivores

contribute more strongly to the direction of net selection.

There is, in any case, no doubt that climatic and resource

clines should be utilized in FIGS, but the direction of the

putative correlations should ideally be roughly confirmed
www.sciencedirect.com
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by pre-studies. Clines shaping plant traits can be very

narrow, so small-scale patterns warrant attention as well as

larger scale patterns [12�]. Other natural factors affecting

herbivore distributions, such as precipitation, winter tem-

perature and habitat have also been successfully inte-

grated into FIGS [10, Stenberg, unpublished data], but

are not further considered here due to space limitation.

In addition to identifying hotspots based on natural

environmental factors, as discussed above, awareness is

needed that human activities repeatedly expanded dis-

tributions of crop wild relatives. Thus, they escaped from

some of their old herbivores, leading to loss or remolding

of resistance in their new areas [48]. For these reasons,

identifying native areas where both the plants and herbi-

vores have interacted historically, and filtering out more

novel distributions, has been a key step in practical

application of FIGS [10].

In practical terms, proxies of historic natural selection

have been implemented as ecoclimatic layers to form

ecogeographic profiles for focal traits in FIGS (Figure 1).

Although these search profiles have helped efforts to

harness important traits for several plants, many authors

have also noted lower than expected correlations between

ecoclimatic data and focal traits, highlighting the need to
Figure 1
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develop FIGS [10,12�,15]. However, as shown below,

evolutionary hotspots can be more precisely identified

if biogeographic layers of nonadaptive proxies are added to

the ecogeographic profiles.

Incorporating nonadaptive evolutionary
processes into FIGS
The best way in our view to improve FIGS’ precision is to

consider nonadaptive evolutionary factors in parallel with

directional natural selection. The importance of gene flow

and genetic drift in the evolution of resistance and other

traits of wild plants has been demonstrated in several

recent studies [49�,50��]. Our understanding of how selec-

tion, gene flow and genetic drift jointly shape the geo-

graphic distribution of traits has increased tremendously

in recent years following developments in metapopula-

tion ecology and the geographic mosaic of coevolution

theory [51,52]. A key assumption in these frameworks is

that species’ distributions are patchy, consisting of local

plant populations that are connected to varying degrees

within larger metapopulations [51,52]. Some local popu-

lations may be colonized by certain keystone herbivores,

which impose selection pressure for specific traits. Other

populations may host other herbivores selecting for other

traits, and another set of local populations may inhabit an

enemy-free environment that promotes loss of resistance
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4 Pests and resistance
[42]. Local herbivore populations in turn can go extinct or

recolonize populations, molding and remolding natural

plants over time and space, creating geographic mosaics

with predictable evolutionary hotspots. The more iso-

lated a local population is, the more it will be affected

by local selection and small populations may also be

characterized by strong genetic drift. By contrast, more

connected populations will be affected not only by local

selection, but also by higher gene flow that dilutes

local selection through inflows of phenotypes that are

evolutionary products of neighboring populations with

different selection regimes [52]. Asymmetric gene flow

(e.g. higher immigration than emigration, leading to dilu-

tion of local selection) is expected for small populations

neighboring big ones and for low-altitude populations

exposed to genetic ‘rainfall’ from higher-altitude popula-

tions [50��].

Obtaining knowledge about gene flow and drift may

necessitate zooming in and utilizing biogeographic data

at more local geographic scales. In practical terms, data on

landscape (habitat) isolation and geographic distances

between populations can be used as proxies of gene flow

[11]. Genetic drift is partly dependent on gene flow, but

relatively independent proxies include population size

and recent colonization (‘founder effects’). Together,

data on these nonadaptive proxies can be described as

biogeographic layers, which can be applied in ecogeographic
profiles for focal traits in FIGS (Figure 1).

Concluding remarks
All plant traits and their distributions are products of

evolution, but the relatively few published attempts to

apply FIGS in practice, to enhance crop plants’ insect

resistance for instance, suggest that partial knowledge of

natural selection does not always provide sufficient pre-

cision to capture elusive traits. To improve FIGS it is

important to catch up with corresponding progress in

basic eco-evolutionary theory. First, to improve predic-

tion of adaptive processes it is necessary to identify

conflicting or concurrent selection pressures imposed

by other agents and integrate them into the ecogeo-

graphic profile (Figure 1). Second, following previous

suggestions [11], biogeographic proxies of nonadaptive

processes (gene flow and genetic drift) should ideally be

routinely considered in future FIGS dealing with elusive

traits (Figure 1). These adjustments to FIGS should help

breeders to identify the most promising evolutionary

hotspots for trait mining.

Furthermore, resistant genebank accessions identified via

FIGS can be used for genomic prediction based on

characterization with genotyping by sequencing as train-

ing populations. This may lead to identification of useful

diversity hotspots hosting genotypes that can be advan-

tageously used introgressively in breeding programs. This

approach was proposed to improve grain yield in wheat
Current Opinion in Insect Science 2021, 45:1–6 
[53], and subsequently shown to have promising potential

to raise biomass yields of sorghum [54]. Such ‘turbo-

charging’ of genebanks offers a cost-effective strategy

to tap their valuable plant genetic resources by shifting

from ‘gene mining’ to estimating accessions’ breeding

values through genomics.
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