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Abstract Wheat is the major staple food in Western Europe and an important source of

energy, protein, dietary fibre, minerals, B vitamins and phytochemicals. Plant

breeders have been immensely successful in increasing yields to feed the growing

global population. However, concerns have been expressed that the focus on

increasing yield and processing quality has resulted in reduced contents of

components that contribute to human health and increases in adverse reactions.

We review the evidence for this, based largely on studies in our own laboratories

of sets of wheats bred and grown between the 18th century and modern times.

With the exception of decreased contents of mineral micronutrients, there is no

clear evidence that intensive breeding has resulted in decreases in beneficial

components or increases in proteins which trigger adverse responses. In fact, a

recent study of historic and modern wheats from the UK showed increases in the

contents of dietary fibre components and a decreased content of asparagine in

white flour, indicating increased benefits for health.
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Introduction

Plant breeding has been immensely successful in

increasing the yield and total production of staple

crops, providing food for the growing global popula-
tion (Fedoroff 2010). These increases have been par-

ticularly impressive in wheat, rice and maize, the three

major cereals which are the staple foods over much of
the globe. In the case of wheat, which is the staple

crop in the UK and Europe, global production has

increased by over three-fold between the 1960s

and the present day (see http://www.fao.org/faostat/

en/#data).
The major component in the wheat grain is starch,

which accounts for approximately 70% of the grain

dry weight. Hence, increases in yield essentially reflect
increase in starch production. About half of the wheat

grown in the UK, and most of the wheat produced

globally, is used for human food, particularly for mak-
ing bread, other baked products, pasta and noodles.

The quality for these end uses is determined mainly by
the gluten proteins, and hence, selection for yield in

breeding programmes is usually combined with selec-

tion for grain protein content and quality.
It has been suggested that this intensive selection

may have two consequences for human nutrition and
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health. Firstly, that selection for high starch and glu-

ten proteins has resulted in reduced contents of other
grain components that contribute to diet and health

(including non-gluten proteins, minerals, vitamins and

beneficial phytochemicals). Secondly, that increases in
the content of gluten and changes in gluten protein

composition may have contributed to increases in

adverse reactions to the consumption of wheat-based
foods (Morris & Sands 2006).

There is clear evidence that the concentrations of

most mineral micronutrients, including iron, zinc and
magnesium but not calcium, have decreased in the

grain of modern wheats, particularly since the intro-

duction of short types in the 1970s (Fan et al. 2008;
Murphy et al. 2008). However, the effect on selenium

is less clear, with Murphy et al. (2008) reporting a

decrease and Fan et al. (2007) no significant change,
with differences resulting from variation in sulphur

inputs. The grain accounts for a higher proportion of

the total biomass in these wheats, resulting in higher
yields. Hence, the decreased concentrations of miner-

als may be partially due to ‘yield dilution’ (i.e. to

increased starch accumulation). However, decreases in
mineral concentrations are also observed under

growth conditions in which the yield is not increased
(Fan et al. 2008) suggesting that the dwarfing genes

used to reduce plant height may have other effects.

We have discussed strategies to increase the concentra-
tions of iron and zinc (the two most important

micronutrients which limit human health) in wheat

grain in a previous article in this journal (Balk et al.
2019) and readers are referred to this for a detailed

discussion.

The evidence for effects of modern breeding on
other aspects of grain composition is generally weak.

One reason for this is the lack of robust datasets from

well-designed experiments. In particular, most studies
have compared small numbers of varieties with a lim-

ited range of release dates. The present article there-

fore focuses on this topic, highlighting the results of
three studies from our own programmes and referring

to other published work where relevant.

Studies included and analysis of data

The first study formed part of HEALTHGRAIN, a
multinational 5-year (2005-2010) EU programme

which has been discussed previously in this journal

(Shewry 2009). The ‘HEALTHGRAIN Diversity
Screen’ compared the compositions of 150 wheat lines

(130 winter and 20 spring type) grown in Mar-
tonv�as�ar in Hungary in 2005. The lines were selected

to represent a wide range of diversity, including geo-

graphical distribution and release dates, but with an
emphasis on European varieties from the last 50 years

(Ward et al. 2008). The wide expertise of the multina-

tional partners allowed a range of components to be
determined, and it remains the largest study of wheat

diversity published to date (Ward et al. 2008). The

concentrations of some components have been
reported previously in relation to the release dates of

the varieties (Shewry et al. 2011a) and relationships

with further components are reported here. The 150
HEALTHGRAIN wheats included 5 breeding lines

which are not included in the analysis here because

they were not grown commercially. They also include
two landraces (Chinese Spring, Nap Hal) which do

not have release dates and Red Fife which was

released in 1842. These three varieties are presented
with a release date of 1900 for ease of viewing of the

figures. Finally, more detailed fibre analyses are pre-

sented on a subset of 123 winter varieties.
However, the HEALTHGRAIN study had three

weaknesses. Firstly, the lines were grown on a single

site for 1 year without replication, and it was there-
fore not possible to partition the variation between

the effects of genotype, environment and genotype by
environment interactions. Secondly, many of the lines

were grown outside their area of adaptation, which

could have impacts on grain composition. Thirdly,
most of the analyses were carried out on wholegrain,

whereas white bread remains the dominant wheat-

based food in many countries.
In order to address these three issues, we have since

analysed a further set of samples (Lovegrove et al.
2020). This comprises 39 lines grown in three repli-
cate plots in the UK over 3 years. The lines were

selected to represent a range of release dates, from

1790 to 2012, and for their adaptation to the UK: all
had been grown commercially in the UK and, with

four exceptions, bred by UK-based breeders. Further-

more, white flour was prepared and analysed, to pro-
vide data relevant to the consumption of white bread.

We will refer to this set of samples as the ‘UK Her-

itage Wheats’.
Thirdly, in order to specifically address the question

of effects on protein content and composition, we pre-

sent data from a third set of material comprising 20
Austrian wheats dating from between 1850 and 2016

which were grown in duplicate plots for two years

(Call et al. 2020). We will refer to this set of samples
as the ‘Austrian Heritage Wheats’.

For ease of comparison, the datasets are displayed

as scatter plots, comparing the dates of registration of
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the varieties (called release dates in the text) (x axis)

with the concentrations of components (y axis), with
lines fitted where appropriate.

Protein content

It is frequently suggested that the emphasis on bread-
making quality has resulted in modern wheats having

higher contents of protein than older types. Compar-

isons of modern and old types grown under the same
conditions in Europe do not support this. The pri-

mary target of wheat breeders over the past century

has been increased yield. Higher yield results mainly
from increased accumulation of starch, which dilutes

other grain components including protein. This is

clearly illustrated by the HEALTHGRAIN Diversity
samples which show a clear negative correlation

between the contents of starch and protein in the

samples (Fig. 1a), while Fig. 1 parts b and c show
increased starch and decreased protein over time,

respectively.

These results are supported by the analysis of histor-
ical datasets from the US where levels of fertiliser use

remain low. Kasarda (2013) analysed the available

datasets for the major wheat-growing areas in the US
(Kansas and the Northern Plains) and found no

evidence of increased grain protein during the 20th

century. However, two studies have shown small
increases in the protein content of wheat grown in

Canada where the yields are lower (about half) than

those from the high input systems used in Western
Europe (Hucl et al. 2015; Iqbal et al. 2016).

Proteins which cause adverse reactions

The last decade has seen an increasing number of con-
sumers adopting gluten-free or low gluten diets, due

to concerns that wheat, and gluten in particular, has

detrimental effects on health. This trend is, to some
extent, a lifestyle choice, driven by the popular press

and social media. However, there are genuine con-

cerns relating to the roles of gluten (or wheat) in three
types of adverse response: allergy, intolerance (princi-

pally coeliac disease) and a less well-defined syndrome

referred to as non-coeliac gluten sensitivity (NCGS)
(Sapone et al. 2012).

The aetiology of true (IgE-mediated) allergy to

wheat consumption is well understood, and the preva-
lence is low (about 0.2%) (Zuidmeer et al. 2008). It
will therefore not be discussed further here.

Coeliac disease affects about 1% of the population
in the UK and Western Europe (reviewed by Shewry
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Figure 1 The relationships between the contents of starch (determined by NIR), protein (determined as Kjeldahl N x 5.7) and variety registration dates in

wholegrain samples from the HEALTHGRAIN Diversity survey. Orthogonal regression was used to fit the line drawn in Panel (a) in order to take account of

experimental errors in both starch and protein measurements. The fitted line explained 87% of the variation. Simple linear regression was used to fit the lines

drawn in Panels (b) and (c) allowing experimental errors only in the y axis. The fitted lines explained 8% and 13% (adjusted r2 values) of the variation, respec-

tively. Despite the small r2, both regression lines explained a statistically significant amount of the variation (P = 0.00018 and P < 0.0001, respectively). Data are

from Rakszegi et al. (2008). [Colour figure can be viewed at wileyonlinelibrary.com]
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& Hey 2016). The aetiology of coeliac disease is again

well understood. It is triggered by the consumption of
wheat gluten and related proteins from barley and rye,

and over 30 short amino acid sequences which trigger

coeliac disease (epitopes) have been identified (Sollid
et al. 2012). Gluten proteins are divided into two

broad groups, gliadins and glutenins, with each group

comprising multiple components. Analyses of wheat
gluten protein sequences (e.g. Bromilow et al. 2017)

show that gliadins and glutenins vary widely in their

contents of coeliac epitopes, with gliadins, and partic-
ularly a-gliadins, being richer in epitopes than glute-

nins (Gilissen et al. 2014; Shewry & Tatham 2016).

Hence, increases in the proportions of gliadins could
result in increases in coeliac-toxic epitopes.

Analysis of the Austrian Heritage Wheats showed

no statistically significant relationship between total
protein content and release date (Fig. 2a). Analysis of

gluten protein fractions showed significantly increased

proportions of glutenin and decreased proportions of
gliadins, resulting in a decrease in the gliadin:glutenin

ratio (Fig. 2b). However, no significant effects on the

proportions of the a-gliadins were observed (Fig. 2c).
These changes in gluten protein composition may

reflect selection by breeders for high dough strength
(which is determined by the glutenin proteins). Hence,

analysis of this set of samples indicates that the rela-

tive abundance of coeliac disease epitopes is more
likely to have decreased than increased in modern

varieties.

Other workers have used monoclonal antibodies to
directly determine the abundances of coeliac epitopes

in old and modern wheats. van den Broeck et al.
(2010) used immunoblotting to determine the relative
abundances in 36 modern wheat varieties and 50 tra-

ditional wheats (called landraces) of sequences react-

ing with two monoclonal antibodies which recognise
the minor Gli-A20 coeliac disease epitope and the

major Glia-A9 coeliac disease epitope, respectively.

Modern varieties tended to show higher reactivity
with the Glia-A9 antibody and lower reaction with

the Glia-A20 antibody; lines showing high and low

reactions with both antibodies were, however, present
in both sets of wheats. More recently, Ribeiro et al.
(2016) found no relationship between coeliac toxicity

and the age of the genotype, by screening 53 modern
varieties and 19 landraces with the commercially

available R5 monoclonal antibody which recognises a

number of widely distributed coeliac-toxic sequences.
Therefore, there is no evidence that modern types of

wheat are more active in triggering coeliac disease

than older types.

The third type of adverse reaction to wheat, NCGS,

is less well defined in terms of its prevalence, symp-
toms, aetiology and causative agent(s) (Sapone et al.
2012). In fact, even the relationship with gluten has

not been established and it is perhaps more properly
called non-coeliac wheat sensitivity (NCWS). The

most likely triggers for NCWS are a group of proteins

known as ATIs (amylase trypsin inhibitors). These are
the major group of soluble proteins in wheat, account-

ing for about 3.5-4% of the total grain protein (Geis-

slitz et al. 2018). They have molecular weights of
between 12 and 16 kD and comprise about 15 distinct

subunits, some of which also occur in multiple forms.

Most are inhibitors of a-amylases from insect pests,
and they are generally considered to contribute to

plant protection. The contents of ATIs varied widely

in the Austrian Heritage Wheats, with no statistically
significant relationship to the age of the variety

(Fig. 2d). Hence, the impact of ATIs on NCWS should

not differ between old and recent varieties.

Dietary fibre

Wheat is an important source of fibre in the Western

diet, with bread alone providing between 17% and
21% (depending on age group) of the daily intake in

the UK (Lockyer & Spiro 2020). Wheat fibre is con-

centrated in the bran layers, and wholemeal flour has
a higher fibre content than white flour.

The contents of individual dietary fibre components

in wholemeal flours of 129 of the winter wheat vari-
eties in the HEATHGRAIN sample set were reported

by Andersson et al. (2013) using the Uppsala method

(Theander et al. 1995). Total dietary fibre ranged
from 11.5-15.5% dry wt. and arabinoxylan (the major

component) from 5.53 to 7.42% dry wt. Other com-

ponents were cellulose (1.67-3.05% dry wt.), Klason
lignin (0.74-2.03% dry wt.), fructans (0.84-1.85%)

and b-glucan (0.51-0.96%), from previous analyses of

the same samples by Gebruers et al. (2008). Two
other components which contribute to dietary fibre,

resistant starch and arabinogalactan peptide, were not

measured and are discussed below in relation to white
flour.

The registration dates of 123 of the samples were

known and are plotted against the concentration of
the DF components in Fig. 3. A statistically significant

increase of fructan content with registration date was

observed (Fig. 3e) though this only accounted for 2%
of the observed variation. Hence, it can be concluded

that there was little or no relationship between the
fibre content and age of these cultivars.
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The concentration of dietary fibre is lower in white

flour than in wholemeal. The major component is

again arabinoxylan (up to about 3% dry wt.) with
lower concentrations of b-glucan (about 0.5% dry

wt.), fructans (about 1.5% dry wt.) and arabinogalac-

tan peptide (up to 0.4% dry wt.) (as discussed by
Hazard et al. 2020). Cellulose and Klason lignin are

not present in white flour as they occur only in the

outer layers of the grain. In addition to the fibre com-
ponents discussed above, both wholegrain and white

flour also contain resistant starch. This may account

for up to 1% of total starch (about 0.8% dry wt. of
white flour). Hence, the total content of dietary fibre

in white flour ranges up to about 5% dry wt.

Statistically significant increases in the concentra-
tions of both arabinoxylan and b-glucan in white flour

are observed with year of registration for the UK Her-

itage samples (Fig. 4), explaining 21% and 10% of
the variation in the datasets, respectively.

A smaller study of eight modern and seven older

durum wheat varieties adapted to and grown in

Italy showed no differences in the content of arabi-
noxylan and b-glucan in wholemeal or refined flour

(called semolina for durum wheat) (De Santis et al.
2018).

Amino acids, sugars and betaine

Wheat grain and flour contain a range of soluble

metabolites, including amino acids and sugars, which

are readily quantified by high throughput metabolomic
screens.

1H NMR spectroscopy of white flours (Shewry

et al. 2017) from the UK Heritage Wheats quantified
10 individual amino acids. A clear decrease in the

total concentrations of these amino acids was

observed (Fig. 5a), with similar decreases in the con-
centrations of most individual components including
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Figure 2 Concentration of total protein (determined as Dumas N x 5.7) (a), the ratio of gliadins to glutenins (b) and the concentrations of a-gliadin (c) and amylase

trypsin inhibitors (ATIs) (d), in wholegrain samples from the Austrian Heritage Wheats grown in 2017 (red squares) and 2018 (blue circles). Simple linear regression lines

were fitted to each variable and are included in the figure where they explained a significant amount of the variation (i.e. where P > 0.05). The line shown in Panel C

explains 54% of the variation (adjusted r2) and is statistically significant P < 0.0001. Data from Call et al. (2020). [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 3 The contents of dietary fibre components in wholegrain samples of 123 winter wheats from the HEALTHGRAIN Diversity trial. Total dietary fibre is

determined by the Uppsala method with the addition of fructans. Simple linear regression lines are only shown where they are found to be significant. For fruc-
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Figure 4 The concentrations of arabinoxylan (a) and b-glucan (b) in white flour of the UK Heritage Wheats. Data are expressed in units determined by HPLC

analysis of oligosaccharides released by enzyme digestion. Hence, the analyses are comparative between samples but do not provide precise concentration. Data
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formed from the line originally fitted on the log scale to ensure homogeneity of variance. The lines shown are statistically significant (P = 0.002, P = 0.032)

explaining 21% (a) and 10% (b) of the variation. Data from Lovegrove et al. (2020). [Colour figure can be viewed at wileyonlinelibrary.com]
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asparagine (Fig. 5b) (Lovegrove et al. 2020). Aspara-
gine is a precursor of acrylamide, a neurotoxin and
potential carcinogen which is formed by Maillard

reactions with reducing sugars during food processing,

and the concentration of asparagine is usually the lim-
iting factor for acrylamide formation in cereal prod-

ucts (Curtis & Halford 2016).

Sugars determined comprise monosaccharides (glu-
cose, fructose, arabinose, galactose), disaccharides

(maltose, sucrose) and the trisaccharide raffinose. The

total concentrations of these components have
increased significantly in the more recent varieties,

particularly those introduced after 1950 (Fig. 5c). The

concentrations of the individual sugars also increased,
except for arabinose and galactose (Lovegrove et al.
2020).

It is not known why the concentrations of some
individual metabolites have increased or decreased,

but it is possible that the decreased concentration of

total amino acids is associated with the decrease in
protein, and the increases in concentrations of sugars

with the increase in starch (see Fig. 1).

Metabolite profiling by 1H NMR spectroscopy also

quantified the concentrations of choline and betaine
(which is more correctly called glycine betaine). These

biosynthetically related components act as ‘methyl

donors’ in humans, being able to donate methyl
groups for the conversion of homocysteine to methion-

ine in the homocysteine cycle, and hence reduce the

risk of cardiovascular disease (Ueland et al. 2005; Chi-
uve et al. 2007). Wheat is one of the richest known

sources of betaine in the diet (Zeisel et al. 2003).

Betaine is generally present at about10 times the con-
centration of choline in wheat grain (Corol et al.
2012) with both betaine and choline being concen-

trated in the bran (Zeisel et al. 2003).
Analysis of white flours of the UK Heritage Wheats

showed significantly higher concentrations of betaine

in the varieties released from 1980, compared with the
older varieties (Fig. 5d), with no significant differences

in the concentration of choline (Lovegrove et al.
2020). By contrast, no relationship was found between
betaine content and release date in the HEALTH-
GRAIN lines (not shown).
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Figure 5 The concentrations of soluble metabolites in white flour samples from the UK Heritage lines. Data are means of samples from three replicate plots

grown for each of 3 years. Lines are from simple linear regression. In the case of asparagine, total sugars and betaine, the lines shown are the back-transformed

line originally fitted on the log scale to ensure homogeneity of variance. Lines are shown when the estimated trend was statistically significant (P = 0.010,

P = 0.0045, P < 0.0001 and P = 0.0037, for total amino acids, asparagine, total sugars and betaine, respectively) explaining 15%, 19%, 41% and 19% of the vari-

ation according to the adjusted r2, respectively. Data from Lovegrove et al. (2020). [Colour figure can be viewed at wileyonlinelibrary.com]
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Phytochemicals and vitamins

Cereals are rich sources of phytochemicals, most of

which fall into two major classes: phenolics and ter-

penoids. Individual components may differ in their
distributions between grain tissues, as discussed by

Piironen et al. (2009), but all are more abundant in

wholemeal flour than in white flour. Hence, most
analyses, including those discussed below, have been

carried out on wholemeal rather than white flour.

Phenolics

Phenolics contain at least one aromatic ring bearing at
least one hydroxyl group. They are the most abundant

phytochemicals in wheat grain, with phenolic acids
being the major class. Phenolic acids occur in three

forms in the wheat grain: as free compounds, as sol-

uble conjugates bound to sugars and other low molec-
ular weight components and as bound forms which

are linked to arabinoxylan in the cell wall by ester

bonds. The concentrations of phenolic acids vary
widely between wheat samples, but bound forms gen-

erally account for about 80% of the total, with the

major individual component being bound ferulic acid
(Li et al. 2008).

Phenolics from plant-based foods have been shown

to improve vascular function and hence reduce the
risk of cardiovascular disease (Vauzour et al. 2010),

and similar activity has been demonstrated for ferulic

acid released from arabinoxylan in wheat bread
(Turner et al. 2020). Minor phenolic components in

wheat include lignans which are derived from the

combination of two phenylpropanoid (C6-C3) units
and alkylresorcinols which are phenolic lipids. Lignans

act as phytoestrogens while the restriction of alkylre-

sorcinols to the testa layer of the grain has led to their
use as biomarkers to monitor the consumption of

wholegrain (Piironen 2009).

Analysis of wholegrain samples of the HEALTH-
GRAIN wheats showed a statistically significant

increase in the concentration of total phenolic acids

with release date (Fig. 6a) but not of total alkylresor-
cinols (Fig. 6b). However, release date only accounted

for 5% of the variation in the concentration of total

phenolic acids. Similarly, comparisons of small num-
bers of ‘old and recent’ varieties adapted to and grown

in Italy showed no difference in the total concentra-

tions of phenolic compounds in durum or bread
wheats, although the composition was more diverse in

the older varieties (Heimler et al. 2010; Dinelli et al.
2011). By contrast, Dinelli et al. (2007) showed higher

mean contents of lignans, by about 2-fold, in six old

bread wheat varieties than in four modern varieties.

Terpenoids

Terpenoids are based on 5-carbon isoprene units

which are assembled to form larger structures and
subject to a range of modifications, including cyclisa-

tion. Terpenoids in wheat include sterols, tocols and

carotenoids (Piironen 2009).
Sterols comprise a tetracyclic cyclopenta[a]phenan-

threne ring with a hydroxyl group at the C3 position

and a flexible side chain at the C17 carbon position.
Cereals contain significant amounts of saturated ster-

ols, which are called stanols, and a substantial pro-

portion of the sterols and stanols present in wheat
are modified, either esterified to a fatty acid or phe-

nolic acid to form sterol esters, or b-linked to a car-

bohydrate to form a sterol glycoside, with the latter
also sometimes being acylated. Plant sterols and sta-

nols have well-established health benefits, in the

maintenance of normal blood cholesterol concentra-
tions (Kritchevsky & Chen, 2005; EFSA NDA Panel

2010).

The total concentrations of sterols (including sta-
nols) in wholemeal flours of the HEALTHGRAIN
lines ranged from 670-959 lg/g, with a mean of

844 lg/g (Nurmi et al. 2008). There was a marginally
statistically significant (P = 0.068) correlation between

the concentration of total sterols plus stanols in the

samples and the release date. However, the date of
registration only accounted for 2% of the variation in

the dataset (Fig. 6e).

Tocols

Tocols comprise a chromanol ring with a C16 phytol

side chain, which can be either saturated (toco-

pherols) or unsaturated (tocotrienols). Tocopherols
and tocotrienols each exist in four forms in wheat,

which differ in the number and positions of methyl

groups on the chromanol ring and are called a, b, c
and d. Although the name ‘Vitamin E’ has been

applied to all tocols, they differ in their activity with

a-tocopherol being the most active form (Bramley
et al. 2000). Currently, only a-tocopherol is consid-

ered to possess vitamin E activity (EFSA NDA

Panel 2015).
The total concentration of tocols in the HEALTH-

GRAIN lines ranged from 27.6 to 79.7 lg/g (mean

49.8 lg/g) and the concentration of a-tocopherol from
9.1 to 19.9 lg/g (Lampi et al. 2008). A statistically
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significant correlation between the concentration of

total tocols and the release dates of the varieties was

observed, though this only accounted for 4% of the
variation in the dataset (Fig. 6d). No correlation was

observed between the concentration of a-tocopherol
(Vitamin E) and release date (Fig. 6c). Hussein et al.
(2012) similarly reported that there were no differ-

ences in the contents and compositions of tocols

between a smaller sample set of landraces (8 geno-
types), old cultivars (13) and modern cultivars (2) of

bread wheat.

B vitamins

The B vitamin complex comprises eight water-soluble

components which often occur together in the same

foods. Although they were initially considered to be a

single compound, the individual vitamins are not

related. Cereals, including wheat, are important

sources of B vitamins, providing about a third of the
total daily intake of thiamine (B1), 27% of the intake

of niacin (B3) and 33% of the intake of folate (B9) by

adults in the UK (Lockyer & Spiro 2020).
Wide variation has been reported in the contents of B

vitamins in wheat (Piironen 2009; Shewry et al. 2011b;
Shewry & Hey 2015). Six forms of folate, called vita-
mers, were determined in wheat and their total concen-

trations in wholemeal flours of the HEALTHGRAIN
lines ranged from 0.32 to 0.77 lg/g (mean 0.56 lg/g).
The proportions of the individual vitamers varied

between lines but contributed on average from 6 to

41% of the total (Piironen et al. 2008). No relationship
between the total concentration of folate and the age of

the varieties was observed (Fig. 6f).
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Figure 6 Contents of phytochemicals, including vitamin E (a-tocopherol) (D) and vitamin B9 (folate) (F) in wholegrain samples from the HEALTHGRAIN Diversity

trial. Lines are from simple linear regression, where the trend was statistically significant. In the case of total phenolic acids, the line shown is the back-transformed line

originally fitted on the log scale to ensure homogeneity of variance. Lines are shown where the estimated trend was statistically significant (P = 0.004, P = 0.008 and

P = 0.068, for total phenolic acids, total tocols and total stanols and sterols, respectively) explaining 5%, 4% and 2% of the variation according to the adjusted r2, respec-
tively. Data from Li et al. (2008), Lampi et al. (2008), Nurmi et al. (2008) and Piironen et al. (2008). [Colour figure can be viewed at wileyonlinelibrary.com]
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Discussion

It is clear from the studies discussed above that inten-

sive wheat breeding has resulted in increased accumu-

lation of starch, which is generally associated with a
decrease in the concentration of protein. Analysis of

the Austrian Heritage lines also indicates that there

have not been increases in proteins known to trigger
adverse reactions. Other effects of breeding on grain

composition are less clear, and the studies discussed in

detail here demonstrate the challenges.
One major challenge is that grain composition is

strongly affected by the environment (Shewry et al.
2010). Hence, it is essential to compare material
grown in replicated multi-environment field trials. Fur-

thermore, the varieties compared should be adapted to

the area of growth, to avoid the effects of environ-
mental stress. The HEALTHGRAIN study clearly did

not fulfil these criteria, and it is not surprising that

few correlations were observed, and, with the excep-
tion of starch and protein, these were marginal in sig-

nificance (accounting for between 2% and 5% of the

variation observed in the analyses). Nevertheless, the
analyses are of interest in that they show no major

changes in composition.

By contrast, the UK Heritage Wheat samples were
from replicated multi-site trials with an emphasis on

flour composition. Statistical analyses of these samples

showed positive correlations of release date with the
contents of arabinoxylan fibre (accounting for 21% of

the total variation), total sugars (41%) and betaine

(19%), and negative correlations with total amino
acids (15%) and individual amino acids including

asparagine (Lovegrove et al. 2020). These changes

have clear implications for human health.
Wheat is the most important single source of dietary

fibre in many diets, including the UK and Western

Europe, and the increased content of arabinoxylan
(the major fibre component) in white flour is certainly

desirable. The decreased concentration of asparagine
in modern wheats is also desirable as it reduces the

potential for the formation of acrylamide during pro-

cessing.
By contrast, the increases in fermentable monosac-

charides, disaccharides and oligosaccharides (sucrose,

mannitol, fructans) may be of concern to consumers
suffering from irritable bowel syndrome (IBS), as these

form part of the FODMAP fraction (fermentable

oligosaccharides, disaccharides, monosaccharides and
polyols) that exacerbate IBS symptoms (Gibson &

Shepherd 2010). However, wheat is already recognised

as a major source of FODMAPs in the diet

(Biesiekierski et al. 2011; Whelan et al. 2011) and

excluded by many IBS patients.
To conclude, the analyses discussed provide no evi-

dence that modern types of wheat have lower quality

for human nutrition and health, with the exception of
decreased levels of some minerals (including iron, zinc

and magnesium) which are discussed elsewhere. In

fact, there is evidence that they may be superior in
some respects, particularly in fibre content of white

flour. However, the analyses also show the challenges

facing researchers and the need for more datasets from
well-designed field trials.
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