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Peste-des-petits-ruminants virus (PPRV) is currently the focus of a control and

eradication program. Full genome sequencing has the opportunity to become a powerful

tool in the eradication program by improvingmolecular epidemiology and the study of viral

evolution. PPRV is prevalent in many resource-constrained areas, with long distances

to laboratory facilities, which can lack the correct equipment for high-throughput

sequencing. Here we present a protocol for near full or full genome sequencing of PPRV.

The use of a portable miniPCR and MinION brings the laboratory to the field and in

addition makes the production of a full genome possible within 24 h of sampling. The

protocol has been successfully used on virus isolates from cell cultures and field isolates

from tissue samples of naturally infected goats.

Keywords: peste-des-petits-ruminants virus, eradication, molecular epidemiology, full genome sequencing,

MinION, miniPCR

INTRODUCTION

With the development of new and portable sequencing equipment, it is now possible to
perform—in very basic laboratories—sequencing that was previously limited to well-equipped
laboratories (1–4). With a small thermocycler such as the miniPCR (Amplyus, Cambridge,
United States), the hand-held MinION sequencer (Oxford Nanopore Technologies, Oxford,
United Kingdom), and portable computational resources, full genome sequencing and advanced
molecular epidemiology can be performed in almost any setting (1–4). This is highly advantageous
for the diagnosis and control of viral diseases. This approach enables rapid sequencing-based
technologies in resource constrained environments, in addition to bringing the laboratory analysis
closer to the disease outbreak and reducing the time from diagnosis to full genome and
epidemiological investigations.

Peste des petits ruminants (PPR) is a highly contagious and deadly disease in
small ruminants (5). The cause is the peste-des-petits-ruminants virus (PPRV),
a single-stranded negative-sense RNA virus belonging to the genus Morbillivirus
(6). Other morbilliviruses include canine distemper virus, measles virus, feline
morbillivirus, marine morbilliviruses, and the now eradicated rinderpest virus (RPV) (7).
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PPR has a large socioeconomic impact, as small ruminants are
mainly kept by poor and rural populations that depend on
their animals for income and livelihood. Due to this, the Food
and Agriculture Organization of the United Nations (FAO) and
the World Animal Health Organization (OIE) have launched
a control and eradication program for PPRV to eliminate the
disease by 2030 (8). To reach this goal, accurate and well-
functioning diagnostic and epidemiological tools need to be in
place (9). The Global Strategy for Control and Eradication of PPR
(8) highlights that countries in stage 2 in the eradication program
(out of four stages), have to strengthen laboratory capacity with
molecular methods able to better characterize the collected virus
isolates (8). Use of the full genome to characterize isolates, rather
than only a partial sequence or genetic marker, ensures detection
of important changes within the genome (10).

PPRV is widely distributed in Africa and Asia. In many of
these areas, efficient transport of samples, with an unbroken
cold chain to a laboratory with the correct equipment, is
hard to achieve (9, 11). A broken cold chain during sample
transport risks degradation of the sensitive nucleic acid of single-
stranded RNA viruses such as PPRV. Analyses performed as
close to possible to the sample collection site avoids these
long transports (12). More accessible, less expensive, and more
timely full genome sequencing will lead to better comprehensive
surveillance and detection in the control of a disease such
as PPR. The implementation of these mobile methodologies
for molecular epidemiology will also increase the chances for
successful eradication.

Here we have developed a protocol for a quick, on-site,
field-adapted full genome sequencing of veterinary significant
virus diseases, with PPRV as an important example. The
protocol uses the highly portable miniPCR thermocycler and the
MinION sequencer.

MATERIALS AND METHODS

The full wet lab protocol is available at
DOI:dx.doi.org/10.17504/protocols.io.pnxdmfn.

Samples
A selection of samples of different origins was used to verify
the protocol. These included: (i) viral RNA collected from a
cell-culture grown virus (Vero-SLAM cell line), isolate Nigeria
75/1, kindly provided by Dr. Siamak Zohari, National Veterinary
Institute (SVA), Uppsala, Sweden; (ii) RNA from field samples
representing all currently known lineages of PPRV (cultured
on the CV-1-SLAM cell line), kindly provided by Dr. William
G. Dundon, International Atomic Energy Agency (IAEA),
Vienna, Austria, [KP789375 (13), KR781450, KR781449 (14) and
KM463083 (15)]; and, (iii) two field isolates (tissue) collected by
Tebogo Kgotlele and Prof. Gerald Misinzo from an outbreak in
goats in Dakawa, Morogoro region, Tanzania, in 2013 (16).

Primer Design
Two sets of multiplex full-genome primers were designed using
Primal Scheme (http://primal.zibraproject.org) (17). One primer
set had an amplicon length of 800 base pairs (bp) and an overlap

TABLE 1 | Complete genomes used to generate the multiplex primers with the

primal scheme.

Accession no. Lineage Country Year

EU267273.1 I Cote d’Ivoire 1989

KR781451.1 II Cote d’Ivoire 2009

KR828814.1 II Nigeria 2012

X74443.2 II Nigeria 1975

KJ867540.1 III Ethiopia 1994

KJ867543.1* III Uganda 2012

KJ867541.1 IV Ethiopia 2010

KR828813.1 IV Nigeria 2013

*First genome in file.

of 100; the other primer set had an amplicon length of 600
bp and an overlap of 40. Primers were designed using eight
full genome sequences representing all known lineages available
at the NCBI GenBank (Table 1). Primers, for the 600-bp and
800-bp amplicons, are available in the Supplementary Material
(Tables S1, S2).

RNA Extraction, cDNA Synthesis, and PCR
Amplification
QIAamp Viral RNA Mini kit (Qiagen) was used according to the
manufacturer’s instructions to extract RNA from tissue samples
from Tanzania (sample type iii). The other samples were shared
with us as extracted RNA. cDNA synthesis was performed using
Superscript IV First-Strand Synthesis System (Invitrogen) with
11 µl of RNA, according to the manufacturer’s instructions. PCR
amplification was performed using theQ5Hot Start High Fidelity
Polymerase (New England BioLabs) according to the protocol
in (17). The protocol divided the multiplex primers into two
pools with an even amount of primer pairs, and was run on the
miniPCR thermocycler. The amplicons were then purified using
AMPure XP magnetic beads (Beckman Coulter) or HighPrep
PCR Clean-up System (MagBio Genomics Inc.) with a 1.8× bead
ratio and quantified using Qubit 1.0 Fluorometer dsDNA HS
assay (Thermo Fisher Scientific). To verify the amplification,
a 1% agarose gel electrophoresis (6–7 V/cm, 50–60min) was
performed, this is however optional in the final protocol.

Nanopore Library Preparation and
Sequencing
Sequencing libraries were prepared using the SQK-LSK109
Ligation Sequencing Kit and EXP-NBD104 Native Barcode
expansion (Oxford Nanopore Technologies) according to
manual and previously suggested modifications (17, 18). The
purified PCR amplicons were repaired and A-tailed using the
NEBNext Ultra II End Repair/dA-Tailing module (New England
BioLabs). Native barcodes and adaptors were ligated to amplicons
using Blunt/TA Ligase Master Mix (New England BioLabs). The
library was then sequenced on a MinION Flowcell R9.4. for 10 h.
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Data Analysis
The docker, as well as guidance for replication of the study is
available at (www.github.com/Ackia/Field_Seq). In addition to
this, a suggested user protocol is included in the protocol at
protocols.io (DOI: dx.doi.org/10.17504/protocols.io.pnxdmfn).
The process in short; raw reads were basecalled using GUPPY
(version 3.1.5. used for the publication. FASTQ files are
available in repository PRJEB35549). Read-set composition

FIGURE 1 | Gel electrophoresis of purified 800-bp PCR amplicons. The blue

marker indicates the 800-bp size marker. Full gel image available in

Supplementary Material.

and quality were assessed using plots produced by PycoQC
(19). Demultiplexed read-sets were checked for purity using
Kraken 2, and results were visualized in Pavian (20, 21).
The read-sets were aligned to the reference genome (RefSeq
assembly accession: GCF_000866445.1) using minimap2 (22).
The resulting alignment file was sorted and converted into an
index bam-file for further processing with samtools (23). BED
files were created, representing the coverage of the sequence
reads against the reference genome. BED files were further
visualized using R and ggplot (24, 25). Consensus sequence
were extracted using samtools and bcftools (23). Whole-genome
comparison of sequence identity was performed using sourmash
with the sequences of good quality (coverage x50 > 80%)
reported from MinION sequencing (26). Based on the sourmash
results, representative sequences were selected andwhole genome
comparison was performed between the consensus sequences
produced with the FieldSeq protocol and the reference sequences
usingMashtree (27). The tree fromMashtree was visualized using
R and ggtree.

RESULTS

Gel electrophoresis following PCR amplification of Nigeria 75/1
virus cultured on Vero-SLAM cells showed two bands—one very
clear at 800 bp, and a second, weaker band at approximately 2400
bp (Figure 1). These longer amplicons are not seen on the gel
electrophoresis image for the Tanzanian field samples. However,
a strong band is seen at 800 bp. For the samples cultured on CV-1
cells, the gel electrophoresis image shows a narrow band at 800
bp, together with a wide selection of bands of all sizes.

Sequencing of the Nigeria 75/1 isolate produced 741,787 raw
reads for the 800-bp primer set and 629,875 raw reads for the
600-bp primer set. The 800-bp primers gave a genome coverage
(>50×) of 98.6% and an average coverage of 4,602 reads, whereas
the 600-bp primers produced a genome coverage of 99.5%, with
an average coverage of 4,586 reads (Table 2). Following this first
evaluation of the primer sets, we found that the 800-bp primer set

TABLE 2 | Results from sequencing using the Oxford Nanopore MinION sequencer.

Sample

(lineage)

Raw reads Total bp N50 length

(bp)

Reads mapped

to PPRV

Average

coverage

Genome coverage

>50× (%)

Genome coverage

>25× (%)

Source

Nigeria 75/1*,

800 bp (II)

741,787 660,217,802 870 672,805 4601 98.6 99.4 Cultured on

Vero-SLAM

Nigeria 75/1,

600 bp (II)

629,875 500,972,391 630 597,110 4586 99.5 99.5 Cultured on

Vero-SLAM

Senegal-69 (I) 721,283 483,015,988 753 10,196 416 49.6 71.8 Cultured on CV-1**

Benin-69 (II) 945,266 619,883,689 826 35,716 554 78.9 87.5 Cultured on CV-1**

Benin-11 (II) 354,531 221,621,251 779 47,828 460 66.4 79.2 Cultured on CV-1**

Kenya-11 (III) 1,123,782 662,242,080 736 178,526 2311 85.0 88.8 Cultured on CV-1**

Turkey-12 (IV) 776,693 500,690,835 748 11,554 493 67 79.8 Cultured on CV-1**

Tanzania-13a (III) 947,742 707,688,820 782 771,053 4340 91.2 93.0 Field isolate

Tanzania-13b (III) 1,418,713 1,089,046,940 780 1,197,778 4506 93.5 93.5 Field isolate

*Mean from duplicate runs.

**Stably transfected with a plasmid expressing the goat SLAM receptor.
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FIGURE 2 | Genomic comparison of whole genome sequences of PPRV from the NCBI GenBank and the isolates with consensus sequences from the minION

sequencing that produced quality sequences (>80% of the full genome). All isolates placed in the comparison according to their previously known lineage. Included

consensus sequences are indicated by black dots. Isolates with purple branches indicated lineage I, isolates with green branches indicate lineage II, isolates with blue

branches indicate lineage III, and isolates with red indicate lineage IV.
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gavemore even coverage of the PPRV genome, including a higher
coverage of the ends of the genome. A possible explanation of
this could be the increase overlap of the amplicons for the 800 bp
primer set, around 100 bp instead of around 40 bp. On the basis of
this result, we decided to continue working with only the 800-bp
amplicon primer set for further samples (coverage comparison
of both primer sets is available in Supplementary Material,
Figure 1).

The Nigeria 75/1 isolate, the first trial sample, was run in
duplicate to evaluate the reproducibility within a single run.
The duplicates produced 709,440 and 636,171 reads that mapped
against PPRV, with an average coverage of 4,454 and 4,749 reads.
This was considered as an equal performance of the duplicates,
which were henceforth presented as a mean of the two (Table 2).
A total of 672,805 reads was mapped to the PPRV genome to give
a coverage (above 50×) of 98.4% of the full genome (Table 2). For
the isolates cultured on CV-1 cells, the protocol was run using
the 800-bp multiplex primers. The total number of raw reads
varied between 354,531 and 1,123,782; however, most reads did
not map against the PPRV reference genome (Table 2). Despite
this, an average of 69.4% of the genome was covered above
50×. For the two field isolates from Tanzania, the sequencing
results were 947,742 and 1,418,713 raw reads, respectively, out
of which 771,053 and 1,197,778 reads mapped to the PPRV
reference genome (Table 2). For these isolates, 91.9% and 93.5%
of the genome had coverage above x50. The whole genome
sequences with good quality were compared based on nucleic
acid similarity and grouped based on distance using mashtree
(Figure 2). The sequences produced on MinION showed good
conformity with previously sequenced genomes based on lineage
and previous sequencing.

DISCUSSION

Here we have presented a protocol for full genome sequencing of
the peste-des-petits-ruminants virus (PPRV) using the miniPCR
thermocycler and Oxford Nanopore MinION. Both are suitable
for use in a minimally equipped laboratory facility or even
directly in the field. PPRV is currently the target of a control
and eradication program, launched by the FAO and OIE in
2015, with a goal of eradication by 2030 (8). The success of this
program depends on vaccination campaigns and the ability to
quickly diagnose and trace the source of an outbreak (8). PPRV
most often occurs in areas that lack infrastructure and laboratory
facilities (11), making it difficult to reach a quick diagnosis
or do adequate epidemiological investigations. Moreover, long
transports of samples increase the risk of degrading the sensitive
viral nucleic acid in the sample, leading to false negative results
(5). By bringing the laboratory closer to the outbreak, these risks
are minimized and the time from recognizing clinical signs to a
molecular epidemiological investigation is significantly reduced.

The proposed protocol does not require an expert laboratory-
or sequencing technician, but it does need a basic understanding
of contamination avoidance and handling of laboratory
equipment. We estimate that, assuming previous training in
basic pipetting skills, this protocol can easily be performed

FIGURE 3 | Workflow and estimated time required for each step of

the protocol.

following one full run-through auscultation. The loading of
reagents to the MinION flow cell requires the most practice,
which can be done on used flow cells, or this single step can be
performed by more experienced personnel. The time needed to
run the full protocol, from the purification of RNA to analyzed
sequences, is around 22–24 h (Figure 3). The protocol does not
include instructions for RNA purification. In a field setting,
either a spin column protocol using a small battery-driven
centrifuge would be a good option or a magnetic bead-based
system (as the latter is also needed in other steps of the protocol).
Table 3 gives a full list of reagents and cost calculation. With our
protocol, a full genome is possible to produce for under USD 100
per sample. Washing and reusing the flow cells reduces the cost
even further, to around USD 80 per sample.

With good quality virus isolates, this protocol performed well
and yielded a full genome with a mean coverage of around 4,500
reads. To standardize the quality assessment of the many new
high-throughput sequences being produced, Ladner et al. suggest
five standard sequenced viral genomes could be placed in (10).
For molecular epidemiology, they suggest the standard “Coding
complete,” whichmeans 90–99% of the genome is sequenced with
no gaps, all open reading frames (ORFs) are complete, and the
average coverage is 100×. The sequences produced using our
method meet these requirements when the virus isolates are of
good quality.
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TABLE 3 | Reagents used within the protocol, with cost calculations based on prices stated on suppliers’ homepages in September 2019.

Reagent Product number Source Cost/unit Cost/sample

(USD)

RNA extraction variable

SuperScript IV first-strand synthesis system 18091050 ThermoFisher Scientific USD 2978 (200 reactions) 14.89

Multiplex primers SigmaAldrich variable, our 800-bp primers cost USD

158 for 100 µM/primer

0.02

Q5 hot start high-fidelity DNA polymerase M0493L New England Biolabs USD 532 (500 reactions) 1.10

dNTPs (10µM each) R0192 ThermoFisher Scientific USD 88 (1ml) 0.13

HighPrepTM PCR clean-up system AC-60050 MagBio Genomics USD 526 (50ml) 1.40

Qubit dsDNA HS assay kit Q32854 ThermoFisher Scientific USD 289 (500 reactions) 1.73

NEBNext Ultra II End Repair/dA-tailing module E7546L New England Biolabs USD 795 (96 reactions) 4.10

Native barcoding expansion 1-12 EXP-PBC001 Oxford Nanopore USD 288* 4

Blunt/TA ligase master mix M0367L New England Biolabs USD 520 (250 reactions) 20.80

Ligation sequencing kit (incl. FlowCell

priming Kit)

SQK-LSK109 Oxford Nanopore USD 599 (6 reactions) 8.30

MinION flow cell R9.4.1 Oxford Nanopore USD 500–900/flow cell, depending on the

quantity ordered**

42

Total USD 98.5

*Contains 12 unique barcodes and enough of each to use in 12 different sequencing libraries.

**Possible to wash up to 5 times, then USD 8.4/sample and total USD 81/sample (including the cost of Flow Cell Wash kit).

For the first run using the cell culture grown Nigeria 75/1
isolate the coverage is over 100× for the entire genome, missing
only a piece of the virus poly-A tail (Figure 4). There is a slight
decrease in coverage in the intergenic region between the matrix
(M) and the fusion (F) protein gene (nucleotide position 4,445–
5,526), as well as a short region close to the end of the genome.
The M and F intergenic region is the longest intergenic region
in the PPRV genome and is rich in GC content and secondary
structures (28). These properties makes the region difficult for
both primer design and amplification. This region have the lowest
coverage in all the sequenced isolates, and was problematic for
both studied primer sets. In the isolate from Tanzania it is the
only region with low coverage (Figure 5), however the coverage is
above zero and for molecular epidemiology the ORF are of most
importance (10).

In the isolates cultured on CV-1 cells, we did not get equally
good coverage over the full genome as we did for the Nigeria 75/1
and Tanzanian isolates (Figure 6, Table 2). The majority of the
reads from the CV-1 samples instead mapped against the human
genome. We suspect this is due to the low concentration of viral
RNA, degradation of the viral genomes in the samples, and that
the human sequences were mistakenly interpreted as such but in
fact, had originated from the CV-1 cells (African Green monkey
kidney cells). Even though this is not a perfect result, it shows
how this protocol works with degraded and damaged samples.
Despite the reduced coverage of the genome, we were able to
extract 49.6–85.0% (with >50× coverage) of the full genomes
in these five samples with an average coverage well above 100×
for them (Table 2). The regions with lowest coverage for these
isolates were the same for these as for the isolates of better quality,
the M-F intergenic region and a region toward the end of the
genome within the large protein, exemplified by the Kenya-11

isolate in Figure 6. Coverage plots for all sequenced isolates are
available as Supplementary Material.

The four samples that produced above 80% of the full
genome (Nigeria 75/1, Tanzania-13a/b, and Kenya-11) were used
in a genomic comparison together with other available whole
genomes (Figure 2). The Nigeria 75/1 isolate that performed
excellent in the protocol placed together with the Nigeria 75/1
sequence collected from the database. The isolate from Kenya
(Kenya-11) was previously sequenced with the accession number
KM463083 (15) which is also included in the comparison.
These two whole genome sequences is slightly seperated. This
is probably due to the sequences produced using the protocol
suggested here is not covering 100% of the genome, wheras the
published sequence is full and produced by Sanger sequencing.
They do, however, place within the same branch, together with
other islolates from lineage III of PPRV.Within the same branch,
the two samples from Tanzania (-13a and -13b) are also placed
closed together, as expected due to the samples being collected
from the same outbreak. By comparing, the consensus sequences
produced by the described protocol with previously published
sequences produced using the other sequencing techniques; we
were able to evaluate the performance of the protocol. Other
comparisons of the minION sequencing technique to other more
traditional, and labor and equipment intensive have equally
found that the method produces high quality sequences (29).

A common practice is to use only the genetic marker, the
partial nucleoprotein sequence, to study the phylogeny of a PPRV
isolate, as these 255 nts is what the lineage is based on. This
increases the risk of missing important changes in the genome
outside of the marker, but these changes could be important in
the transmission routes and the virus evolution (10). Using the
full genome also enables the use of advanced phylogenies such as
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FIGURE 4 | Coverage plot of Nigeria 75/1(a) duplicate. The x-axis represents the length of the genome (15.948 nucleotides). The y-axis represents the sequencing

depth on a logarithmic scale. BED files, representing the coverage of the sequence reads against the reference genome, were visualized using R and ggplot.

FIGURE 5 | Coverage plot of the Tanzania-13a isolate. The x-axis represents the length of the genome (15.948 nucleotides). The y-axis represents the sequencing

depth on a logarithmic scale. BED files, representing the coverage of the sequence reads against the reference genome, were visualized using R and ggplot. A

majority of the genome was covered with over 100× sequencing depth, however in the intergenic region between the matrix and the fusion protein genes the

sequencing depth falls below ×20 (framed by red dotted lines and showed in detailed in lower half of figure).

those produced by alignments with VIRULIGN (30). The isolates
used to verify our protocol are from very different timepoints and
geographic regions. If the sequences had belonged to an ongoing

outbreak within the same area, this improved resolution of the
comparison could help determine the start and transmission
route of the outbreak. It would also have made it possible to
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FIGURE 6 | Coverage plot of the Kenya-11 isolate cultured on CV-1 cells. The x-axis represents the length of the genome (15.948 nucleotides). The y-axis represents

the sequencing depth on a logarithmic scale. BED files, representing the coverage of the sequence reads against the reference genome, were visualized using R and

ggplot. The coverage of this isolate was more uneven, however 85% was covered with ×50 sequencing depth. The lower part of the figure shows a detailed view of

two regions with lower coverage, the intergenic region between the matrix and the fusion protein genes (framed by red dotted lines) and a region close to the end of

the genome within the large protein gene (framed by blue dotted lines).

track the outbreak in real-time using tools such as Nextstrain
(12, 31). For such analyses during outbreaks, the viruses need
to be thoroughly sequenced. With our protocol, the production
of complete genomes from PPRV field isolates are simplified
and will hopefully lead to more full genomes being produced
and published.

The use of full genome sequencing for epidemiology and

disease surveillance is dependent on the sharing of data and

the uploading of the sequences to freely available databases.
A genome sequence viewed in isolation can only give limited

information (1). Currently, there are 74 complete PPRV genomes
available in the NCBI GenBank. Only two are isolated from a
wild ruminant: a Dorcas gazelle from a zoological collection in
the United Arab Emirates in 1986 (32, 33), and a Capra Ibex in
China in 2015 (34). One of the questions in PPR epidemiology is
the role of wild ruminants in the spread of the disease. Identified
cases in African wildlife are so far considered to be spill-overs
from domestic animals, but outbreaks of PPR have occurred
several times in Asian wildlife (35). With additional full genome
sequences available, this question could possibly be solved.

In conclusion, we have presented a field-adapted, easy to
follow, protocol for full genome sequencing of PPRV using
the miniPCR thermocycler and the MinION sequencer. With
high-quality isolates, the protocol produces a near-complete
genome for <USD 100 per sample. We hereby hope to increase
the number of complete genomes available for PPRV. More
genomes would allow evaluation of the virus evolution and more
precise molecular epidemiological investigations. In addition,
they would provide a basis for vaccine and drug development (3).
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