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Abstract—This article uses the two-level model (TLM) to predict
above-ground biomass (AGB) from TanDEM-X synthetic aperture
radar (SAR) data for Sweden. The SAR data were acquired be-
tween October 2015 and January 2016 and consisted of 420 scenes.
The AGB was estimated from forest height and canopy density
estimates obtained from TLM inversion with a power law model.
The model parameters were estimated separately for each satellite
scene. The prediction accuracy at stand-level was evaluated using
field inventoried references from entire Sweden 2017, provided by a
forestry company. AGB estimation performance varied throughout
the country, with smaller errors in the north and larger in the south,
but when the errors were expressed in relative terms, this pattern
vanished. The error in terms of root mean square error (RMSE) was
45.6 and 27.2 t/ha at the plot- and stand-level, respectively, and the
corresponding biases were −8.80 and 11.2 t/ha. When the random
errors related to using sampled field references were removed, the
RMSE decreased about 24% to 20.7 t/ha at the stand-level. Overall,
the RMSE was of similar order to that obtained in a previous study
(27–30 t/ha), where one linear regression model was used for all
scenes in Sweden. It is concluded that, using the power law model
with parameters estimated for each scene, the scene-wise variations
decreased.

Index Terms—Forestry, interferometry, synthetic aperture
radar (SAR), vegetation mapping.

I. INTRODUCTION

IN SWEDEN, remote sensing has long been used for wall-
to-wall forest mapping, demanded both by the wood in-

dustry and for more general mapping of natural resources. In
the past, satellite-based images with 25 m resolution were a
valuable resource. More recently, the entire country was laser
scanned, which resulted in forest mapping products [including
forest height and above-ground biomass (AGB)] with 12.5 m
resolution, with the majority of the forest covered between 2009
and 2015 [1]–[3]. However, due to the active management of
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Swedish forests and strict requirements on forest data, these
mapping products have already become outdated in many areas.
There is, therefore, a widespread demand for new, accurate
mapping products that can be repeated more frequently.

Since 2010, the German synthetic aperture radar (SAR) mis-
sion TanDEM-X has been mapping the Earth in order to generate
a new, global, accurate digital elevation model [4]–[6] and
provide spatial data for scientific use. It consists of two satellites
flying in a close formation, enabling bistatic acquisitions with
minimal temporal decorrelation. This X-band system (3.1 cm
wavelength) has proven to be an accurate tool for mapping of
forests [7]–[15], especially in areas with known topography,
where the phase height (PH), i.e., the elevation of the scattering
phase center above ground, can be determined. Many studies
have demonstrated that PH and AGB (or the closely related stem
volume) have a near-linear relationship [9], [11], [16], [17]. In
[16], national biomass and stem volume rasters were generated
for entire Sweden from the PH only, using one linear model for
the entire country.

In [8], it was observed that PH showed different sensitivity
to AGB in two test sites in Sweden, separated by almost 6° in
latitude, indicating the dependence of PH on forest type and/or
structure. Moreover, the exact relationship between PH and AGB
also depends on system parameters, such as baseline, incidence
angle, and polarization.

Numerous interferometric models and associated inversion
techniques have been introduced in the past to explain the
dependence of InSAR data on valuable forest parameters. The
interferometric water cloud model (IWCM) was first introduced
in [18]–[20] to explain the dependence of single-polarized,
repeat-pass interferometric C-band ERS-1/2 coherence on stem
volume, but it was later adapted for estimation of AGB from
TanDEM-X data over areas with known topography [21]. The
random volume over ground (RVoG) model was initially in-
troduced in [22] and [23] to estimate forest height from fully
polarimetric InSAR data, but was later extended for both forest
height and biomass estimation from TanDEM-X data [12], [13].
The two-level model (TLM) was introduced in [7] as a simplified
version of both IWCM and RVoG, allowing direct estimation
of both forest height and canopy density from single-polarized
InSAR data over boreal forests with known topography, without
the need for additional data (allometric models in the case of
IWCM, additional polarizations in the case of RVoG). In [8], the
two forest properties obtained from TLM inversion in [7] were
used for accurate AGB estimation over two test sites in Sweden,
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TABLE I
AGB PROPERTIES FOR FIELD DATASETS

whereas in [24], TLM was used with multitemporal TanDEM-X
data for monitoring of deforestation and forest growth.

In [25], stem volume prediction performance was assessed for
a TanDEM-X scene in northern Sweden for two scenarios: direct
estimation from PH using a regression model, and regression-
based estimation using forest height and canopy density metrics
obtained from TLM inversion [7], [8]. In both cases, local plot
data from the Swedish National Forest Inventory (NFI) were
used for estimating the regression model parameters. It was
found that local estimation of model parameters improved the
prediction performance compared with the approach where a
single model was used for the entire country [16]. No significant
difference could be found between the two scenarios.

In the previous studies, [16] and [25], a change of the re-
lationship between PH and AGB was observed for satellite
acquisitions made under frozen ground conditions. However,
when model parameters are estimated individually for each
scene, rather than nationally, such limitations can potentially
be overcome. In addition, this approach enables additional anal-
yses, such as influence of geographic location (i.e., latitude and
longitude) and weather conditions (primarily temperature and
precipitation).

The objectives of this article are first, demonstrating a large-
scale application of the TLM for more accurate predictions
of AGB. Second, evaluating the large-scale AGB estimation
performance at stand-level, with respect to geographic location
and weather conditions. Finally, using an error model to describe
how the performance changes with reference AGB.

II. MATERIAL AND METHODS

A. Study Area

Sweden was used as study area for this article. The country has
a land area of 41 million ha, of which 24 million ha is productive
forest. Sweden is located mainly in the boreal forest region,
although the southernmost parts are within the hemi-boreal
and nemoral regions. About 5.0 million ha cover mountainous
vegetation, 5.1 million ha are wetland, and 2.8 million ha are
farming land [26]. The forest is dominated by Norway spruce
(Picea abies (L.) H. Karst), Scots pine (Pinus sylvestris L.), and
birch (Betula spp.), where pine and spruce constitute about 80%
of the growing stock and birch about 12%. The current total
AGB is more than 1 800 million tonnes, with an average AGB
of 1 800 tonnes per hectare (t/ha). The forest can locally reach
approximately 600 t/ha (Table I), according to the Swedish NFI.

B. Field Data

Two datasets with field references were used. First, plot-level
data from the Swedish NFI were used to estimate the model

Fig. 1. Coverage of Sweden with the NFI plots (red) used for estimation of
model parameters. The TanDEM-X scenes are outlined in orange.

parameters (training) with regression. The NFI inventories an-
nually about 11 000 permanent (10 m radius) and temporary
(7 m radius) field plots, randomly located all over Sweden
[27], [28]. The plots are located in clusters, with separations of
several hundreds of meters to ensure no spatial autocorrelation.
The distances vary over the country, with larger separations
further north. For this article, only forested plots were selected
(Fig. 1), and the reference AGB was computed using established
equations [29], [30] using trees with a diameter at breast height
(DBH) ≥ 4 cm. To obtain a sufficient number of plots for each
satellite scene (20 were selected as lower limit), field data from
the entire period of 2007 to 2016 were used, and growth until
2016 was predicted for plots with outdated estimates [31]. This
resulted in on average 72 available plots per satellite scene, and
in total 25 520 unique plots for the entire country, where 333
scenes fulfilled the criteria of at least 20 plots. This was enough to
cover all forest in Sweden, since most scenes that were excluded
were located along the coastal borders with large parts located
in the sea, or along the mountain ridge, which has no forest. The
AGB properties of the field dataset are presented in Table I.

The second field dataset was provided by Sveaskog, a state-
governed Swedish forestry company. In 2017, they carried out
an extensive field inventory of 2 400 forest stands, distributed all
over Sweden. The purpose was to obtain an accurate estimate of
their entire forest holding, reference data for prediction model-
ing, and evaluation data for their previous forest management.
Due to the time difference between the satellite and field datasets,
clear-cut stands, and also stands largely overlapping with
nonforest land features (e.g., roads and mires), were removed.
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TABLE II
STAND SIZE PROPERTIES FOR FIELD EVALUATION DATASET

Fig. 2. Distribution of stand size in hectare for the stands used for evaluation.

This resulted in a total of 1 704 forest stands used for the
evaluation (Tables I and II). The inventoried stands were sampled
with circular plots of dynamic radius (from 5 to 10 m), using
a probability sample approach with a systematic grid, but with
random reference location. The radius was fixed for all plots
within a stand, but adjusted between stands, to obtain on average
15 to 20 trees per plot. This approach led to an average of 7 plots
per stand (5 to 12, depending on the stand size and shape). The
separate plot averages were used to compute the variance at
stand-level. Trees with a DBH > 4 cm were measured and the
species registered. The plot-level AGB was computed using the
same approach as for the NFI plots in the first dataset. Stand-level
estimates were computed as plot averages for each stand, and the
dominant tree species was determined. The stand size properties
are presented in Table II, and the distribution of stand size is
presented in Fig. 2.

In addition to field data, meteorological data in terms of air
temperature and precipitation were acquired from the closest
station available from the Swedish Meteorological and Hydro-
logical Institute (SMHI). SMHI provided a network of 226
weather stations, distributed across Sweden. For each scene,
the station with the shortest distance from the scene center was
selected, and the average daily temperature and the average daily
precipitation were obtained for the dates before each acquisition,
as the average values for the 1, 3, 7, and 14 preceding days.

C. Remote Sensing Data

This study used 420 TanDEM-X acquisitions collected over
Sweden between October 2, 2015, and January 31, 2016. The
height-of-ambiguity (HOA) is a crucial parameter determining
the sensitivity of InSAR data to forest height [23], [32], [33]. For

all used images, the HOA was between 46 and 68 m, resulting
in good forest height sensitivity and low likelihood of phase
ambiguities. The corresponding range of the effective baselines
was 107 to 139 m. The images were acquired during late fall
and winter conditions, with temperatures ranging from −32°C
to +11°C. The images were acquired in strip-map mode, HH
polarization, and with the single-look complex resolution of 2.5
m in slant range and 3.3 m in azimuth. The incidence angles at
the scene centres were all between 38° and 45°.

A digital terrain model (DTM) derived from the national
laser scanning data was provided by Lantmäteriet (the Swedish
National Land Survey) at 2 m resolution and with a height
accuracy better than 0.5 m. The DTM was used as ground
reference during interferometric processing.

D. SAR Processing

The TanDEM-X data were delivered in the Coregistered
Single look Slant range Complex format. Following a rather
common processing approach, explained extensively in [16], a
complex interferogram (γ̃) was computed using

γ̃ =
〈s1s∗2e−iφ0〉√
〈|s1|2〉〈|s2|2〉

(1)

where s1 and s2 are the two interferometric images, ∗ is the
complex conjugate operator, φ0 is the interferometric phase due
to topographic variations, and 〈·〉 denotes spatial averaging using
a window of 5×5 in range and azimuth, respectively.

Generally, the estimated value of γ̃ contains up to four differ-
ent contributions: spatial decorrelation due to geometric differ-
ences between s1 and s2, temporal decorrelation due to changes
occurring between the two acquisition dates, system decorrela-
tion due to system and processing artefacts, and signal-to-noise
decorrelation due to different noise representations. However,
for a well-designed, bistatic system like TanDEM-X, with suit-
able preprocessing (including common band- and wavenumber
shift-filtering), and a large number of averaged samples in (1),
γ̃ can be assumed to be dominated by volume decorrelation,
caused by the vertical distribution of scattering targets within
the imaged scene, with good forest mapping results [7], [8].

E. Two-Level Model

Volume decorrelation can be modeled for a given backscat-
tering profile σ(z) as [18], [19]

γ̃vol =
∫∞−∞ σ (z) eikzzdz

∫∞−∞ σ (z) dz
(2)

with z being the height above ground and kz being the vertical
wavenumber, which for a bistatic acquisition geometry is

kz =
2π

HOA
=

2πB⊥
λRsinθ

(3)

where HOA is the height-of-ambiguity, B⊥ is the perpendicular
baseline, λ is the wavelength, R is the average range, and θ is
the local angle of incidence. HOA is the height corresponding
to a 2π-phase shift in the interferogram, and it is the maximal
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height difference, which can be unambiguously resolved by the
interferometric system.

In the TLM, see [7], [8], [16], and [24], the forest is modeled as
two discrete scattering levels, ground and vegetation, separated
by the distance h. The vertical backscattering profile σ(z) can
thus be described as

σ (z) = (1− η) σ0
grδ (z) + ησ0

vegδ (z − h) (4)

where σ0
gr is the backscattering coefficient at the ground level,

σ0
veg is the backscattering coefficient for the vegetation, η is

the area-fill factor (the fraction of the total area covered by the
vegetation level), and δ(·) is the Dirac delta function. When
inserted in (2) and integrated, the expression simplifies to

γ̃TLM = 1− ζ + ζeikzh (5)

where ζ is the vegetation scattering fraction

ζ =
η

ρ+ η (1− ρ)
(6)

and ρ = σ0
gr /σ

0
veg is the ground-to-vegetation backscatter ratio

(when set to 1, equal ground and vegetation backscattering
coefficients are assumed).

If volume decorrelation is the dominant contribution to γ̃, h,
and ζ can be estimated from γ̃ by letting γ̃ = γ̃TLM , e.g., using
the equations provided in [7], [8]. The estimated h and ζ can
then be used as AGB predictors in a power law model, further
described in [8]

AGB = Khαζβ (7)

where K, α, and β are model parameters to be estimated from
reference data (in the following, NFI plots within each scene
were used as reference). As discussed in [8], the model (7) can
be motivated using a geometric argument, and it is similar to
empirical models used in laser scanning-based AGB estimation,
where h and ζ are typically replaced by a suitable height per-
centile and canopy density or canopy cover metric [9], [34].

F. Parameter Estimation

For each scene, the required SAR metrics were extracted as
mean values of the 30 m radius surrounding the available NFI
plot centers. This does not completely match the field plot radii
(7 and 10 m), but previous studies ([16], [25]) have shown, that
the use of a slightly larger area of the SAR data decreases the
variability and improves the estimation accuracy, in terms of
lower standard error. Twenty plots were used as lower limit
to estimate the parameters, otherwise the scene was skipped.
The PH values around 0 m can also cause instabilities due to
wrapping problems. To automatically identify such plots, the
average of the vegetation height of the pixels in the plot was
compared with the vegetation height obtained after averaging
the complex coherence over the plot followed by computing h
and ζ. Plots where the difference exceeded 2 m were assumed
noisy outliers and were hence removed. Additionally, plots with
h < 0 were removed, since negative vegetation heights have
no physical meaning, and they often appeared for plots with
(almost) no forest. To filter out erroneous NFI plots (primarily
due to clear-cuts after the inventory), regression was used and the

Fig. 3. Scatter plot of AGB estimated with TLM versus field reference plots.

estimated plots with |residuals| > 2.5 standard deviations were
removed. Then, (7) was linearized using the natural logarithm,
and linear regression was used to estimate the parameters K,
α, and β. The estimated model was used to predict the AGB
for all pixels within the current scene. Since the TanDEM-X
scenes were overlapping, some of the NFI plots were used
several times, for different scenes. When “double counting” NFI
plots, 31 526 were available and 22 284 plots used for estimating
the model parameters (compared with 25 520 in Table I). The
scatter plot (Fig. 3) illustrates the estimated versus reference
AGB at plot-level (training data). In total, 333 scenes passed
the processing criteria, which was still sufficient to cover the
Swedish forest, since the removed scenes were located along
the coasts (with a large fraction of the scene coverage over the
sea), in the mountains above the tree line, or over larger cities
(Fig. 4). However, two satellite passes did not fulfil the HOA
selection criteria and these areas are shown as missing data in
Fig. 4.

G. Evaluation

The AGB model (7) was evaluated with the NFI plots and
stand level inventory data, using root mean square error (RMSE)
and bias defined as

RMSE =

√
1

n

∑n

i=1

(
Ŷi − Yi

)2

(8)

Bias =
1

n

n∑
i=1

(
Ŷi − Yi

)
(9)

with Y being the reference, and Ŷ the prediction for plot or stand
i, and n denoting the number of plots or stands.

Additionally, the predicted error at stand-level was estimated
with a linear error model [35], which enabled comparisons with
other studies using other datasets, and it also enabled a graphical
illustration of how the error changed with the reference value.
The error model was defined as in [35]

TRS = λ0 + λ1 · T + ε (10)
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Fig. 4. Swedish prediction map of forest AGB, mosaicked from 333 TanDEM-
X satellite scenes. The white stripes represent missing data.

TABLE III
RESULTS OF TRAINING (PLOTS) AND EVALUATION (STANDS)

where TRS denotes the RS-based estimate, T is the true AGB
value, λ0 is a systematic displacement, λ1 makes the systematic
error change across the range of true values, and ε denotes
the random errors. There were two main purposes for using
the error model. First, to illustrate how the error varies with
varying reference value, instead of reporting a single value as
RMSE. Second, the error model provides estimates of the errors
in the field data, which were propagated to the reported ordinary
RMSE. It, therefore, allowed to also report the corrected (∗)
RMSE∗, where the variance contribution due to random errors
in the field data was removed (which was assumed to appear
due to the use of a sample instead of a completely inventoried
reference). Sampling errors are known to dominate the random
errors in field estimates [36].

III. RESULTS

A Training and Evaluation of Models

The models were validated on the NFI plots used as training
data, and evaluated on the stand-level inventory data provided
by Sveaskog.

The prediction error of AGB in terms of RMSE was larger for
the training data (45.6 t/ha) than the evaluation data (27.2 t/ha),
see Table III. This can be explained with the training data
representing plots of a few hundred m2, while the evaluation

Fig. 5. Scatter plot of AGB predicted with TLM versus field reference at
stand-level.

Fig. 6. Visualization of the error structure for the stand-level evaluation. The
solid line is due to the residuals, computed from λ∗0 and λ∗1, and the band width
represents the random errors as ±2σ∗

ε .

TABLE IV
ERROR MODEL RESULTS

stands could be much larger (Table II). The bias for the training
was negative (−8.80 t/ha), while the evaluated stands had a
positive bias (11.2 t/ha), see Table III. In the predicted versus
reference scatter plot (Fig. 5), some plots with low reference
AGB suffer from biomass overestimation. This can also be
observed in Fig. 6, which is a graphical illustration of the
error model (10) with parameters presented in Table IV. The
residuals were positive for low reference values, but then they
were decreasing until a negative bias was obtained for the largest
reference values.
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TABLE V
ESTIMATED PARAMETERS

The variance (due to random errors) was substantial, which
could be seen in the parameter σ2∗

ε in Table IV. Therefore, it
exceeded the bias (11.2 t/ha corresponds to 125 t2/ha2) as the
largest contributor to the MSE, although both error contributions
were of similar order. When the random errors (in terms of
sampling errors) were accounted for in the field data, the RMSE
decreased to 20.7 t/ha (28.0%). This implied, that approximately
23.9% of the original RMSE for evaluation (27.2 t/ha, Table III)
was due to sampling errors in this dataset.

B. Parameters

The parameters K, α, and β (estimated from the training
dataset) varied from scene to scene (Table V), where the scaling
factor K was fluctuating the most, and generally being larger
than in previous studies (these indicated K between 0 and 30,
α between 1 and 2, and β between 1 and 3) [25], [37]. A larger
value of K was compensating for a decreased sensitivity in h and
ζ, possibly due to the data being acquired in colder (and leaf-off)
conditions (as opposed to [8], where only summer acquisitions
were used). This was partly due to α being mostly between 0
and 1, which was related to the vegetation height h that tends to
be lower during colder conditions. The parameter β was related
to the canopy density ζ, which appeared to be less affected by
changing weather conditions. It was also most similar to previous
results.

Some of the predicted scenes passed the modeling criteria in
Section II, but with very large estimations of the K parameter.
These scenes were mostly estimated with a negativeα, which ap-
peared when the AGB approached zero, and caused an increase
of K. The correlation between K and α was −0.70, and the
corresponding correlation of K and β was 0.078. The scenes
with extraordinary K and α values were covering areas with
low biomass, and with PHs of only a couple of meters. These
observations confirm past experiences [7], [8], [38], [39], which
have shown that in this range of PHs, decorrelation effects other
than volume decorrelation are erroneously interpreted as volume
decorrelation, yielding significant forest height overestimation,
which then is compensated for with low α-values and high
K-values.

C. Influence of Location and Weather

The influence of location and weather conditions on the
parameter values was investigated for the training dataset (plot-
level). There were generally no strong tendencies concerning
location (Fig. 7), which indicated that the method is rather robust
against different latitudes and longitudes.

Neither could any clear trends be noticed when the parameters
were plotted against temperature and precipitation (Fig. 8). This

Fig. 7. Scatter plots of parameters versus latitude (a–c) and longitude (d–f).

Fig. 8. Scatter plots of parameters versus 3-day average temperature (a–c) and
parameters versus1-day average precipitation (d–f).

increases the potential of using the TLM approach in various
weather conditions. Although there was not a clear trend with
varying temperature in these data (regardless of temperature
length, 1 to 14 days), it has been reported that the freezing of trees
affects the PH by reducing the dielectric constant [16], [40]–[42].
To capture this effect, a 1-day average was assumed too short
to thaw frozen trees, while a too long sequence was expected
to disguise the changes actually appearing due to freezing.
Therefore, the scatter plots in Fig. 8 are showing the 3-days
average of temperature, and 1-day average of precipitation. The
precipitation was expected to affect the scattering directly, as
long as the forest was wet, and after three or more days such
water has usually evaporated.

The influence of location and weather conditions with respect
to the error, expressed as RMSE, was also investigated for the
training dataset. At first, a strong trend between the RMSE and
the location could be observed, both for latitude and longitude
(Fig. 9). However, since the AGB and height were generally
higher further south and closer to the coasts, plotting of the
relative RMSE eliminated this trend entirely.

A similar relation was noticed for temperature (Fig. 10),
where the temperatures were generally higher further south and
closer to the coasts. Hence, by observing the relative RMSE,
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Fig. 9. Scatter plots of RMSE versus latitude and longitude in absolute terms
(a and b) and relative (%), (c and d).

Fig. 10. Scatter plots of RMSE versus 3-day average temperature and 1-day
average precipitation (a and b) and RMSE in % (c and d).

the weather-induced effects were eliminated. Furthermore, no
precipitation appeared to have any clear impact on the relative
RMSE.

D. Influence of Tree Species

For the evaluation dataset, the dominant tree species was
registered for each forest stand. Therefore, the predicted versus
reference AGB could be plotted (Fig. 11) for the major tree
species (pine, spruce, and birch), which constitute more than
90% of the AGB at the national level. The influence of different
tree species was found negligible, with almost no differences
other than that spruce forest were generally reaching the highest
AGB, and the AGB at these levels were often underestimated.

IV. DISCUSSION

The TLM has been tested extensively in the past, especially at
the two Swedish test sites Remningstorp and Krycklan [7], [8],
[24], [37], but this article showed a promising performance for
many more scenes, covering a large area, and acquired during
more uncertain conditions with regard to weather aspects. The

Fig. 11. Scatter plot of predicted AGB versus reference divided per dominant
tree species.

evaluated approach appeared robust in a variety of weather
conditions and for various forest types, despite a large observed
range of model parameters. The accuracy in terms of RMSE
(27.2 t/ha, Table III) was similar as in a previous study (27.4 to
29.7 t/ha) that used the same TanDEM-X dataset, but slightly
different reference data [16]. The bias was also at approximately
the same levels (−8.80 to 11.2 t/ha for plot- and stand-level,
compared to−6.17 to 10.5 t/ha for two stand-level datasets) [16].

The approach of estimating the parameters individually for
each scene reduced the border effects between neighboring
scenes, which was caused by large scene-to-scene variations and
observed in a previous large-scale study [16]. This facilitates
mosaicking, but it also requires a rather extensive reference
dataset. Since the preprocessing of the TanDEM-X data also
requires a DTM, the presented approach might be most suitable
for frequent, large-scale mapping of forests for applications
such as commercial forestry and disaster management when an
accurate DTM is available.

A. Estimation Accuracy

A clear biomass overestimation was observed for forests with
low AGB (< 50 t/ha), most often represented by young or sparse
forest, with a lower tree height. This type of forest typically has
a larger ground contribution to the scattered radar signal than
a taller and denser forest, thus affecting the relation between
ζ and AGB. As the power law model parameters were esti-
mated individually for each scene using NFI plots, their values
are most optimal for forest types well-represented within the
training data. Moreover, for forests with lower heights, volume
decorrelation becomes less significant in comparison with other
decorrelation effects (mainly system and SNR decorrelation),
and the assumption of γ̃ = γ̃TLM is no longer valid. However,
if the assumption is still used, other decorrelation effects are
interpreted as volume decorrelation, leading to inflated forest
height estimates, as discussed in [7] and [8]. These effects result
not only in the observed AGB-dependent bias, but also in the
large observed variability of the power law model parameters
across the scenes.
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Two potential approaches can be used to mitigate the observed
AGB-dependent biases. First, prestratification of the forest type
can be used to estimate the parameters to the particular forest
structure, albeit at the cost of increased complexity of model
parameter estimation. Second, this issue can be decreased using
multitemporal and multibaseline data and additional approaches
correcting for decorrelation effects other than volume decorrela-
tion and changing values of the ground-to-vegetation backscatter
ratio (ρ), as proposed in [24].

The negative bias observed for the training data may ap-
pear unexpected, since regression was used to estimate the
parameters, but since linear regression was used with model (7)
transformed into the logarithmic domain, there was a nonlinear
relation of the bias when it was transformed back into linear
units. A correction for this logarithmic bias was tested but found
unsuccessful [43].

B. Error Model Implications

The stand-level accuracy (37% RMSE) is reasonably good for
Swedish conditions at the national level, although airborne laser
scanning (ALS)-based approaches give a better accuracy with
correspondingly about 17% to 22% [3]. However, comparisons
with other studies using relative accuracies may be misleading,
since it greatly depends on the mean of the sampled distribution.

Field-based methods using a relascope can often provide
stand-wise estimations of AGB and stem volume with about
15% RMSE, whereas systematic sampling using objectively
distributed circular plots can be in the range of 12% to 20%
RMSE, depending on the number of plots and the homogeneity
of the stand (normally about 4 to 10 plots per stand) [44]. With a
large number of plots, even more accurate estimates with smaller
errors can be obtained with these methods (4% to 8%) [45],
[46]. Such accuracy levels are better than the tested TanDEM-X
approach, but field samples are also restricted to much smaller
regions and requires substantially more work, making them
poorly suited for frequent forest mapping.

By applying the error model approach, the understanding for
the error was improved. From Fig. 6 it could be seen that the
lowest error was obtained for AGB values between 100 and
150 t/ha, and from Table IV it was noted that the variance (σ2∗

ε )
was a larger source of error than the bias, when computing the
RMSE. The error model provided estimators for compensation
of the field induced errors, which in our case was assumed only
due to the sampling approach. However, this error source was
surprisingly large, and when this contribution was considered
and adjusted for, the RMSE∗ decreased to 20.7 t/ha (28.0%).
This means, that adjusting for the field induced sampling error
removed 24% of the reported error. The error parameter values
should be compared with other studies in the future, to better
value the outcome of this article.

C. Influence of Location, Weather Conditions, and Forest Type

The large observed range of model parameters could not be
explained with the scene location (Fig. 7) or weather conditions
(temperature and precipitation, Fig. 8). Yet, these parameters
should not be disqualified as possible reasons, since other larger

disturbing factors may conceal a relation, especially when tem-
perature and precipitation are considered. Many studies have
indicated that weather factors affect SAR observations of forest
[16], [40]–[42], [47].

The sampling intensity of reference plots provided by the
NFI is sparser further north and closer to the mountains, which
might have caused the use of a larger fraction of forecasted
reference plots than in southern regions. The forecasting models
are generally rather accurate [31], [48], but sudden changes, e.g.,
due to storms cannot be captured, and this may have induced
noise that increased the instability of the parameter estimations.

The accuracy was similar regardless of the dominant tree
species (Fig. 11), which indicated that there is not necessarily
problems with mapping of deciduous forest during leaf-off
conditions in the Scandinavian winter, at least not as long as
all images are acquired within the same season. This should,
however, be evaluated more extensively in future studies.

D. Relation to Other Models

A common and straightforward approach of applying InSAR
data is the linear scaling of PH to AGB. This approach has
shown good performance despite its simplicity, but it ignores
the effect of the interferometric configuration (e.g., HOA) and it
also requires reference data to estimate correct model parameters
[9], [11], [17], [49], [50]. This increases the need of correctly
selecting suitable acquisitions, but this approach is available and
intuitive for most users.

Other approaches, e.g., the IWCM and the RVoG model, have
also shown good performance in this type of studies, although
RVoG was rarely used for direct AGB estimation [12], [21], [38],
[39], [51]–[53]. To take advantage of their strengths, polarimet-
ric data would be required for RVoG-based approaches and allo-
metric equations would be needed for IWCM-based approaches.
Without the additional information, simplifying assumptions are
necessary to obtain a model with a sufficiently low number of
unknown parameters with regards to available observations.

V. CONCLUSION

This article proved the suitability of large-scale mapping of
forest AGB, using TanDEM-X data. Furthermore, the TLM
predictions were robust against both various forest types and
the most common weather effects (varying temperature and
precipitation as rain and snow) in Scandinavian conditions.
These aspects were investigated for the parameters that were
estimated scene-wise. The parameters K and α varied largely
between different scenes, and had a strong interdependence,
whereas β was more stable under the varying conditions.

The scene-wise parameter estimation reduced the apparent
scene-to-scene jumps in the predicted values, which is an advan-
tage for mosaicking over larger regions, and this is an important
conclusion compared to the approach of applying a single model
for the entire country, as used in a previous study [16]. The
accuracy in terms of RMSE was similar for both approaches.
The AGB estimation performance is indicative for stem volume
estimation as well, as these two metrics are highly correlated in
Sweden.
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The use of a linear error model [35] allowed for handling of
errors in the field data, induced by using a sampling scheme.
This improved the accuracy in terms of RMSE with about 24%,
which was reduced to 20.7 t/ha, a similar order as some large-
scale ALS applications. The error model parameters were used
to visualize the error versus reference values, which improved
the understanding for how the predictions were relating to the
truth, and better relate the systematic errors to the random errors.
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