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Abstract 
Methods for generating predictions of important and generally accepted indicators 
of udder inflammation and poor milk quality, such as somatic cell count (SCC) or 
changes in milk homogeneity, are few. The aim of this thesis was to investigate 
methods to identify indicators of mastitis and poor milk quality in dairy cows using 
data generated by automatic milking systems (AMS).  

The first part of the project investigated the relationship between SCC and data 
regularly recorded by the AMS using models that could capture nonlinear 
associations between the explanatory variables and the outcome. This information 
could be used in modeling the SCC. Furthermore, three statistical methods, 
generalized additive model, random forest and multilayer perceptron, were 
compared for their ability to predict SCC using data generated by the AMS. The 
results showed that equally low prediction error was obtained using generalized 
additive model or multilayer perceptron for prediction of SCC based on AMS data. 

The second part explored the dynamics of changes in milk homogeneity in cows 
milked in AMS using descriptive statistics for clots collected by inline filters, scored 
for density. Clots were found among certain cows and cow periods and appeared in 
new quarters over time. Models were fitted for detecting and predicting clots in 
single cow milkings as well as for detecting clots in milkings over a longer period. 
The models successfully distinguished periods of milking free of changes in milk 
homogeneity, although the detection and prediction performance was poor. The 
prediction target and severity grade of each density category is discussed. 

Keywords: udder health, somatic cell count, milk homogeneity, generalised additive 
model, multilayer perceptron, random forest, machine learning  
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Sammanfattning 
Metoder för att prediktera viktiga och generellt accepterade indikatorer för 
juverinflammation som påverkar mjölkens kvalitet, så som celltal eller mjölkens 
homogenitet, är fåtaliga. Syftet med denna avhandling var att undersöka metoder för 
att identifiera dessa två viktiga indikatorer för mastit och mjölkkvalitet hos mjölkkor 
genom att användas data som genereras från automatiska mjölkningssystem (AMS).  

I projektets första del undersöktes sambandet mellan celltal och data som 
genereras ur AMS med en generaliserad additiv modell, som kan fånga upp icke-
linjära samband mellan variablerna och responsen. Denna information kunde sedan 
användas för att modellera celltal med AMS-data. Vidare jämfördes tre metoder 
generaliserad additiv modell, multilayer perceptron och random forest för att 
prediktera celltal. Resultatet visade på lika låga prediktionsfel för den generaliserade 
additiva modellen som för multilayer perceptron.  

I den andra delen undersöktes dynamiken av homogenitetsförändringar i mjölken 
hos kor mjölkade i AMS genom att samla flockor med hjälp av filter monterade i 
mjölkledningen, samt poängsätta flockornas densitet på filtren. Flockor återfanns 
hos en begränsad grupp kor och ko-perioder samt förekom i nya fjärdedelar över tid. 
Flera modeller anpassades för att hitta och prediktera flockor i enskilda kors 
mjölkningar samt under en sammanhängande period. Modellerna lyckades mycket 
bra med att särskilja mjölkningar och perioder för kor som inte hade några flockor i 
sin mjölk medan prediktionen och detektionen av flockor var bristfällig. Säkerheten 
i mätmetoden av flockor samt graden av täthet på flockor och som bör kunna 
predikteras diskuteras.  

 
Nyckelord: juverhälsa, celltal, mjölk homogenitet, generaliserad additiv modell, 
multilayer perceptron, random forest, maskininlärning 
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On many dairy farms, milking the cows is stressful and heavy work. Farmers 
are bound to late evenings and early mornings, which affects the social life 
and freedom of farming families (de Koning 2010). This, together with 
increased labor costs, has driven the need for milking automation (Rossing 
& Hogewerf 1997). Since the first automatic milking system (AMS) came to 
market in 1990, interest in milking cows automatically has only increased 
(Svennersten-Sjaunja & Pettersson 2008). In 2010, 8000 cows were already 
being milked automatically in 25 countries (de Koning 2010), and today, 10 
years later, more than 50,000 AMS are milking cows in 50 countries 
(personal communication, Clara Secher, DeLaval International AB, Tumba, 
Sweden). This automation has changed not only the way of life of farmers, 
but also the nature of their labor (Lind et al. 2000). The role of the farmer, 
previously focusing on manual management in which milking the cows 
occupied most of the time, has shifted towards more flexible work and 
control activities, such as monitoring the outputs of sensor systems (de 
Koning 2010). 

One challenge on dairy farms is to manage udder health and ensure that 
high-quality milk is delivered to dairies. Mastitis, a disease affecting udder 
health and consequently the milk quality, is among the most serious diseases 
in dairy cattle (Viguier et al. 2009) and has a major impact on farm 
profitability (Halasa et al. 2007; Hogeveen et al. 2011). In AMS, sensor 
systems that can correctly identify cows with mastitis and alert the farmers 
before a milking that would yield milk of unacceptable quality are thus very 
important.  

1. Introduction 
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1.1 Mastitis 
Mastitis is an inflammation of the mammary gland, normally caused by 
bacteria. The condition can be divided into two main categories; clinical 
mastitis, a state with clinical signs in the milk with or without symptoms 
from the udder or general signs of illness, and subclinical mastitis, a state 
with no visible signs in the milk or udder (International Dairy Federation 
2011; Pinzón-Sánchez & Ruegg 2011; Ruegg 2012). Furthermore, clinical 
mastitis can be classified as mild, moderate, or severe depending on the 
clinical signs (Ruegg 2012). Generally, severe cases are defined by 
systematic illness together with abnormal milk, while mild cases are defined 
only by signs of abnormal milk but without other signs of local or systemic 
illness. Moderate mastitis could be defined as abnormal milk together with 
signs of inflammation of the udder (Ruegg 2012). Mild cases are more 
common than moderate cases, while severe cases are even rarer (Wenz et al. 
2001; Ruegg 2012). Mastitis could also be referred to as acute or chronic, 
depending on the duration of the condition (Viguier et al. 2009). Subclinical 
mastitis is often defined by an elevated somatic cell count (SCC), normally 
above 200,000, in the cows’ composite milk, i.e., from all four quarters 
(Schukken et al. 2003; International Dairy Federation 2013). Subclinical 
mastitis is far more common than clinical mastitis (Viguier et al. 2009; 
Ruegg 2012), harder to monitor (Ruegg 2012), and can sometimes develop 
into clinical mastitis (Hovinen & Pyörälä 2011).  

Mastitis and mastitis detection models are probably among the best-
described topics in the dairy literature (e.g., Rutten et al. 2013). This is 
probably because of the impact of mastitis on so many different areas, such 
as animal welfare, antibiotic use, production loss, veterinary costs, culling 
rates (Halasa et al. 2007; Viguier et al. 2009), and milk quality (Politis & 
Ng-Kwai-Hang 1988; Barbano et al. 2006). Generally, prevention is better 
than cure, and early detection and intervention can prevent mastitis from 
progressing from mild to severe and/or from acute to chronic. Also, freedom 
from previous episodes of mastitis seems to have a protective effect in terms 
of ability to recover from clinical mastitis later in life (Pinzón-Sánchez & 
Ruegg 2011). It is therefore of great importance to find and prevent mastitis 
cases in a timely fashion.  
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1.2 Indicators of mastitis and milk quality  

1.2.1 Visible indicators  
Changes in milk homogeneity and color 
Abnormal milk is often defined as milk that is deviant in terms of color, 
smell, or homogeneity. In particular, homogeneity changes, such as flakes or 
clots, are established indicators of clinical mastitis (Rasmussen, 2004; 
International Organization for Standardization, 2007; Kamphuis et al. 2013). 
Clots are also the most common deviation (Rasmussen et al. 2005). 
However, it is not entirely clear what makes the milk clot and the literature 
in this area is scarce. Some suggested reasons are, for instance, the 
agglutination of immunoglobulins with whey proteins, fat, or bacteria, 
changes in the casein fraction, and proteolytic activity due to the 
inflammation or infection process (Rasmussen & Larsen 2003).  

Milk color is affected by several factors, such as breed, stage of lactation, 
and feed (Agabriel et al. 2007), but could also reflect udder health. A reddish 
color indicates blood in the milk. Hemorrhage, i.e., the passage of blood cells 
through capillary walls into the tissues, can occur at any stage of lactation, 
but more frequently after calving or due to trauma (Muhammad et al. 2015). 
Bacteriological infection could also cause hemorrhage, since some 
pathogens are associated with blood in milk (Pyörälä et al. 2011). As blood 
will change the color of the milk, it can also be measured by color-measuring 
sensors (Rasmussen & Bjerring 2005; Kamphuis et al. 2008a). Watery or 
yellow milk could indicate a bacteriological infection from, for example, 
Escherichia coli (Lohuis et al. 1990), however not confirmed with certainty.  

A decrease in milk yield could be a sign of clinical mastitis (Hamann & 
Kr~smker 1997; Pyörälä 2003) or a consequence of subclinical mastitis, as 
indicated by the negative correlation between SCC and milk yield (Tyler et 
al. 1989; Koldeweij et al. 1999). However, a drop in milk yield is generally 
not a good indicator (Rasmussen 2004), since the problem is already 
established by the time the milk yield drops. 

Behaviors such as reduced lying time (Siivonen et al. 2011; Medrano-
Galarza et al. 2012; Fogsgaard et al. 2015) as well as kicking and leg lifting 
during milking (Fogsgaard et al. 2015) have been associated with mastitis, 
although the degree of pain might be the cause of such behaviors, which 
would therefore not indicate mild clinical mastitis cases (Medrano-Galarza 
et al. 2012). Behavioral changes are not widely investigated as input in 
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mastitis detection models, probably since the evaluation of behaviors is often 
based on quantitative measures captured by video recordings (Haidet et al. 
2009). Sensors, such as accelerometers, have been used to measure cow 
movement for the assessment of lameness (Pastell et al. 2009), and 
information regarding milk cups kicked off during milking can be obtained 
from AMS data. The effect of adding this type of information to clinical 
mastitis detection models remains to be evaluated.  

1.2.2 Non-visible indicators  

Somatic cells 
Somatic cells (leukocytes) are part of the immune system and are always 
present in cow milk to some extent (Leitner et al. 2012). Normal variability 
of somatic cells is a great part of the overall variability of a healthy cow’s 
udder (Quist et al. 2008; Forsbäck et al. 2010). The variability can depend 
on many factors, such as day-to-day variation, stage of lactation, breed, 
milking interval, parity (Nyman et al. 2014), or stress and trauma 
(International Dairy Federation 2013). However, an elevated SCC in the 
mammary gland is usually a sign of inflammation, since somatic cells are 
primarily released from the blood into the mammary gland in response to an 
invasion of bacteria in the udder (Pyörälä 2003; Schukken et al. 2003). Day-
to-day variation in SCC is also greater in infected cows (Chagunda et al. 
2006b). The definition of a healthy udder is suggested to be an SCC below 
200,000 cells/mL, while for a healthy quarter the corresponding level is 
suggested to be below 100,000 cells/mL (International Dairy Federation 
2013). The different cutoffs reflect the fact that it is often only one quarter 
that is responsible for a high SCC, i.e., inflammation in more than two 
quarters concomitantly is rather rare (Forsbäck et al. 2009).  

Elevated SCC levels also affect the quality of the milk (Politis & Ng-
Kwai-Hang 1988; Barbano et al. 2006), and many dairies apply penalties for 
delivering milk with SCC levels above a certain threshold. To keep track of 
the udder health of individual cows, as well as bulk tank SCC, many farmers 
worldwide choose to participate in dairy herd improvement programs in 
which cows are sampled for cow composite SCC (CMSCC) (Schmidt & 
Smith 1986; Schukken et al. 2003). The frequency of samplings can vary 
greatly depending on the testing scheme, which could be, for example, 
monthly, bimonthly, or a selected number of times per lactation. Sampling 
and storage procedures are crucial to obtain a representative sample and a 
correct sampling result (International Dairy Federation 2013). To meet the 
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requirements of dairies, samples at the cow level as well as at the bulk tank 
level are analyzed in a laboratory, generally according to standard procedures 
(International Organization for Standardization 2005, 2008).  

On the farm, the California Mastitis Test (CMT) can provide a quick and 
rough estimate of SCC at the quarter level by adding strip milk to a detergent 
that indicates the cell count by changing the viscosity to that of gel as an 
indication of SCC. The Wisconsin Mastitis Test is another option, suggested 
to be more precise but still only giving a rough indication of the SCC level 
(International Dairy Federation 2013). The use of fluoro-opto-electronic 
instruments, in which cells are fluoresced and counted using flow cytometry 
(Schmidt Madsen 1975; Kitchen 1981), is an established method to provide 
information regarding the CMSCC of cows’ milk. This is an accurate and 
precise method and also the only standardized method for determining SCC  
(International Organization for Standardization 2006; International Dairy 
Federation 2013) 

For AMS, online analysis equipment could be integrated in the milking 
station for on-farm analysis. One example is the online somatic cell counter 
(OCCTM; DeLaval International AB, Tumba, Sweden), an AMS-integrated 
sensor with the capacity to measure CMSCC at every milking. A 
representative milk sample is collected throughout the milking, and image 
analysis is used to count the somatic cells. The concordance between the 
OCC measurements in the AMS and the results of sample analysis by the 
dairy herd improvement program procedure is around 80% (Nørstebø et al. 
2019), which implies that this is an acceptably accurate and valuable tool for 
on-farm sampling. It is, of course, important that the costs of such a device 
do not exceed the gains from it in a particular milking system.  

Conductivity 
In a healthy udder, the major ions that contribute to the level of milk 
electrical conductivity are sodium, potassium, and chloride. The ion content 
can be measured by conductivity sensors. The electrical conductivity is 
temperature dependent and is between 4.0 and 5.5 mS/cm at 25°C in normal 
milk, with a variation of 0.1 mS/cm per degree Celsius (Wong et al. 1988). 
Low levels of sodium and chloride and a high level of potassium in milk are 
maintained by active cell metabolism. As an effect of a bacteriological 
infection, udder tissue is damaged and the levels of sodium and chloride will 
increase. To maintain the osmolarity, the level of potassium then decreases 
(Linzell & Peaker 1971). Because of this change in ion composition, the 
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electrical conductivity of the milk in the inflamed quarter will increase 
(Kitchen 1981).  

Measurements of differences in electrical conductivity between quarters 
say more about the inflammation status of a quarter than does the absolute 
electrical conductivity value alone (Nielen et al. 1995a; Kamphuis et al. 
2008b; Khatun et al. 2018), so within-cow comparison of quarters could be 
valuable in prediction models (Hamann & Zecconi 1998). The milk fraction 
of the measurements may also play an important role when comparing 
electrical conductivity between quarters. Electrical conductivity in the 
infected quarter is usually higher in the foremilk, decreasing in the main milk 
phase (Woolford et al. 1998).  

Biomarkers 
Biological markers or “biomarkers” can be defined as measurements of a 
biological state or condition, for example, indicators of pathogenic processes 
such as mastitis. Biomarkers suggested as indicators of mastitis are mainly 
chosen based on a specific increased enzymatic activity or increased 
concentration in relation to mastitis or intramammary infection (Bogin & Ziv 
1973; Chagunda et al. 2006b). One of the most commonly studied 
biomarkers is lactate dehydrogenase (LDH) (Chagunda et al. 2006a; Larsen 
et al. 2010; Åkerstedt et al. 2011). Early on, this enzyme was suggested by 
Bogin & Ziv (1973) as a mastitis indicator since it is one of the enzymes 
found to increase significantly in infected quarters. LDH is also positively 
correlated with SCC (Kitchen 1981). However, Nyman et al. (2014) found 
that LDH is affected by cow factors such as parity, days in milk, and period 
of sampling. The same observation was, to some extent, made for N-acetyl-
β-D-glucosaminidase (NAGase) (Nyman et al. 2014), an enzyme whose 
activity increases in infected quarters (Chagunda et al. 2006b; Larsen et al. 
2010; Åkerstedt et al. 2011) and that has predictive ability for some 
bacteriological infections (Emanuelson et al. 1987; Pyörälä & Pyörälä 1997). 

1.3 Automatic milking and mastitis 
Several aspects need to be considered when it comes to providing good milk 
quality as well as detecting cows with mastitis in AMS. Inspecting the milk 
for abnormalities is recommended (European Commission 2004), in addition 
to monitoring the bulk tank SCC and bacterial count. In systems with a 
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milker, the hygienic quality of the milk is partly monitored by pre-stripping 
before milking, although the method is not always applied (Wenz et al.2007; 
Nielsen & Emanuelson 2013). As no milker is required to be present during 
milking in AMS, the system must be able to detect deviations and issue alerts 
before milkings from potentially sick cows to prevent milk of unacceptable 
quality from ending up in the bulk tank. Many of the different changes in 
milk linked to mastitis could be detected using sensors. Interest in sensors 
was not new when AMS entered the market, and relevant sensors have been 
available for some time. The difference with the use of AMS is that the costs 
of deploying sensors can be decreased: since many cows are milked on the 
same unit, the number of units to be equipped is smaller than in parlors of 
the same capacity (Hogeveen & Ouweltjes 2002).  

1.4 Detection models 
Directly presented single-sensor values are rarely meaningful for the farmer 
(de Mol & Ouweltjes 2001), so combining information from several sensors 
using various algorithms is common. Mastitis detection systems based on 
data from different system-integrated sensors have been studied extensively 
since the introduction of the AMS (see, e.g., Hogeveen et al. 2010; Rutten et 
al. 2013). Since the first studies of mastitis prediction models (De Mol & 
Ouweltjes 2001), several approaches for this have been evaluated. 
Combining sensor information, such as electrical conductivity and SCC 
(Kamphuis et al. 2008b), electrical conductivity, milk yield, and milk color 
(Kamphuis et al. 2010), and electrical conductivity, milk yield, and LDH 
(Chagunda et al. 2006a), as well as adding cow information such as body 
weight (Jensen et al. 2016) has been attempted.  

1.4.1 Types of methods 
Some of the more common statistical methods investigated in udder health 
research combining sensor data to predict clinical mastitis are artificial 
neural networks (Nielen et al. 1995b; Cavero et al. 2008; Sun et al. 2010), 
multivariate regression (De Mol & Ouweltjes 2001), decision trees 
(Kamphuis et al. 2010), fuzzy logic (Cavero et al. 2006; Kamphuis et al. 
2008b), moving averages or thresholds (Claycomb et al. 2009; Mollenhorst 
et al. 2010; Khatun et al. 2017), and logistic regression (Khatun et al. 2018). 
The methods investigated in this thesis are summarized here.  
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Artificial neural networks 
The artificial neural network is designed to process information in a way 
similar to the human brain, basing decisions on patterns and relationships 
and learning from them (e.g., Agatonovic-Kustrin & Beresford 2000; Haykin 
2009). They also generalize and are adaptive, as artificial neural networks 
can be retrained to deal with minor changes in the data (Haykin 2009). On 
the downside, the method needs a lot of training data to avoid overfitting. 
Also, as artificial neural networks are “black box” algorithms, they provide 
little information regarding how each variable influences the outcome 
variable.  

The multilayer perceptron (MLP) is a classic feed-forward neural 
network based on the perceptron, which was introduced by Rosenblatt 
(1958). The perceptron is a single-layer feed-forward network that can 
accommodate multiple inputs while giving a single output. The MLP consists 
of linear classifiers with several perceptrons organized into layers. There are 
always at least three layers: one input layer, one hidden layer, and one output 
layer. Unlike a single perceptron, a MLP could potentially capture nonlinear 
relationships and interactions between explanatory variables in a flexible 
manner (Haykin 2009).  

Artificial neural networks are very popular in udder-health related 
research and have been suggested in several areas, such as clinical mastitis 
detection (e.g., Nielen et al. 1995b; Sun et al. 2010; Ankinakatte et al. 2013) 
and pathogen prediction (Heald et al. 2000; Hassan et al. 2009). Notably, the 
MLP is one of the suggested methods for pathogen prediction (e.g., Heald et 
al. 2000; Sun et al. 2010).  

Tree-based methods 
A decision tree is exactly what it sounds like, a tree-based method similar to 
a flow chart consisting of a series of splitting rules that starts at the top of the 
tree, turning into branches and leaves. Each branch represents the outcome 
of a test, for example, “true” or “false,” and the decision taken at the branch 
level is shown by the leaves, for example, the mean of the observed outcome 
values (James et al. 2013). Decision trees are easy to use, illustrate, and 
explain, and can also be used for regression as well as classification (James 
et al. 2013). The random forest (RF) is a method constructed of many 
decision trees, each trained on a different data sample by means of 
replacement (bagging), which prevents overfitting (Breiman 2001). Random 
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forests are easy to train and tune, so they are also popular for use in many 
areas (Hastie et al. 2009), such as medicine or economics. Furthermore, the 
importance of each variable can easily be determined (e.g., Wiener & Liaw 
2002), meaning that it is easy to understand what variables are the most 
important in explaining the outcome variable. Although decision trees have 
been investigated for predicting clinical mastitis (Kamphuis et al. 2010) or 
the levels of SCC (Sitowska et al. 2017), the RF has not been widely explored 
as a prediction method in udder-health–related research.  

Regression 
Linear regression is a straightforward approach to predicting the variable y 
using the explanatory variable x and assuming that the outcome variable y is 
continuous. Categorical outcomes, on the other hand, can be predicted by 
classification models such as linear discriminant analysis or logistic 
regression (James et al. 2013). By using additive models, or more precisely, 
generalized additive models (GAM), both types of outcomes can be fitted. 
Additionally, no parametric form (i.e., equation) is assumed between the 
outcome and the explanatory variables using GAM which allows more 
flexibility and also provides information regarding the relationship between 
the explanatory variables and the outcome variable (Hastie & Tibshirani 
1990). Generalized additive models have not been widely explored as 
prediction methods in udder-health–related research, but the studies 
conducted suggest that GAM perform better than neutral network when 
compared (Ankinakatte et al. 2013).  

1.4.2 Evaluation of detection models 
The performance of a clinical mastitis detection system is commonly 
described in terms of sensitivity and specificity values. The sensitivity is the 
proportion of milkings with abnormal milk correctly identified as abnormal 
by the detection system, while the specificity is the proportion of milkings 
with normal milk correctly identified as normal by the detection system. The 
International Organization for Standardization (2007) suggested that 
sensitivity should be >70% and specificity >99% for a system to be reliable 
and useful. Additionally, an sensitivity of ≥80% has been suggested to be an 
acceptable level in order to lower the number of false-positive alerts 
(Hillerton 2000; Hogeveen et al. 2010). 
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Generally, it is hard to compare the results between studies of clinical 
mastitis detection models due to the lack of a common “gold standard” 
definition (Hogeveen et al. 2010; Rutten et al. 2013). Thus, the definition of 
a “true” clinical mastitis case varies between studies, and even small changes 
in the gold standard definition affects the number of true cases and thereby 
the performance results of the model (Claycomb et al. 2009). As the main 
focus of detection models is clinical mastitis, hygienic parameters such as 
SCC or changes in milk homogeneity are not always included in the 
definition. Some examples of true case definitions are the results of 
bacteriological culturing, cases based on the treatment of clinical mastitis, or 
combinations of clinical signs together with an SCC of a certain level (Mein 
& Rasmussen 2008; Hogeveen et al. 2010).  

However, there is a standardized method for evaluating mastitis detection 
systems in AMS, proposed in the International Organization for 
Standardization Annex C (2007). This standard was suggested, supposedly 
applicable to all types of milking systems (Rasmussen 2004), when AMS 
were first introduced to the market. Generally accepted and widely practiced 
ways to determine the quality of milk and to monitor udder health are to 
measure the SCC and inspect the foremilk before attaching the cluster 
(European Commission 2004; NMC 2013). The suggested evaluation is 
therefore based on changes in milk homogeneity in combination with SCC 
using the CMT. In short, the test should be performed at three farms with at 
least 20 samples yielding abnormal test results, that is, milk containing clots 
>2 mm and with a CMT value >3 (e.g., 150,000 to 300,000 cells/mL). The 
recommended method to detect changes in milk homogeneity is pouring the 
milk through a filter with a pore size of 0.1 mm and looking for deposits, i.e., 
clots (Rasmussen 2005; International Organization for Standardization 
2007).  

Challenges  
The visual inspection of changes in milk homogeneity is suggested to be a 
universal and objective method to find sick cows and therefore also for 
evaluation of mastitis detection systems (Rasmussen 2005; Claycomb et al. 
2009; Kamphuis et al. 2013). However, knowledge regarding the dynamics 
of clots on quarter level is scarce. This is probably due to that looking for 
clots in milk is very time consuming (Kamphuis 2010), since the information 
regarding the cases needs to be manually collected, visually inspected, and 
scored. This is also valid for SCC, for which sampling requires manual work, 
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additional costs, or both. Investment in sensor systems such as the OCC 
could of course overcome the practical problems, but such sensor systems 
cannot profitably be installed in all types of milking systems, i.e., systems 
with several milking units such as automatic milking rotaries. Furthermore, 
the more frequent sampling of SCC could improve the monitoring of udder 
health (Sørensen et al. 2016), since increased sampling decreases the risk of 
udder health misclassification (Quist et al. 2008), although the increased 
sampling frequency also increases costs.  

In general, manual work is undesirable in AMS. Some types of manual 
executions are unsuitable or impractical due to safety concerns and work 
ergonomics, simply because AMS are not designed for them. Hence, 
methods for accurately predicting changes in milk, such as SCC or milk 
homogeneity monitoring, could play important roles in developing clinical 
mastitis detection models. Although predictions of SCC cutoff levels have 
been investigated (Mammadova & Keskin 2015; Sitowska et al. 2017; 
Ebrahimi et al. 2019), the usefulness of SCC cutoff levels has been 
questioned (Ruegg 2003). Furthermore, by using thresholds, important 
information, for example, changes such as increases or decreases in SCC, 
which can indicate an upcoming case or recovery, are overlooked.  
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The overall aim of the thesis was to investigate methods to identify indicators 
of mastitis and poor milk quality in dairy cows, specifically targeting data 
generated from AMS. The specific aims were therefore: 
 

 To better understand how to utilize and combine data from 
different sources as input information for prediction models.  

 To better understand the dynamics of milk homogeneity changes 
in cows milked in automatic milking systems. 

 To detect and predict changes in milk using data generated by 
automatic milking systems. 

  

2. Aims 
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A summary of the materials and methods used in papers I–IV is presented in 
this section. Papers I and II focus on CMSCC, while papers III and IV focus 
on changes in milk homogeneity. Data for papers I and II, and III and IV, 
respectively, were collected and prepared in the same ways, and the papers 
are summarized accordingly in this section. Detailed descriptions can be 
found in the corresponding sections of each paper. Some additional analysis 
(not presented in the papers) is included in the thesis and is duly introduced 
here. 

3.1 Data collection 
For papers I and II, data were collected during an eight-week trial milking of 
372 Holstein-Friesian cows twice daily in an automatic rotary. The cows 
were sampled for CMSCC during milking once weekly with a milk sampler. 
Samples were analyzed for CMSCC according to International Organization 
for Standardization/IEC (2005). Animal information was extracted from the 
herd management system, together with information from each milking. The 
milking data at the quarter level included electrical conductivity (mS/cm), 
mean and peak milk flow (g/min), and incompletely milked quarters 
(yes/no). Examples of milking data collected at the cow composite level were 
milking duration (minutes) and an index capturing the likelihood of mastitis, 
i.e., the mastitis detection index (MDi), incorporating different phases of 
electrical conductivity during milking together with the presence of blood in 
milk. 

For papers III and IV, data were collected at four commercial dairy farms 
milking 624 cows in a total of 10 AMS. Farms were selected based on 
additional sensor equipment available, such as OCC units at all farms and 

3. Materials and Methods 
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activity meters and LDH measuring equipment available at two farms. The 
cows involved in this data collection were mainly Holstein-Friesian. Each 
farm was visited on three occasions within 2–4 weeks; the author collected 
samples at all farms and was responsible for training two support persons. 
To identify clots in milk, visual milk inspection of all cow quarters milked 
during 30 consecutive hours (henceforth, “periods”) was conducted on each 
visit. The milk inspection was performed using a meshed filter installed 
along the milk tube (Figure 1), and sampling was performed separately for 
each quarter by inspecting filters for clots after each cow milking. If there 
were no signs of clots, the filter was cleaned with water and put back into the 
holder. If clots or suspected clots were visible on the filter, the filter was put 
in a holder in a black box and photographed together with information such 
as cow number and time (Figure 1). Data from the AMS used in the analysis 
in paper IV covered each period as well as 48 hours before each period. The 
data contained similar AMS information as the data collected for papers I 
and II, with some system-specific exceptions, and in addition also contained 
information on, OCC, cows’ hourly activity, and LDH.  

 

Figure 1. Installation of holders and filters along the milk tube, before the milk meter of 
each teat cup (left) and the box with holders where filters were photographed together 
with the information regarding the sample (right).  
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3.2 Data preparation 
Data preparation and cleaning as well as statistical analyses for papers I, II, 
and IV were performed in R (R Development Core Team, 2018). Details of 
all R packages used for each analysis are found in papers I, II, and IV. 
Statistical analyses for paper III were performed using SAS version 9.4 (SAS 
Institute Inc., Cary, NC, USA).  

3.2.1 Data for modeling and predicting CMSCC (I & II) 
Data from cows not included in the weekly CMSCC sampling were removed. 
The cows were grouped according to parity 1, 2, or ≥3 and all milking events 
for cows during the first week of lactation were removed. Observations of 
CMSCC without a complete setup of explanatory variables were removed, 
as were explanatory variable outliers. In total, <1% of the data were removed 
due to cleaning.  

The CMSCC values were transformed to a log10 scale, further referred 
to as log10CMSCC. To analyze the log10CMSCC outcome variable at the 
composite level together with the potential explanatory variables at the 
quarter level, new variables were created from the quarter variables and 
named with suffixes as follows, for instance: “max,” i.e., highest value of a 
variable within cow and milking session; “diff,” i.e., difference of a variable 
between quarters; “var,” i.e., variance of a variable within cow between 
quarters; and “min,” i.e., lowest quarter value within cow and milking. Past-
period records (lags) were added to all variables for seven days, i.e., 14 
milking sessions before each of the eight CMSCC sampling events. For 
paper II, the numerical variables and the outcome variable log10CMSC were 
also scaled, i.e., normalized with a mean value of zero and standard deviation 
of one.  

3.2.2 Data to describe and predict changes in milk homogeneity (III & 
IV)  

Density scoring of clots on filters 
The collected images of clots on filters were scored according to a scale 
ranging from 0 to 5: a score of 0 was defined as no signs of clots; a score of 
1 was defined as a trace; a score of 2 was defined as a mild case of clots; a 
score of 3 was defined as a moderate case of clots; a score of 4 was defined  
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Figure 2. Score, definition and aggregate area of deposits on the filters scored for density:  
0 = no sign of clots, none 
1 = trace, Ø < 3 mm  
2 = mild, Ø ≥ 3 mm  
3 = moderate, Ø ≥ 5 mm or approximately 10% covered  
4 = heavy, between 10% and 50% covered  
5 = very heavy assemble of clots, more than 50% covered  
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as a heavy case of clots; and a score of 5 was defined as a very heavy case of 
clots (Figure 2). Three assessors scored each image individually so that each 
image received three scores. If at least two out of three assessors’ scores 
agreed, that score was set as the quarter milking score (QMS), otherwise the 
score was removed from the dataset. Scorer agreement was assessed using 
Fleiss kappa with three raters (Fleiss 1971). 

Creating combined cow scores from the quarter density scores 
The QMS were combined into several different cow or quarter scores to suit 
the analysis for papers III and IV. The abbreviations of each are summarized 
in Table 1.  

In paper III, data from cows with at least two milkings during a sampling 
period were included in the analyses. Three basic definitions of scores were 
used: QMS, i.e., the score of the quarter milk sample from a single milking; 
the quarter period sum score (QPSS), i.e., the sum of all QMS per period and 
quarter; and the cow period sum score (CPSS), i.e., the sum of all QMS per 
period and cow. In addition, ΔCPSS was created for statistical modeling by 
subtracting the QMS from the CPSS to which it contributed at each quarter 
milking observation.  

In paper IV, the cow milk class (CMC) was computed for each cow at 
each milking; it was 1 if any QMS ≥2, and otherwise 0. The cow period class 
(CPC) was computed for each cow period by summing all QMS (1 to 5) in 
the period, dividing the sum by the number of quarters, and dichotomizing 
the result by setting two thresholds; periods when no quarter received a QMS 
≥3 or periods when no quarter received a QMS ≥4, respectively, were set to 
0 and thus excluded from the positive category. These two outcomes were 
labelled CPC.3 and CPC.4, respectively. Thus, each cow obtained one CMC 
for each milking and two CPC for each period, with a value of 0 
corresponding to a negative outcome and a value of 1 to a positive outcome.   

 
Table 1. List of abbreviations of combined scores created for papers III and IV 

Abbreviation  
QMS Quarter milk score 
QPSS Quarter period sum score 
CPSS Cow period sum score 
CMC Cow milk class 
CPC Cow period class 
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Preparing system data for model input 
For paper IV, AMS data from all farms were merged and cows received a 
farm-specific number. The cows’ hourly activity values were recalculated to 
two variables: a daily mean and a daily coefficient of variation. As the LDH 
values were available more sparsely due to the sampling scheme, the latest 
sampled LDH value within the 48 hours before each period was used for the 
analysis. Explanatory variables corresponding to quarters set as “not to be 
milk” were considered faulty and removed. Categorical variables with 
missing values were assigned an additional level indicating the missing 
value. All numerical explanatory variables were normalized and missing 
values were set to 0, except missing OCC values, which were imputed using 
RF imputation (Stekhoven 2013) and log transformed. Factor explanatory 
variables, such as cow number, parity, and breed, were converted to dummy 
variables. Data from three milkings before the milk inspection were used to 
create past-period variables (lags) for all explanatory variables. Data were 
merged with the data containing the computed cow scores and thereafter 
divided into 70% test and 30% training datasets using random sampling. 

3.3 Data analysis 

3.3.1 Potential explanatory variables and modeling CMSCC (I) 
Generalized additive models (Hastie & Tibshirani 1990) implemented in the 
mgcv package (Wood 2011) in R were used for the analyses. The AMS data 
collected for papers I and II were analyzed using log10CMSCC as outcome 
variable y. Each of the 934 explanatory variables was analyzed individually 
in an initial variable scanning together with the confounding variables 
lactation number (LN, factor), days in milk (DIM, linear variable), and Cow 
(random factor). Each individual explanatory variable, X, was fitted using a 
smooth function (non-parametric spline), unless X was a class variable, in 
which case it was fitted as a factor. The model for variable scanning also 
included Cow as a random effect. Hence, the following model was fitted for 
each X:  
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where i is an index for each cow,  an intercept term,  a fixed effect of 
lactation number,  a fixed effect of days in milk,  a random cow 
effect (assumed to be independent and identically distributed, iid),  
the non-parametric spline function of the explanatory variable, and  a 
residual term (iid).  

From the variable scanning, all explanatory variables for which P < 0.001 
were kept for further analysis. The variables were corrected for multiple 
comparisons using Bonferroni correction and tested for multicollinearity 
using the variance inflation test. The remaining explanatory variables were 
included in a final multivariable GAM:  

  

 

 
 

 
where the same notation is used as in the model for variable scanning. Here 
p is the number of explanatory variables included in the final multivariable 
GAM and j is an index for each explanatory variable. 

In paper I, two main model variations were created by either including all 
potential explanatory variables from the variable scanning, or by excluding 
MDi variables and investigating the impact of using observed values of 
electrical conductivity rather than values derived by the MDi algorithm. To 
evaluate how well the models would perform on milking data from restricted 
time periods before the CMSCC sampling event, six additional variations of 
both models were fitted with potential explanatory variables from various 
time periods (close to or distant in time from the CMSCC sampling). In paper 
I, the corrected Akaike information criterion (AIC) and proportion of 
variance explained were used for model evaluation.   

3.3.2 Method comparison to predict CMSCC (II) 
In paper II, three methods for predicting CMSCC were compared: the GAM, 
representing regression models; the RF, representing decision trees; and the 
MLP, representing artificial neural networks. In addition to the confounding 
variables, explanatory variables as model inputs were chosen based on 
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findings in paper I, and the explanatory variable setup comprised the MDi, 
different electrical conductivity variables, and low peak milk flow. The 
outcome variable in each model was weekly log10CMSCC. Four 
explanatory variable setups were evaluated for each of the three modeling 
methods: data with seven-day lags, data with three-day lags, and removing 
Cow as the explanatory variable from both day-lag variations.  

Constructing the models 
The GAM was fitted the same way as the multivariable GAM in paper I, but 
the random effect of Cow was set to zero in cases in which cow was missing. 
Since the expectation of a random effect without any information is zero, we 
could make predictions for all cows regardless of whether or not a particular 
cow was sampled 

The RF as well as the MLP were initially fitted using the seven-day-lag 
data for hyperparameter tuning, i.e., parameters to be assigned before 
training the models. For the RF, the “randomForest” package in R  (Wiener 
& Liaw 2002) was used, fitting several regression models while considering 
the number of decision trees between 250 and 2000. The lowest mean 
squared error (MSe) was obtained by the model using 1000 trees. The default 
number of variables selected in each tree was applied, since the MSe was 
very similar between models comparing different variables selected using 
the tune RF function (Wiener & Liaw 2002). 

The MLP was constructed with Keras for R (Chollet 2017), using the 
Keras model sequential. Two hidden layers were applied and the number of 
units in each layer was determined by running several models, with the 
validation split set to 0.2. In searching for the lowest validation MSe, 50–
500 units were evaluated; the optimal choice was found to be 200 units in 
the first layer and 100 in the second. Since the model was constructed for a 
regression problem, a single output layer was constructed using one unit. The 
default linear activation function (relu), which is suitable for regression, was 
applied in the first and second layers. For model compilation, ADAM, the 
stochastic optimization method (Kingma & Ba 2015) was used, since this 
optimizer works well even with little tuning of the hyperparameters. The loss 
function, showing the difference between the observed and predicted values, 
was set to MSe. For model training, the default number of times for full 
forward and backward propagation (10) was used with a batch size of 64.  
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Model evaluation 
Comparison of the three methods’ performance was evaluated in two ways: 
five-fold cross-validation by random sampling, with 80% of data used for 
model training and the remaining 20% for model testing, and prediction on 
future data, i.e., dividing the dataset to use data associated with milk 
sampling events 1–6 for training and with milk sampling events 7 and 8 for 
testing. The metric used for method comparison in paper II was the MSe. 
The MLP is a stochastic machine learning algorithm and some randomness 
is used during learning. Hence the results will be slightly different each time 
and were calculated as mean MSe over ten runs.  

3.3.3 Dynamics of density scores (III) 
Descriptive statistics were used to describe the variation in CPSS, QPSS, and 
QMS values. In a dynamic analysis of QPSS between periods, only QMS 
from cows meeting the inclusion criteria, i.e., with three periods and CPSS 
≥4 in at least one period, were used. To assess the likelihood of a single 
quarter being positive or negative in a period, a logistic regression model, 
with QMS as the outcome variable and the explanatory variables ΔCPSS, 
cow (repeated factor), breed, parity, period, quarter location, QMS status in 
previous period, days in milk, quarter milk yield (kg), and milking interval 
(time from previous milking) was fitted. GAM was used to investigate the 
functional form of the continuous variables, before inclusion in the logistic 
regression model. Results of the model in paper III are presented as predicted 
probabilities based on marginal means. 

3.3.4 Models to detect and predict changes in milk homogeneity (IV) 
In paper IV, several model variations were created to explore the ability to 
detect or predict changes in milk homogeneity. Two model variations were 
created using CMC as the outcome variable: a detection model, including 
data from the milking when clots were observed, and a prediction model, 
excluding data from the milking when clots were observed, i.e., using only 
the data from the three milkings before the milk inspection. Two model 
variations using CPC as the outcome variable were created, one for each 
level of clot density (i.e., CPC.3 and CPC.4, as defined above). The models 
included data from the first milk inspection of the period together with data 
from three milkings before the milk inspection.  
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Additional analysis 
To investigate the effect of including additional sensor data on model 
performance, one additional detection model using CMC as the outcome 
variable enlarged with the explanatory variables LDH, activity mean, and 
coefficient of variation of the daily cow activity, was created, using data from 
only the two farms from which these data were available. For comparison, 
the original CMC model was re-run on data from these two farms. 

Constructing the models 
The algorithm used in paper IV was the MLP, again constructed using the 
Keras model sequential (Chollet, 2017). One hidden layer was applied and 
the number of units in the hidden layer was 50, determined by running 
several CMC.D models with 5–500 units and evaluating the accuracy and 
loss of each model. The model was customized for a binary classification 
problem, so the output layer was constructed with two units, using an 
activation function that normalizes the model output into a probability 
distribution (softmax). Binary accuracy was chosen as the metric, calculating 
how often the predicted values equal the actual values. As in paper II, ADAM 
(Kingma & Ba 2015) was chosen for configuring the learning process and, 
additionally, the weight regularization kernel regularizer l2 was used to 
prevent overfitting. 

The CMC models were fitted with the default number of times (10) for 
full forward and backward propagation and the default batch size (i.e., 32). 
By setting the regularizer option to 0.005, the difference between validation 
loss and training loss was minimized. The parameters were again tuned for 
the CPC models, resulting in changing the number of epochs to 20 and setting 
the regularizer option to 0.05. Finally, each model variation was run 10 times 
on the training dataset. The performance of each of the ten model runs was 
evaluated on the test data by comparing the predicted and observed values 
and calculating the sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV), presented as the median over ten runs. 
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This section gives an overview of the most important results of papers I–IV. 
Detailed information on the results can be found in the corresponding 
sections in each paper. Some additional results (not presented in the papers) 
are also presented here.  

4.1 Modeling and predicting CMSCC (I & II) 

4.1.1 Important explanatory variables (I) 
The strongest statistical association with CMSCC was found for different 
electrical conductivity variables or variables incorporating electrical 
conductivity (e.g., the MDi). The MDi was also the most significant variable 
when included in the main model. When the MDi was excluded, the most 
significant variables were the variance of electrical conductivity between 
quarters, quarter electrical conductivity, difference in electrical conductivity 
between quarters, and the maximum electrical conductivity of a quarter. The 
overall results also indicated that the explanatory variables closer to the 
CMSCC sampling event were more significant. Nonlinear relationships, 
estimated by the screening model, were found for several of the explanatory 
variables, visualized by smooth plots expressing the nonlinear relationship 
between the variable and the outcome (Figure 3).  

4. Results 
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Figure 3. The partial effects of the: a) mastitis detection index, b) variance in 
conductivity between quarters, c) maximum quarter conductivity, and d) difference in 
conductivity between quarters estimated by the screening model. The pointwise 95% 
confidence interval is shown by the dashed lines. The vertical lines on the x-axis show 
the individual datapoints of each variable. The y-axis shows the composite milk somatic 
cell count. 

4.1.2 Modeling CMSCC (I)  
The model including all explanatory variables for seven days before the 
CMSCC sampling was the best model (lowest AIC and highest variance 
explained). However, compared with the results of models excluding the 
MDi variable, the differences in the AIC as well as in variance explained by 
each model were found to be small. The difference between the models 
restricted to data from three days before the CMSCC sampling event with or 
without the MDi was minimal. Models including milking data from the same 
milking as the CMSCC sampling had consistently lower AIC values, which 
implies that using data from closer to the CMSCC sampling resulted in better 
model performance. 

4.1.3 Method comparison for CMSCC predictions (II) 
In the method comparison, overall results indicated that the differences in 
MSe between the methods were quite small, larger for the RF than for the 
GAM and MLP. The differences in MSe were greater within method, 
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between explanatory variable setups for all methods except the RF, in which 
MSe was almost unaffected by any changes in variables. Removing the 
explanatory variable Cow from the models increased the MSe for all 
methods, for the GAM and MLP more than for the RF.  

The lowest MSe (i.e., best model) was found for the GAM, where MSe 
was equally low in both evaluations and for both explanatory variable setups. 
However, an equally low MSe was found in the five-fold cross-validation for 
the MLP using the three-day-lag explanatory variable setup, implying that 
the performance of the methods is very similar. This is also illustrated by 
plots of the results of predictions on future data using the three-day-lag 
explanatory variable setup (Figure 4). 
 

Figure 4. Observed versus predicted values of cow composite somatic cell count divided 
by 1000 on a log10 scale estimated by the (a) generalized model, (b) random forest, and 
(c) multilayer perceptron on future data, based on the explanatory variables for the three-
day lags.  
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Both the GAM and MLP (Figure 4a and c) displayed a more balanced pattern 
across the predicted axis than did the RF. The log10CMSCC values predicted 
by the RF (Figure 4d) were clustered around 1.5 on the x-axis, which 
indicates that the method overestimated the low log10CMSCC values.   

4.2 Milk homogeneity density scores in AMS (III & IV) 
In total, 21,335 milk inspections were performed during 5424 milkings and 
1656 periods of 624 unique cows. The number of samples with milk changed 
in homogeneity was 932 from 303 unique cows, and after discarding samples 
due to missing image, wrong cow number, etc., images of 892 quarters with 
scores >0 were available for the analysis, together with the 20,410 quarters 
with no identified clots (score = 0).  

Substantial agreement was achieved between scorers (0.72), and the 
scoring results were as follows: 379 images received a score of 1, 303 images 
received a score of 2, 135 images received a score of 3, 67 images received 
a score of 4, and eight images received a score of 5. The total prevalence of 
clots and traces (QMS >0) was 4.2%, and prevalence of clots (QMS >1) was 
2.4% in the total dataset from all periods. Of the collected samples, traces 
(QMS = 1) were found in 42%, mild and moderate cases in 49%, and heavy 
cases (QMS ≥4) in 9% (Figure 5). 

 

 
Figure 5. The results from the milk inspections showing the proportion of samples for 
each score.  
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4.2.1 Dynamics of density scores (III) 

CPSS distribution and score dynamics between periods 
The CPSS ranged from 0 to 50, with higher scores indicating more milkings 
with clots or heavier cases of clots in a period. A CPSS of 0 or 1 was found 
in a majority of periods, and in only 18% of the cow periods clots occurred 
(QMS ≥2). In 9% of the periods, CPSS values were ≥4, including 100% of 
the heavy, 88% of the moderate, and 69% of the mild cases. Hence, a 
threshold of CPSS ≥4 captured the periods and cows with the majority of 
high scores.    

The 88 cows in the subset of cows with three sampling periods and at 
least one CPSS ≥4 were analyzed further, including all scores and also 
including traces, as they were found to be overrepresented in this group of 
cows. Seven of these cows had a CPSS ≥4 for three repeated periods, 20 
cows for two repeated periods, and 61 cows for one period. The quarters with 
clots or traces, as well as the QMS scores, varied considerably between and 
within periods, as demonstrated in Figure 6. Of the 311 periods for cows with 
CPSS ≥4, 201 traces (QMS = 1) were found, which was 4.9 times higher per 
sampling period than in the remaining dataset; the corresponding numbers 
for QMS of 2 and 3 were 16.2 and 41.9 times higher, respectively.  

 

 
Figure 6. Examples of scores within milk inspections (MI), quarter period sum score 
(QPSS), and cow period sum score (CPSS) distributions for four cows with CPSS ≥4 in 
one or more periods. 
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Score dynamics within periods 
Of 338 quarters with scores of 2–5, 38% had QMS ≥2 at the following 
milking. A high QMS was related to a higher QMS at the following milk 
inspection. For QMS ≥4, 74% had at least QMS ≥2 at the following milk 
inspection, as compared with QMS = 2 being repeated in only 22% of cases. 

The logistic regression analysis showed that the linear and quadratic 
terms for ΔCPSS, previous QMS, days in milk, milking interval, lactation 
number, and farm were significantly associated with the probability of 
observing a positive QMS. The probability of a cow having a positive QMS 
decreased with increasing number of days in milk. A longer milking interval 
corresponded to increased odds of a cow having a positive QMS. 
Furthermore, the analysis indicated that the odds of a random quarter in a 
period having clots (QMS ≥2) increased with higher ΔCPSS. In general, the 
probability of any random QMS being positive was very low (2.4%). 

4.2.2 Detection and prediction of changes in milk homogeneity (IV) 
The results of all models, i.e., the detection and prediction of clots for a single 
milking as well as detecting cow periods with clots showed an low sensitivity 
(i.e., 14–26%), while the specificity was high (i.e., 97–100%). The PPV 
results were intermediate to high (i.e., 42–72%). Adding information 
regarding activity and LDH did not improve the prediction performance 
much compared with detecting clots for a single milking. These results are 
summarized in Table 2 below. 

Single milkings with clots 
The misclassification rate of the model detecting clots at single milkings was 
lower among CMC having QMS ≥3 as the highest score within the combined 
cow score. For CMC having QMS ≥4 as the highest score, 63% were 
correctly identified while CMC incorporating QMS = 5 as the highest score 
were 100% correctly identified. The trends were very similar for the model 
predicting single milkings with clots.  

Periods with clots in milk 
Models detecting cow periods with CPC.3 as the outcome (i.e., no quarter in 
the period received a QMS ≥3 in the negative category) performed better 
(i.e., had higher sensitivity) than did models detecting cow periods with 
CPC.4 as the outcome (i.e., no quarter in the period received a QMS ≥4 in 
the negative category), Table 2. The results were opposite in terms of 



 

45 
 

specificity, i.e., periods with CPC.4 as the outcome were easier to distinguish 
as free of clots.   
 
Table 2. Sensitivity, specificity, positive predictive value (PPV), and negative predictive 
value (NPV) for the cow milk class (CMC) as well as for the cow period class (CPC) 
model with two different cow period class thresholds (i.e., CPS.3 and CPC.4) 

 Sensitivity Specificity PPV NPV 
CMC.D1 0.26 0.98 0.53 0.95 
CMC.P2 0.25 0.98 0.47 0.95 
CMC.D1,3 0.23 0.98 0.42 0.95 
CMC.D1,4 0.22 0.97 0.38 0.95 
CPC.3 0.23 0.98 0.72 0.87 
CPC.4 0.14 1.00 0.71 0.94 

1Detection model using data from the milking of the milk inspection and three milkings before; 2Prediction model 
excluding data from the milking of the current milk inspection; 3Additional model using data from two farms 
with LDH and cow activity variable included; 4Additional model using data from two farms with LDH and cow 
activity variable excluded.  
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5.1 Modeling and predicting CMSCC (I & II) 

5.1.1 Explanatory variables considered for modeling  

Quarter conductivity 
Conductivity at the quarter level was found to be a strong explanatory 
variable for CMSCC, demonstrated by the scanning model as well as by both 
main models in paper I. The relationship between quarter conductivity and 
CMSCC has not previously been investigated using nonlinear modeling, 
which makes it difficult to compare the current results with previous 
findings. However, a positive relationship between SCC and conductivity 
has been reported (Hamann & Zecconi 1998), which was also found by the 
scanning model in paper I, as expected. The pattern (Figure 7) of the 
relationships between quarter conductivity and CMSCC differed greatly 
between the four separate quarters. The relationships were not always 
positive and differed the most for the left-rear quarter by being more linear 
and also, not significant in the scanning model. Using more data, i.e., 
conductivity data from more quarters with a wider distribution of values as 
well as a wider distribution of CMSCC values than we had in our data, might 
have equalized the difference between the patterns displayed by each quarter. 
Furthermore, it cannot be ignored that the SCC was collected at the cow 
composite level while conductivity was measured at the quarter level, which 
would affect the relationships found.  

Conductivity values from separate quarters alone have been stated to be 
a poor predictor of clinical mastitis (Kamphuis et al. 2008b; Khatun et al. 
2018). In contrast, the results in paper I suggest that maximum quarter  

5. Discussion 
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Figure 7. The effect of quarter conductivity on composite milk somatic cell count, 
estimated by the screening model. The pointwise 95% confidence interval is shown by 
the dashed lines. The vertical lines on the x-axis show the individual quarter conductivity 
datapoints.  

 
conductivity, i.e., the highest conductivity value within a cow udder, was 
important in modeling the CMSCC. Furthermore, the relationship between 
maximum quarter conductivity and CMSCC was clearly positive. This 
demonstrates that information regarding conductivity from single quarters 
could also be important to consider if CMSCC is the prediction outcome. 
Also, including variables from single quarters, such as maximum 
conductivity, might strengthen the prediction performance of models in 
which CMSCC is part of the outcome.  

Combined quarter conductivity 
Strong significant relationships were found between CMSCC and several of 
the created variables for relative quarter conductivity, i.e., difference in 
conductivity between quarters, variance in conductivity between quarters, 
and, foremost, the MDi. Within-cow comparison of quarter conductivity is 
recommended (Kitchen 1981; Hamann & Zecconi 1998), and differences in 
conductivity between healthy and mastitis quarters have been observed 
(Nielen et al. 1995a; Bansal et al. 2005). Combining quarter conductivity 
variables was a successful method to model CMSCC. The input variables for 
the MDi are different phases of quarter conductivity values during milking 
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and threshold levels of blood at the quarter level. Because of the few 
observations of blood measured in milk, the MDi was probably mainly 
triggered by the conductivity variable 

The relationship between the MDi and CMSCC was found to be positive 
and nonlinear. Poor correlations between SCC and the MDi have previously 
been reported (Lusis et al. 2017), but too few observations might have had 
an effect on the results as well as the nonlinear relationship that was observed 
in our study. The results of paper I clearly demonstrate that the MDi is a very 
important explanatory variable when modeling the CMSCC; notably, the 
models including the MDi generally performed better (paper I). 

Other explanatory variables 
Contrary to previous findings, neither short milking duration (Hammer et al. 
2012) nor milking duration as such (Ebrahimie et al. 2018) was found to be 
significantly associated with CMSCC (paper I). The machine-on time can 
differ considerably between quarters when quarters are milked separately 
(Hogeveen et al. 2001). Due to a lack of more detailed data, milking duration 
was defined as the time required for all four quarters to be milked out, even 
though milking was conducted at the quarter level. This could explain why 
an association between milking duration and CMSCC could not be found. 

Milking interval was not included as an explanatory variable in modeling 
or predicting CMSCC, since the milking interval was fixed due to batch 
milking at the farm where data were collected for papers I and II. However, 
if the study were to be replicated in an AMS system with irregular milking 
intervals, the milking interval might merit inclusion, since variation in 
milking interval as such has been suggested to have an impact on the SCC 
(Mollenhorst et al. 2011).  

Milk yield was suggested to be one of the most important variables when 
predicting SCC using a decision tree model (Ebrahimie et al. 2018), and one 
of the least important variables in another study (Sitowska et al. 2017). Milk 
yield was excluded from our models due to the dilution effect of milk on 
SCC (Green et al. 2006), which could have affected the causal path between 
the other variables of interest and CMSCC. However, we included day-to-
day variation in milk yield in the model, since it was significant in the 
scanning model. The variable might indicate an irregularity that could be 
associated with disorders in the udder and was created by calculating the 
difference between the current milking and the previous corresponding 
milking, i.e., morning milking versus previous morning milking. This type 
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of variable was not considered an intervening variable and was also 
significant in the main model where MDi was included.  

We also added the variable incompletely milked quarters to the scanning 
model to investigate whether an incompletely milked quarter could be a 
potential predictor variable of CMSCC, since such quarters display higher 
SCC than do quarters that are milked out more completely (Penry et al. 
2016). The number of incompletely milked quarters was significant in the 
variable scanning, and was therefore added to the models in paper I. 
However, as there were very few (i.e., 32) incompletely milked quarters, it 
is difficult to draw any strong conclusion from the results.  

The occurrence of blood in milk was evaluated as an explanatory variable 
for CMSCC by adding two threshold levels for blood (ppm ≤1000 and 
≤2000), but the results in paper I indicated that neither threshold was 
significantly associated with CMSCC. Similar results were found by Khatun 
et al. (2018), who scanned data with a univariable model to find explanatory 
variables for a clinical mastitis detection model. In contrast, Hammer et al. 
(2012) found blood in milk to be a significant risk factor for clinical mastitis, 
and consequently included it in a multivariable model. The association 
between blood in milk and clinical mastitis may depend on the type of 
pathogen causing the mastitis, because some pathogens are more commonly 
associated with blood in milk than others are (Pyörälä et al. 2011). 
Furthermore, there is more likely to be an association between blood in milk 
(or milk color, which is how blood in milk is commonly detected) and 
clinical mastitis than between blood in milk and elevated SCC as such. Also, 
the prevalence of milk samples with blood was very low in our material, 
which may also partly explain the non-significant associations with CMSCC. 

5.1.2 Modeling CMSCC 

Types of variables included in the modeling 
Previous studies have shown that including several different types of 
conductivity variables, such as variance or maximum conductivity, increases 
the specificity of a mastitis prediction model (Norberg et al. 2004). The high 
degree of explanation of the models in paper I could probably partly be 
explained by the inclusion of the different types of conductivity variables, 
which describe different traits (e.g., difference between quarters), as well as 
the MDi, which combines conductivity results from different phases of 
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milking. Different variables will probably contribute in different ways to the 
model in describing the association with CMSCC. This was further 
demonstrated using models in which only three conductivity-based 
explanatory variables were fitted, i.e., the difference, variance, and 
maximum conductivity of a quarter (Anglart et al. 2019) For this smaller 
model, the variance explained was 0.78 and the AIC was 297; this is 
comparable to the best model presented in paper I, for which the variance 
explained was 0.80 and the AIC was 246. These very similar results indicate 
that including quarter-combined conductivity variables might play a more 
important role than including all possible variables.  

Time-restricted data 
Generally, the time needed to collect sufficient system data to make accurate 
predictions should be as short as possible. As new cows enter the system, the 
farmer could probably accept that the system cannot immediately gather all 
types of information, though this state should preferably be as short as 
possible. Thus, it is important to investigate how many days or milkings 
before an event are needed in order to predict the outcome.  

Using data from three or seven days before the CMSCC sampling event 
did not affect the models’ performance much, in either modeling (paper I) or 
predicting (paper II) CMSCC. In paper I, excluding information from the 
milking session when the sample was taken impaired the performance of the 
models as these models overall received higher AIC values. Thus, 
information from the milking for which CMSCC is to be predicted is 
important. From a practical point of view, this might be good enough, since 
this would be faster than dairy herd improvement program sampling results, 
or as fast as online sampling, in systems where such sampling is possible. 

Including data on all variables from all seven days before the CMSCC 
sampling event gave the best model fit (paper I). However, the model fit was 
not noticeably affected by excluding the four days farthest from the CMSCC 
sampling, and we concluded that using all variables for three days before the 
CMSCC sampling should be sufficient to describe CMSCC. To investigate 
this further, predictions of CMSCC in paper II were evaluated using both 
three- and seven-day lags in the variable setup. The results in paper II 
confirmed our theory, since the difference in prediction error was very small 
between the two variations of day-lagged data used.   
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5.1.3 Predicting CMSCC 

Reflections on data used 
The main aim of paper II was to compare methods to predict CMSCC. The 
results of paper I gave insights into what variables to use and how much data 
should be sufficient. Hence, mainly conductivity variables were included in 
the models used in paper II and, additionally, the variable Cow was removed 
from both model variations. This was done to evaluate the importance of the 
model incorporating previous information regarding the cow that is not 
captured by the other variables. In a dairy farm, new cows are continuously 
presented at the milking, due to dry-off and calving but also due to 
recruitment. The comparison between including or not including the variable 
Cow as an effect in the model is important in order to determine how much 
and what kind of information the algorithm needs to accurately predict the 
CMSCC for newly introduced cows.  

The results indicated that the GAM was the superior model, closely 
followed by the MLP, while the prediction performance of the RF was poorer 
overall. Removing Cow as an explanatory variable worsened the prediction 
performance of the GAM and MLP, while the RF was almost unaffected. 
The Cow variable captures information regarding the cows’ overall level of 
CMSCC based on previous samplings, which implies that some information 
regarding the previous CMSCC is necessary to predict the next CMSCC. If 
information regarding cows’ previous CMSCC is available, the model would 
gain in accuracy by including it.  

One of the main findings in paper II was that the performance of the 
models differed more between the predictor variable setups than between 
methods. The differences in prediction performance using the three-day-lag 
variable setup compared with the seven-day-lag setup were very small for 
both the MLP and GAM. In fact, the MSe for the MLP was lower when using 
fewer days of data, which made the MLP perform as well as the GAM. 
Adding more data is generally a solution suggested to improve the accuracy 
of machine learning methods (Zhang & Ling 2018). Although more data 
were used in the seven-day-lag variable setup, the data were further in time 
from the CMSCC sampling event. This implies that, in this case, the MLP 
performed better with input data from days close to the outcome, i.e., the 
CMSCC sampling, even though it meant fewer data. 

In line with our findings, Ankinakatte et al. (2013) found that the 
performance of a GAM was slightly better than that of an artificial neural 
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network, depending on the input variables used. The performance of the 
GAM in paper II, compared with the other methods, might have benefitted 
somewhat from the fact that the variable scanning was performed using the 
same method (paper I). However, the variables selected for model fit were 
similar to the explanatory variables suggested in other studies predicting 
CMSCC cutoffs using diverse methods (Panchal et al. 2016; Sitowska et al. 
2017; Ebrahimi et al. 2019), so they were likely valid for predicting CMSCC 
independent of the method used for prediction.    

The performance of the RF was mostly unaffected across different 
variable setups, which might also reflect a generally lower predictive 
accuracy of decision trees (James et al. 2013). The poor prediction 
performance of RF models in comparison with regression models has 
previously been reported (Miller & Franklin 2002; Sitowska et al. 2017).  

5.2 Milk homogeneity density scores in AMS (III & IV) 

5.2.1 Comments on data collection 
Before data collection, a pilot trial was performed at farm A, where routines 
were developed for best performing the milk inspections and documenting 
the samples. The first concern was foam and milk residues on the filter, 
which made it difficult to acquire a clear image of the clots, as the milk and 
foam could also be interpreted as clots in the image. This was also reported 
by Rasmussen (2005), who found that samples of normal milk were scored 
as having clots, probably due to droplets of milk resembling clots in the 
images. To address this problem, after careful inspection of the filter, water 
was gently poured through the filter from above, as was also done by 
Rasmussen (2004). The risk of flushing away clots during this rinsing was 
likely very low, while the rinsing noticeably reduced the risk of 
misclassification when scoring images.   

The second concern was to avoid subjective evaluation during data 
collection, i.e., to prevent those collecting the data from deciding what 
should or should not be considered clots (or flakes) if the case was unclear. 
Those involved were trained to acquire an image of everything that they 
suspected might be milk deposits on the filter. It was important that the data 
collection should not interfere with the assessment of density scores, which 
was avoided by applying this criterion. However, this might have had an 
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impact on the prevalence of traces or flakes found in the collected material 
compared with previous studies (see more below). Also, this explains why 
some images were scored as 0 (no clots) by the assessors setting the scores.  

To obtain the density scores used in papers III and IV, three assessors 
independently scored each sample and the agreement was substantial (Landis 
& Koch 1977). Using several scores strengthens the accuracy of the 
assessment and gives a higher degree of confidence in the results (Boyer & 
Verma 2000). Three assessors were chosen to allow the score to be 
determined even if only two out of three assessors were in agreement, while 
excluding scores when all three assessors disagreed. Furthermore, by 
consciously including in the scoring several images in which no clots were 
found during the milk inspections, the results might have been strengthened 
further. Another method to assess the images could be image analysis 
algorithms, which also were considered. However, the images were not 
consistent enough, since some images had reflections (due to lighting 
conditions on the farm or at the time of the day), which was considered a 
problem for the image analysis.  

A sample was considered failed if the cow could not be sampled for some 
reason. This was noted in the list of sampled cows by the assessors, as was 
whether the cow number was unknown or the image was missing. The total 
number of samples (i.e., milk inspections) that needed to be discarded due to 
failed sampling was very low (30), which implies that the collected data 
accurately reflect the occurrence of clots and traces at each farm.   

5.2.2 Prevalence and spread of changes in milk homogeneity 

Quarter-level sampling and assessment of scores 
The quarter-level density scoring of clots collected by inline filters has not 
previously been investigated. Thus, comparing the prevalence of clots at the 
quarter level with previous findings is somewhat difficult, mainly due to 
different scales used for scoring, but also due to the sampling procedure and 
farm specific factors such as udder health. The main difference between 
collecting clots using inline filters and using foremilk samples is that, with 
the former, sampling is performed throughout the milking and all milk from 
the quarter will be investigated. Thus, a different distribution of clot 
occurrence might be expected, since clinical signs can also appear later in 
the milking (Rasmussen 2004). In the data collected for papers III and IV, 
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one squirt of the foremilk per quarter was discarded into the teat-cleaning 
cup of the AMS when each cow was pre-milked, which probably had a 
negligible effect when investigating the occurrence of clots or flakes. 

A rough comparison of visually inspected foremilk samples for changes 
in milk homogeneity at the quarter level further illustrates the findings in 
papers III and IV (Table 3). Rasmussen et al. (2005) reported prevalence of 
2.1% for clots and 1.4% for flakes. This is somewhat in agreement with our 
findings of prevalence of 2.4% for clots (scores 2–5) and 1.8% for traces or 
flakes (score 1). A higher prevalence of clots was found by Kamphuis et al. 
(2008a), who noted a joint 2.9% prevalence of three categories of clots 
(Table 3). The prevalence of cases categorized as “watery milk with small 
flakes” was noted as 2.0% by Kamphuis et al. (2008a); this category could 
probably be compared to our “trace” category or to the “flakes” category 
used by  Rasmussen et al. (2005) and thus represents a slightly higher level. 
The number of cases decreased with increased clot category (Kamphuis et 
al. 2008a), i.e., fewer cases with more clots or higher density scores, which 
was also found in the data collected for papers III and IV. Rasmussen (2005) 
found the prevalence of clots to be 3.7%, which is somewhat in agreement 
with the finding of Kamphuis et al. (2008a), although the higher prevalence 
might also be because only one category was assessed or reflect the udder 
health on these farms.  

 
Table 3. Rough comparison of the prevalence of the different categories in each study; 
sampling was inline for papers III and IV, while other samplings were of foremilk 

Categories of flakes and clots and their prevalence 
Paper III, and  
IV 

Rasmussen et 
al. (2005)  

Kamphuis et al. 
 (2008a) 

Rasmussen 
(2005) 

Trace 
density score 1 
(1.8%) 

Flakes 
yes/no  
(1.4%) 
 

Watery and small flakes  
(2.0%) 

 

Clot 
density scores 
2–5  
(2.4%) 

Clots 
yes/no 
(2.1%) 

Few clots, 
mainly clots, 
mainly clots and milk 
appearance disappeared 
(2.9%)  

Clots  
yes/no 
(3.7%) 
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Since the variation in clot prevalence was larger between the farms in the 
data collected for papers III and IV (data not shown) than between the studies 
compared in Table 3, the amount of clots found in these studies is probably 
still comparable. 

In the data collected for papers III and IV, 42% of samples were classified 
as having a QMS of 1 (i.e., trace), a score that would likely not be noticed 
evaluating milk samples on cow composite level. The traces were 4.9 times 
more common in all milk inspections from cows who also held the higher 
scores (i.e., one or more CPSS ≥4), which might indicate that traces could be 
interpreted as an early stage of clinical mastitis, or a cow in the recovery 
stage of a clinical mastitis. In chronic cows, QMS of 1 could indicate a 
transition between a non-clinical and a clinical stage. The score dynamics 
between periods in paper III, showed that for cows with CPSS ≥4 in at least 
one period, the scores varied considerably within and between quarters, 
which could be an indicator of cows with chronic mastitis. Hence, collecting 
clots on quarter level is valuable, since important information is missed out 
as scores or grade of severity for each quarter are hidden in the whole milk. 
It also appears that a cow having clots in one quarter, is more likely to display 
changes in other quarters, hence dynamics of elevated QMS between the 
quarters of a cow needs further investigation. 

Inline sampling and assessment of density scores 
The density scoring of clots sampled by inline filters has previously been 
treated as the gold standard (Claycomb et al. 2009; Kamphuis et al. 2013, 
2016). As the samples in previous studies were collected at the cow 
composite level, the 0–3 scale provided by the filter supplier could be utilized 
for density scoring. For papers III and IV, the scale needed to be adjusted, 
since we expected milk from single quarters to generate a different density 
distribution on the filters (i.e., some of the clots collected at the cow 
composite level might originate from several quarters), so a scale of 0–5 was 
developed. It is therefore difficult to compare the numbers of cases with 
different density scores between the scoring systems, although a rough 
comparison is attempted between the studies discussed.  

As expected, the proportions of clots with different density scores differed 
somewhat between the studies compared (Table 4), i.e., papers III and IV, 
Claycomb et al. (2009), and Kamphuis et al. (2013, 2016). Notably, the 
proportion of cases increased with increasing density score in Claycomb et 
al. (2009), while the opposite relationship was found in the other studies, 
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with the proportion of cases decreasing with increasing density score. To 
make the scoring from papers III and IV more comparable, the proportions 
of scores are also presented with scores of 1 and 2 considered negative. 
However, the proportions of clots scored in the different density categories 
still differed, mainly for the density score of 3 (or graded 1 for composite 
level sampling), even though the scores of 1 and 2 in our data were removed. 
Simultaneously, the prevalence of clots sampled at the quarter level (Table 
3) was quite similar between the studies, which emphasizes that single-
quarter samples generate a different density distribution on the filters 
compared with cow composite samples. Hence, a scoring scale with a wider 
range was valid for use in papers III and IV. 
 
Table 4. Proportions in % of different categories of clots scored for density using inline 
samples in three studies. Results from papers III and IV are also presented with scores 
of 1 and 2 considered negative 

 Proportions of positive scores (%) at different clot density levels 
 Quarter level Cow composite level 
Score1 Papers III, & IV2, 

≥1       ≥2       ≥3 
Claycomb et 
al. (2009)2 

Kamphuis et 
al. (2013)3 

Kamphuis et 
al. (2016)3 

1 42 - - - - - 
2 34 59 - - - - 
3/1 15 26 64 20 11 40 
4/2 8 13 32 28 50 38 
5/3 1 2 4 52 39 22 

1Not scored using an equal scale; 2Quarter scale (1-5); 3Cow composite scale (1-3) 

5.2.3 Predicting and detecting changes in milk homogeneity  

Prediction performance 
The results of the prediction models in paper IV indicated a high ability to 
distinguish cow milkings and cow milking periods free of clots, as 
demonstrated by a high specificity. However, the low sensitivity indicates a 
poor ability to detect cow milkings or cow milking periods when clots 
occurred. Models were also evaluated in terms of PPV and NPV, statistical 
measures that depend on the prevalence (which was very low), which 
showed that the farmers would experience a low false-positive rate in 
practice, as the overall PPV was moderate to high (47–72%) for the main 
models.  
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Improving prediction performance  
One of the most common suggestions for improving the predictions of 
machine learning algorithms is to use more data (Zhang & Ling 2018). The 
data collection was quite labor intensive, and of the 21,335 inspections at the 
quarter level, we observed 513 quarters with clots (scores 2–5). The option 
to collect as much data as needed to possibly improve predictions was thus 
not considered. It has been proposed that true clinical mastitis cases should 
include repetitive occurrence of clots in consecutive milkings (Rasmussen et 
al. 2005; Claycomb et al. 2009; Kamphuis et al. 2016). However, records of 
treated clinical mastitis cases are often used as ‘true case’, probably also 
since this type of data will not demand a massive or expensive data 
collection. When evaluating models for mastitis prediction, it is important 
that the gold standard definition is independent from the sensors in the 
evaluation, as treated cows are most likely were detected using information 
from the system sensors. Collecting clots inline is a reference method that is 
entirely independent from the system sensors. The low accuracy in prediction 
results in paper IV might also reflect this difference in comparison to other 
studies, where the reference for true cases were not completely independent.  

The dataset was also unbalanced, meaning that most of the observations 
belonged to one class. More observations in one class will make the model 
learn this class better, affecting the prediction performance regarding the 
minority class (He & Ma 2013), which was also demonstrated by the model’s 
greater ability to correctly classify cows without clots (i.e., high specificity). 
Furthermore, the positive class (i.e., having clots) was not only rare, but also 
comprised different types of severity cases (or scores). This may also 
influence the prediction ability of the model, as different types of severity 
cases may be due to various underlying causes. Although the prevalence was 
low, it was not extremely low, likely reflecting the “real-life” situation. It is 
therefore not obvious that collecting more data would have improved the 
prediction performance of the model, especially not the sensitivity. 

Adding additional explanatory variables 
Adding the explanatory variables LDH and daily cow activity did not 
improve the predictive performance of the models. The cow activity variable 
as such, measuring steps per hour, captures how much the cow is moving in 
the barn, but not whether the cow is standing or lying, which is suggested to 
be an udder inflammation indicator (Siivonen et al. 2011; Medrano-Galarza 
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et al. 2012; Fogsgaard et al. 2015). Furthermore, since the cow activity 
variable was a rough simplification, i.e., the daily mean and coefficient of 
daily variation, more advanced modeling could possibly have contributed 
more to the prediction performance. Daily cow activity could be an 
interesting variable to evaluate as an indicator of severe disease; however, 
adding the variable to the model did not improve the predictive performance 
regarding clots in milk.  

Even though LDH is suggested as a marker of clinical mastitis (Bogin & 
Ziv 1973; Chagunda et al. 2006b), it might not be as useful for changes in 
milk homogeneity, which is also what our results imply. Increased LDH 
activity has been reported in udders infused with bacteria (Bogin & Ziv 
1973), and high correlations have been observed between LDH and SCC 
(Bogin & Ziv 1973; Chagunda et al. 2006b). Since the reasons for the 
occurrence of clots in milk are not entirely understood (Rasmussen & Larsen 
2003), clots do not necessarily indicate the presence of bacteria in the udder, 
while high SCC does not necessarily mean that the milk has changed in 
homogeneity (Rasmussen et al. 2005). Furthermore, cow factors such as 
parity or days in milk affect the activity levels of LDH (Nyman et al. 2014), 
which might impair the predictive performance of the variable.  

 Since LDH values were not available on a daily basis and were sampled 
rarely in some cows, the value was reused from the previous sampling 
occasion when missing; this might also have affected the results, as 
information regarding the actual LDH activity between the samplings was 
missing. Additionally, LDH was only available at two farms but the 
prediction results with and without LDH in the model for these two farms 
were similar, which further implies that LDH did not improve prediction 
performance.  

The modeling approach 
Initially, we investigated other methods along with MLP for predicting clots, 
i.e., GAM and a gradient boost classifier. The sensitivity and specificity 
results of these other models were poor and did not improve over the results 
of the MLP reported in paper IV. Another approach would be to evaluate 
ensemble learning, i.e., using multiple algorithms that could be tuned 
differently on different parts of the data (Pujari & Gupta 2012), which might 
improve prediction performance. This was not evaluated, however, due to 
time limitations.  
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Modeling the dependencies (i.e., correlations) between milkings within 
quarters might add some information and reduce noise in the model. This 
was successfully done by Franzén et al. (2012) who genetically evaluated 
mastitis by modeling transition probabilities between mastitis and non-
mastitis cases. This should be investigated further, although the prediction 
performance of the approach would probably be only slightly improved, due 
to the variation of occurrence of clots in milk found in paper III, which did 
not follow a specific pattern.  

The outcome variable 
The quarters scored as 1 were excluded from the positive class for the models 
predicting or detecting clots in single milkings, since they were considered 
to represent traces of flakes. Single cases like these are likely a non-concern 
for farmers from a practical and milk hygiene point of view (e.g., see Figure 
2), and would also be captured by the milk filter before the milk is delivered 
to the bulk tank. Furthermore, the presence of small flakes is reportedly a 
weak indication of bacteriological infection (Giesecke & van den Heever 
1974). However, the findings in paper III indicated that “traces” accumulate 
to a larger extent among cows with heavy cases (QMS ≥4) and were therefore 
included in the models detecting periods of milkings with clots. Hence, it 
should be investigated whether excluding the “traces,” even from the models 
detecting clots over a longer period, could have improved the prediction 
performance regarding periods with clots, as it might reduce some noise. 
This was not possible, however, due to time limitations. 

5.2.4 Changes in milk homogenity as a prediction outcome 

Usefulness of detecting clots during periods 
The presence of clots over time is a generally considered important indicator 
of clinical mastitis. The presence of clots in two out of three consecutive 
milkings has been suggested to be used as the gold standard definition in 
clinical mastitis detection models (Mein & Rasmussen 2008; Kamphuis et 
al. 2013, 2016), and the International Organization for Standardization  
(2007) suggests testing for 36 consecutive hours. Predicting the accumulated 
presence of clots, as indicated by, for example, the CPSS or QPSS, could be 
a useful tool, since it would also provide estimations over time. The 30-hour 
period is not in accordance with International Organization for 
Standardization (2007) but might be sufficient in AMS, since the average 
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number of milk inspections per cow within a period, in the data collected for 
papers II and IV, was between 3.0 and 3.8, and thus covering several 
consecutive milkings.  

Usefulness of detecting cow milkings with clots 
Mollenhorst et al. (2012) concluded that farmers find it important to detect 
severe mastitis cases in a timely manner. The more severe cases, i.e., cow 
milk scores that included QMS ≥4, were correctly classified to a large extent 
as milkings with clots, compared to QMS <4, by the detection and prediction 
models in paper IV. This indicates that the models were better at categorizing 
the severe than the mild cases. From an udder health perspective, the severe 
cases are probably more important to find, and not the least to enable 
prediction. However, all types of single clot occurrences (QMS ≥2) might 
alert the farmer to take precautions. Furthermore, information regarding 
single occurrences of clots in milk detected by prediction models could be 
valuable input to clinical mastitis detection models.  

Ideas on quarter level predictions 
The prediction target in paper IV was to find cows, rather than specific 
quarters, with changes in milk homogeneity, so combined cow scores were 
created as the outcome variable. Predictions of quarter milkings with clots 
were initially investigated, as well as predictions of the density score as such, 
but the performance was poor (data not shown) and would probably not be 
better than cow composite predictions.  

Predictions of clots in single quarters might be interesting. By setting the 
QPSS variable (investigated in paper III) as the outcome, a specific quarter 
could be tracked over time. The findings in paper III indicated that, of quarter 
milkings with clots, the heavy cases and very heavy cases were found in the 
same quarter in 74% of the subsequent milkings; of the quarters scored as 
mild, the corresponding figure was 22%. By predicting QPSS, quarters free 
of clots would not be included in the combined quarter period score to the 
same extent as they would in a combined cow period score. This might 
reduce noise from those quarters, which also might improve the prediction 
performance. However, since the repeatability was different in quarters 
scored as mild, outcomes such as cow score or cow period score are still valid 
and useful for some types of cases, in which the cow as such needs to be 
highlighted. 

Furthermore, clot prediction in quarter milkings or periods might be 
interesting to combine with clot prediction at the cow level, since it might 
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increase the ability to detect different types of cases by customizing each 
algorithm for each task. Unfortunately, neither the QMS nor QPSS was 
evaluated as the outcome in paper IV due to time limitations, so it remains 
to be investigated how these variables could be combined.  

Watery milk 
Watery milk with small flakes is suggested to be an indicator of clinical 
mastitis caused by coliform bacteria (Eberhart et al. 1979; Pyörälä & 
Syväjärvi 1987). Watery milk cannot be detected using inline filters 
(Rasmussen 2005), while flakes or traces in milk, collected by inline filters, 
may originate from this type of milk. Thus, if such cases were present during 
our data collection, they were overlooked. Kamphuis et al. (2008a) suggested 
that “watery milk” should be treated as a homogeneity category between 
“few clots” and “mainly clots” in terms of severity, based on the increased 
mean electrical conductivity values in each investigated category. 
Furthermore, Montgomery et al. (1987) found watery milk to be significantly 
associated with coliform mastitis, while clots were not. How cases of watery 
milk should be handled when collecting samples using online filters merits 
further review.   

The prediction target 
Given this background, the question remains as to what level of density score 
is considered severe and why. We chose to set scores of 1 as negative, but 
kept them as positive for predicting clots during periods in paper IV. 
Claycomb et al. (2009) investigated several different combinations of gold 
standard definitions, excluding clots scored as 1 (on a cow composite  
scoring scale) or excluding cows with only one observation of clots, as also 
suggested by Kamphuis et al. (2013). In paper III, cows with only one milk 
inspection in a period were removed, independently of degree of score, since 
the dynamics between milkings were of main interest. Excluding milkings 
with single observations of clots was not considered for the predictions in 
paper IV, since we wanted to investigate the models ability to predict clots 
of all types. However, the inclusion of quarters scored as 2 as predictions of 
single-milking clots might be considered. The findings in paper III indicated 
that lower density scores also have lower repeatability. Cases scored as ≥3 
should probably be set as positive (i.e., targeting mastitis) since their 
repeatability was over 50%. Thus, the prediction target in paper IV for cow 
milkings as well as cow periods might have been misguided. Kamphuis et 
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al. (2016) suggested that analyses excluding low-density scores should be 
presented in addition to analyses including all density scores. Prediction 
models intended to detect and predict higher density scores as targets should 
therefore be evaluated further.  

5.3 Comments on methods, variables and evaluation 

5.3.1 Choice of methods 
In the framework of this thesis, three different types of methods were 
investigated, GAM representing regression models, RF representing 
decision trees and MLP representing artificial neural networks. In paper I, a 
GAM was used to investigate the relationship between potential explanatory 
variables and the outcome, CMSCC, since GAM can provide information 
regarding the relationships independently of the parametric function form 
(Hastie & Tibshirani 1990). This made it possible to reveal the underlying 
patterns between the variables of interest and CMSCC, which could be 
applied in the prediction models for CMSCC in paper II. In paper II, three 
methods were compared for their ability to predict CMSCC, with the GAM 
being found as the superior method. However, the MLP performed equally 
well using the three-day variable setup and, most importantly, the 
convergence speed of the MLP was much higher than that of GAM (data not 
shown). This is a major advantage if the method is to be used for applications 
operating on real-time data. Furthermore, a GAM cannot make predictions 
for an observation in a test set if a class in one of the factor variables is not 
represented by any observations in the training set. For balanced data with 
few factor variables this is not a major problem, but for large models with 
unbalanced data it is, which was the case when modeling CMSCC. For paper 
IV, some initial tests with the GAM were conducted; however, the MLP was 
chosen as the method for predicting clots due to its better performance and 
because artificial neutral networks have previously been suggested as a 
method for clinical mastitis detection (Nielen et al. 1995a; Sun et al. 2010; 
Ankinakatte et al. 2013), which clots are an indicator of.   

One difference between the methods evaluated in this thesis framework 
is that the RF and MLP required parameter tuning, which the GAM did not. 
Tuning the hyperparameters creates the structure and configuration of the 
algorithm, and is an important step in model development that affects model 
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performance (Larochelle et al. 2007; Smith, 2018). The hyperparameters 
were tuned manually when constructing the RF and MLP for papers II and 
IV, based on default settings and established suggestions for starting points. 
Manual tuning is a common approach for optimizing hyperparameters 
(Bergstra & Bengio 2012).  

By using an ensample of MLP as approach, the hyperparameters of each 
model in the ensemble could be tuned on different parts of the data. Hence, 
this could improve the overall performance, compared to the performance of 
one model tuned on all data (Sollich & Krogh 1995) and should be 
investigated further. We combined quarter scores of different grade into one 
cow score, which probably masked information in several ways. Not only 
the density (or severity) as such, but also the as appearance of clots differed 
between the samples. The most diverse type of appearance was found for 
score 3 (data not shown) which could indicate different stages of 
inflammation (upcoming mastitis, self-cure or chronic case). Hence, the 
indicators in the milk might be different depending on the stage of 
inflammation or type of case, and by tuning several different models, 
targeting different cases, overall prediction might improve.   

The cow milkings and cow milking periods free of clots were correctly 
categorized to a very high degree by the MLP in paper IV. Hence, it could 
been interesting to combine this prediction model, that accurately predicts 
the ‘none cases’ with some other method, that could better predict the 
milkings where clots occur. Let us say that we let the MPL first decide on 
which cows we do not have to consider having clots in their milk, and 
thereafter we can use some other prediction method for the remaining cases. 
Each model would then be specialized on a different task. This type of 
approach would be an opposite of ensemble learning, where several models 
are trained for the same task.  

For predictions of CMSCC, the RF was the method most unaffected by 
the presence or absence of the variable Cow. Predictions of cases where 
information regarding the cows previous CMSCC was missing, could 
possibly be improved by using an ensemble of RF, or maybe by combining 
the RF with one of the other two methods investigated in paper IV. Using 
different types of methods as an ensemble, might improve the chance of more 
accurate predictions, since different methods were affected by changes in 
data in different ways, as observed in the model comparison in paper II.  
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5.3.2 Choice of variables 
The first selection of potential explanatory variables in paper I was based on 
variable scanning using GAM, corrected for multiple comparisons and 
correlations. Thus, the variables selected for paper II were based on the 
findings in paper I. For paper IV, we selected the variables available from 
the herd management system that were considered to be associated with 
changes in milk homogeneity (for instance, the number of attachments was 
removed while the variable indicating failed attachment was kept). As 
correlation affects the coefficients and P-values (Kutner et al. 1997), 
variance of inflation tests, measuring the amount of multicollinearity (Fox & 
Monette 1992), were performed after variable scanning in paper I. However, 
correlation between explanatory variables will generally not affect the 
prediction performance of a model (Kutner et al. 1997) and was therefore 
not applied in paper IV, since the aim was not to evaluate the importance of 
different predictor variables. In paper IV, we did not combine quarter 
variables as we did in papers I and II, since MLP unlike GAM, capture the 
interactions between the explanatory variables (Haykin 2009).  

The MLP is a “black box” algorithm and little can be known regarding 
how the input affects the outcome. For instance, the relative importance of 
adding LDH or any other variables could not be determined. We therefore 
evaluated the effects on prediction performance of adding LDH and daily 
cow activity by creating separate models for this purpose. This is opposite to 
the RF situation, in which variable importance can easily be determined. The 
RF has been suggested to be an algorithm suitable for variable selection 
(Genuer et al. 2010), but can also result misleading diagnostics (Hooker & 
Mentch 2019).  

Although variable selection was not considered in paper IV, some initial 
checks were done. Variable importance was estimated by the RF, but also by 
a gradient boost classifier (results not shown). Both methods showed that 
OCC, days in milk, and MDi were important variables for predicting clots. 
Accordingly, the SCC as well as quarter-combined conductivity seem to be 
related to the occurrence of clots. Days in milk was also one of the variables 
found associated with positive QMS in the logistic regression in paper III, 
together with milking interval, lactation number and farm, also included as 
explanatory variables in paper IV. The outcome of the logistic regression 
model could probably be expected, since cows in early lactation have an 
increased risk of mastitis (e.g., Suriyasathaporn et al. 2000; Svensson et al. 
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2006; Steeneveld et al. 2008) as well as older cows tend to have elevated 
SCC and more cases of clinical mastitis (e.g., Barkema et al. 1998; 
Suriyasathaporn et al. 2000; Steeneveld et al. 2008). The effect of farm could 
partly reflect type of udder health related problems at the specific farm i.e., 
type of bacteria present. Prolonged milking interval (up to 24 hours) seems 
to increase the number of polymorphonuclear (PMN) cells in milk from 
previously healthy udders (Lakic et al. 2009). The proteolytic activity of 
proteases released from somatic cells, such as PMN cells, during 
inflammation, inducing the generation of para-κ-casein and leading to the 
precipitation of caseins in mastitis milk, has been described as one of the 
mechanisms (Rasmussen & Larsen 2003). Depending on factors such as the 
possible presence and type of bacteria and stage of inflammation in the 
udder, a prolonged milking interval might increase the risk of clots in milk. 
Hence, the presence of different type of proteases and the effect of protease 
specific inhibitors on clotting could give valuable information, together with 
information from differential cell count and also bacteriological findings. 
That is, a more complete biological explanation of why milk clot would make 
it easier to find the type data or variables and variable combinations needed 
for accurate predictions.  

Cow behavior, such as lying time and rumination might be two interesting 
variables to evaluate for prediction of clots, although they would probably 
only have importance on the most severe cases. However, if clotting of milk 
is an indication of an upcoming inflammation or if clotting of milk actually 
is a way of handling an already ongoing inflammation, it would be interesting 
to investigate what comes first; shorter lying duration or clots in the milk? 
For CMSCC predictions, variables related to cow behavior are probably not 
as interesting, since subclinical mastitis is the type of mastitis free from 
general sickness signs. Hence, variables aiming at deviations in the udder, 
and above all, between the quarters should be valuable to investigate further. 
Comparison of curves of conductivity and flow for individual quarters during 
milking as well as deviations or variation in milk yield and quarter milking 
duration are some suggestions for this purpose.  

5.3.3 Combined outcome variables 
Combining predictions of the two dual-purpose indicators, i.e., clots in milk 
and SCC, a detection model based on the suggestions of the International 
Organization for Standardization (2007) can be targeted. Furthermore, this 
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approach could increase the possibility of pinpointing important cases, as 
Claycomb et al. (2009) found the highest sensitivity for a gold standard 
definition by combining SCC with the occurrence of clots in milk. 
Depending on how the predictions are combined, the possibility of 
identifying a range of mastitis cases that affect milk quality, milk 
homogeneity, and udder health in different ways also increases. Either OCC 
or samples of SCC from dairy herd improvement programs could be used for 
this purpose. Eventually, predictions of CMSCC could also be combined 
with prediction models for the occurrence of clots.  

Other variables that could be interesting to evaluate in combination with 
clots as outcome are MDi, days in milk, milking interval or LDH. Combining 
clots and LDH as outcome might improve the prediction of more severe cases 
i.e., as LDH indicates tissue damage (Bogin et al. 1976) while clots most 
likely indicate a first stage, since clotting has been proposed as a way of 
isolating the bacteria. The combined outcome would thus be defined more 
precisely, by targeting cows indicated by different variables, which could 
reduce noise and improve prediction performance. Adding one of the 
variables MDi, days in milk or milking interval to the outcome, could help 
to target the cows at risk i.e., selecting the cows with higher MDi, fresh cows 
or cows that have longer milking intervals.  

5.3.4 Model evaluation 
In paper I, the corrected AIC was used as the method for model comparison 
that also corrects for sample size, as described by Wood et al. (2016). The 
AIC gives an estimate of how well one model in comparison with another 
will make predictions on new data by using maximum likelihood. The 
adjusted R2 was also estimated, but only to evaluate how much variance is 
explained by each model. In paper II, cross-validation, an alternative 
approach to AIC, was one of the methods used for method comparison. 
Cross-validation is a useful method for comparing and evaluating the 
performance of different methods based on the test error. The difference 
between the AIC and cross-validation is that the latter will not make 
assumptions about any underlying distribution (e.g., normal distribution; 
James et al. 2013) and also that the prediction error for each method was 
obtained.  

To determine the model performance on unseen data, separate datasets 
for testing and training could be created. This is a crucial step in model 
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evaluation, since predictions on the same data on which the model was 
trained will overestimate performance (Hastie et al. 2009). This approach 
was applied in the predictions made for paper IV, in which 70% of the data 
were used for training and 30% for testing, but also in one of the evaluations 
for paper II, in which the model was trained on data from six out of eight 
CMSCC sampling occasions (i.e., 75/25 split). These proportions, number of 
CMSCC samplings, were used to get sufficient enough data for training and 
prediction, however predicting CMSCC, the preferable scenario would be to 
predict the CMSCC just including one previous sampling (or none), together 
with historical from the AMR (day lags). From a practical perspective, it 
would be beneficial to find the cutoff for how much information regarding 
previous CMSCC is needed to make accurate predictions of the next 
CMSCC.  

 Another evaluation approach could be to train the model on data from 
one farm, and to test the model on data from another farm. This strategy was 
applied by Khatun et al. (2018), who trained their mastitis detection model 
at one farm and used it to predict mastitis at another farm. This approach 
could merit investigation if the model becomes specific to the farm where it 
was trained. Although the focus of paper II was comparison of prediction 
methods, making predictions on other farms would have made the results 
more generalizable, and might also have decreased the prediction 
performance achieved, since there was a small number of samples with high 
cell count in our data. This could of course also be the opposite case, if the 
model was trained on data with very high cell counts, it might be harder to 
predict the low numbers. Furthermore, due to sensor drifting, the explanatory 
variables measured might differ some between farms, which also could have 
an effect on prediction, and is something that might need consideration 
evaluating models on different farms.  

In paper IV, data from all farms were used for both testing and training, 
so the effect of farm was incorporated in the model. Still, this was a limited 
number of farms with similar farm conditions. The model performance 
would probably have been different (i.e., lower) in conditions such as grazing 
or other type of AMS such as the automatic milking rotary. As the reasons 
for the occurrence of clots is not totally known, farm specific factors such as 
pathogens present on the farm or farm layout (i.e., cows have longer milking 
intervals due to long waiting times) could affect the prediction performance 
more than expected.  
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The work performed here has achieved a better understanding of how to use 
and combine data generated from AMS for predicting two important milk 
hygiene and udder health indicators: CMSCC and milk changed in 
homogeneity. Furthermore, relationships between CMSCC and data 
regularly recorded in AMS have been illustrated. In addition, the dynamics 
of milk homogeneity changes in cows milked in AMS have been reported 
for the first time. The main conclusions are:  

 
 The most important variables in modeling and predicting 

CMSCC were combinations of quarter conductivity variables. 
The MDi, incorporating the quarter conductivity phases during 
milking, had the strongest association with CMSCC, followed by 
quarter conductivity and the difference in conductivity between 
quarters.  

 Information regarding the cows’ overall CMSCC, based on 
previous sampling, improved prediction performance.  

 Using only three days of data before predicting CMSCC had no 
general disadvantages compared with using seven prior days of 
data.  

 The variables milking interval, days in milk, lactation number, 
farm, and previous QMS were significantly associated with the 
occurrence of clots in milk.  

 Elevated clot density scores were found in a limited group of 
cows. Higher density scores recurred more often in the 
subsequent milking of the same quarter than did lower density 
scores. The amount of flakes or traces recurred more often over 
time in cows having higher density scores. 

6. Conclusions 
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 GAM are suitable for modeling relationships and predicting 
CMSCC. The performance of the MLP to predict CMSCC was 
equally good using fewer data, and had a faster conversion speed 
than did GAM. 

 Cow milkings and cow periods free of clots were correctly 
categorized to a very high degree by the MLP. The prediction 
performance in detecting and predicting cow milkings and cow 
periods with clots was weak, however. The model was equally 
good in predicting the occurrence of clots as in detecting the 
occurrence of clots.  

 The repeatability of low density scores was below 50%, which 
likely also meant that the prediction target was misguided. Clots 
scored as 1 and 2 should be treated as negative, targeting mastitis 
prediction.  
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Insights into statistical methods for improving milk quality and mastitis 
detection have been evaluated in the framework of this thesis. However, 
some additional questions regarding the findings have been raised, as well as 
thoughts on how these findings could be applied and developed further.  

Sources of SCC to include for improved model performance 
The cow’s previous CMSCC levels were an important variable improving 
prediction performance. Accordingly, applications in which the previous 
CMSCC levels could be included in prediction would be very interesting to 
evaluate further. The possibility of including CMSCC measurements from 
other available sources, such as sampling data from dairy herd improvement 
programs or OCC values, should be investigated. To predict the CMSCC of 
new cows entering milking, other sources of CMSCC data, such as the CMT, 
monthly farm SCC baseline, bulk tank SCC, or CMSCC measurements from 
other groups of cows, should be investigated further to improve model 
performance. For cows in second lactation, in addition, the cow’s baseline or 
deviations from the baseline CMSCC in previous lactations could also be 
considered.   

Possible applications for predicting CMSCC 
Applications for predicting CMSCC between routine samplings could 
potentially save time and money by reducing the number of samples needed 
and yielding additional information on the udder heath status of individual 
cows. Alternatively, a group of cows could be sampled for CMSCC while 
the remaining cows’ CMSCC values are predicted. The OCC measures the 
SCC for the current milking; to obtain the future CMSCC levels, OCC data 
could be included in the prediction model. Predictions of CMSCC could also 

7. Future perspectives 
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be included in mastitis detection models as an input variable or as part of the 
outcome to improve accuracy.  

Improving the prediction performance of models detecting clots 
The clot prediction performance was rather poor. Variations of the combined 
cow variables explored within the present framework should be further 
investigated, as how the information from single traces should be used in 
prediction models. Variable scanning of data available in AMS could give 
sources of information with which to improve models for predicting clots, 
i.e., insights into relationships that are important for better understanding the 
outcome, which is likely an important key. In addition, how to combine clot 
occurrence with LDH, SCC, OCC, MDi, days in milk or milking interval 
should be investigated further, since these variables likely indicate different 
types of disturbances and severity levels. 

Why does milk clot? 
The relationship between different types of clot cases and other indicators of 
inflammation deserve further investigation. Exploring the relationship 
between the SCC and clot occurrence could yield additional information 
regarding the type of case, as would bacteriological findings or the type of 
cells found in corresponding quarters. Furthermore, differential cell count 
data could give useful information regarding the type of cells involved in the 
milk clotting as well as proteases involved. Knowledge of the milk fraction 
that usually clots could give additional information regarding the types of 
cases that should be considered important to detect. In other words, do clots 
in the foremilk and clots occurring throughout the milking indicate different 
things? In addition, more knowledge of the severity of the recurrence of 
flakes and traces within the udders of some cows would add valuable input 
about the subject. 

Do prediction models need to be general or should they be farm specific?  
It is often said that results need to be generalized over several farms to be 
valid or reliable. However, a farm-specific model could be optimized and 
trained on data from the farm where it is supposed to operate. The effects of 
adding corrections for farm-specific factors would be interesting to 
incorporate into such models. For instance, information such as the SCC 
baseline of the farm, latest bulk tank SCC, type of pathogens from historical 
treatment data and previous cases of mastitis, and farm location and type 
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(e.g., grassland or intensive) could be utilized. Furthermore, by letting the 
farmer register the true cases into categories, the model could become even 
more specialized by training on these data.   

The future is now 
For predicting clots in milk, we targeted clots larger than 2 mm in size. 
Neither this nor previous projects using clots of this size as the gold standard 
in detection models have achieved impressive prediction performance or 
concluded that clots of all sizes above 2 mm are important to detect. Clots 
occur on a continuous size scale, and the size that should be considered 
important to monitor should be based on science. Is the suggested standard 
for the testing of detection systems still valid or does it need to be updated? 
The standard was formulated at the beginning of the AMS era, and much has 
happened since. Farmers, advisers, veterinarians, and researchers now have 
much more experience and knowledge of the challenges farmers are facing 
every day, searching for cows that impair overall milk quality or need action 
due to udder health disturbances. Hence, a revision of the standard 
formulated in 2007 might be in order.  
 

Perhaps the most important news of our day is that datasets – not algorithms – 
might be the key limiting factor to development of human-level artificial 
intelligence. (Alexander Wissner-Gross, edge.org)  
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Delivering high-quality milk from healthy dairy cows is not only important 
for dairy farmers but is also regulated by the law in many countries, which 
also ensures safe and high quality dairy products for the consumer. 
Traditionally, the milker pre-strips the quarters and inspects the stripped milk 
before attaching the milking unit. The milker is looking for deviations such 
as clots, color changes, or other abnormalities in the milk in order to identify 
sick cows and prevent abnormal milk from ending up in the bulk tank. In 
addition, regular samplings measuring the levels of somatic cells (i.e., white 
blood cells) in the milk are performed to monitor the udder health as well as 
milk quality.  

Among cows milked by milking robots, the milk is inspected by sensors 
measuring milk characteristics such as conductivity or color, alerting the 
farmer if there are any deviations. However, no detection system for 
detecting and predicting milk clots has yet been investigated. Additionally, 
knowledge of how often clots occur and why in the milk of cows milked by 
milking robots is scarce. The level of somatic cells can be measured 
automatically in the milking robot; however, this involves additional costs 
and is not possible in all types of robot systems. In this thesis, the possibility 
of predicting somatic cell counts and clots in dairy cow milk using sensor 
data from the milking robot was investigated. We also wanted to investigate 
the relationship between the milk characteristics measured by sensors and 
the somatic cell count as well as investigate the dynamics of clots in cows 
milked by milking robots.  

The first part of this project focused on the relationship between the 
sensor data generated by the milking robot and the somatic cell count in the 
cow’s milk. Quarter conductivity was found to be a key feature explaining 
the levels of somatic cells. The relationship between the quarters in terms of 
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conductivity was the most important explanatory variable. We also 
investigated for how many days the data should be recorded in order to make 
accurate predictions of the level of somatic cells. With knowledge of how 
the sensor data should best be used, three statistical methods for predicting 
somatic cell counts for individual cows were compared. The methods had 
different abilities and operated on the data in different ways. The results 
indicated that using three days of data was as good as seven days of data and 
that information about the cows’ previous somatic cell level was important 
in order to predict the next. Two of the compared methods were slightly 
better than the third for predicting the somatic cell count.    

In the second part, the dynamics of the occurrence of clots in milk were 
mapped by installing filters in the milk line and assessing them for clots 
according to a scale of how much of the filter was covered with clots. We 
found clots in the milk from a limited number of cows and that the larger the 
filter area covered with clots, the greater the risk of having clots again in the 
same quarter. We also found that cows that go a long time between milkings 
in the robot tend to have clots in their milk more often. Finally, we built 
several models to detect and predict the occurrence of clots in a single 
milking as well as during consecutive periods. The results indicated that the 
model was very good in classifying which cows had no clots in the milk 
during a single milking or consecutive periods. However, the model was 
generally not good in identifying cows that did have clots in their milk.  

In conclusion, it is possible to use sensor data from the milking robot to 
predict the level of somatic cells in the cow’s milk, but this finding needs to 
be investigated in other conditions, such as other farms. How these findings 
could be used to support farmers by supplying additional information about 
the cows’ somatic cell levels between sampling periods should also be 
investigated. The models for predicting clots in milk were inadequate to use 
in practice. Based on the findings regarding clot dynamics, we suggest that 
the severity grade of clots that need to be detected merits further study. By 
having our models find all the clots, we may have misjudged the goal of the 
detection. More knowledge is also required regarding the biological 
explanations of why milk clots could help improve the performance of 
detection models.  
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Mjölkkornas hälsa är viktigt för mjölkbonden och att leverera mjölk av hög 
kvalité till mejeriet är även reglerat i lag i många länder, vilket 
säkerhetsställer att konsumenterna får säkra och högkvalitativa 
mejeriprodukter produkter. Traditionellt inspekterar den som utför 
mjölkningen mjölken innan mjölkningskopparna kopplas på. Mjölkaren 
undersöker då mjölken genom att titta efter flockor, färgförändrningar eller 
andra avvikelser i syfte att hitta sjuka kor men också för att hindra dålig 
mjölk från att nå mjölktanken. Celltalsnivån i kornas mjölk (d.v.s. mängden 
vita blodkroppar) mäts också regelbundet, för att övervaka mjölkkvalitén och 
likaså kornas juverhälsa. 

I anläggningar där korna mjölkas med mjölkningsrobotar övervakas 
mjölken av sensorer som mäter olika egenskaper i mjölken som 
konduktivitet och färg. Sensorerna är kopplade till larm som kan varna 
bonden om något ser konstigt ut. Trots detta har inget system för att upptäcka 
och förutse flockor i mjölken undersökts. Dessutom är kunskapen om hur 
ofta och varför flockor uppkommer begränsad, i synnerhet bland kor som 
mjölkas i robotsystem. Celltalsnivån i mjölken kan mätas, men detta är dyrt 
och är dessutom inte möjligt i att göra automatiskt i alla typer utav system. I 
denna avhandling undersöktes modeller för att förutse celltalsnivå och 
flockor i mjölk genom att använda sensordata från mjölkroboten. För att 
bättre förstå hur modellerna skulle byggas, undersöktes även sambanden 
mellan celltalsnivån och det sensordata som kommer ifrån roboten, samt 
dynamiken och flockornas förekomst hos kor som mjölkas i robotsystem. 

Projektets första del fokuserade på sambandet mellan data från sensorer, 
variabler, och celltalsnivå. Undersökningen visade att ledningsförmåga på 
fjärdelsnivå var en nyckelvariabel, och att relationen mellan olika 
fjärdedelars ledningsförmåga var de viktigaste variablerna för att förklara 
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celltalsnivån. Vi undersökte också hur många dagars sensordata som 
behövde samlas in för att göra korrekta förutsägelser av celltalsnivå. Med 
kunskapen om hur sensordata bäst skulle användas jämfördes tre statistiska 
modeller för att förutse celltalsnivå för enskilda kor. Modellerna hade olika 
egenskaper och använde data på olika sätt. Resultatet visade att tre dagars 
sensordata gav lika bra förutsägelse om celltalet som sju dagars sensordata, 
och att information om kornas tidigare celltalsnivå var viktigt för att 
förutsägelsen skulle bli så korrekt som möjligt. Två av modellerna var något 
bättre på att förutse celltalsnivå än den tredje. 

I projektets andra del undersöktes flockförekomsten och dynamik genom 
att installera filter i mjölkledingen som går till mjölkkopparna. Förekomsten 
av flockor bedömdes genom att filtren graderades utifrån hur stor del av dem 
som var täckt av flockor. Undersökningen visade att ett begränsat antal kor 
hade flockor i sin mjölk, men att för de kor vars prover hade flocker på en 
större del av filtret var risken även större att de skulle få flocker igen i samma 
juverdel. Vi upptäckte också att kor som inte gick till mjölkningen lika ofta 
tenderade att ha flockor i mjölken oftare. Slutligen byggde vi flera modeller 
för att upptäcka och förutse flockförekomst både i enskilda mjölkningar och 
över längre sammanhängande perioder. Resultaten visade att modellen var 
bra på att peka ut vilka kor som inte hade flockor i mjölken, men att den 
däremot var sämre på att hitta de kor som faktiskt hade flockor i sin mjölk. 

Sammanfattningsvis har vi sett att det är möjligt att använda sensordata 
från mjölkningsroboten för att förutse celltalsnivå, men detta behöver 
undersökas vidare till exempel på andra gårdar. Hur dessa resultat kan 
användas för att hjälpa bönder genom att tillhandahålla ytterligare 
information om kornas celltalsnivå mellan provperioder behöver också 
undersökas vidare. Modellerna för att förutse flockor i mjölken visade sig 
inte vara tillräckligt bra för att kunna använda praktiskt. Baserat på resultaten 
gällande dynamiken i flockförekomst föreslår vi att den nivå av flockor som 
behöver upptäckas bör undersökas vidare. Genom att låta vår modell hitta 
alla flockor kan vi ha missriktat målet för detektionen. Mer kunskap om den 
biologiska förklaringen till uppkomsten av flockor kan också förbättra hur 
bra modellerna blir på att hitta dem.    
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