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Modeling the productivity of mechanized CTL harvesting with statistical machine 
learning methods
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ABSTRACT
Modern forest harvesters automatically collect large amounts of standardized work-related data. 
Statistical machine learning methods enable detailed analyses of large databases from wood harvesting 
operations. In the present study, gradient boosted machine (GBM), support vector machine (SVM) and 
ordinary least square (OLS) regression were implemented and compared in predicting the productivity of 
cut-to-length (CTL) harvesting based on operational monitoring files generated by the harvesters’ on- 
board computers. The data consisted of 1,381 observations from 27 operators and 19 single-grip harvest-
ers. Each tested method detected the mean stem volume as the most significant factor affecting 
productivity. Depending on the modeling approach, 33–59% of variation was due to the operators. The 
best GBM model was able to predict the productivity with 90.2% R2, whereas OLS and the SVM machine 
reached R2-values of 89.3% and 87% R2, respectively. OLS regression still proved to be an effective method 
for predicting productivity of CTL harvesting with a limited number of observations and variables, but 
more powerful GBM and SVM show great potential as the amount of data increases along with the 
development of various big data applications.
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Introduction

In Northern Europe, the mechanized cut-to-length (CTL) sys-
tem dominates wood harvesting. In the CTL system, 
a harvester cuts and limbs the trees, crosscuts the stems into 
assortments and places the logs into piles to be picked up by 
a forwarder. In Finland, for instance, more than 99% of com-
mercial roundwood harvesting is mechanized, and monthly 
numbers of harvesters and forwarders used in harvesting 
operations have varied between 3300 and 4500 machine units 
during the past two years (Natural Resources. . .2020).

Productivity is defined as the rate of product output per 
time unit for a given production system (e.g. Björheden and 
Thompson 1995). Practitioners use various models describing 
the productivity of harvesting in operational planning and 
setting work rates, for example. They are also used in the initial, 
theoretical phases of development and evaluation of new 
machines, work methods or entire production systems (e.g. 
Kärhä et al. 2004; Nuutinen 2013; Prinz et al. 2019).

Forests are a complex environment for production. The 
main factors affecting the productivity of mechanized cutting 
include environment (tree and terrain characteristics, climate), 
machine features (incl. bucking instructions), and the opera-
tor’s mental and physical capacities and working technique 
(Ovaskainen 2009; Häggström and Lindroos 2016; Lindroos 
et al. 2017). Until recently, the availability of data has limited 
the construction of accurate productivity models. Manual data 
collection is expensive and normally limited to covering 
a limited number of potential influencing factors. Moreover, 

the tendency to change behavior when being monitored (the 
Hawthorne effect, Mayo 1933) may affect operators’ perfor-
mance (e.g. Lindroos 2010; Strandgard et al. 2013; Eriksson 
and Lindroos 2014; Manner 2015). The on-board computers of 
modern forest machinery continuously record large amounts 
of standardized data on machine functions, production, fuel 
consumption, etc. In most cases, the data is extracted and 
communicated using the StanForD protocol (Skogforsk 2019).

Automatically collected machine data have already been 
utilized in several studies about the productivity of CTL har-
vesting, often complemented with additional variables. The 
dataset of Eriksson and Lindroos (2014) covered more than 
20 million cubic meters (under bark) of harvested wood, and 
they used 30 variables for predicting the productivity of har-
vesting with ordinary least square linear regression (OLS). 
Also, Purfürst and Erler (2011) and Gerasimov et al. (2012) 
applied OLS analyses to their machine data. Olivera et al. 
(2015) developed a linear mixed effect model for predicting 
the productivity of CTL harvesting, using the maximum like-
lihood method, while Rossit et al. (2019) applied the decision- 
tree technique. The accuracy of the data used in the studies 
above has varied from aggregated stand-level information to 
work elements of handling individual stems. Productivity 
models are typically constructed for delay-free time. Of the 
studies above, however, Purfürst and Erler (2011) constructed 
their models based on machine time also containing down-
times less than 15 minutes per occasion (E15 or G15).

Regression methods, in particular OLS, is a common pro-
cedure in forest works studies. In it, an equation represents the 
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relationship between a response variable (in forest engineering 
typically time consumption or productivity) and one or more 
predictor variables (e.g. mean stem volume) (Bergstrand 1987; 
Magagnotti et al. 2012). Dummy variables are often used to 
include discrete factors, such as harvester’s size class (e.g. 
Eriksson and Lindroos 2014). OLS provides an easy inference 
of the result, and it works well with a limited number of 
variables and when the underlying assumption of linearity 
holds at least reasonably well (Bishop 2006; Hastie et al. 
2008). Linear regression is often made more flexible via basis 
expansion and the use of interaction terms. Deriving a good 
model with high-dimensional datasets and/or uncertain rela-
tionships between predictor and response variables is difficult 
with a parametric linear regression model, in which 
a somewhat strict linear functional form is assumed a priori. 
According to Costa et al. (2012), a partial least square regres-
sion (PLS) analysis allows the production of models that better 
fit the original data, allows handling collinear variables and 
facilitates the extraction of sound models from large amounts 
of field data from forest operations. This can lead to more 
robust models, but these regression analyses are not as easy 
to conduct, and they produce models that are less user-friendly 
than the OLS regression models, which can be expressed as 
equations to be used by practitioners for their specific 
conditions.

For parametric models, the relationships between predictors 
(variables, also known as features) and the response are often 
derived manually by sequentially testing parametric models’ 
performance against data already used in optimizing their 
parameters. This easily leads to the overuse of data as several 
models are fitted to the whole data in order to find the best 
model. Multiple uses of the same data easily lead to overfitting, 
and an overly complex model does not predict well due to 
random noise. In the case of underfitting, a single overly simple 
model is fitted and treated as the best model (Figure 1, Bishop 
2006; Hastie et al. 2008), but the underlying relationship 
between response and predictors remains unclear. The best 
model in Figure 1 would have the smallest error for new data, 
indicating the true relationship between the response and pre-
dicting variables.

Finding the best model in the sense of predictive ability 
requires specific tools, one should be able to assess the model's 
ability to predict previously unseen data and the model should 
be flexible enough to find the correct underlying model struc-
ture. With complex datasets containing numerous predictor 
variables, non-parametric machine learning methods usually 
out-perform their parametric counterparts. Mitchell (1997) 
describes machine learning as follows: “A computer program 
is said to learn from experience E with respect to some class of 
tasks T and performance measure P, if its performance at tasks 
in T, as measured by P, improves with experience E.”

In the present study three widely used machine learning 
methods – Gradient Boosted Machine (GBM), Support Vector 
Machine (SVM) and OLS regression – were compared. The 
aim was to evaluate their potential for improving the accuracy 
of the prediction of productivity in mechanized CTL harvest-
ing. Due to distinct responses and a predictive agenda, it is 
a question of supervised machine learning.

Materials and methods

In the present study, where the task (T) was to predict accu-
rately the productivity of CTL harvesting, training data repre-
sented experience (E) and root mean square error (RMSE) was 
used as a performance indicator (P) for the models (cf. Mitchell 
1997). The predictive performances of GBM, SVM and OLS 
regression were compared with identical datasets.

In order to avoid under- and overfitting, the data is usually 
divided into training, validation and test sets in machine learn-
ing (Mitchell 1997). In the present study, however, training and 
validation sets were combined, because cross-validation was 
applied. The training set was used to detect relationships 
between predictor and response variables. The validation set 
was used to find the optimal complexity parameters of the 
model, which mitigates, but does not necessarily prevent under-
fitting or overfitting of the optimally parameterized best model. 
The models’ prediction accuracy with respect to previously 
unseen data was maximized by minimizing the test error (pre-
diction error), which was chosen as the RMSE over independent 
test data. Even though RMSE was used as the minimizing 
criterion, the R2-value was used as the final performance mea-
sure for each method, calculated from the test set.

Data composition

The data were provided by several private wood harvesting 
enterprises in Finland during 2014–2017 (Jylhä et al. 2019). 
Used as the response variable, the operator’s productivity was 
calculated for each harvesting block by dividing the operator’s 
total harvested volume (m3, over bark) by delay-free produc-
tive work time (E0h, (also known as PWH)) registered as 
processing in operational monitoring files (.drf, Skogforsk 
2007, 2012) generated by the harvesters’ onboard computers. 
The data for the computations were compiled using 
a Microsoft Access–based application developed for reading, 
transforming and exporting .drf files into Microsoft Excel for-
mat. The machine units (n = 19) used in data collection are 
described in Table 1.

The data originated from 577 thinning blocks and 509 
regeneration felling blocks. One block can be composed of 
several compartments receiving the same cutting treatment. 
Thinnings from below were selective. Besides conventional 
clear-cuts, some seed-tree cuttings and strip harvesting sites 
aiming at natural regeneration were also included in regenera-
tion fellings. In seed-tree cutting, 50–100 trees per hectare are 
left on site, while in strip harvesting, ca. 25 m wide zones are 
clear-cut, to be seeded by the edge forest (Äijälä et al. 2019; 
Finnish Forest Association 2020). The total number of indivi-
dual operators involved in data collection was 49, and some of 
them operated more than one machine. However, the Figure 1. An illustration of the models’ fit.
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operators with less than 10 observations were excluded from 
the computations, because preliminary analyses suggested that 
the SVM model does not perform well with only a few obser-
vations per operator. The remaining 27 operators produced 
738 observations from thinnings and 643 from regeneration 
fellings and harvested in all 270,600 m3 and 292,300 m3 of 
industrial roundwood from these site types, respectively.

Operator-wise mean stem volumes (m3) for removal, used 
as a predictive variable, were calculated for each block by 
dividing harvested volume by corresponding numbers of cut 
stems. Removal by each operator was categorized based on tree 
species composition (pine, spruce, birch, other broadleaved 
and mixed removal). The threshold for being classified as 
a main tree species was set at a minimum 60% (Kärhä 2007; 
Kärhä and Keskinen 2011) of operator-wise removal volume in 
each block; otherwise, the removals were considered mixed. In 
addition to the machine variables, quarter of year (based on the 
starting date of each block) and operator codes (IDs) were 
inserted in the data (Table 2).

Modeling

The 1,381 observations described in Table 2 were randomly 
divided into two groups as follows: 80% for training/validation 
data (1,104 observations) and 20% for test data (277 observa-
tions). For each of the three methods, parameter optimization 
was performed using 10-fold cross-validation (Kohavi 1995), 
i.e. by partitioning the training/validation data into 10 disjoint 
non-overlapping subsets, and RMSE was used as the criterion 
for the best model. When the set of variables and parameters 
corresponding to the best model were identified, the best 
model was fitted to the whole training/validation data. 
Finally, the predictive ability was evaluated calculating the 
performance metric R2-value for the test set.

In addition to the best models, respectively, found for GBM, 
SVM and OLS regression, two additional sets of models were 
constructed, resulting in the following three sets of models:

(i) The best models for GBM, SVM and OLS regression.
(ii) For each best model for GBM, SVM and OLS regres-

sion, operators were added as predictive variables. 
These models were fitted to the whole training/valida-
tion data and the R2-values for the test set were 
calculated.

(iii) A predefined set of predictive variables were selected 
based on domain expert knowledge. GBM, SVM and 
OLS regression models with this predefined set of 
variables were fitted to the whole training/validation 
data and the R2-values for the test set were calculated. 
These models with predefined variables can be seen as 
reference models, and their test set R2-values can be 
compared to the the test set R2-values of the best 
models (i) to investigate potential improvement of 
the machine learning approach.

The best models (i) deliver the main results in the present 
study. They were found by following a machine learning 
approach, in which the aim was to minimize the test error. 
This approach leads to sets of best predictive variables for 
GBM, SVM and OLS regression, respectively. The models 
constructed in (ii) and (iii) are based on (i). They do not 
perform any variable selection. Instead, the set of predictive 
variables in (ii) were found by simply adding operator variables 
to the best sets of predictive variables found in (i). The set of 

Table 1. The description of the machinery used in data collection. Size classification of machinery according to Eriksson and 
Lindroos (2014).

Base machine Harvester head

Number of machine units

Number of operators

Size class Brand and model Size class Model Total Individuals harvested ≥10 blocks

M Komatsu 901.4 M 340 1 2
L John Deere 1170E M H413 4 7
L John Deere 1170E M H460 3 8
L John Deere 1170E L H414 2 7
L Komatsu 901TX.1 L 350 2 3
XL John Deere 1270E L H414 3 7
XL John Deere 1270E XL H415 1 6
XL John Deere 1270E XXL H480 3 10
All pooled 19 491 28

1Some operators used more than one machine.

Table 2. Variables (features) included in the data.

Variables Definition
Unit/ 
Class Mean Min–max SD n

Y Productivity of 
harvesting

m3h−1 23.2 4.2–69.8 11.7 1381

Th Thinning 0/1 0.5343 0–1 - 738
RF Regeneration felling 0/1 0.4656 0–1 - 643
V Operator-wise mean 

stem volume
m3 0.2741 0.033–1.267 0.2034 1381

Harvester size
HS1 M 0/1 0.0615 0–1 - 85
HS2 L 0/1 0.6010 0–1 - 830
HS3 XL 0/1 0.3374 0–1 - 466

Harvester head size (HH)
HH1 M 0/1 0.5394 0–1 - 745
HH2 L 0/1 0.1904 0–1 - 263
HH3 XL 0/1 0.1035 0–1 - 143
HH4 XXL 0/1 0.1665 0–1 - 230

Main tree species in operator-wise removal (MTS)
MTS1 Pine 0/1 0.0738 0–1 - 102
MTS2 Spruce 0/1 0.0260 0–1 - 36
MTS3 Birch 0/1 0.0094 0–1 - 13
MTS4 Other broadleaved 0/1 0.0195 0–1 - 27
MTS5 Mixed removal 0/1 0.8711 0–1 - 1203

Quarter of year (Q)
Q1 1 (months 1–3) 0/1 0.2976 0–1 - 411
Q2 2 (months 4–6) 0/1 0.1013 0–1 - 140
Q3 3 (months 7–9) 0/1 0.2816 0–1 - 389
Q4 4 (months 10–12) 0/1 0.3193 0–1 - 441
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predictive variables in (iii) were chosen a priori based on 
domain expert knowledge. Models in (ii) indicate possible 
improvement in predictive accuracy when operator informa-
tion is added to the best models. Models in (iii) serve as 
reference.

Gradient boosted machine (GBM)

The gradient boosted machine (GBM, Friedman 2001; 
Malohlava and Candel 2017) model is an ensemble regression 
model that uses multiple decision trees to obtain better pre-
dictive performance than could be obtained from any of the 
constituent models alone. The GBM model gradually improves 
prediction performance (RMSE) by sequentially applying weak 
regression algorithms to the incrementally changed data which 
are boosted to help improve the statistical performance of the 
decision trees. Boosting filter observations by leaving those 
observations that the weak learner can handle and then focuses 
on developing new weak learner to handle remaining difficult 
observations. The GBM method generalizes tree boosting to 
increase computational speed. The result is an ensemble model 
that combines multiple hypotheses to form a (hopefully) better 
hypothesis, especially appropriate for mining less than clean 
data with outliers and potential correlated variables. Drop-out 
method (Vinayak and Gilad-Bachrach 2015) was used to avoid 
overlearning. The absolute (plus or minus) influence of each 
variable on harvesters’ productivity was estimated using sensi-
tivity analysis (Olden and Jackson 2002) with the best model. 
The GBM analyses were performed using RapidMiner software 
(https://rapidminer.com, version Studio Large 9.4.001, 
Mierswa et al. 2006).

Support vector machine (SVM)

Support vector machines (Vapnik 1995, 1998) are a group of 
supervised, semi-supervised and unsupervised machine learn-
ing methods used for classification, regression, clustering, 
anomaly detection and distribution estimation for complex 
data that is difficult to handle with linear functions. SVMs are 
apt for modeling very high-dimensional datasets (many col-
umns), which may also contain a high number of observations 
(many rows, samples, also referred to as big data). The harvest-
ers’ productivity was predicted using Java version of mySVM 
with a dot (linear) kernel (Rüping 2000; Mierswa et al. 2006). 
This model type is based on the optimization algorithm of 
SVMlight described in Joachims (1999). The absolute (plus or 
minus) influence of each variable on harvesters’ productivity 
was estimated using feature weights (Lagrange multipliers) of 
a linear kernel SVM model. SVMs require numerical variables, 
and therefore, discrete variables were dummy coded (Table 2). 
The variables were normalized using a zeroed mean with 
a variance of one, with the aim of avoiding bias caused by 
very high or very low values of some variables. The emphasis 
was put on the avoidance of over- and underfitting, by carefully 
optimizing the complexity parameter C (also called “capacity” 
and “regularisation” term). Too large C values can lead to 
overfitting and too small values to overgeneralization. The 
best model fit (minimum validation error) was sought by 
optimizing SVM parameters. In this context, the SVM 

parameters C and insensitivity (also called “slack”) parameter 
ε were estimated using 10-fold cross-validation (Kohavi 1995) 
applied to sequential grid-search. The variables (feature space) 
were mostly dummy-coded (Table 2) and selected by expert 
judgment. The total number of variables (46 with operators, 19 
without operators, 8 in the model) was very low compared to 
the capabilities of the SVM model, and therefore, the feature 
selection methods were not used. The SVM analyses were 
performed using RapidMiner software (https://rapidminer. 
com, version Studio Large 9.4.001, Mierswa et al. 2006).

Linear regression (OLS)

The general linear regression model can be written as follows 
(Eq. 1) (e.g. Searle 1971): 

y ¼ β0xþ ε (1) 

where y, x, β and ε denote productivity of cutting, variables, 
model parameters and the error term, respectively. In addition 
to the variables shown in Table 2, the second-order polynomial 
term for mean stem volume and an interaction term between 
felling type and mean stem volume (with first- and second- 
order terms) were included in the potential variable set. The 
grid approach was applied to model selection, and each possi-
ble variable combination was evaluated in the cross-validation. 
The importance of each main-effect was investigated using the 
lmg method (Grömping 2006), which decomposes R2 into 
variable contributions to be summed to the total R2.

For the OLS regression, predicting variables were selected 
via grid approach as optimal parameter search. For each can-
didate model, the model parameters were OLS estimates, but 
the variable search in itself was an optimization process.

Optimal parameter, weight and variable selection for each 
model were reached by maximizing predictive accuracy. 
Reporting p-values for the OLS regression models were not 
relevant, because specific distributions for parameter samples 
were not assumed as in the case of hypotheses set in traditional 
OLS regression modeling. Instead, solely the unbiased OLS 
parameter estimates are reported and visualized using point 
estimates.

Since the operators were considered to represent a larger 
population of operators, they were treated as a sample from 
a general operator population to which inference can be applied. 
When modeling variation between operators, they were treated as 
a random term in the multilevel model (Pinheiro and Bates 2002). 
First, the multilevel modeling approach was warranted by testing 
whether there was enough random variation between operators. 
For that purpose, an intercept-only model was first fitted and 
compared with a random intercept-only model using log- 
likelihood. The simple multilevel model containing only operator 
variables was written as follows (Eq. 2) (e.g. Pinheiro and Bates 
2002). 

yi ¼ βþ bi þ εi (2) 

where yi is an ni-dimensional response vector corresponding to 
operator i, β is a p-dimensional vector of fixed effects, 
bi ~N 0;Ψð Þ is the q-dimensional vector of random effects, and 
εi ~N 0; σ2ð Þ is the ni-dimensional within-group error vector.
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The process of model-building was continued by consider-
ing a random intercept term and the set of potential variables, 
and also a second-order polynomial term for mean stem 
volume was added to a set of potential predictor variables. 
One variable at a time was added to the model, and all variables 
decreasing the AIC criterion (Akaike 1974) were included. The 
new model obtained in this way was treated as the current best 
model, after which one variable at a time was again added to 
the model, minimizing the AIC. When the AIC did not 
decrease anymore, the process was stopped. A multilevel 
model with both fixed and random terms was written as fol-
lows (Eq. 3): 

yi ¼ Xiβþ bi þ εi; (3) 

where Xi denotes the fixed effects and the other notation 
similar to model M2. The overall variance of the predicted 
productivity was described using the Nakagawa R2 coefficient 
of determination (Nakagawa and Schielzeth 2013).

All OLS computations were done using the R software (R 
Core Team 2018) with packages ggplot2 (Wickham 2016), 
nlme (Pinheiro et al. 2018), MuMIn (Barton 2018), tidyverse 
(Wickham et al. 2019), dummies (Brown 2012) and relaimpo 
(Grömping 2006).

Results

GBM and SVM

Both GBM and SVM models indicated that mean stem volume 
(V) was by far the most important factor affecting the productivity 
of CTL harvesting (Figure 2). Also, the type of cutting (regenera-
tion felling (RF) vs. thinning (Th)) played a decisive role, i.e. 
productivity in regeneration fellings was higher than in thinnings 
all other factors being equal. The cutting of pine-dominated 
stands (MTS1) was more efficient than those with another tree 
species composition. The use of the M-sized harvester (HS1), and, 
on the other hand, the XL-sized harvester head (HH3) reduced 
productivity. In both analyses, the use of the XL-sized harvester 
head had a large negative impact on productivity.

Even though most factors showed similar behavior in the 
GBM and SVM methods, there were some distinct differences 
in terms of how levels of factors influenced productivity. Large 
and XXL-sized harvester heads (HH2 and HH4), for instance, 
had only minor influences in GBM, but a rather large positive 

influence in SVM. Similarly, the year’s last quarter (Q4) had 
a large positive effect in GBM, but a small negative effect 
in SVM.

Based on the GBM model, operators explained on average 
48% of predicted productivity. The SVM model showed lower 
operator effect as operators explained on average 42% of pro-
ductivity. When the GBM and SVM models were run with 
operator information, the impacts of the other variables were, 
to a great extent, in the same order as in those without operator 
information (Figure 3).

Linear regression (OLS)

The best model (Eq. 4) produced by OLS regression consists of 
the terms felling type, the size of harvester and harvester head, 
main tree species, quarter of year, mean stem volume, mean 
stem volume second-order polynomial, interaction between 
felling type and mean stem volume and interaction between 
felling type and mean stem volume second-order polynomial 
(Eq. 4): 

y ¼ β0 þ β1RF þ β2HS2 þ β3HS3 þ β4HH2 þ β5HH3
þ β6HH4 þ β7MTS2 þ β8MTS3 þ β9MTS4 þ β10MTS5

þ β11Q2 þ β12Q3 þ β13Q4 þ β14V þ β15V2 þ β16RF � V
þ β17RF � V2 þ ε;

(4) 

The model parameter estimates are shown in Table 4. Mean 
stem volume (V, m3) had the largest impact on productivity, 
and the type of felling had the second largest impact (Figure 4). 
Based on the model (Table 3), the large harvester head size 
(HH2) had a slightly higher productivity compared to the 
medium-sized harvester head size (HH1), whereas the XXL 
harvester head size had a lower productivity compared to 
medium-sized harvester head.

Figure 5 shows the predicted productivity for the best linear 
regression model for a fixed variable set. In general, the pro-
ductivity in thinnings was lower than in regeneration fellings. 
However, this specific model setting did not show a significant 
difference in productivity between thinnings and regeneration 
fellings when the mean stem volume was between 0.272 m3 and 
0.461 m3. Moreover, the thinning productivity peaked around 
an approximate stem volume of 0.750 m3, after which it started 
to decline.

Figure 2. The impact of non-anthropogenic variables (operator variables in the 
model) on productivity based on the a) GBM and b) SVM models. Note the 
different units in the x-axes; slope parameter in GBM = slope parameter; 
Lagrange multiplier in SVM.

Figure 3. The impact of non-anthropogenic variables (operator variables excluded 
from the model) on productivity based on the a) GBM and b) SVM models. Note 
the different units in the x-axes; slope parameter in GBM = slope parameter; 
Lagrange multiplier in SVM.
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The reference model can be written as follows (Eq. 5): 

y ¼ β0 þ β1RF þ β2MTS2 þ β3MTS3 þ β4MTS4 þ β5MTS5

þ β6V þ β7V2 þ ε
(5) 

The parameter estimates for the reference model are presented 
in Table 4.

The log-likelihood test between the intercept-only model 
and the random intercept-only model resulted in a small 
p-value (<0.05), indicating that there was enough random 
variation between operators for multilevel modeling. 
Nakagawa R2-value of 33.0% indicated that operator informa-
tion explained about one-third of productivity variation when 
being used as the sole predictor.

The final multilevel model included the following variables: 
type of felling, mean stem volume (V), second-order polyno-
mial term for mean stem volume (V2), size of harvester head, 
quarter of year and main tree species. For the final model, 
Nakagawa R2 values of 80.9% for fixed and 88.8% for both 
fixed and random terms were obtained. Consequently, when 
fixed variables were already included in the model, the operator 
variable increased the model’s predictive performance by 
7.9 percentage points.

Comparison of modeling approaches

The best variable subsets based on linear regression, linear 
kernel SVM regression and GBM models with their hold-out 
set performances are shown in Table 5.

For GBM, SVM and OLS regression, the best model with 
operators gave the highest test set R2 value, i.e. the highest 
predictive accuracy (see Table 5). This is not surprising, since 
more variable information is used in prediction. The reference 
models gave the lowest predictive accuracy. When applying the 
models with operator information to new data, the best model 
with operators must always include the same operators 
included in the present dataset. The best models without 
operators and the reference models do not have this restriction.

Figure 4. Relative variable importance (percent of the total R2) of each main-effect 
term for the best linear regression model. The y-axis notation is the following: 
HS = harvester’s size class, HHS = size class of harvester head, MTS = main tree 
species, Q = quarter of year.

Table 3. The parameter estimates of the best linear regres-
sion model.

Parameter Estimate RMSE

Full model - 4.57
Intercept1 5.188
RF 5.445
HH2 0.261
HH3 -6.168
HH4 -2.241
HS2 1.775
HS3 4.504
MTS2 -3.574
MTS3 -5.159
MTS4 -3.496
MTS5 -2.224
Q2 -0.424
Q3 -0.948
Q4 -1.215
V 89.39
V2 -58.62
RF×V -24.12
RF× V2 36.65

1The intercept includes the baseline for each categorical 
variable, in which the following factors were assumed: 
Thinning, Harvester head size M, Harvester size M, Main 
tree species pine and Quarter 1.

Table 4. The parameter estimates of the reference linear 
regression model. Abbreviations are presented in Table 2.

Parameter Estimate RMSE

Full model - 4.86
Intercept 8.451
RF 2.682
MTS2 -4.062
MTS3 -6.828
MTS4 -3.901
MTS5 -2.737
V 71.87
V2 -31.35

1The intercept includes the baseline for each categorical 
variable, in which Thinning and Main tree species pine are 
assumed.

Figure 5. An example of predicted productivity (of y) against the mean stem 
volume (V) by felling type for linear regression, with fixed values MTS5 (Mixed 
species removal), HS2 (Harvester size class L), HH1 (Harvester head size M) and 4th 
quarter of the year (months 10–12).

Table 5. The best level of prediction (R2) for the best OLS regression (OLS R), linear 
kernel SVM regression and GBM models over the three model levels.

The best model

Method Reference model Without operator With operator

GBM 83.7 85.6 90.2
SVM 80.9 82.9 87.0
OLS Regression 82.2 84.6 89.3
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Discussion

Automatically recorded forest machine data are considered to 
be a reliable source of information for predicting the produc-
tivity of CTL harvesting (e.g. Nuutinen 2013; Brewer et al. 
2018). The predictive performance of the machine learning 
models of the present study was high compared to linear 
regression models constructed using much larger datasets 
based on forest machine data (e.g. Purfürst and Erler 2011; 
Eriksson and Lindroos 2014). In the present study, the level of 
prediction (R2) varied from 81% up to 90%. Rossit et al. (2019) 
reached accuracies greater than 90% with the decision-tree 
technique applied to stem data. However, there are uncertain-
ties associated with these comparisons due to variation in 
methods, metrics and data quality. The present approach of 
maximizing the predictive accuracy is, however, quite strict, 
because the overfitting of models is unlikely due to the parti-
tioning of data and cross-validation.

As shown by traditional regression models (e.g. Eliasson 
1998; Kärhä et al. 2004; Nurminen et al. 2006; Purfürst and 
Erler 2011), stem size and operator were important factors 
affecting the productivity of CTL harvesting. Also, the deci-
sion-tree method applied by Rossit et al. (2019) indicated that 
tree size is the most significant factor predicting the productiv-
ity of CTL harvesting, but tree species and operator also show 
significant influences. A larger number of tree species combi-
nations would theoretically result in larger predictability, but 
this would require more data. Based on the studies of Kärhä 
(2007) and Kärhä and Keskinen (2011), we ended up using 
a somewhat rough mixed tree species class for stand-level data. 
Nevertheless, the tree species distribution was comparable with 
the tree species distribution of the total roundwood removals 
in Finland between the years 2014 and 2017 (Natural 
Resources. . .2020). The results are also parallel with 
a Swedish follow-up study (Eriksson and Lindroos 2014) 
based on millions of cubic meters of harvested wood.

Predictor variable representativeness is connected to the 
model’s ability to generalize to the population. However, eval-
uating predictor variable representativeness is difficult and 
cannot be ensured due to lack of detailed statistics. Large 
discrepancies of relative frequencies between data and popula-
tion might cause prediction bias. Assuming the data and popu-
lation have similar predictor variable distributions, our models 
are likely to give generalizable results.

The operator’s influence is a complex phenomenon to ana-
lyze. Besides the numerous factors affecting actual performance 
and their interaction (e.g. Purfürst and Erler 2011), the result is 
also dependent on the modeling approach. In the present 
study, the operator alone explained ca. 30–60% of productivity 
variation of CTL harvesting, and the operator’s effect was 
greater in regeneration fellings than in thinnings. Also, earlier 
studies have indicated that stand conditions affect the operator 
effect – the more difficult the conditions, the greater the human 
factor will have on productivity (Väätäinen et al. 2005; 
Kariniemi 2006; Purfürst and Erler 2011). Kariniemi (2006) 
found out that the differences between operators increased 
along with an increase in stem volume, which may explain 
the differences in the operator effect in thinnings and regen-
eration fellings. In addition, in the present data, the average 

number of assortments was higher in regeneration fellings 
(Jylhä et al. 2019). Previous studies (e.g. by Nurminen et al. 
2006; Eriksson and Lindroos 2014) have indicated that increas-
ing the number of timber assortments directly increases the 
time consumption of harvesting. Also, the present study con-
firms the conclusion of Purfürst and Erler (2011) about the 
need to include the operator in productivity models. Väätäinen 
et al. (2005) have estimated that 10–15% of the differences in 
the performance of harvester operators are due to differences 
in work technique, 20–30% due to better crane and generator 
control and the remaining 50–55% result from competence in 
planning and decision-making.

The present study indicated that matching the size of the 
base machine and harvester head with stem volume is worth 
considering when balancing the efficiency and unit cost (per 
cubic meter) of harvesting. From the modeling viewpoint, the 
combination of harvester head size and the size of the base 
machine could theoretically have been taken into considera-
tion, for example, by including an interaction term between 
these variables. However, most of the combination classes in 
the present dataset had zero frequency, and therefore, it was 
not possible to include such an interaction term in the models. 
In practice, all combinations of harvester head size and the size 
of the base machine are not technically or economically feasi-
ble. As pointed out by Eriksson and Lindroos (2014) only a part 
of the variables used in this study can be considered as good 
models of the underlying factors, and most of them are rather 
indications of areas where there is a need to develop improved 
productivity models. Such areas include machine, type of 
operation, stand complexity and environmental factors.

Also, Purfürst and Erler (2011) used operational monitoring 
data (.drf files). They emphasized that their parameter esti-
mates may contain unknown errors, and they recommend 
the use of data related to single trees rather than the whole 
stand (or larger units as in the case of the present study). In 
general, the results of various studies are only valid in condi-
tions similar to those under which the data were generated. In 
the present study, information related to environmental con-
ditions was scarce as only a few additional variables were 
inserted in the .drf data. Furthermore, the variables were 
aggregated at the operator and block (harvesting unit) level. 
The variation in model parameters within one block can be 
large, as one block can be composed of one or more compart-
ments harvested during several shifts. However, data storage 
and transmission capacities can limit the use of more detailed 
data.

In the present study, only the time registered as delay-free 
time (E0) registered as processing time was considered, while 
also delays shorter than 15 minutes were included in the data of 
Purfürst and Erler (2011). Inclusion of delays exceeding the 
main filtering time likely further increased the heterogeneity of 
their data. The data of the present study were also used in the 
follow-up study of Jylhä et al. (2019), in which E0 processing 
time constituted ca. 82% of E15 time and 86% of production 
time. When comparing the models based on .drf files to those 
based on manual timing, one should note that E0 times can 
include short downtimes below the minimum filtering time 
(StanForD default value 15 s, Skogforsk 2019). Such short 
delays are excluded from manual timing to a great extent. 
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The main filtering time (default value 120 s) defines how main 
work phases based on CAN-bus data (processing and terrain 
travel) are registered in .drf files. Therefore, processing sessions 
normally also include moving between processing points. 
These phases were combined in the data of Eriksson and 
Lindroos (2014), which was collected using vibration sensors 
installed on the machines. Judging from equal productivity 
levels, the timing principles are comparable.

The GBM had the best predictive performance of the three 
compared methods. This is logical as the model derives its 
predictive power from an ensemble of multiple, overlapping 
regions of variable values, without assuming any a priori spe-
cified value distribution. A general reason for using ensemble 
models (also random forests, Breiman 2001) is to reduce 
uncertainty and stability on predictions when compared with 
a single model, such as a generalized linear model or 
a generalized additive model. Dietterich (2000) considers sta-
tistical, computational and representational factors as the rea-
sons for the high predictive power of ensemble models. Firstly, 
when the training set is small (as in the reference model setup 
with only three variables), a learning algorithm can typically 
find several models (functions) in the hypothesis space and, by 
averaging several models, ensemble models may reduce the 
risk of choosing the wrong hypothesis. Secondly, an ensemble 
of individual models built from many different starting points 
may provide a better approximation of the true unknown 
function than one using any of the single models. By combin-
ing several models in an ensemble, it is possible to expand the 
space of representable functions and obtain a better model of 
the true function. The shortcoming of GBM is that it may be 
computationally “expensive” to derive the contribution of vari-
ables (plus-minus importance) with very high-dimensional 
datasets. Due to the overwhelming number of variable combi-
nations to be examined (Olden and Jackson 2002), it is com-
mon to vary each feature from its minimum to maximum value 
while keeping all other variables constant at a certain summary 
measure (e.g. mean, min and max).

The Linear SVM model expects equal importance for cor-
related variables, and it does not suffer from the “winner takes 
all” phenomenon typical of parametric regression models. In 
a linear kernel SVM, a highly correlated variable does not 
heavily affect the weights of other variables, which results in 
smooth and balanced weights (plus-minus importance). Linear 
SVM weights are widely used in prediction competitions for 
weighting variables with high-dimensional datasets (Chang 
and Lin 2008; Guyon et al. 2008), for example, for selecting 
the most important variables (feature selection; Guyon and 
Elisseeff 2003) or for deriving inference of all predicting vari-
ables without selection. The model does not require the deriva-
tion of interaction terms for variables. However, the dataset 
used in the present study was small and hence the linear SVM 
did not perform as well as the two other model types based on 
test set performance. With a small dataset with only a few 
variables, intuitively the winner-takes-all approach or ensem-
ble models are more powerful.

Data from harvesting operations are often incomplete (e.g. 
Purfürst and Erler 2011; Eriksson and Lindroos 2014), which 
limits the utilization of productivity models. The behavior of 
machine learning models with incomplete data and missing 

values depends on the model type. For example, the GBM 
model tolerates missing data, but SVM and the OLS regression 
require imputation or the omission of missing values or vari-
ables. Prominent examples of missing data imputation meth-
ods are pattern removal, conditional mean/mode approach and 
k-nearest neighbor, whose k-values can be optimized using 
n-fold cross-validation. The dataset used in the present study 
did not have variables with missing values.

The practical application of the results of the present study 
is limited by the fact that GBM and SVM do not produce 
parametric equations. The OLS regression models’ equations 
can be utilized using non-specialized software (e.g. MS Excel). 
For GBM and SVM, one option for practical applicability 
would be to serve the GBM and SVM models in the cloud, 
where anyone could apply them to their own dataset. However, 
applying all the models would require data with the same 
distribution as in the dataset used in the present study. 
Another solution to apply to GBM and SVM would be to 
follow the procedures described in this article and apply them 
to another dataset. For this, however, specific software is 
needed (e.g. R, R Core Team 2018; RapidMiner, Mierswa 
et al. 2006; Knime, Python and Weka, Eibe et al. 2016). They 
all include specialized packages (extensions) for various tasks. 
They can be used interactively; for example, RapidMiner has 
extensions for R, Python and Weka. So a fraction of a process 
can be run concurrently in another software using the same 
(one) script of the parent software. Currently available machine 
learning software has more or less the same mainstream func-
tionalities with minor differences in the implementation of 
algorithms.

In the deployment phase, a machine learning model is 
typically saved in a repository to make predictions with stream-
ing (continuously updated and probably bigger) data. It is also 
common to apply a set of competing machine learning models, 
built on the same or similar data sets, where one model is 
active, and the remainder are challengers. The performance 
of the models may change over time, alerting of drift and bias, 
because the input (training/validation) data were not represen-
tative or because the new streaming data drifted. If the mea-
sured drift is significant, one may want to rebuild (re- 
parameterize) models. In addition, deployment models are 
usually shared by a group collaborating on a common project 
with web services, so that it can be integrated with other 
software.

Conclusions

Any machine learning method is restricted by the quantity 
and quality of available data. The OLS regression implemen-
ted using machine learning performed well when compared 
with the more flexible GBM and SVM approaches. 
Considering the data properties (number of observations 
and available variables/features), the underlying phenom-
enon most likely follows rather closely a parametric form 
captured by a linear regression model with a simple basis 
expansion – or at least a more flexible representation cannot 
predict much more accurately with the present dataset. The 
potential of SVM and GBM is well known and their ability 
to outperform OLS regression would increase as the number 
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of variables and observations increase. Implementing 
machine learning methods shows great potential in forest 
engineering as various applications for collecting and ana-
lyzing real “big data” are under development (Tech4Effect 
2019; Koneyrittäjien Datapankki 2019). However, the ques-
tions related to data ownership and regulation of data pro-
tection (The European Parliament and the Council 2016) 
limit the utilization of big data.

In the future, the amount of harvesting data is likely to 
increase greatly. Existing and new machine learning methods 
will be useful tools for finding nuanced relationships between 
variables and performing more accurate predictions. For 
applicability, models should be served on a website or in 
a cloud platform. Data pipelines would feed data to a model 
that would continuously serve predictions. The private sector 
already builds these systems, and the academic world should 
follow suit.
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