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Plants’ adaptation to their environment often involves change in development, which in 

many cases involves the establishment of differential growth rates across organs, for 

instance during phototropic and gravitropic responses. A striking example of differential 

growth is the formation of the apical hook, a structure that forms to protect the apical 

meristem as seedlings penetrate through soil. Coordination of differential growth across 

tissues is a multilayered process involving the combined effect of spatiotemporally 

controlled events such as gene expression, biosynthesis of proteins and polymers, 

transport and incorporation of biosynthetic products to their sites of participation, 

regulation of expansion driven by vacuolar turgor and control of cell mechanical 

properties via cell wall modifications.  

This thesis addresses mechanisms that underlie differential growth, using the apical 

hook as a model. Particularly, this work focuses on the role of two distinct but interrelated 

processes; transport of components to the cell surface, and regulation of composition of 

components at the cell surface in apical hook development. This work demonstrates that 

secretion of different auxin carriers follow distinct routes from the trans-Golgi network 

(TGN) to the plasma membrane, where delivery of AUX1 but not PIN3 relies the TGN-

localized protein ECHIDNA (ECH). Data show that the ECH-dependent secretory 

pathway is essential for ethylene-mediated differential growth of the apical hook in 

Arabidopsis. Moreover, this work investigates the mechanism by which ECH operates, 

and shows that ECH is required for the localization of the GTPase ARF1 and its activator 

GEFs BIG1-4, which are key components of a vesicle formation machinery at the TGN. 

ARF1 members and BIG1-4 are, like ECH, required for AUX1 delivery to the PM and 

for ethylene-mediated hook development. Finally, the thesis explores the role of the cell 

wall in differential growth, particularly, that of homogalacturonan pectin and its 

modification by methylesterification. This thesis demonstrates that differential cell 

elongation during hook development relies on establishing asymmetric cell wall 

mechanical properties across the hypocotyl via pectin methylesterification modifications 

in an auxin-dependent manner, and that a mechanochemical component provides 

feedback to the auxin machinery.  

Taken together, this thesis demonstrates the multilayered regulation of growth 

asymmetry which facilitates shape generation. 
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In all organisms, growth and development involves changes in body plan 

(Gilbert, 2000). In multicellular organisms, these processes must be coordinated 

at multiple levels. In animals, cellular migration plays important roles, 

particularly in embryonic development, immune responses and wound healing 

(Trepat et al., 2012). In stark contrast, cells of plants cannot migrate, and 

development of their body plans and associated structures involves tightly 

coordinated changes in the size and structure of cells, tissues and organs. This 

involves multilayered, spatiotemporally integrated processes such as gene 

expression, biosynthesis of proteins and polymers, transport and incorporation 

of biosynthetic products to their functional sites, regulation of expansion forces 

through vacuolar turgor and control of cells' mechanical properties through cell 

wall modifications. In this thesis, I address how differential growth contributes 

to plant development, focusing particularly on roles of two distinct but 

interrelated processes: transport of substances to plant cells' surfaces, and 

regulation of the composition of materials at their surfaces. 

1.1 Differential growth in plants 

Plant growth involves increases in the number of cells via cell division and 

changes in cells’ size via elongation and expansion (Sablowski, 2016). The 

relative importance of cell division and expansion varies among developmental 

processes. Division is extremely important during plant embryogenesis, in which 

series of asymmetric cell divisions, together with cell differentiation, transforms 

a zygote into a mature embryo with a basal body plan and strictly defined shape 

(van Dop et al., 2015). Other striking examples of morphogenetic processes 

involving sequences of asymmetric cell divisions include the formation of 

stomata and lateral root primordia (Torii, 2015; Du and Scheres, 2018). 

1 Introduction 
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While asymmetric cell divisions play key roles in plant development, as 

noted above, plants' adaptation to their environment often involves differential 

growth at the organ level, driven by differential rates of elongation in cells of a 

tissue or organ rather than asymmetric cell divisions (Dunser and Kleine-Vehn, 

2015). I briefly describe some extensively studied systems for studying 

differential growth, and then provide a more detailed description of apical hook 

development, in the following sections. 

Tropisms – Models for studying differential growth 

The most thoroughly studied example of differential growth may be the 

gravitropic response of roots. The main root of a plant generally exhibits positive 

gravitropism, that is, grows downward along the gravity vector, and if it is tilted 

so its angle deviates from this vector, a machinery is set in motion that re-orients 

growth (Figure 1A). Starch-filled amyloplasts (organelles within cells) called 

statholiths sediment to the bottom of columella cells, the sites of graviperception 

in roots (Sack, 1991; Blancaflor et al., 1998). When the root is tilted, statholiths 

move to the new bottom within 5 minutes, causing basal polarization of several 

PIN-FORMED (PIN) auxin efflux carriers, and hence re-direction of transport 

of the growth hormone auxin towards the lower part of the root (Kleine-Vehn et 

al., 2010). Auxin is subsequently transported shootward by polarly localized 

PIN2 in the epidermis towards the elongation zone (Muller et al., 1998; 

Wisniewska et al., 2006). The resulting increase in auxin levels on the lower side 

causes a transient increase in pH in the apoplast (the space outside plant cells' 

outer membranes, described in more detail later) that is thought to inhibit 

elongation, while the lower auxin levels on the upper side are growth-

permissive, sparking elongation (Barbez et al., 2017).  

Another well-studied differential growth process is the phototropic bending 

of the hypocotyl in response to blue light (Figure 1B). Since the seminal 

examination of coleoptile bending in response to unilateral light by Charles and 

Francis Darwin (Darwin, 1880), abundant information has been obtained on the 

mechanisms involved in this process. Direction of light is perceived mainly by 

blue light receptors PHOTOTROPIN1 (PHOT1) and PHOT2 (Briggs et al., 

2001), which inhibit activity of the protein kinase PINOID upon illumination, 

thereby limiting PIN3 phosphorylation. This directs PIN3 trafficking via the 

ARF-GEF GNOM recycling pathway towards cells’ inner lateral membrane 

(Ding et al., 2011). Furthermore, PHOT1 directly phosphorylates the auxin 

efflux carrier ABCB19, inhibiting its auxin transport capacity (Christie et al., 

2011). Unilateral light thus triggers polarization of auxin transport, directing 



15 
 

auxin towards the shaded side of the plant. The resulting auxin gradient causes 
asymmetric elongation, re-aligning the hypocotyl towards the light source. 

1.2 Apical hook development 
This thesis focuses primarily on another striking example of differential growth, 
which leads to formation of an apical hook during the germination of 
dicotyledonous plants (Figure 1C). In Arabidopsis, this occurs 8-12 hours after 
germination through bending of the shoot apical meristem (SAM)-proximal part 
of the hypocotyl until it becomes semitoroidal, i.e., a cylinder with 
approximately 180° curvature (Mazzella et al., 2014) (Figure 1C, Figure 2). 
Formation of this structure is part of a developmental process called 
skotomorphogenesis, which involves a suite of adaptive responses to the 
challenges posed by germination of seedlings buried in dark, hypoxic soil (Josse 
and Halliday, 2008). Skotomorphogenesis also involves rapid growth of the 
hypocotyl and folded cotyledons. The hook structure provides protection for the 
fragile cotyledons and apical meristem from physical trauma by folding them 

CB
1 21

2

A

Gravity
vector

Figure 1. Auxin gradients mediate differential growth processes. (A) Root gravitropic 
response, (1) Auxin is transported rootward via the central cylinder. When the root is aligned 
with the gravity vector, statoliths sediment to the bottom of columella cells (blue), and 
shootward transport of auxin (red arrows) is symmetric. (2) When the root is tilted, statoliths 
sediment to the new bottom, causing redirection of auxin transport towards the lower side of 
the root, where high auxin levels inhibit elongation. Conversely, low auxin levels on the upper 
side of the root promotes growth. (B) Hypocotyl phototropism. (1) When light illuminates the 
plant uniformly, auxin is transported rootward via the central cylinder (red arrows), and is 
radially directed uniformly to the outer cell layers. When light illumination is non-uniform, 
radial auxin transport is inhibited on the illuminated side, causing preferrential auxin transport 
towards the shaded side, where high auxin levels promote elongation. (C) Apical hook 
development. In darkness, auxin is transported rootward from the cotyledons and/or apical 
meristem via the central cylinder (red arrows). In the hook, auxin is transported towards the 
inner side of the hook, inhibiting cell elongation. 



16 

 

away and causing the cuticle-clad hypocotyl to lead the upward penetration of 

the buried seedling’s shoot through the soil (Briggs, 2016). The hook remains 

closed (usually for several days) as the seedling grows through soil, and upon 

perception of light it rapidly uncurls and the plant transitions to a 

photomorphogenic lifestyle (Liscum and Hangarter, 1993). In contrast to tropic 

responses, hook development is an intrinsic developmental program that is 

initiated even in the absence of external stimuli, although external factors such 

as light and oxygen levels may modulate their timing (Powell and Morgan, 1970; 

Liscum and Hangarter, 1993; Abbas et al., 2015). 

The apical hook is an outcome of differential growth that is largely if not 

exclusively due to asymmetric cell elongation on opposing sides of the post-

embryonic hypocotyl (Silk and Erickson, 1978; Raz and Ecker, 1999). Thus, 

understanding the regulation of differential cell elongation is crucial for 

elucidating the intricate mechanisms of hook development. 

The regulation of skotomorphogenic hook development is addressed in detail 

in the following sections. Photomorphogenetic processes, such as light-induced 

hook opening, are beyond the scope of the thesis, and thus are not further 

considered here. 

1.2.1 Hormonal regulation of apical hook development 

Like most developmental processes, apical hook development is tightly 

controlled by a complex hormonal network or ‘cross-talk’, which allows fine-

tuning of every phase. Roles of the hormones ethylene and auxin in the process 

have received the most attention. Thus, in this section I focus on the involvement 

of these key players in hook development. 

Figure 2. Time-lapse imaging of dark-grown Arabidopsis wild-type seedling, imaged at 6-hr 

intervals 
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1.2.2 Auxin 

Auxins are a class of phytohormones 

(often collectively called auxin) that 

participate in regulation of many 

aspects of plant growth and 

development, inter alia, embryo 

patterning, cell expansion and 

division, organ development, tropic 

responses and senescence (Khan et 

al., 2014; Rakusova et al., 2015; Smit 

and Weijers, 2015; Taylor-Teeples et 

al., 2016). Auxin was originally 

identified in study of plant tropisms, 

i.e., the differential growth of plant 

organs in response to an external cue, 

which were predicted to involve 

unequal distribution of auxin, as 

formalized in Cholodny-Went theory 

(Went and Thimann, 1937). This 

prediction has proved largely correct. 

Examples are tropic responses of 

young roots and shoots, in which re-

direction of asymmetric auxin 

transport causes unequal growth of 

organs. There are several forms of 

auxin, but the most important active form is indole-3-acetic acid (IAA), which 

is also simply (and rather confusingly) called auxin sometimes (Simon and 

Petrasek, 2011). This was also the first discovered plant hormone (Went, 1926). 

Auxin has been known to modulate curvature of the apical hook for more than 

50 years (Kang et al., 1967). However, the earliest experimental clues that hook 

development shared a central feature of tropic responses – an auxin distribution 

gradient – were much more recent demonstrations of the preferential 

accumulation of auxin in the inner side of the hook in etiolated Phaseolus 

vulgaris (bean) seedlings (Schwark and Schierle, 1992). The presence of an 

asymmetric auxin gradient in the hook has been subsequently confirmed in 

several studies, mainly through use of synthetic auxin-responsive promoter DR5 

reporter constructs in experiments with Arabidopsis (Friml et al., 2002; Li et al., 

2004; Zadnikova et al., 2010) (Figure 3). Subsequent work has established a 

genetic framework for the involvement of auxin during hook development. The 

Figure 3. Auxin is asymmetrically distributed 

during hook development. Confocal image of 

the apical hook, depicting the auxin response 

pattern, as reported by the synthetic auxin 

responsive reporter promoter DR5-Venus 

(magenta heat), counterstained with propidium 

iodide (green). 
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mechanism and factors involved in generation of an auxin gradient are described 

below. 

Auxin metabolism 

Mutations to genes involved in auxin biosynthesis, including YUCCA Flavin 

monooxygenases (Zhao et al., 2001), TRYPTOPHAN AMINOTRANSFERASE 

1/TRYPTOPHAN AMINOTRANSFERASE RELATED 2 (TAA1/TAR2) 

(Stepanova et al., 2008; Vandenbussche et al., 2010) and SUPERROOT 1/2 

(SUR1/SUR2) (Boerjan et al., 1995; Delarue et al., 1998), severely perturb hook 

development. Moreover, hook formation is impaired in yuc1/2/4/6 and wei8 tar2 

mutants, highlighting the requirement for proper auxin biosynthesis in hook 

development (Stepanova et al., 2008; Vandenbussche et al., 2010; Stepanova et 

al., 2011). Interestingly, although some auxin biosynthesis genes are expressed 

in the hook, their expression pattern is generally not asymmetric, except for 

upregulation of YUC1 on the outer side during hook opening and TAR2 on the 

inner side during the exaggerated curvature response to ethylene (Stepanova et 

al., 2008; Vandenbussche et al., 2010) which is further discussed below. 

Furthermore, upon treatment with the auxin transport inhibitor 1-N-

naphthylphtalamic acid (NPA), activity of the auxin signaling reporter 

DR5::GUS is strongly elevated in the cotyledons, implying that cotyledons are 

the main sources of auxin in the process, and asymmetric biosynthesis in the 

hook itself is not the main generator of the auxin gradient in the hook (Zadnikova 

et al., 2010). The involvement of auxin catabolism in hook development is 

scarcely investigated. IAA CARBOXYL METHYLTRANSFERASE1 

(IAMT1) catalyzes IAA methylation (Zubieta et al., 2003). Methylated auxin 

(Me-IAA) is considered an inactive form of auxin (Qin et al., 2005). iamt1 

mutants prematurely open their hooks, suggesting that auxin metabolic pathways 

beyond biosynthesis operate to regulate hook development (Abbas et al., 2018).  

Auxin transport 

Although auxin biosynthesis is required for hook development, active carrier-

mediated transport of auxin is thought to be the main mechanism responsible for 

asymmetric auxin distributions in the hook. IAA is a weak acid (pKa 4.75), and 

in the apoplast, which is mildly acidic, a small percentage of IAA can diffuse 

passively in protonated form across the plasma membrane. However, most is in 

polar IAA- form, requiring active carrier-mediated transport to enter cells 

(Swarup and Peret, 2012). Inside the largely neutral cytoplasm, IAA almost 

exclusively exists in its dissociated IAA- form, requiring active transport to exit 

cells. The movement of auxin across the plasma membrane is facilitated by auxin 
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influx carriers of the AUXIN RESISTANT 1 (AUX1)/ LIKE-AUXIN 

RESISTANT1 (LAX) family (Peret et al., 2012; Swarup and Peret, 2012) and 

efflux carriers of the PIN-FORMED (PIN) (Adamowski and Friml, 2015) and 

P-glycoprotein (ABCB/PGP) families (Geisler et al., 2017), as well as PIN-

LIKES (PILS; putative auxin carriers) (Barbez et al., 2012). The activity of PIN 

and AUX/LAX proteins can be blocked by NPA and 1-naphthoxyacetic acid (1-

NOA), respectively, and treatment with either drug perturbs establishment of 

auxin response asymmetry and hook formation (Vandenbussche et al., 2010; 

Zadnikova et al., 2010). Two of the influx carriers, AUX1 and LAX3, exhibit 

dramatically differing expression patterns in aerial tissues of etiolated seedlings, 

but appear to have overlapping functions. AUX1 is expressed mainly in the 

epidermis in the apical hook, localizing to the plasma membrane in a non-polar 

fashion. Its expression is strongly elevated on the inner side of the hook upon 

ethylene treatment. In contrast, LAX3 expression in the hook is restricted to the 

stele, but it is also expressed in epidermis close to the hypocotyl-root junction, 

in both cases non-polarly localizing to the plasma membrane (Vandenbussche et 

al., 2010). The aux1 mutant does not exhibit any hook defects under control 

conditions, but its hook curvature is not exaggerated in responses to ethylene 

(discussed below). However, the lax3 mutant cannot fully form a closed hook, 

and aux1 lax3 double mutants have severe phenotypic perturbations, indicating 

synergistic effects (Vandenbussche et al., 2010). The localization patterns 

indicate that AUX1 may recruit auxin to the hook from its presumed source in 

the cotyledons, while LAX3 might participate in fine-tuning of auxin depletion 

from the hook region. 

Of the efflux carrier families, PINs have been most thoroughly investigated 

in the context of hook development. Four (PIN1, PIN3, PIN4 and PIN7) are 

expressed during, and contribute to, the process. Correspondingly, mutations to 

these PIN genes cause hook developmental defects (Zadnikova et al., 2010). 

During hook formation, PIN3 and PIN4 are expressed in the central cylinder, 

cortex and epidermis of the developing hook, while PIN1 is solely expressed in 

the central cylinder (Zadnikova et al., 2010; Zadnikova et al., 2016). As 

formation is completed, PIN1 expression and plasma membrane localization is 

restricted to epidermis on the inner side. PIN4 expression also increases on the 

inner side of the hook during the maintenance phase, while PIN3 is expressed 

somewhat more strongly on the outer side. Cortical PIN3 localizes preferentially 

toward the outer-facing longitudinal membrane, while PIN7 expression is 

restricted to lower parts of the hypocotyl during hook formation, and gradually 

increases close to the meristem as its development proceeds (Zadnikova et al., 

2010; Zadnikova et al., 2016). 
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The genetic and cell biological data clearly show that concerted action of 

auxin transport machinery plays a key role in hook development. However the 

individual roles of the auxin transporters and how their expression patterns and 

localizations result in precise generation of auxin gradient are far from fully 

elucidated. Based on the localization of auxin transporters, several models have 

been suggested for the regulation of auxin gradients during hook development. 

One posits that cotyledon- or meristem-derived auxin is transported through the 

stele, and subsequently released towards epidermis on the outer side in a PIN-

dependent manner (Zadnikova et al., 2016; Beziat and Kleine-Vehn, 2018). 

Auxin is then radially transported through epidermis towards the inner side by 

the joint function of PINs and AUX1. However, this model ignores factors that 

regulate transporter subcellular targeting and activity. Additional studies of PIN 

regulators, such as AGCVIII kinases of the PINOID (PID)/WAG and D6PK 

subfamilies (Willige and Chory, 2015), are probably needed for full 

understanding of the intricacies of transport-dependent establishment of auxin 

gradients during hook development. 

PID/WAGs are known to regulate PIN polarity by phosphorylating PINs at 

conserved sites (Christensen et al., 2000; Friml et al., 2004), while the D6PK 

family, comprising four members, may regulate PINs by polarly controlling their 

activity through phosphorylation (Weller et al., 2017). In support of this 

hypothesis, wag2 mutants exhibit apical hook defects and reduced DR5 

expression on the inner side of the hook (Willige et al., 2012). Various D6PK 

double and higher-order mutants exhibit strong differential growth defects 

during phototropism of the hypocotyl, thought to be caused by reductions in PIN 

phosphorylation that impair the plants’ ability to establish asymmetric auxin 

gradients (Willige et al., 2013). Thus, it seems fair to assume that tight regulation 

of PIN phosphorylation might also be needed during hook development. 

There is also some evidence of the involvement of other transporter families, 

although their potential roles have received little attention. For example, the 

timing and rate of hook opening partly depend on depletion of auxin on the inner 

side via ABCB19-mediated auxin efflux (Wu et al., 2010) and reduction on the 

inner side of nuclear auxin signaling through PILS-mediated transport of auxin 

into the endoplasmic reticulum (ER) (Beziat et al., 2017). 

In summary, joint activities of both auxin efflux and influx carriers are 

essential in establishment of an asymmetric auxin gradient toward the inner side 

of the hook. 

Auxin signaling 

The asymmetric auxin gradient established during hook formation must be 

translated via a signaling pathway to result in asymmetric growth. In canonical 
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auxin signaling, auxin is perceived by co-receptor complexes comprising 

TIR/ABF F-box and AUX/IAA proteins (Peer, 2013). Upon auxin binding, 

AUX/IAAs become ubiquitinated, destining them for degradation by 26S 

proteasomes (Santner and Estelle, 2010).  Since AUX/IAAs function as 

repressors of auxin response factors (ARFs), their degradation following auxin 

perception results in release of ARFs’ repression, which activates downstream 

gene expression (De Smet et al., 2010).  

A plethora of studies have demonstrated the involvement of several 

components of the auxin signaling pathway in apical hook development. 

Quadruple mutations of TIR/ABF receptors (Dharmasiri et al., 2005), gain-of-

function mutations of SHY2/IAA3, BDL/IAA12 or IAA13 (Tian and Reed, 

1999; Zadnikova et al., 2010), IAA19 (Tatematsu et al., 2004), as well as ARF7 

and ARF19 loss-of-function mutations cause strong apical hook developmental 

defects (Stowe-Evans et al., 1998; Harper et al., 2000; Zadnikova et al., 2010). 

Furthermore, mutations to ARF1 and ARF2, negative regulators of auxin-

induced gene expression, cause hook exaggeration (Li et al., 2004). In addition, 

certain auxin signaling elements, such as IAA3, IAA12 and IAA13 exhibit 

asymmetric expression patterns (Zadnikova et al., 2010), but neither ARF2 nor 

ARF7 exhibit any discernible expression asymmetry, according to experiments 

with β-glucuronidase (GUS) reporter constructs (Zadnikova et al., 2010). The 

overlapping and symmetric transcriptional profiles of ARF2 and ARF7, acting 

repressive and promotive on hook development respectively, imply that 

understanding their modes of action in generating growth asymmetry lies 

beyond their expression patterns, for instance, by differences in protein 

accumulation in response to auxin. 

However, auxin operates in concert with several other plant hormones, such 

as ethylene, gibberellins and brassinosteroids. In this thesis, I studied the role of 

ethylene in hook-related phenomena, so its roles are described in the following 

section. 

1.2.3 Ethylene 

Ethylene is a gaseous hormone that was found to be a modifier of plant growth 

more than a century ago (Neljubow, 1901). Its connection to apical hook 

development was established in a number of studies in the 1960s, which showed 

that hook opening in bean is inhibited by low levels of exogenous ethylene. This 

was corroborated by the finding that ethylene production gradually decreases 

concurrently with hook opening in both bean (Kang et al., 1967) and pea 

(Goeschl et al., 1966) seedlings. Subsequent genetic studies, involving 

Arabidopsis ethylene biosynthesis and signaling mutants, confirmed its role in 
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control of hook development. Exogenous treatment with ethylene gas or its 

biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC) delays 

transition from formation to the maintenance phase, and induces exaggerated 

hook curvature (Ecker, 1995) (Figure 3C). This response is mimicked in 

ethylene-overproducing mutants, such as eto1, eto2 and eto3 (Guzman and 

Ecker, 1990; Vogel et al., 1998a; Woeste et al., 1999). In contrast, mutants with 

reduced ethylene biosynthesis, such as cytokinin insensitive (cin1, cin2, cin3 and 

cin4) single mutants exhibit defective hook development (Vogel et al., 1998b). 

Ethylene is perceived by five receptors: ETR1, ETR2 (ETHYLENE 

RESISTANT 1 and 2), ERS1, ERS2 (ETHYLENE RESPONSE SENSOR 1 and 

2) and EIN4 (ETHYLENE INSENSITIVE 4) (Light et al., 2016). The receptors 

are active in the absence of ethylene, and dominant mutations of the receptors 

cause ethylene insensitivity and pronounced apical hook defects, while higher-

order loss-of-function mutants exhibit a constitutive ethylene response 

phenotype (Hua and Meyerowitz, 1998). The receptors bind to and activate 

CTR1 (CONSTITUTIVE TRIPLE RESPONSE), which functions as a negative 

regulator of EIN2 (ETHYLENE INSENSITIVE 2), which in turn recruits 

transcription factors EIN3 and EIL1 (Light et al., 2016). Loss of CTR1 function 

causes strong exaggeration of hook curvature, while ein2 mutants exhibit 

ethylene insensitivity and perturbed hook development (Kieber et al., 1993).  

A notable role of ethylene during hook development is its participation in 

control of cell division. Cell divisions do not occur at high frequency in the hook 

under standard growth conditions, according to Cyc1B-GUS and KN-GFP 

expression analyses, but ethylene treatment increases division frequencies and 

cell numbers in the hook region during its formation (Raz and Koornneef, 2001; 

Zadnikova et al., 2016). Conversely, frequencies of divisions are strongly 

reduced in ethylene-insensitive mutants, and ethylene treatment does not induce 

hook exaggeration in them (Raz and Koornneef, 2001). Interestingly, however, 

pharmacological or genetic interference with cell division only somewhat 

reduces ethylene-induced hook exaggeration, and has no apparent effect on hook 

formation under standard growth conditions (Raz and Koornneef, 2001; 

Zadnikova et al., 2016). Thus, while ethylene controls cell division during hook 

development, this mechanism seems to make a minor contribution to the apical 

hook's differential growth. 

While ethylene promotes growth asymmetry in the hook, its biosynthesis, 

perception and signaling do not exhibit any easily discernible asymmetries in the 

apical hook. There are reports of preferential ethylene biosynthesis gene 

expression on both the outer side (Raz and Ecker, 1999) and inner side (Peck et 

al., 1998) of the hook. However, the ethylene response appears to be 
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symmetrical, according to experiments with EBS::GUS response reporter 

constructs (Zadnikova et al., 2010) 

Instead, ethylene may strongly influence hook development indirectly, by 

regulating establishment of the auxin gradient that determines growth 

asymmetry. This control may occur at multiple levels, including auxin 

biosynthesis, auxin-induced gene expression and auxin transport. For example, 

ethylene promotes auxin biosynthesis specifically on the inner side of the hook 

via upregulation of TAR2 expression (Vandenbussche et al., 2010). It also 

induces expression of auxin transporters PIN1, PIN3, and PIN7 (Zadnikova et 

al., 2010; Zadnikova et al., 2016), AUX1 and LAX3 in the hook, and AUX1 

turnover on the inner side is enhanced by ethylene treatment (Vandenbussche et 

al., 2010). Accordingly, auxin transporter mutants aux1 and pin3 exhibit reduced 

responsiveness to ethylene (Vandenbussche et al., 2010; Zadnikova et al., 2010), 

while treatment with the auxin efflux carrier inhibitor NPA completely abolishes 

the effect of ethylene treatment. 

Ethylene also promotes expression of HOOKLESS 1 (HLS1) (Lehman et al., 

1996). hls1 mutants fail to form an apical hook, while HLS1 overexpressors 

produce exaggerated hooks even in the absence of ethylene (Lehman et al., 1996; 

Gallego-Bartolome et al., 2011). Interestingly, DR5 asymmetry is also abolished 

in hls1 mutants, possibly because HLS1 negatively regulates the abundance of 

ARF2, which represses hook development by negatively regulating ARF7, 

adding another layer of ethylene action via auxin-dependent processes in 

regulation of hook development. 

1.3 The endomembrane system 

The location and functional site of many auxin transport components involved 

in hook development is the plasma membrane (PM). Their delivery to and 

subcellular localization in the PM is controlled by a complex intracellular 

trafficking machinery. Numerous studies in recent decades have revealed the 

importance of this trafficking for myriads of processes, inter alia, proper auxin 

transport, and thus plant development. Hence, endomembrane trafficking is 

described in the following sections. 

The PM is a lipid bilayer that encloses cells of almost all living organisms, 

thereby separating their interior from the external environment. Composed of 

amphiphilic lipids such as phospholipids, glycolipids and sterols, the PM also 

contains numerous proteins with diverse biological activities. Unlike 

prokaryotes, eukaryotic cells also contain internal membrane-enclosed 

organelles: specialized intracellular endomembrane compartments with distinct 

functions (such as the previously mentioned amyloplasts and statoliths). Two 
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types of organelles, chloroplasts and mitochondria, are thought to have 

originated from endosymbiotic acquisition (Sagan, 1967; Jensen and Leister, 

2014; Roger et al., 2017). However, there are also endomembrane 

compartments, including the nuclear envelope, endoplasmic reticulum (ER), 

Golgi apparatus (often simply called the Golgi) and post-Golgi compartments, 

with origins that are still debated (Gould et al., 2016; Dacks and Field, 2018). 

While their origin is still unclear, the benefits of compartmentalization are more 

obvious and there are plenty of examples. For example, the nuclear envelope 

allows separation of pre-mRNA splicing and protein synthesis, while 

peroxisomes and vacuoles provide micro-environments with evolutionarily 

tailored pH and chemical characteristics for functions such as catabolism of 

various cellular components, thereby boosting energy efficiency. In addition, 

transporting cargo in membrane-enclosed vesicles allows selective intracellular 

transport, internalization of extracellular material and secretion.  

The endomembrane system compartments ER, Golgi and trans-Golgi 

network jointly function as a system for synthesis and delivery of molecules to 

targeted sites within cells, in the PM or the outer environment. At the ER, most 

proteins traffic to the Golgi, while a subset exit directly for targeting to the PM 

or the vacuole (Viotti et al., 2013). In the Golgi, which is composed of a series 

of fused disc-like membrane sacs called cisternae, proteins destined for secretion 

may undergo post-translational modifications such as glycosylation (Strasser, 

2016). Furthermore, several components of the cell wall, such as xyloglucans 

and pectin, are synthesized in the Golgi (Zhang and Staehelin, 1992). The Golgi 

is commonly divided into cis, medial and trans compartments. The cis 

compartment sits adjacent to the ER. On the opposite side, the Golgi is thought 

to mature into the trans-Golgi network (TGN) (De Matteis and Luini, 2008; 

Kang, 2011), the main exit site of secretory vesicles. Due to its many specific 

functions and morphological distinctness, the TGN is considered a discrete 

compartment (Viotti et al., 2010; Kang et al., 2011). From the TGN, vesicles 

may be delivered to the vacuole or cell surface, and hence secreted (Figure 4). 

The TGN also serves as the receiver of cargos taken up from the PM by a process 

known as endocytosis. These cargos may then be recycled to the PM or the 

vacuole. Thus, the TGN acts as a sorting station for several trafficking pathways 

in plant cells.  

In the following sections I provide an introduction to vesicle trafficking, 

particularly secretory trafficking mediated by the TGN, and its role in cell 

expansion, the driving force for growth processes such as apical hook 

development. 
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1.3.1 Secretory trafficking 
Secretion in plants encompasses the synthesis, delivery and release of material 
to the cell surface and the vacuole. For plant cells, delivery to the cell surface 
entails secretion to the PM or the apoplast (comprising a continuum of cell wall 
and extracellular space). In dividing cells, secretory trafficking is also directed 
to the cell plate separating incipient daughter cells. Trafficking to the vacuole 
can be regarded as secretory trafficking too, since its initial delivery pathway 
largely follows the same route as for cargos destined for the cell surface. Recent 
findings have also revealed an unconventional secretory pathway (USP), 
through which leaderless secretory proteins lacking a signal peptide bypass the 
Golgi route (Robinson et al., 2016). However, most secreted proteins carry a 
signal peptide and enter the conventional secretory pathway through vesicle 
trafficking via the Golgi and TGN (Gendre et al., 2015). This thesis focuses on 
secretory trafficking at the TGN. As mentioned above, the TGN is a major 
‘sorting station’ and point of intersection of secretory pathways. Thus, 
understanding the molecular basis for divergence of secretory pathways at the 
TGN is highly relevant for understanding how organism complexity may arise, 
given that secretory trafficking could play a key role in processes such as cell 

Figure 4. Secretory pathways via the TGN. (1) Proteins synthesized at ER traffic to the 
Golgi, and may be retrieved back to the ER. When reaching the TGN, cargos may be secreted 
to the cell surface via secretory vesicles (2), sent to the vacuole via MVBs (3) or redirected to 
the forming cell plate during cytokinesis (4). The plant TGN also serves as an early endosome 
(EE) receiving endocytosed material (5), which may either be recycled back to the cell surface 
(6) or directed towards the vacuole via MVBs (7). 
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polarity that in turn could modulate organ development. The following sections 

introduce the TGN compartment, its role in secretion, the key players in vesicle 

formation in the TGN, and the role of TGN-dependent secretion in plant 

development, particularly cell expansion. 

1.3.2 The trans-Golgi network 

The Golgi apparatus was first described at the end of the 19th century (Golgi, 

1898), but the trans-most appendage we now identify as the TGN was only 

described as a distinct structure more than 70 years later  (Novikoff, 1964). Early 

observations from studies of rat neurons identified it as a tubular extension of 

ER, referring to it as Golgi endoplasmic reticulum lysosome, or GERL. It was 

subsequently given many names – examples include Boulevard Peripherique 

(Morre and Ovtracht, 1977), trans Tubular Network (Rambourg et al., 1979), 

and trans Golgi Reticulum (Willingham and Pastan, 1984) – before the 

community settled on TGN (Griffiths and Simons, 1986). 

As in animals, the plant TGN is believed to mature from the trans-most face 

of the Golgi and appears as a mesh of tubulo-vesicular membrane structures (De 

Matteis and Luini, 2008; Kang, 2011) (Figure 5). While the mammalian TGN 

acts in sorting of cargos to the PM or endosomes, endocytic cargos are initially 

received by the Early Endosome (EE) compartment for recycling back to the PM 

or sent to late endosomes (LEs)/multivesicular bodies (MVBs) (Scott et al., 

2014). The mammalian EE is considered distinct from the TGN both spatially 

and functionally. In contrast, the plant TGN may exist in direct proximity to the 

Golgi, i.e. Golgi-associated TGN (GA-TGN) or may release from the Golgi to 

exist as Golgi-independent TGN (GI-TGN) (Uemura et al., 2014; Uemura et al., 

2019). Moreover, the endocytic tracer FM4-64 rapidly labels the plant TGN 

(Dettmer et al., 2006), prior to FM4-64 reaching LE/MVBs. Plant cells appear 

to lack an EE compartment, with the plant TGN instead fulfilling the role of the 

EE, serving as a recipient and sorter of endocytic cargo. Cargos which are not 

recycled back to the PM and instead destined for the vacuole are transferred to 

the LE/MVB, which is suggested to mature from EE/TGN (Scheuring et al., 

2011). Vacuolar delivery via EE/TGN is subsequently completed by fusion of 

the LE/MVB with the vacuole (Singh et al., 2014).  

Although the TGN is derived from the Golgi, the TGN harbors a distinct 

proteome (Parsons et al., 2013), with hallmark resident proteins, such as the 

Vacuolar H+-ATPase (VHA) subunit VHA-a1, Syntaxin of Plants (SYP) 

proteins SYP61 and SYP43 or the RAB-GTPase RabA2a, distinguishing it from 

the Golgi. It bears consideration that despite the “TGN proteome”, there appears 

to be considerable complexity to TGN, and in a single plant cell, several 
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morphologically heterogeneous TGN structures may thus exist. The complexity 
of the TGN may be a reflection of its multiple functions. For example, the TGN 
is the site of several distinct secretory trafficking pathways, and this is reflected 
in observation that, perhaps in line with its morphological heterogeneity, it 
appears to have discrete subdomains (Kang et al., 2011). Three types of vesicles 
have been associated with the TGN: (1) Clathrin-coated vesicles (CCV), 
approximately 35 nm in diameter and characterized by their clathrin triskelion 
polyhedral lattice surrounding the vesicle membrane, (2) Secretory vesicles 
(SV), which are comparatively large and variable in size (70-150 nm in 
diameter) bearing only a thin coat or potentially coatless, and (3) COPIb vesicles 
exhibiting a two-layer coat (Donohoe et al., 2007). Sites of CCVs and SVs often 
exist on the same TGN structure, but may be separated in space (Figure 5). This 
spatial separation is also reflected by a partial separation of associated proteins 

as observed in both electron microscopy and confocal microscopy studies. For 
example, sites of SVs overlap with localization of the syntaxin SYP61, while 
CCV domains preferentially coincide with RAB-GTPase RAB-A2a labeling 
(Chow et al., 2008; Gendre et al., 2011; Wattelet-Boyer et al., 2016). The 
numerical ratio of CCVs to SVs in a TGN structure also varies (from 5:1 to 1:4) 
(Staehelin and Kang, 2008), and both amounts and types of TGN-associated 
vesicles in cell types might reflect particular secretory needs. For instance, in 
meristematic cells the TGN is typically CCV-rich while highly cell wall-
secreting cells generally have SV-dense TGNs (Young et al., 2008; Kang, 2011). 
The partitioning of the TGN into subdomains may depend on local lipid 
compositional variations. A recent study revealed marked differences between 
SV and CCV domains in Arabidopsis in the abundance of sphingolipids with α-
hydroxylated acyl-chains of at least 24 carbon atoms, and showed that these lipid 

Figure 5. Electon microscopy tomogram of Golgi and TGN. (A) Tomograph of Golgi 
apparatus (GA) and TGN. (B) 3D model of tomogram in (A), showing the Golgi and the 
tubulo-vesiculated TGN structure with distinct regions harboring SVs and CCVs. Adapted 
from Boutté et al. 2013). Scale bar 200 nm  
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components are specifically required for PIN2 but not AUX1 secretion 

(Wattelet-Boyer et al., 2016). While evidence for lipid rafts at the plant TGN is 

still lacking, in animal systems, sphingolipid-rich rafts at the TGN are thought 

to specifically mark sites for apical sorting of cargos exhibiting affinity for 

glycosphingolipids in epithelial cells (Surma et al., 2012).  

1.3.3 Secretory routes at the trans-Golgi network 

Secretory trafficking to the cell surface via the TGN appears to be the major 

secretory route. Although there are unconventional pathways bypassing the 

TGN (Crowell et al., 2009), the studies this thesis is based upon investigated 

conventional secretion via the TGN. Thus, the following section focuses on 

secretory trafficking via the TGN. Soluble cargos are delivered inside the lumen 

of vesicles, while hydrophobic cargos are embedded in their membranes. As 

vesicles reach and fuse with their destination membrane, soluble cargos are 

released to the cell exterior while embedded proteins become components of the 

PM. In this way, vesicle secretion provides the PM with lipids and proteins 

required for its functions, and increases the membrane surface area, which is 

essential for growth. Growth also entails incorporation of new cell wall material 

such as polysaccharides and cell wall biosynthetic and modifying enzymes. 

Using polysaccharide-binding antibodies, xyloglucan and pectin have been 

observed in the TGN and SVs (Sherrier and Vandenbosch, 1994; Vicre et al., 

1998; Stierhof and El Kasmi, 2010; Viotti et al., 2010). Their delivery to the wall 

is perturbed in plants lacking the TGN-resident proteins ECHIDNA or its 

interactors YPT/RAB GTPase Interacting Protein 4a (YIP4a) and YIP4b, 

deficient in SV trafficking from the TGN (Gendre et al., 2013; McFarlane et al., 

2013).  

Furthermore, several cell wall biosynthetic enzymes that are active at the PM, 

such as cellulose synthase (CESA) complex subunits and glucan synthase-like1 

(GSL1) have been observed in the TGN (Brownfield et al., 2008; Gutierrez et 

al., 2009). A proteomic analysis of the TGN-resident syntaxin of plants 61 

(SYP61)-compartment identified several CESAs (Drakakaki et al., 2012). Other 

associated proteins identified in the cited analysis have been linked to 

endocytosis or recycling, but SYP61 has been implicated (together with 

SYP121) in secretion of cell wall material to the papillae in response to pathogen 

attack. Interestingly, while CESAs have been found to co-localize with both 

SYP61 (Drakakaki et al., 2012) and the endosomal TGN marker VHA-a1 

(Crowell et al., 2009), CESAs have also been observed in vesicles not 

overlapping with any known secretory trafficking marker (Crowell et al., 2009; 

Gutierrez et al., 2009). These compartments have been called small CESA 
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compartments (SmaCCs) or microtubule-associated CESA compartments 

(MASCs). The exact nature of SmaCCs/MASCs is obscure, and it is not clear if 

or where this potentially distinct pathway diverges from conventional secretory 

routes. 

The level of secretory pathway convergence has long been debated. SV 

trafficking was historically viewed as an indiscriminate bulk-flow route carrying 

most secretory cargos (Hawes and Satiat-Jeunemaitre, 2005; Foresti and 

Denecke, 2008). However, this view is incomplete at best, and instead secretion 

appears to entail a complex network of overlapping and discrete routes. For 

instance, delivery of the secretory protein marker secGFP is hampered by 

overexpression of the syntaxin SP2 in tobacco, while integration of radiolabeled 

glucose to the wall remains unaffected, implying that polysaccharide and protein 

secretion may follow separate routes (Leucci et al., 2007). Protein secretion has 

also been shown to diverge at the TGN, as exemplified by KEEP ON GOING 

(KEG), a TGN-localized protein required for secretion of apoplastic defense 

proteins but not the PM-localized proteins BRASINOSTEROID 

INSENSITIVE1 (BRI1), AUX1or PIN1 (Gu and Innes, 2012).   

1.3.4 Secretory vesicles and their formation 

Vesicles are membrane-enclosed spheres derived from a donor membrane, 

carrying soluble cargo in their lumens and hydrophobic cargos embedded in their 

membranes.  After budding from their donor compartments, vesicles travel to 

and fuse with an acceptor membrane to release their cargo. Vesicle formation 

involves cargo recruitment, assembly of factors required to form the vesicle 

structure, and pinching off the structure from its donor membrane (Bard and 

Malhotra, 2006). Of the three types of vesicles observed in the TGN, only SVs 

have a verified role in secretion to the plasma membrane. COPI vesicles likely 

recycle material back from the TGN to Golgi (Donohoe et al., 2007; Kang et al., 

2011), while CCVs account for the major endocytic route, while the potential 

involvement of CCVs in TGN-to-vacuole transport is still a matter of debate. 

The formation of vesicles such as CCVs or COPI vesicles through recruitment 

of coat proteins that force membrane curvature has been described in detail (Paul 

and Frigerio, 2007; Jackson, 2014; Kirchhausen et al., 2014). Briefly, initially 

small GTPases of the ADP Ribosylation Factor (ARF) family are activated by 

ARF Guanine Exchange Factors (GEF)s (for more information on ARF GTPases 

and ARF-GEFs, see the following sections). Upon activation, ARF proteins 

associate with endomembranes and recruit coat proteins and other factors 

involved in cargo assembly. In contrast to the abundant information on CCV and 

COP vesicle formation, much less is known about the formation of SVs, which 
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may form without the aid of a coat protein skeleton (Donohoe et al., 2007). 

Indeed, no study has identified a coat surrounding SVs, and instead there may 

be a machinery involving lipid composition modifications to induce membrane 

curvature, a mechanism not yet described in plants but suggested for mammalian 

constitutive secretory vesicles (CSV) (Bard and Malhotra, 2006).  

In rat adrenal medulla pheochromocytoma-derived cell-free systems, CSV 

formation in the TGN has been shown to require ADP Ribosylation Factor 1 

(ARF1), but not COPI coat protein (Barr and Huttner, 1996). In mammalian 

cells, Active ARF1, which localizes to Golgi and TGN in Arabidopsis, binds to 

membranes upon myristoylation, and can recruit PItdIns4-kinases (PI4Ks), 

which catalyze production of phosphatidylinositol-4-phosphate (PtdIns4P) (De 

Matteis and Godi, 2004). Notably, PI4K mutants of Arabidopsis exhibit severely 

perturbed TGN and SV morphology (Preuss et al., 2006; Kang et al., 2011). 

PtdIns4P is thought to mark an endomembrane subdomain site, and it can recruit 

several proteins in mammalian cells (Wang et al., 2007; Dumaresq-Doiron et al., 

2010), and notably sortin nexins (SNX) (Xu et al., 2001). SNX proteins 

contribute to retromer complexes (which mediate recycling from sorting 

compartments in animals and yeasts) and are thought to induce membrane 

deformation and cargo recruitment. These proteins, which have been localized 

to the TGN in plants (Stierhof et al., 2013), may enhance membrane curvature 

in domains that are already curved due to membrane bilayer lipid asymmetry 

(Thomas and Poznansky, 1989). Such asymmetry occurs through unequal 

incorporation and rearrangement of conical lipids, including phosphatidic acid 

(PA), into the bilayer (Kooijman et al., 2003). The formation of vesicles is also 

aided by phospholipid flippases flipping phospholipids across the bilayer, 

thereby creating structural membrane asymmetry (Sebastian et al., 2012). In 

Arabidopsis, a mutant with impairments in the Golgi-localized flippase P4-

ATPase aminophospholipid ATPase3 (ALA3) exhibits severe defects in 

vesicle production in root cap cells (Poulsen et al., 2008). The conical PA 

can be converted from the cylindrical phosphatidylcholine (PC) by 

phospholipase D (PLD) (Pappan et al., 1998). Interestingly, mammalian PLD 

has been shown to stimulate SV budding from TGN in vitro, and this PLD-

dependent action is reportedly stimulated by myristoylated ARF1 (Chen et 

al., 1997). Thus, although this mechanism is yet to be demonstrated in plants, 

homologs of components of the machinery are present in plants. Other 

vesicle formation mechanisms, such as clathrin-mediated endocytosis, COPI 

vesicle formation and ESCRT-mediated vesicle formation are 

mechanistically highly similar among eukaryotic kingdoms. It seems fair to 

hypothesize that the SV machinery in plants could exhibit similar 

conservation, but confirmation in future studies is needed. 
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ARF/SAR1 proteins and their accompanying ARF-GEF activators are highly 

interesting due to their conserved and integral roles as master switches for 

initiation of both coated and potentially coatless vesicle formation. In the next 

sections I describe the ARF/SAR1 subfamily ARF1 as well as ARF-GEFs 

(particularly the BIG ARF-GEF subfamily), which are major players in the focal 

phenomena of this thesis. 

1.3.5 ARF GTPases 

Across eukaryotic kingdoms, GTPases exhibit a remarkable level of 

conservation, highlighting their importance in various cellular processes (Jekely, 

2003). Small GTPases act as molecular switches by shifting between GTP- and 

GDP-bound states (Bourne et al., 1990). Members of the small GTPase subclass 

ARFs regulate organelle structure and membrane trafficking in eukaryotic 

organisms. ARFs are activated by ARF-GEFs that catalyze release of GDP 

nucleotides from them (Casanova, 2007). In a mechanism demonstrated in great 

detail, upon binding of GTP, mammalian ARFs undergo a conformational 

change allowing them to anchor to membranes and interact with various effector 

proteins, such as coat proteins and lipid-modifying enzymes (Goldberg, 1998; 

Yorimitsu et al., 2014; Karandur et al., 2017). Thus, ARFs operate in the 

initiation of vesicle formation.  

ARFs in mammalian systems are divided into three functional classes, 

designated Classes I-III. In contrast, plants host only Class I ARF1, lacking Class 

I sub-classes ARF2 and ARF3, as well as both Class II and III ARFs (Singh and 

Jurgens, 2018). In plants, the Class I ARF1 subfamily, comprising six closely 

related members (ARFA1a-f) instead operate in a wider spectrum of trafficking 

pathways than their mammalian counterparts, such as ER-Golgi trafficking (Lee 

et al., 2002; Takeuchi et al., 2002), vacuolar trafficking (Pimpl et al., 2003), 

endocytosis and/or recycling (Xu and Scheres, 2005; Naramoto et al., 2010; 

Tanaka et al., 2014). Additionally, the Arabidopsis genome encodes members of 

two plant-specific ARF classes, A and B, which have unknown biological roles 

(Singh et al., 2018). Due to the high level of sequence similarity and expected 

redundancy between the six ARF1 members in Arabidopsis, ARF1 functions 

have been dissected by studying effects of dominant-negative and constitutively 

active variants, as well as indirect targeting using the fungal toxin brefeldin A 

(BFA), which interferes with functions of ARF1 effectors ARF-GEFs (as 

discussed in the next section) (Dascher and Balch, 1994; Nebenfuhr et al., 2002). 

ARF1T31N, carrying an asparagine instead of threonine at amino acid position 31, 

locks ARF1 in a GDP-bound state (Dascher and Balch, 1994), preventing its 

integration with membranes and blocking downstream steps, causing strong 
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morphological aberrations of Golgi systems in animal cells (Garcia-Mata et al., 

2003). Upon induction of ARF1T31N expression in Arabidopsis, root elongation 

and root hair growth are severely perturbed (Xu and Scheres, 2005). Similarly, 

a mutation causing lockage of ARF1 in a GTP-bound state (ARF1Q71L) strongly 

perturbs root growth, underscoring the crucial roles of ARF1 members in plant 

growth (Xu and Scheres, 2005).  

As described above, in Arabidopsis, ARF1 members act in diverse trafficking 

pathways. Intriguingly, activities of these pathways, such as secretion and 

vacuolar transport, may dynamically shift depending on cellular requirements. 

Pathway specificity for ARF-mediated processes is instead thought to be 

conferred by their ARF-GEF activators, which are described in the next section. 

1.3.6 ARF-GEFs 

ARFs shuttle between inactive GDP-bound and active GTP-bound states, and 

their activation is catalyzed by ARF-GEFs. ARF-GEFs have a characteristic 

SEC7 domain, which catalyzes GDP/GTP exchange, named after the yeast 

protein Sec7p, the first ARF-GEF described (Franzusoff and Schekman, 1989). 

Additional features are used to further divide ARF-GEFs into subclasses. Based 

on their size, in humans ARF-GEFs are grouped into small, medium and large 

subclasses (Cox et al., 2004; Mouratou et al., 2005). Plants lack both small and 

medium ARF-GEFs, but the Arabidopsis genome harbors eight large ARF-GEFs 

(150-220 kDa in size), while humans and yeasts have three members (Anders 

and Jurgens, 2008). The Arabidopsis ARF-GEFs are separated into two 

subclades, one comprising GNOM, GNOM-LIKE1 (GNL1) and GNL2, which 

are homologous to the human GBF1 (Anders and Jurgens, 2008). The other 

subclade consists of BFA-Inhibited-GEF (BIG) 1-5, which are analogous to the 

human BIG ARF-GEF subclade (Anders and Jurgens, 2008). GNOM is the best-

studied ARF-GEF in Arabidopsis. Seminal studies in the 1990s and early 2000s 

demonstrated a requirement for GNOM in PIN1 recycling from EE to the PM 

(Steinmann et al., 1999; Geldner et al., 2001; Geldner et al., 2003). The fungal 

toxin brefeldin A (BFA) causes agglomeration of PIN1 in intracellular structures 

called BFA bodies even in presence of the protein synthesis inhibitor 

cycloheximide (CHX) (Geldner et al., 2001). Following BFA washout, the 

PIN1-labelled BFA bodies disappear. BFA interferes with ARF-GEF-dependent 

activation of ARFs by binding to ARF-GDP/ARF-GEF complex at particular 

sites of the SEC7 domain (Cherfils and Melancon, 2005; Zeeh et al., 2006). This 

prevents the hydrolysis of GDP required for GDP/GTP exchange, locking the 

complex in a GDP-bound inactive state (Cherfils and Melancon, 2005). An 

amino acid substitution at position 696 in the Sec7 domain may render ARF-
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GEFs insensitive to BFA inhibition. Accordingly, expression of an engineered 

BFA-resistant GNOM (GNOMM696L) can alleviate BFA-induced PIN1 

agglomeration (Geldner et al., 2003). In humans, all large ARF-GEFs exhibit 

sensitivity to BFA (Anders and Jurgens, 2008). In Arabidopsis however, GNL1 

carries a leucine at amino acid position 696 (L696), rendering its activity in ER-

Golgi trafficking BFA-resistant (Teh and Moore, 2007).  

Until recently, the functions of BIG ARF-GEFs in Arabidopsis were 

unknown, except for evidence that BIG5/BEN1 participates in endocytic 

trafficking (Tanaka et al., 2009). However, a recent study showed that BIG1-4 

localize to the TGN, like their counterparts in humans, and operate redundantly 

(Richter et al., 2014). The SEC7 catalytic domain of one of the BIG ARF-GEFs, 

BIG3 (previously denoted BIG2), can catalyze ARF1 GDP/GTP exchange even 

in the presence of BFA in vitro (Nielsen et al., 2006). Moreover, like GNL1, 

BIG3 is resistant to BFA and, accordingly, big3 is reportedly the only BIG single 

mutant that is hypersensitive to BFA treatment (Richter et al., 2014). In 

Arabidopsis, BIG3 shares, with GNL1, the L696 in the Sec7 domain thought to 

confer this BFA insensitivity. BIGs play a  distinct role in trafficking from 

GNOM, since neither of the defects observed in BFA-treated big3 seedlings can 

be rescued by introduction of a BFA-resistant variant of GNOM (Richter et al., 

2014). Recent studies have clearly demonstrated that BIG1-4 function in 

secretion of both soluble and membrane-associated cargos to the PM and 

trafficking to the vacuole, and furthermore, their activities are required during 

cytokinesis for redirection of trafficking of the de novo synthesized material to 

nascent cell plates (Richter et al., 2014). Hence, cell division is perturbed when 

BIG function is disrupted. Inter alia, lateral root initiation fails, implying that 

BIG-dependent secretory trafficking during cytokinesis is required for lateral 

root initiation. In contrast, during root gravitropic responses, which require PIN-

mediated re-direction of auxin transport, BIGs do not play a major role, but 

GNOM activity is essential (Kleine-Vehn et al., 2010; Richter et al., 2014). This 

suggests that recycling rather than secretory trafficking is the major pathway for 

dynamic PIN traffic redirection during gravitropic responses.  

In conclusion, the two ARF-GEF subclasses in plants have distinct 

trafficking roles that vary depending on the specific growth processes their host 

cells are participating in. 

1.3.7 ECHIDNA 

In recent years, several factors that reside at the TGN, like ARFs and ARF-GEFs, 

have been identified and proposed to play a role in TGN function and trafficking 

(Dettmer et al., 2006; Drakakaki et al., 2012; Richter et al., 2014). Of particular 
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interest to this work is the protein ECHIDNA (ECH). Initially, ECH was 

identified in microarray analyses, as a highly expressed gene in cell types 

exhibiting rapid expansion from Arabidopsis and hybrid aspen (Populus tremula 

x P. tremuloides). ECH was found to mediate cell elongation in both root and 

hypocotyl epidermal cells in Arabidopsis (Gendre et al., 2011). Named Echidna 

due to resemblance of the ech mutant’s bushy midflowering phenotype to the 

monotreme (egg-laying mammal) Echidna, the ECH protein is predicted to 

harbor three to four transmembrane domains, and is evolutionarily conserved 

among eukaryotes. This is exemplified by ability of the Arabidopsis ECH 

protein to partially rescue growth defects of the Saccharomyces cerevisiae 

mutant tvp23Δ ypt6Δ, which lacks the yeast ECH homolog TVP23 and its 

putative interactor RAB-GTPase YPT6 (Gendre et al., 2011). In yeast, TVP23 

has been suggested to mediate retrograde transport from EE to Golgi (Stein et 

al., 2009). A human homolog TV23B/FAM18B has suggested association with 

diabetic retinopathy, and RNAi-mediated FAM18B knockdown in primary 

human retinal microvascular endothelial cells reduces their viability in 

hyperglycemic conditions (Wang et al., 2014). However, no specific cellular 

function has been ascribed to the human ECH homologs.  

In Arabidopsis, examination of ECH-YFP revealed that ECH localizes to the 

TGN, overlapping strongly with TGN-resident SNAREs SYP41 and SYP61 as 

well as V-ATPase subunit VHA-a1 (Gendre et al., 2011). The ech mutant was 

shown to exhibit reduced Golgi-TGN association compared to wild-type plants, 

while Golgi stack morphology was largely unaffected (Gendre et al., 2011). 

Several TGN-residing proteins mislocalize in ech mutants, e.g. VHA-a1 and 

RabA2a, to the vacuole and cell plate, respectively. The morphological 

aberrations and mislocalization of VHA-a1 and RabA2a observed in ech mutants 

are mimicked by pharmacological inhibition of V-ATPases with concanamycin 

A (ConcA) (Gendre et al., 2011), implying that ECH might participate in 

maintenance of proper TGN V-ATPase localization.  

Early endocytic trafficking, indicated by FM4-64 uptake, uptake operates 

largely independently of ECH (Gendre et al., 2011), with only minor effects on 

endocytosis as revealed by a mild delay of FM4-64 internalization in ech 

compared to WT (Ravikumar et al., 2018). In contrast, delivery of various 

secretory cargos to the cell surface is strongly dependent on ECH. Several wall 

polymers, such as xyloglucan and pectin, are secreted to the wall in an ECH-

dependent manner (Gendre et al., 2013). In Arabidopsis hypocotyls, both of 

these polysaccharides agglomerate intracellularly in ech mutants in addition to 

localizing in the wall, as revealed by CCRC-M1 (xyloglucan), LM5 

(homogalacturonan pectin) and JIM7 (rhamnogalacturonan pectin) labelling 

(Gendre et al., 2013). In addition, ECH is required for secretion of pectin-rich 



35 

 

seed mucilage in the seed coat epidermis. Unsurprisingly, since wall polymers 

must be continuously supplied to the wall of growing cells, ech mutants exhibit 

severe elongation defects (Gendre et al., 2011), and other phenotypic deviations 

potentially associated with cell wall perturbations, such as male infertility due to 

reductions in anther length and abnormal pollen tapetum walls (Fan et al., 2014).  

In addition to wall polysaccharides, ECH is required for delivery of 

components of the cuticle deposited in extracellular space. The cuticle, which is 

composed mainly of cutin (composed of C16 and C18 fatty acid derivatives) and 

subherin (composed of very-long-chain fatty acids, fatty alcohols, α,ω-

dicarboxylic acids and 2-hydroxy fatty acids), provides a barrier between plant 

cells and their environment, and protects plants from non-stomatal water loss. 

Cuticular components are synthesized in ER and secreted to the cell exterior. In 

the absence of ECH, wax accumulation on the cell surface is severely reduced 

(McFarlane et al., 2014).  

The secretory reporter secGFP, which is normally secreted to the apoplast 

where its fluorescence is quenched by the low apoplastic pH (Zheng et al., 2004), 

is retained intracellularly and clearly observable in ech mutants (Gendre et al., 

2011). The secGFP secretory pathway is thought to represent the route of 

numerous cargos trafficked to the cell surface. ECH also mediates secretion of 

proteins to the PM. Accordingly, the receptor kinase BRI1 exhibits partial 

mislocalization to the vacuole in ech (Gendre et al., 2011). In contrast, the auxin 

efflux carrier PIN2, which localizes polarly at the PM in root epidermal cells, is 

unaffected in ech (Gendre et al., 2011). Similarly, ABCG11, required for wax 

export at the PM in the Arabidopsis stem, does not require ECH for delivery to 

the PM (McFarlane et al., 2014). Since mutations in ECH affect PM delivery of 

only a subset of proteins, ECH displays functional specificity that highlights the 

complexity of secretory trafficking from TGN. 

The exact molecular function of ECH still remains an enigma, but its 

molecular interactors provide some hints. Two, identified by a yeast two-hybrid 

screen using ECH as bait, are YIP4a and YIP4b, members of the YIP family 

(Gendre et al., 2013). Homologous yeast and mammalian YIPs are known 

interactors of RAB GTPases, which are core players in vesicle trafficking (Li 

and Segev, 2018). ECH genetically interacts, and co-localizes strongly and 

interdependently, with YIP4a/YIP4b in the TGN (Gendre et al., 2013). 

Additionally, a yip4a yip4b double mutant partially phenocopies ech mutants, 

and exhibits reduced root and hypocotyl growth, mislocalization of TGN-

resident VHA-a1 and SYP61, weakened Golgi-TGN association, and 

intracellular retention of wall polysaccharides (Gendre et al., 2013). A recent 

study identified YIP4a/YIP4b as interactors of TGNap1 in Arabidopsis, a TGN-

resident protein furthermore interacting with Rab6 and microtubules (MT) 
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(Renna et al., 2018). TGNap1 putatively functions in MT-dependent TGN 

biogenesis or remodeling, which by extension hints at a potential role of ECH in 

maintenance of Golgi/TGN morphology, since ech mutants exhibit Golgi/TGN 

morphological defects (McFarlane et al., 2013). Interestingly, while ECH 

operates in a distinct pathway from that of the TRAPPII complex, which is a 

crucial component of trafficking to the cell plate, ECH and TRAPPII can 

apparently compensate for one another in critical TGN roles such as secretion 

(Ravikumar et al., 2018).  

To probe the elusive mechanism of ECH, in the study described in Paper II, 

I explored the potential involvement of ECH in vesicle formation in Arabidopsis. 

In summary, ECH is an evolutionarily conserved TGN-resident protein 

involved in both root and hypocotyl growth. It is essential for the retention of 

several crucial proteins in the TGN, such as V-ATPase subunit VHA-a1 and 

SYP61. Furthermore, ECH is crucial for the proper secretion of cell wall material 

and PM-resident proteins to the cell surface. 

1.4 The cell wall 

ECH functions in delivery of cell wall material such as pectin to the cell surface. 

Paper III describes an investigation of the role of the cell wall component pectin 

in differential growth of the apical hook. Hence, I here provide an introduction 

to plants’ cell walls.  

1.4.1 General structure 

Plants’ cell walls are complex composites of fibers and associated substances 

that surround plant cells. They have numerous biological roles, such as provision 

of mechanical support for the plant body, protection against biotic and abiotic 

stresses, facilitation of intercellular communication and provision of shape to the 

various types of cells required to form plants’ tissues and organs (Hoson and 

Wakabayashi, 2015; Braybrook and Jonsson, 2016; Bacete et al., 2018; 

Kierzkowski and Routier-Kierzkowska, 2019). Classically plant walls are 

divided into two categories: primary walls that encase growing cells or cells 

capable of growth, and secondary walls which are thicker and contain lignin, 

such as fiber cells or vessel elements (Keegstra, 2010). In this thesis, I focus on 

the primary cell wall that encloses rapidly growing cells. 

The primary cell wall of dicot species is comprised of polysaccharides 

classified into cellulose, hemicellulose and pectin (Figure 6), together with 

various structural and wall-modifying proteins. Cellulose is composed of β-1,4-
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linked glucan chains organized in more or less crystalline microfibrils, and is 
thought to be the major load-bearing constituent (Lampugnani et al., 2018). 
Hemicelluloses comprise a class of different polymers, such as xylans, 
xyloglucans and glucomannans, that cross-link cellulose fibrils and modulate 
their strength (Park and Cosgrove, 2015). Pectins surround the aforementioned 
polymers and form a gel-like glue that provides stiffness or flexibility, 
depending on its chemical modifications.(Saffer, 2018). In Arabidopsis leaves, 
pectin comprises approximately 40-50% of the cell wall (Zablackis et al., 1995; 
Albersheim et al., 2011; Atmodjo et al., 2013). Pectins comprise a diverse group 
of polysaccharides commonly divided into homogalacturonan (HG), 
xylogalacturonan (XGA), apiogalacturonan, rhamnogalacturonan I (RGI) and 
rhamnogalacturonan II (RGII) (Mohnen, 2008). Although ratios of the pectin 
constituents vary among species and tissues, HG is generally the most abundant 
pectic polysaccharide, often accounting for more than 50% of the total pectin 
content (Mohnen, 2008).  

Recent studies have identified important roles for HG in wall mechanical 
properties and cellular growth (as described below). This, together with the 
involvement of ECH and its interactors in secretion of pectin to the wall, 
prompted me to investigate pectin’s involvement in one of the developmental 
processes crucially regulated by ECH – differential growth during hook 
development (Paper III). Therefore, here I focus on the roles of HG and its 
chemical modifications in both mechanical properties of the cell wall and cells’ 
growth. 

Figure 6. Structure of the primary cell wall. Cellulose depicted as blue rods. Hemicellulose 
(orange) binds cellulose at sites of interaction (highlighted in yellow). Pectin (Green) fills the 
space between cellulose and hemicelluloses and interacts with cellulose.  
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1.4.2 Homogalacturonan Biosynthesis 
HG is a linear polymer of α-1,4-linked galacturonic acid residues that are 
partially methyl-esterified at C-6 and O-acetylated at O-2/O-3 (Mohnen, 2008). 
It is thought to be synthesized in the Golgi along with other classes of pectin 
(Sterling et al., 2001). Unsurprisingly, given pectins’ structural complexity, their 
synthesis hypothetically requires more than 65 distinct enzymes (Anderson, 
2016). Furthermore, several pectin classes may have overlapping biosynthetic 
pathways. The HG backbone is thought to be assembled by 
galacturonosyltransferases, which catalyze transfer of GalA from UDP-GalA to 

Figure 7. Homogalacturonan biosynthesis and modification. In the Golgi, 
galacturonosyltransferase1 (GAUT1) and 7 contribute to HG biosynthesis. Putative methyl 
transferases (CGR2/3 and QUA2/3) add methylesters to the HG backbone. HG is then secreted 
to the cell wall, where it may be de-methylesterified by PMEs, the action of which may be 
inhibited by PMEIs. The fate of HG is thought to depend on the mode of de-
methylesterification; Blockwise de-esterification allows for Ca2+-crosslinking  of  HG  chains,  
leading to wall stiffening. Alternatively, randomly de-methylesterified HG may be targeted by 
polygalacturonases (PG) and pectate lyases (PL), which cleave HG into oligogalacturonides, 
thought to lead to wall softening. (Figure inspired by Levesque-Tremblay et al. 2015). 
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an oligo-GalA acceptor (Sterling et al., 2006). In the Golgi, HG is thought to be 

methylesterified by putative methyltransferases QUASIMODO2 (QUA2), 

QUASIMODO3 (QUA3), COTTON GOLGI-RELATED2 (CGR2) and/or 

COTTON GOLGI-RELATED3 (CGR3) (Mouille et al., 2007; Miao et al., 2011; 

Kim et al., 2015) (Figure 7). In Arabidopsis, cgr2 cgr3 double mutants have 

reductions in the degree of methylesterification of HG and lengths of both roots 

and hypocotyl (Kim et al., 2015). QUA2 carries a putative MT domain. 

Surprisingly, a qua2 mutant reportedly exhibited 50% reduction in HG, but no 

alteration to HG methylesterification compared with wild-type plants (Mouille 

et al., 2007), which may reflect a compensatory response to reduced 

methyltransferase activity. 

1.4.3 Homogalacturonan delivery 

While the view that HG synthesis occurs in the Golgi is generally accepted 

(Mohnen, 2008), the exact routes of its delivery to the cell surface are less 

certain. ECH and its interactors YIP4a and YIP4b appear to function in delivery 

of pectin from the TGN, since wall polymers are mis-sorted and accumulate in 

the vacuole in mutants lacking these genes (Gendre et al., 2013). SECRETORY 

CARRIER MEMBRANE PROTEIN2 (SCAMP2)-marked Mobile Secretory 

Vesicle Compartments (SVCs) have been shown to be marked by JIM7 

antibodies, which label pectin with high degree of methylesterification, implying 

their involvement in pectin delivery to the apoplast (Toyooka et al., 2009). The 

human SCAMP2 protein mediates secretion in concert with the GTPase Arf6 

and phospholipase D1 (PLD1) (Liu et al., 2005). Analogously, a similar 

mechanism involving a plant SCAMP2 pathway may facilitate HG delivery to 

the wall. Additionally, the Exocyst complex may be required for pectin delivery. 

Several mutants with defects in Exocyst subunits exhibit reduced pectin 

accumulation in seed coat epidermal cells (Kulich et al., 2010). Thus, HG 

secretion might occur through multiple pathways, potentially reflecting a 

requirement to dynamically regulate incorporation of pectin in the wall 

depending on the developmental stage or growth response.   

1.4.4 Homogalacturonan modifications by PMEs and PMEIs 

HG polymers are delivered to the wall in a highly methylesterified state 

(Staehelin and Moore, 1995; Sterling et al., 2001; Driouich et al., 2012). In muro, 

HG may then be selectively de-esterified through the action of pectin 

methylesterases (PMEs), the activity of which in turn is regulated by pectin 

methylesterase inhibitors (PMEIs) (Levesque-Tremblay et al., 2015). The 
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Arabidopsis genome reportedly harbors 66 PMEs and 69 PMEIs, indicating the 

importance and complexity of HG biosynthesis and modification (Wolf et al., 

2009; Senechal et al., 2014). The specific spatial pattern of de-esterification 

reportedly yields contrasting outcomes regarding the fate of HG and the wall’s 

mechanical properties (Figure 7). In one scenario, blockwise de-esterification of 

large sections of HG by PMEs would produce negatively charged Gal-A chains 

that interact with calcium ions (Ca2+). Ca2+-dependent crosslinking causes 

formation of so-called “egg-box” structures underlying the formation of pectin 

gels (Braccini and Perez, 2001), and has been demonstrated in vitro to promote 

cell wall rigidification (Ngouemazong et al., 2012). In contrast, through another 

suggested mode of action, PME-mediated random de-esterification of HGs 

would prevent egg-box formation. Instead, non-blockwise de-methylesterified 

HGs would be substrates of HG-modifying enzymes, such as polygalacturonases 

(PGs) and pectate lyases (PLs) that cleave HG polymers into shorter 

oligogalacturonides (OG), thereby promoting cell wall loosening (Wakabayashi 

et al., 2003; Pelloux et al., 2007). PG overexpression in Arabidopsis results in a 

longer hypocotyl, supporting the notion that PGs mediate increased wall 

loosening (Xiao et al., 2014). Correspondingly, PME and PMEI overexpression 

studies have connected various members of the two families to both promotion 

and inhibition of growth (Marc et al., 1998; Bosch and Hepler, 2006; Lionetti et 

al., 2007; Pelletier et al., 2010; Braybrook and Peaucelle, 2013). In many cases, 

putative PMEs or PMEIs have been assessed by testing their ability to modify 

pectin methyl esterification status using pectin-binding antibodies with affinity 

for highly esterified or de-esterified pectin, which do not discriminate between 

random and blockwise de-esterification patterns. Furthermore, PMEs exhibit 

differential activity depending on the pH, e.g., alkaline pI PMEs catalyze 

blockwise de-esterification while acidic pI PMEs randomly de-esterify pectin 

(Jolie et al., 2010; Hocq et al., 2017).  

Nonetheless, several recent studies support a promotive role of PME5 in cell 

wall loosening. When new organs are formed by the shoot apical meristem, local 

de-esterification occurs at sites of incipient primordia (Peaucelle et al., 2008). 

Overexpression of PMEI3, which globally inhibits de-esterification, prevents 

primordia formation, while PME5 overexpression leads to increased de-

esterification and ectopic organ initiation. The sites of incipient primordia have 

higher elastic modulus than peripheral zones of the apical meristem, according 

to atomic force microscopy (AFM) measurements (Peaucelle et al., 2011). The 

inhibition of organ initiation in PMEI3-overexpressing plants also corresponds 

with reduction in elasticity (Peaucelle et al., 2011). This indicates that local 

softening via HG de-methylesterification could be required for organ initiation 

in the apical meristem.  
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Subcellular regulation of HG methylesterification may also be crucial in 

controlling cell anisotropic growth. It has long been thought that longitudinal 

growth of epidermal cells in the hypocotyl is determined by the orientation of 

organized cellulose microfibrils (Baskin, 2005; Lloyd, 2011). CESAs synthesize 

cellulose microfibrils as they travel along the PM, guided by cortical 

microtubules (CMT) oriented perpendicularly to the growth axis (Paredez et al., 

2008). Disruption of either microtubule organization or cellulose synthesis 

causes perturbations to longitudinal growth, supporting this hypothesis (Paredez 

et al., 2008; Li et al., 2012). However, recent findings suggest that before cells 

have initiated longitudinal growth, and before microtubules acquire transverse 

organization, prospective longitudinal walls of isodiametric cells are 

preferentially HG de-esterified while transverse walls retain high degree of HG 

methylesterification (Peaucelle et al., 2015). This suggests that asymmetric HG 

de-esterification triggers the transition to directional growth in the hypocotyl, 

whereas the CMT-guided cellulose network reinforces the aforementioned 

asymmetry (Peaucelle et al., 2015). Regulation of HG modification may 

therefore play an essential role not only in modification of growth properties but 

also in fundamental growth decisions throughout plant development.   

1.4.5 Auxin regulation of PME/PMEI 

As HG modifications sometimes occur in highly spatially restricted regions, for 

instance during organ initiation in the apical meristem (Peaucelle et al., 2008), 

HG modulation seems likely to be tightly regulated. Hence, HG 

methylesterification is putatively subject to multi-level control in the modulation 

of growth patterns, and the influence of auxin in this control has been extensively 

studied. 

As already noted, the plant hormone auxin is a master regulator of growth, 

and may context-dependently either promote or inhibit growth of plant organs. 

Its growth-promotive activity is largely linked to acidification of the wall, as 

postulated in the acid growth theory (Rayle and Cleland, 1992). Upon auxin 

perception, PM-localized H+ ATPase proton pumps pump protons into the wall 

matrix, acidifying the wall (Takahashi et al., 2012). The consequent reduction in 

pH activates potassium channels that transport K+ into the cytosol, driving H2O 

uptake and maintaining turgor (Philippar et al., 2004). In the wall, low pH 

activates wall-modifying enzymes such as expansins that sever cell wall 

polysaccharide connections, loosening the wall (Cosgrove, 2000). The pH 

reduction also activates acidic PMEs, thought to mainly execute random de-

esterification, thus further promoting wall loosening as described in the previous 

section (Duvetter et al., 2006; Cameron et al., 2008). A demonstrative example 
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comes from studies of organ initiation in the apical meristem. New organs form 

at sites of high auxin concentration in a PIN auxin efflux-dependent manner 

(Braybrook and Peaucelle, 2013). Local application of auxin is sufficient to 

restore organ initiation in the apical meristem of the auxin transporter mutant 

pin1, which cannot initiate organs under control conditions (Reinhardt et al., 

2000). This coincides with local de-esterification and loosening of the wall. 

Overexpression of PMEI blocks auxin-induced outgrowth, while local PME 

application promotes bulging of pin1 apices (Braybrook and Peaucelle, 2013). 

Notably, exogenous auxin application rapidly inhibits root elongation, in 

stark contrast to its elongation-promoting effect in shoots (Bonner and Koepfli, 

1939). Furthermore, upon gravistimulation, auxin accumulates in and inhibits 

growth of cells on the lower side, allowing reorientation of growth (Band et al., 

2012). Auxin thus plays a complex role in growth regulation, potentially 

mediating both growth promotion and inhibition. A recent study demonstrated 

that upon auxin application or gravistimulation, the apoplast is rapidly and 

transiently alkalized. This auxin-mediated alkalization involves the receptor-like 

kinase FERONIA (Barbez et al., 2017), which upon binding to its ligand RALF 

phosphorylates and inhibits the PM H+-ATPase AHA2, required for proton 

pumping into the apoplast (Haruta et al., 2014). Interestingly, the auxin response 

factor ARF7 positively regulates the expression of ERULUS, an RLK 

hypothesized to function to negatively regulate PME activity via the FER-PM 

H+-ATPase mechanism (Schoenaers et al., 2018).  

Auxin furthermore modulates the cell wall biosynthesis and modification 

transcriptome (Nemhauser et al., 2006). However, the transcriptomic effect 

of auxin may be highly context-specific. For instance, auxin has been 

reported to both up- and downregulate expression of various PMEs and 

PMEIs in Arabidopsis (Goda et al., 2004; Nemhauser et al., 2006; Chapman 

et al., 2012). 

1.4.6 Cell wall sensing via homogalacturonan 

Plant growth is a highly dynamic process, in which plants must continuously 

assess their environment and adjust their growth accordingly. For such dynamic 

responses, a machinery is presumably required to sense not only external 

conditions, but also endogenous states. Recent advances have begun 

illuminating mechanisms involved in cell wall integrity sensing. Several 

pathways have been identified through which changes in wall status trigger 

cellular homeostatic responses, and multiple mechanisms that may participate in 

sensing of HG modification have been proposed (Hematy et al., 2007; Voxeur 

and Hofte, 2016; Feng et al., 2018). 
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As noted above, pectin is secreted to the wall with high degree of 

methylesterification. Inhibition of PME by PMEI activates brassinosteroid 

signaling via the receptor BRI1 and its co-receptor BAK1 and the BAK1 

interactor RLP44, which enhances expression of wall loosening enzymes such 

as PMEs and expansins (Wolf et al., 2012; Wolf et al., 2014). As described 

above, randomly de-esterified HG may be cleaved into OGs, as part of a wall 

loosening mechanism. OGs are also products of wall damage, for instance during 

pathogen attack. Wall-associated kinases (WAKs) have been demonstrated to 

bind to HG with higher affinity to smaller fragments such as OGs (Kohorn et al., 

2014), and are involved in stress responses via OG perception (Brutus et al., 

2010; Kohorn et al., 2012). WAKs are also required for normal cell expansion, 

and thought to operate by enhancing turgor through sensing of pectin status 

(Kohorn et al., 2006). Recently, increasing attention has been paid to the 

Catharanthus roseus receptor-like kinase (CrRLK1L) subfamily as potential 

wall integrity sensors (Voxeur and Hofte, 2016). Several lines of evidence 

indicate that the CrRLK1L member FERONIA may be a regulator of wall 

homeostasis, potentially by probing HG-Ca2+ crosslinking status, and 

modulating alkalinization of the apoplast, thus controlling PME/PMEI activity 

(Haruta et al., 2014; Feng et al., 2018; Schoenaers et al., 2018). 
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The objective of this study was to understand the mechanisms involved in 

differential cell elongation, using the apical hook as a model. The following 

questions were addressed in this work: 

 How does ECHIDNA mediate in the regulation of apical hook 

development? 

(PAPER I) 

 

 What is the mechanism underlying ECHIDNA-mediated secretion of 

auxin carriers at the trans-Golgi network? 

(PAPER II) 

 

 How do auxin and cell wall modifications control differential growth 

during apical hook development? 

(PAPER III) 

2 Objectives 
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3.1 ECHIDNA-mediated post-Golgi trafficking of auxin 
carriers for differential cell elongation (Paper I) 

3.1.1 ECHIDNA is required for ethylene-mediated apical hook 

development and interacts genetically with AUX1 

In a previous study, ECHIDNA (ECH) was characterized as a novel regulator of 

secretory trafficking from the TGN to the cell periphery, and shown to be 

required for cell elongation (Gendre et al., 2011). In Paper I, I examined the 

apical hook development of the ech mutant by time-lapse imaging, and found 

that compared to WT, ech hook development was severely perturbed and 

insensitive to exogenously applied ACC, a precursor of the plant hormone 

ethylene (Figure 8A, D-E). A major role of ethylene during hook development 

is to promote the establishment of an asymmetric auxin distribution (Lehman et 

al., 1996; Zadnikova et al., 2010; Zadnikova et al., 2016). The ech mutant 

exhibited disrupted auxin asymmetry establishment compared to WT, as 

revealed by examination of the synthetic auxin reporter DR5 (Figure 8B-C). 

Auxin asymmetry establishment relies polar auxin transport mediated by the 

combinatorial action of auxin transporters of the AUX/LAX influx and PIN 

efflux carrier families (Vandenbussche et al., 2010; Zadnikova et al., 2010). Of 

these, I examined the expression patterns of the central players AUX1 and PIN3, 

and found them both to be expressing in the epidermis (with PIN3 additionally 

expressing in cortex), overlapping with the epidermal expression pattern of 

ECH-YFP. Like ech, I observed that the aux1-21 mutant, in agreement with 

3 Results and Discussion 
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previous studies (Vandenbussche et al., 2010), but not the pin3-4 mutant 
exhibited insensitivity to ACC treatment. Furthermore, an ech aux1-21 double 
mutant exhibited a strongly enhanced phenotype, suggesting that ECH and 
AUX1 operate in a common pathway and are required for ethylene-mediated 
control of hook development. 

3.1.2 ECHIDNA mediates secretion of AUX1 from the TGN 
I observed that AUX1-YFP but not PIN3-GFP levels were strongly reduced at 
the PM in ech compared to WT, with AUX1-YFP additionally agglomerating in 
intracellular compartments overlapping with that of Lysotracker Red, a low-pH-
associated dye which labels vacuolar structures. Fluorescence recovery after 
photobleaching (FRAP) experiments revealed that de novo secretion of AUX1-
YFP was strongly reduced in ech compared to WT (Figure 9), while delivery of 
PIN3-GFP and LAX3-YFP, an AUX1 paralog, was only marginally affected in 
ech. These findings highlight the specificity of post-Golgi secretory trafficking 

Figure 8. ECH is required for ethylene-mediated hook development and auxin asymmetry 
establishment. (A, D-E). WT seedlings form a closed hook under control conditions, and 
respond to ACC treatment. In contrast, ech mutant seedlings fail to form a closed hook, and 
exhibit ACC insensitivity. (B-C) DR5 is strongly expressed on the inner side of the hook in 
WT, while ech mutants have severely perturbed DR5 expression pattern. 
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of auxin carriers from the TGN, where AUX1 would follow an ECH-dependent 
pathway distinct from that of PIN3 and LAX3 trafficking.  

3.1.3 TGN-Mediated Trafficking of AUX1 and PIN3 to the Plasma 
Membrane Is Independent of V-ATPases 

The TGN-localized V-ATPase is crucial for both endocytic and secretory 
trafficking (Dettmer et al., 2006). In this study I observed that the TGN-specific 
V-ATPase subunit VHA-a1 mislocalized to Lysotracker Red-positive 
compartments in the hook of ech mutants. However, I found that 
pharmacological inhibition of V-ATPase function using Concanamycin A 
(ConcA) only marginally affected WT apical hook development and de novo 
delivery of AUX1-YFP and PIN3-GFP to the PM, compared to the severe hook 
developmental and AUX1-YFP secretion defects observed in ech. VHA-a1 is 
essential for secretion of other PM-resident cargos, such as BRI1 (Dettmer et al., 
2006). Thus, the results in Paper I indicate potentially multiple secretory 
pathways from the TGN and some of these are independent of VHA-a1 function. 

3.1.4 ECHIDNA Resides Predominantly with SVs at the TGN 
The plant TGN is a hub where multiple pathways intersect (Viotti et al., 2010). 
This is reflected by the observation that it comprises several subdomains, and 
produces several distinct vesicle structures, such as secretory vesicles (SVs) and 
Clathrin-coated vesicles (CCVs) (Kang et al., 2011). Co-localization analysis 
revealed that while ECH and VHA-a1 co-localize strongly, ECH and VHA-a1 
only partly overlaps with CLATHRIN HEAVY CHAIN-positive structures, 
suggesting that ECH resides at sites of SVs rather than CCV sites at the TGN. 
Moreover, high-resolution 3D electron tomography of Golgi/TGN showed that 
the ech TGN appears more tubulated with fewer SV than WT, while the number 

Figure 9. ECHIDNA is required for delivery of de novo synthesized AUX1 to the PM. 
Upon photobleaching of AUX1-YFP, it recovered to 25% of initial intensity in WT after 180 
minutes (A and C), while AUX1-YFP recovery was severely reduced in ech (B). Scale bars 5 
µm. 
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of CCVs per TGN is unaffected compared to WT. Taken together these findings 

suggest that ECH has a role in SV genesis at the TGN.  

Altogether, the data presented in Paper I indicate that auxin carriers are 

delivered via differential trafficking routes at the TGN, where AUX1 appears to 

rely on a pathway distinct from that of PIN3 or LAX3 trafficking. AUX1 and 

LAX3 are highly similar at the amino acid level (Peret et al., 2012). However, 

LAX3 is unable to functionally replace AUX1. Potentially, part of their 

distinction lies at the level of sorting at the TGN. It is not clear how such pathway 

separations are established within a subdomain of the TGN. Possibly ECH may 

function to recruit specific cargos or vesicle formation components required for 

a defined subset of cargos, allowing fine-tuning of secretory trafficking from the 

TGN. 

3.2 Ethylene Regulates Differential Growth via BIG ARF-
GEF-Dependent Post-Golgi Secretory Trafficking in 
Arabidopsis (Paper II) 

3.2.1 BIG1-4 function during apical hook maintenance and genetically 

interact with ECH  

In Paper I, the TGN-localized protein ECH was shown to be crucial for ethylene-

mediated hook development and secretion of AUX1 to the PM. The ech mutant 

exhibited TGN morphological defects, with a strong reduction in SV number, 

while the number of CCVs was unaffected compared to WT. This suggests that 

ECH might play a role in formation of SVs at the TGN. In Paper II, I investigated 

whether ECH function involved players of a vesicle formation machinery.  

A common mechanism for vesicle formation involves GTPases of the ARF 

family, which act to recruit cargos and vesicle components (Bourne et al., 1990; 

Singh and Jurgens, 2018). The activity of ARFs is regulated by ARF-GEFs, 

which activate ARFs by catalysing GDP/GTP exchange (Anders and Jurgens, 

2008). I dissected the involvement of ARF-GEFs during apical hook 

development. Taking advantage of the sensitivity of ARF-GEFs to the fungal 

toxin BFA, and using genetically modified BFA-resistant ARF-GEFs, I 

identified that the ARF-GEF GNOM is required early in hook development, 

during hook formation, while BIG ARF-GEFs operate redundantly and 

independently of GNOM to mediate hook maintenance. While BIG single 

mutants exhibited no discernible hook defects, higher order mutants were 

defective in hook maintenance, indicating functional redundancy between them. 

The BIG3 protein is the sole BIG ARF-GEF member resistant to BFA (Richter 
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et al., 2014). Treating big3 with BFA thus allows simultaneous targeting and 
inhibition of BIG1-4 function. When big3 is treated with BFA, hook 
development and ethylene response are strongly perturbed, phenocopying the 
ech mutant (Figure 10). Similar phenotypes and potential role of ECH in SV 
genesis prompted me to examine if ECH and BIGs operated in a common 
pathway during hook development. Like big3, the ech mutant exhibited 
hypersensitivity to BFA compared to WT, suggesting compromised ARF-GEF 
function in ech. Furthermore, an ech big2 big3 triple mutant displayed a strongly 
enhanced hook phenotype compared with ech or big2 big3 mutants. Taken 
together, these results indicate that ECH and BIG1-4 operate in a common 
pathway downstream of ethylene. 

3.2.2 BIG1-4 are required for AUX1 trafficking to the PM 
The results in Paper I demonstrated that ECH is essential for secretion of AUX1 
to the PM. When germinated upon BFA, big3 mutants exhibited strongly 
reduced AUX1-YFP levels at the PM compared to WT. Concurrently, AUX1 
transcript levels were only mildly reduced in big3 upon BFA, pointing towards 
a post-transcriptional effect of blocking BIG function on AUX1 levels at the PM. 
In agreement, short-term BFA treatment caused strong AUX1-YFP 
agglomeration in big3 mutants but not in WT (Figure 11). AUX1-YFP 
agglomerations in big3 +BFA overlapped with the TGN-localized VHA-a1-
RFP. The AUX1-YFP agglomeration in big3 disappeared upon pre-treatment 
with the protein synthesis inhibitor CHX followed by CHX + BFA treatment. 
Furthermore, the AUX1-YFP agglomerations upon BFA treatment in big3 
disappeared when similar experiments were performed in Arabidopsis lines 
expressing BFA-resistant BIG4 but not BFA-resistant GNOM. Taken together, 
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these observations indicate that BIGs operate redundantly in delivery of newly 
synthesized AUX1 to the PM independently of GNOM at the TGN.  

3.2.3 BIG4 and ECH Colocalize at the TGN and Their Localization Is 
Interdependent 

With ECH and BIG1-4 operating in overlapping pathways, I investigated 
whether ECH and BIG1-4 co-localize at the TGN. I observed strong co-
localization between ECH-YFP, BIG4-RFP and VHA-a1-GFP/VHA-a1-RFP, 
suggesting that ECH and BIG ARF-GEFs operate at the same TGN domain. I 
furthermore observed that in the absence of ECH, BIG4R-YFP was strongly 
mislocalized, exhibiting a diffuse labelling compared to the strictly punctate 
labelling in WT. Similarly, ECH localization was strongly perturbed upon 
disruption of BIG function, with ECH-YFP exhibiting a diffuse pattern 
compared to the punctate ECH-YFP pattern in WT. In the ech mutant, VHA-a1 
is mislocalized. Disruption of VHA-a1 function results in trafficking defects 
from the TGN (Luo et al., 2015). Therefore, it was previously hypothesized that 
the defects observed in ech were due to perturbed V-ATPase function at the TGN 
(Gendre et al., 2011). However, pharmacological inhibition of V-ATPase 
function using ConcA did not affect BIG3-YFP nor BIG4R-YFP localization 

Figure 11. BIG1-4 Are Required for de novo Delivery of AUX1-YFP. (A) to (F) AUX1-
YFP agglomerates in big3 upon BFA treatment. While under mock conditions, AUX1-YFP 
remains exclusively at the PM in both the wild type (A) and big3 (D); upon 3 h of 50 μM BFA, 
AUX1-YFP agglomerates intracellularly in big3 (E) (white arrowhead) but not wild-type (B). 
Agglomerations are blocked in big3 when seedlings are pretreated with 50 μM CHX for 1 h 
followed by 3 h of 50 μM CHX + 50 μM BFA treatment (F), while AUX1-YFP remains 
unaffected in the wild type (C). Scale bars 20 µm. 
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upon 2 hr treatment, in contrast to the strong observed agglomeration of VHA-
a1-GFP. This is in accordance with findings in Paper I, that ECH-dependent 
AUX1 trafficking is independent of VHA-a1 function, and supports the 
suggestion that multiple secretory pathways operate even within a subdomain at 
the TGN. 

3.2.4 BIG ARF-GEFs and ECH Are Required for ARF1 Localization at 
the TGN 

BIG3 was previously demonstrated to function as an ARF-GEF for ARF1 
GTPase in vitro (Nielsen 2006). I observed that, while ARF1-GFP exhibited a 
largely punctate pattern in WT seedlings, in ech the ARF1-GFP signal was 
largely diffuse with few punctate structures (Figure 12A and F). Similarly, when 
disrupting BIG1-4 by BFA-treatment of big3, ARF1-GFP exhibited an almost 
exclusively diffuse labelling, in contrast to BFA-treated WT seedlings (Figure 
12B-C, G-H). In comparison, VHA-a1-GFP did not exhibit agglomeration in 
WT or big3 upon identical BFA-treatment (Figure 12D-E, I-J). Thus, the data 
suggest that ARF1 relies on ECH and BIG1-4 for its localization independently 
of VHA-a1 function. 

Figure 12. ECH and BIGs Are Required for Proper ARF1-GFP Localization. ARF1-GFP 
localization is punctate in the wild type (A) while strongly disrupted in ech (F). While 15 min of 
50 μM BFA has no effect on ARF1-GFP localization in the wild type (C) compared with mock 
(B), punctate ARF1-GFP in big3 under mock conditions (G) becomes strongly mislocalized in 
big3 upon 15 min of 50 μM BFA treatment (H). By contrast, VHA-a1-GFP localization under 
mock conditions in either the wild type (D) or big3 (I) remains unaffected upon 15 min of 50 μM 
BFA treatment in both the wild type (E) and big3 (J). Scale bars = 20 μm. 
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3.2.5 ARF1 Members Are Essential for Ethylene-Mediated Apical Hook 

Development and AUX1 Trafficking 

ARF1 localization relies on ECH and BIG1-4. Therefore I investigated if ARF1 

also plays a role during apical hook development. Due to expected high 

redundancy among the six ARF1 members (Xu and Scheres, 2005), I generated 

a dominant negative GDP-locked ARF1 variant (ARF1T31N) under control of β-

estradiol inducible UBQ10 promoter to interfere with ARF1 function. Upon 

induction of ARF1T31N expression, hook development was severely perturbed, 

and ARF1T31N-expressing seedlings did not respond to ACC treatment. Thus, 

ARF1, like ECH and BIG1-4, is required for ethylene-mediated hook 

development. I therefore examined whether ARF1, like ECH and BIG1-4, is 

required for AUX1 trafficking to the PM. Upon induction of ARF1T31N 

expression, AUX1-YFP PM levels were reduced to 25% of WT levels. 

Additionally, in contrast to the exclusively PM-localized AUX1-YFP observed 

in WT, AUX1-YFP agglomerated strongly in intracellular structures in 

ARF1T31N.  

In conclusion, Paper II revealed additional components acting in concert with 

ECH in the AUX1 secretory pathway essential for ethylene-mediated hook 

development. This pathway comprises BIG ARF-GEFs and their target ARF1 

and functions in AUX1 delivery independently of VHA-a1, as shown for ECH 

in Paper I. It is interesting to note that, while ECH, BIG ARF-GEFs and ARF1 

converge in mediating trafficking of AUX1 at the TGN, both ARF1 and BIG 

ARF-GEFs have broad functions in trafficking compared to those revealed so 

far for ECH. For instance, ARF1 operates independently of ECH to facilitate 

COPI-mediated retrograde trafficking from the Golgi (Stefano et al., 2006). 

BIG1-4 also function in pathways not involving ECH, such as delivery of cargo 

to the vacuole (Richter et al., 2014). One may therefore hypothesize that ECH 

acts as an element of a machinery that, although requiring ARF1 and BIG ARF-

GEFs, might provide compartment and/or pathway specificity for trafficking via 

the TGN.  

3.3 Mechanochemical Feedback Between Auxin and 
Pectin Modification Mediates the Control of Apical 
Hook Development (Paper III) 

 

As described in Paper I and Paper II, ECH mediates secretion of the auxin carrier 

AUX1. However, ECH was also shown to mediate delivery of cell wall material, 

and in agreement, the ech mutant exhibits altered wall composition (Gendre et 

al., 2013). Additionally, as demonstrated in Paper I, the ech mutant has severe 
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defects in hook development, a process involving differential cell elongation in 
which cell wall would be expected to play a critical role. Therefore I chose to 
investigate the role of cell wall regulation during differential growth in apical 
hook development in Paper III. 

3.3.1 Cell elongation rates display stage specific differences during 
apical hook development 

Apical hook development largely relies on asymmetric cell elongation (Silk and 
Erickson, 1978; Raz and Ecker, 1999). Control of cell expansion, such as 
elongation, involves an interplay between the force exerted by vacuolar turgor, 
and the capacity of the wall to resist or yield turgor (Kierzkowski and Routier-
Kierzkowska, 2019). The cell wall composition largely determines its 
mechanical strength (Cosgrove, 2018). To identify regions of growth asymmetry 
during hook development, I initially mapped cell elongation rates across the 
hook by time-lapse confocal imaging. I observed that during hook formation, 
growth asymmetry is most pronounced close to the shoot apical meristem (SAM) 
with cells on the outer side exhibiting 3-fold higher growth rates than cells on 
the inner side. As hook formation is completed, growth rates dynamically change  
where growth asymmetry is reduced compared to during hook formation (Figure 
13).  

Figure 13. Cell elongation is asymmetric during hook development (A i-v) Time-lapse 
macro-confocal images of hook formation in WT, obtained at 2 hr intervals from 90° (Ai) to 
180° angle (Av). (B and C) Cell elongation rates of epidermal cells at 90° (B) and 180° (C). 
In all figures, asterisks mark positions of SAM. Continuous lines in red and blue represent 
trendlines for outer side and inner side cells, respectively. All scale bars 100 μm 
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3.3.2 Cell mechanochemical property differences correlate with 
differential cell elongation and are required for hook development 

Using osmotic treatments to modulate turgor pressure, I observed that cell 
deformation levels that are governed by cell wall mechanics largely matched cell 
elongation patterns, with cells on the outer side close to SAM exhibiting high 
deformation, while cells on the inner side close to SAM exhibited low 
deformation levels (Figure 14A and B). Cell wall composition contributes to cell 
mechanical properties. Recent studies have demonstated that 
methylesterification of homogalacturonan (HG) pectin affects wall mechanical 
properties (Peaucelle et al., 2011; Peaucelle et al., 2015). I this study (Paper III) 
I found that HG was highly methylesterified in cells on the inner side close to 
SAM, corresponding to cells which exhibited low elongation rate and level of 

Figure 14. The apical hook exhibits mechanical and wall compositional asymmetry.  
(A) Averaged heat map of surface area deformation in epidermal cells upon osmotic treatment 
in WT. (B) Boxplot of cell deformation levels for epidermal cells on the outer and inner sides 
in 200 μm longitudinal zones starting from SAM, based on (A). (C-D) Heat maps of 
immunolabeling with LM20 (C) and LM19 (D) in 2.5 μm sections of WT seedlings during 
early hook maintenance. (E) Scatterplot calculated ratio of LM20 and LM19 labeling 
fluorescence intensity for individual cells in WT seedlings based on (C) and (D). Graph inset 
in (E) showing data pooled into 400 μm zones for statistical analysis. In (A), (C) and (D), white 
asterisks mark the position of SAM. In (E) inset, black asterisks mark T-test p-value < 0.0001. 
In (B) + represents outlier.  Scale bars 100 μm. 
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deformation. In contrast, cells on the outer side close to SAM had comparatively 

lower levels of HG methylesterification.  

HG is delivered to the cell wall in a highly methylesterified state (Staehelin 

and Moore, 1995; Driouich et al., 2012). In muro it may be de-esterified by 

pectin methylesterases (PMEs), a process that can be inhibited by PME 

inhibitors (PMEIs) (Wolf et al., 2009). Overexpression of PMEI5 caused a 

global increase in HG methylesterification, and disruption of 

methylesterification asymmetry observed in WT. This lead to markedly reduced 

cell deformation levels and elongation rates in PMEI5oe seedlings, effects that 

were most pronounced on the outer side of the hook compared to WT. I observed 

that compared to WT, hook development in PMEI5oe seedlings was severely 

perturbed. Taken together, these observations suggest that asymmetric HG 

methylesterification is required for proper hook development. 

3.3.3 Auxin promotes methylesterification and pattterns wall 

compositional asymmetry during hook development 

Auxin crucially regulates apical hook development (Zhao et al., 2001; 

Dharmasiri et al., 2005; Zadnikova et al., 2010). As the hook forms, auxin 

becomes asymmetrically distributed, with an auxin response maximum being 

established on the inner side of the hook (Zadnikova et al., 2010). Auxin is 

thought to inhibit elongation during hook development. However, the 

downstream events are not as well understood. The auxin maximum on the inner 

side overlaps with the region exhibiting high levels of HG methylesterification. 

To test whether high auxin mediates HG methylesterification, I used yuc1D 

mutant that has high expression of YUCCA1 that encodes a rate-limiting enzyme 

in IAA/auxin biosynthesis pathway (Zhao et al., 2001). yuc1D seedlings 

exhibited a strongly expanded region of auxin response maxima compared to 

WT, as revealed by the synthetic auxin reporter DR5, with cells on the outer side 

exhibiting strong DR5 expression, in contrast with the WT. yuc1D seedlings 

exhibited elevated HG methylesterification levels and disrupted 

methylesterification asymmetry compared to WT. Furthermore, cells on the 

outer side in yuc1D seedlings were greatly reduced in size compared with WT, 

and yuc1D seedlings were unable to form an apical hook. These data suggest 

that auxin may promote HG methylesterification, and that the asymmetric auxin 

distribution may pattern wall compositional asymmetry required for proper hook 

development. 
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3.3.4 PMEI5oe exhibit altered auxin response pattern 

The defects in hook development in PMEI5oe seedlings led me to examine 

whether this impacted auxin response. Using time-lapse confocal imaging I 

observed that in WT, auxin response asymmetry as reported by DR5 was 

established only as bending reached 90°. This asymmetry gradually became 

more prominent as WT seedlings approached 180°. In contrast, PMEI5oe 

seedlings failed to establish DR5 asymmetry. Instead, PMEI5oe seedlings 

exhibited an extended pattern of DR5 expression towards the outer side of the 

hook. The transcriptional response of auxin responsive Aux/IAA genes IAA5, 

IAA19 and IAA29 upon 2 hr treatment with IAA did not show any discernible 

trend of alteration in PMEI5oe compared to WT, suggesting that the altered DR5 

pattern is not due to a simple enhancement in auxin sensitivity. These data 

suggest that while auxin may promote HG methylesterification, HG 

methylesterification may in turn also feedback to impact the auxin response 

pattern, and the interplay between these two factors (wall modifications and 

auxin) is essential for proper hook development. 
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4.1 Paper I 

I showed that ECH regulates ethylene-mediated differential growth during apical 

hook development by mediating secretion of the auxin influx carrier AUX1 but 

not the auxin efflux carrier PIN3 at the TGN, independently of VHA-a1 function. 

These results indicate divergence and selectivity of secretory trafficking at the 

TGN, the molecular basis of which remain unknown. The selectivity of defects 

in trafficking in the ech mutant may indicate that ECH either aids in establishing 

TGN sub-compartmentalization essential for selectivity in cargo, or alternatively 

ECH is recruited to specific lipid micro-domains at the TGN, where it may 

mediate downstream steps e. g. in recruitment of a distinct vesicle formation 

machinery. 

Thus, it is worth noting that in another publication (which I co-authored, not 

included in this thesis) (Wattelet-Boyer et al., 2016), it was shown that the lipid 

composition of TGN sub-compartments appears crucial for recruitment of cargo 

into distinct secretory pathways and this may maybe the mechanism for 

selectivity in cargo at the TGN.  
 

4.2 Paper II 

In Paper II, I demonstrated that secretion of AUX1, a crucial mediator of 

ethylene action during hook development, relies on a secretory module involving 

ECH, BIG ARF-GEFs and ARF1 at the TGN, independently of VHA-a1 

function. Furthermore, I showed that the retention of ECH and BIGs at the TGN 

is interdependent. Since both BIGs and ARF1 operate in additional pathways 

4 Conclusions and Future perspectives 
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beyond TGN-to-PM secretion (Takeuchi et al., 2002; Pimpl et al., 2003; Richter 

et al., 2014), the data presented here demonstrates how multiple pathway 

components give rise to a complex network of distinct and overlapping 

endomembrane trafficking routes. ARF-GEFs are thought to confer pathway 

specificity to ARF action by recruiting them to distinct compartments (Anders 

and Jurgens, 2008). ARF-GEFs carry lipid-binding domains, such as the 

pleckstrin homology (PH) domain, that provide affinity for specific membrane 

lipids (Lemmon, 2007; Anders et al., 2008). As discussed for Paper I above, 

ECH may function in defining lipid environments favouring BIG recruitment. 

Alternatively, ECH and BIGs may interact directly at distinct TGN sites. Future 

studies could address the molecular mechanisms of how the interdependent 

module comprising ECH and BIGs is recruited to the TGN.  
 

4.3 Paper III 

Herein, I demonstrated that differential elongation during apical hook 

development relies on the establishment of asymmetric cell wall mechanical 

properties across the hook, through modification of pectin methylesterification, 

in an auxin-dependent manner. Furthermore, the data presented in Paper III 

suggests the existence a of mechanochemical component providing feeback to 

the auxin machinery. This study presents numerous outstanding questions: How 

does auxin regulate pectin methylesterification? The answer may lie in auxin 

mediated control of PME and PMEI genes. Furthermore, the activity of PME 

and PMEIs is influenced by apoplastic pH, which is known to be modulated by 

auxin providing a connection between auxin and pectin modification. Growth 

asymmetry during hook formation appears to precede establishment of the auxin 

response asymmetry, as reported by DR5 reporter. Since auxin and a 

mechanochemical component are interinfluential during hook development, it is 

tempting to hypothesize that auxin is not the sole trigger, but that initiation of 

hook formation results from initial mechanochemical asymmetries that are 

amplified via feedback mechanisms involving auxin. Exploring the earliest 

stages of hook formation could address such questions. 
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