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A B S T R A C T   

Biogeochemical weathering of bedrock is the most important input of silicon (Si) and phosphorus (P) to forest 
ecosystems. While soil microbes, and in particular P-solubilizing bacteria (PSB), are known to accelerate the 
solubilization of Si and P from silicate rocks, our understanding of the mechanisms driving biogenic weathering 
are still limited. To fill this gap, incubation experiments with weathered parent materials (i.e. basalt, andesite 
and paragneiss) of four soils and water extracts of the four soils, differing in P stocks, were conducted. We found 
that the net Si solubilization rate ranged from 5.0 (±1.8) to 91.0 (±2.4) nmol m− 2 d− 1 across all examined soils. 
The silicate dissolution rates were negatively related to the decrease in pH (ΔpH) and positively related to the 
amounts of organic acids released by microbes. We found that the gross P solubilization rates from the parent 
materials were ~11 times higher at the P-rich site (BBR) compared to the P-poor site (CON). In addition, we 
determined the abundance and the taxonomic composition of PSB communities in the four soils. The abundance 
of PSB ranged from 2% at the P-rich site to 22.1% at the P-poor site, indicating that a selective pressure exists in 
P-poor soils towards a higher abundance of P-solubilizers. Yet, despite the relative high abundance of PSB, the 
gross P solubilization rates were low in the soils derived from P-poor parent material. The genus Pseudomonas 
was found only in the PSB community at the P-poor site. Burkholderiales and Bacillales together were by far the 
two most abundant orders among the PSB communities in all soils and depths. In conclusion, this study shows 
that PSB are more abundant in P-poor soil than in P-rich soil, while the weathering rate seems to be mostly 
dependent on the bedrock.   

1. Introduction 

Phosphorus (P) plays a significant role for a broad array of cellular 
processes of all organisms (Malhotra et al., 2018). However, only a very 
limited proportion of P in soils is directly available to plants and mi
crobes (Zhu et al., 2011). Therefore, P is a key factor that limits plant 
growth in many areas of the world (Ågren et al., 2012). Microorganisms 
are known to play a major role in the dissolution of minerals (Banfield 
et al., 1999; Vorhies and Gaines, 2009). Various studies have shown that 
P-solubilizing bacteria (PSB) can constitute up to 53% of total bacterial 
numbers and can convert insoluble forms of P to accessible ones 
(Browne et al., 2009). Among them, bacterial strains of the genus 
Pseudomonas, Burkholderia, Erwinia, Enterobacter and Klebsiella have 
been reported to be efficient P solubilizers (Chung et al., 2005; Oteino 

et al., 2015; Lee et al., 2019). 
P mobilization from organic matter (i.e. P mineralization) has been 

comprehensively explored in many studies (Zou et al., 1992; Achat et al., 
2010; Spohn and Kuzyakov, 2013; Bünemann, 2015). In contrast, mi
crobial P solubilization from silicate parent materials is not fully un
derstood yet. The term P solubilization refers to desorption of adsorbed 
P as well as dissolution of P-containing minerals (Hinsinger, 2001; Penn 
and Camberato, 2019). In soils, P largely derives from apatites dissolu
tion, while other nutrients become mostly available from silicate 
weathering (Harley and Gilkes, 2000). Although much knowledge has 
been gained over the past decades, the processes involved in biogenic 
weathering and the role of soil microbial communities are not yet fully 
understood (White and Brantley, 2003; Brucker et al., 2020). Bacteria 
and fungi are capable to secrete different compounds (e.g., organic 
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acids; siderophores) that may affect the solubilization of P and other 
nutrients from rocks in three principal ways: (i) through binding 
(complexation) of carboxylic (-COOH) and hydroxyl (-OH) groups to 
metal cations (Al, Fe, Ca), (ii) through exchange of organic compounds 
and sorbed P (ligand exchange) and (iii) by acidification of the soil so
lution which causes dissolution since the dissolution of silicates and 
apatites is largely dependent on pH (Lindsay, 1979; Kpomblekou and 
Tabatabai, 1994; Welch et al., 2002; Oburger et al., 2011; Wang et al., 
2016). 

Primary P-rich minerals such as apatites, Ca5(PO4)3(OH, F, Cl), are 
present as small inclusions in nearly all silicates. Silicates compose more 
than 90 percent of Earth’s crust and are found as major constituents of 
most igneous, sedimentary and metamorphic rocks (for a review see 
White and Brantley, 1995). Igneous rocks contain on average a higher 
proportion of apatite than metamorphic and sedimentary rocks (Syers 
et al., 1967; Bacon and Brown, 1992; Nezat et al., 2007; Mehmood et al., 
2018). Thus, one would expect a higher release of P from rocks having a 
higher content of apatite-P. The crystallographic arrangement of silicate 
minerals is centered around the silicon–oxygen tetrahedron group 
(SiO4

4− ). Silica tetrahedra contains void spaces that are occupied by 
various metal cations to maintain electrical neutrality (Huang and 
Wang, 2005). Contrary to P, silicon (Si) is not considered essential for 
plant growth, although several studies have proven its favorable effects 
on growth and disease resistance in many crops (Ma, 2004; Guntzer 
et al., 2012; Duboc et al., 2019). In soils, the content of bioavailable Si 
varies from 0.003 to 0.45 g Si kg− 1 (Liang et al., 2015), whereas 
bioavailable P varies from 0.02 to 0.1 g P kg− 1 (Yang and Post, 2011). 
Biogenic silicate weathering can be caused by the same mechanisms as 
apatite weathering (Uroz et al., 2009; Brucker et al., 2020). In addition, 
the Si concentration in soil is affected by Si sorption/desorption (Haynes 
and Zhou, 2020). However, the extent to which microorganisms, and in 
particular PSB, impact the solubilization rate of silicate minerals is far 
from being completely understood. 

The rates of silicate solubilization by microbial consortia differ 
depending on the type of parent material and soil properties (Vandevi
vere et al., 1994; Rogers and Bennett, 2004). Some authors (Gleeson 
et al., 2006; Uroz et al., 2015) suggested that rocks and soils influence 
the composition of the microbial communities according to their 
mineralogy, nutrient content and weatherability. For example, Nicolitch 
et al. (2016) showed that PSB were significantly more abundant in 
nutrient-poor than in nutrient-rich soils, but this analysis was limited to 
the rhizosphere and no rates of P and Si solubilization were determined. 
To the best of our knowledge, only one study investigated the rela
tionship between the P solubilization rates from weathered bedrocks 
and the PSB communities together, so far (Spohn et al., 2020). The au
thors found that P solubilization was higher in moderately-weathered 
than in strongly-weathered saprolite and that the abundance of PSB 
was increased in the strongly-weathered saprolite (Spohn et al., 2020). 

The principal aim of this study was to examine microbial solubili
zation of Si and P from different silicate parent materials (i.e. basalt, 
andesite and paragneiss) in four beech forest soils differing in total P 
stocks. A second objective was to explore the relationship between the 
abundance and the community composition of soil PSB and the Si and P 
solubilization rates. We hypothesized that (i) the rates of biogenic Si and 
P solubilization from weathered silicate parent materials are correlated 
with the concentrations of organic acids and protons released by mi
croorganisms; (ii) the rates of microbial P solubilization from silicate 
parent materials increase with decreasing crystallinity of the parent 
material since silicates with a high content of Si (paragneiss) tend to 
weather more slowly than silicates having less Si (basalt, andesite) and 
(iii) the abundance of PSB increases with decreasing P stocks of the soils. 
To test these hypotheses, we performed an experiment in which we 
determined the solubilization of Si and P from four silicate parent ma
terials incubated with soil extracts. Two depth increments were chosen 
to gain a more complete insight into microbial Si and P solubilization. In 
each soil extract incubated with the corresponding parent material, the 

amounts of organic acids and the pH were recorded at different time 
points during the incubation. In addition, we determined the abundance 
and the taxonomy of soil PSB based on a physiological assay in combi
nation with 16s rRNA gene sequencing. 

2. Materials and methods 

2.1. Study sites and sample collection 

Soil samples and weathered silicate parent materials were collected 
in April 2017 from four even-aged beech (Fagus sylvatica L.) forests in 
Germany (Table 1). Two sites (Mitterfels, MIT and Conventwald, CON) 
are located on the German southern uplands and two (Bad Brückenau, 
BBR and Vessertal, VES) on the central uplands encompassing an alti
tudinal range from 810 to 1025 m above sea level. The mean annual 
temperatures (MAT) in the four studied sites vary from 4.5 ◦C at MIT to 
6.8 ◦C at CON, whereas the mean annual precipitations (MAP) vary from 
1031 mm at BBR to 1749 mm at CON. The soils of the four study sites are 
classified as Cambisols (WRB 2015) as described in Lang et al. (2017). 
The pH of the studied soils ranged from 4.5 to 5.1. The soil texture is 
shown in Table S2. In each forest stand, the mineral soil was sampled at 
two depths (30–35 cm and 65–70 cm) from one representative soil pit by 
combining material taken from five randomly selected spots per depth 
using small stainless steel spatulas. Silicate parent materials were 
collected from each soil depth and placed into plastic bags. After being 
transported to the laboratory, field-moist soil samples were sieved (<2 
mm) and root fragments as well as other coarse debris were removed. 
Subsequently, small aliquots of each soil sample were air-dried for 
chemical analysis. The remaining soil was stored at (i) 5 ◦C for the in
cubation experiments or (ii) frozen at − 20 ◦C for the microbial analysis. 

2.2. Sample preparation 

Parent materials were crushed using a jaw crusher (Pulverisette, 
Fritsch, Germany). Each crushed sample was initially sieved through a 
0.63 mm sieve. The resulting size fraction was further sieved through a 
0.2 mm sieve. The material that did not pass the latter was used for the 
incubation experiments (0.2–0.63 mm size fraction). The specific sur
face area (SSA) of each crushed rock was determined by N2 adsorption 
on a micromeritics automatic analyzer (Gemini 2375, Shimadzu, 
Japan). The adsorption isotherms were evaluated for adsorbent surface 
area with the BET (Brunauer-Emmet-Teller) model by the instrument 
software (StarDriver v2.03). The soil extracts used for the incubation 
experiments were prepared as previously described (Pastore et al., 
2020). Briefly, 100 g of each soil sample was placed in a polyethylene 
(PE) bottle, mixed with 1 l of distilled water and shaken at room tem
perature for 2 h using an overhead shaker. The extracts were filtered 
through cellulose filters with a particle retention range of 5–8 μm and 
pores such as to enable the passage of soil microorganisms and small 
particles of organic matter. 

2.3. Chemical analyses of silicate parent material samples 

In order to analyze the contents of total P (Ptot) and total Si (Sitot) 
from the parent materials, crushed subsamples were digested using a 
combination of nitric acid (65% HNO3), hydrofluoric acid (40% HF), 
and hydrochloric acid (37% HCl) according to Sandroni and Smith 
(2002) by ICP-OES (Vista-Pro radial, Varian). The specific absorption of 
radiation for Si and P was 253 nm and 190 nm, respectively. The 
reference material used for the analysis consisted of borosilicate glass 
(SiO2 53.98%, LGC, SPS-SW2 surface water 2 for Si and SPS-WW2 waste 
water 2 for P). 

2.4. Weathering of silicate parent materials 

To determine the net Si and P solubilization rates from silicate parent 
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materials, three incubation experiments were conducted using soil ex
tracts following Brucker et al. (2020) and Pastore et al. (2020). In 
experiment 1, the total Si and P mobilization rates from parent material 
were determined. For this purpose, 1 g of each parent material was 
incubated with 99 ml of the respective soil extract and 1 ml of glucose 
(3.33 mM). In addition, we performed a control experiment in analogy 
to experiment 1, but without addition of silicate parent material in order 
to quantify the mineralization of P from dissolved organic matter, which 
allowed us to correct the results of experiment 1 for P release from 
organic matter. Further, sterile control incubations were conducted to 
determine the effect of the soil extracts on Si and P solubilization. For 
this purpose, 99 ml of sterile soil solution and 1 ml of glucose (3.33 mM) 
were added to 1 g of each parent material. All experiments were per
formed in triplicate. Each incubation flask was loosely covered with 
aluminium foils which allowed the passage of air and continuously 
agitated at 20 ◦C for 14 days on a horizontal shaker. 

2.5. Chemical analyses of soil extracts incubated with parent material 

In each soil extract, dissolved Si was measured at 0, 7 and 14 days 
after the beginning of the experiment. Briefly, aliquots of 10 ml were 
taken and filtered through 0.45-μm cellulose acetate filters. The filtrates 
were acidified by adding 50 μl of 65% HNO3 to prevent Si precipitation 
and then centrifuged at 1500×g for 15 min. The resulting supernatant 
was analysed for Si by ICP-OES (Vista-Pro radial, Varian, USA). In par
allel, the amounts of phosphate released from the parent material in the 
soil extracts were also quantified. At defined time intervals (0, 2, 3, 5, 7, 
11, and 14 days after the beginning of the experiment), 5 ml were taken 
from the flasks and vacuum filtered using 0.45 μm cellulose acetate 
filters. The resulting filtrates were analysed for pH and phosphate. The 
latter was determined according to the molybdenum-blue assay (Mur
phy and Riley, 1962) and measured with an Infinite M200 Pro micro
plate reader (Tecan, Switzerland). 

2.6. Abundance of P-solubilizing bacteria 

The relative abundance of P-solubilizing bacteria (PSB) was assessed 
by suspending 0.5 g of fresh soil in 49.5 ml of sterile water and shaking 
for 1 h. Serial dilutions (10− 2, 10− 3) from each soil suspension were 
tested to identify the appropriate cell density. Subsequently, from each 
suspension, an aliquot of 100 μl was aseptically spread on Pikovskaya’s 
agar medium (PVK) and the plates were incubated at 20 ◦C for 10 days. 
The PVK medium was composed of: 10 g glucose; 5 g hydroxyapatite; 
0.5 g yeast extract; 0.5 g ammonium sulphate; 0.2 g potassium chloride; 
0.2 g sodium chloride; 0.1 g magnesium sulphate; 0.002 g ferrous 

sulphate; 0.002 g manganese sulphate and 15 g agar-agar in 1 l of 
distilled water (Pikovskaya, 1948). The pH of the solution was adjusted 
to 7.0. One-hundred colony-forming units (CFUs) from each soil sample 
were screened. If a bacterial colony dissolves hydroxyapatite, a halo 
(clear zone) becomes visible in the otherwise milky medium. In this 
case, the colony was considered to be formed by a PSB. The relative 
abundance of PSB was calculated by dividing the number of colonies 
formed by PSB by the total number of colonies and multiplying by 100. 

2.7. Amplification and sequencing analysis of P-solubilizing bacteria (16S 
rRNA gene) 

Bacterial colonies identified as PSB were collected from the PVK agar 
plates using sterile toothpicks and aseptically transferred into buffer 
solutions for DNA extraction. Detailed procedure describing amplifica
tion of 16S rRNA genes, quality trimming and annotation was provided 
previously by Widdig et al. (2019). Briefly, genomic DNA of bacterial 
colonies was extracted using the NucleoMag® Tissue kit on a KingFisher 
platform (Thermo Fisher Scientific, Massachusetts, USA) and diluted 
100-fold with nuclease free water according to the manufacturer’s in
structions. The 16S fragment covering variable regions V5-V8 were 
amplified using primers 799F and 1391R as recommended in Beckers 
et al. (2016). PCR products were purified using the NucleoMag® 96 PCR 
cleanup kit. PCR products were sequenced (Sanger sequencing, GATC 
Biotech) using primer 799F. 

2.8. Sequencing data analysis 

Sequence data were processed using Geneious v. 11 (Biomatters Ltd., 
New Zealand). The sequences were searched for PCR primer sequences 
(799F and 1391R) and for low quality bases, which were excluded from 
sequence database searches. Sequence similarity searches were con
ducted against the nr/nt nucleotide database at NCBI as well as the NCBI 
RefSeq Loci 16S database. Sequences were aligned using MAFFT soft
ware (v. 7.388; Katoh and Standley, 2013). Sequences with a 98% 
cut-off similarity were clustered into operational taxonomic units 
(OTUs) and the name of the lowest common rank in the nomenclatural 
hierarchy was chosen. The OTU classification method is a commonly 
used approach to estimate microbial diversity and demonstrated to be 
ecologically consistent across habitats (Schmidt et al., 2014; Mysara 
et al., 2017). Only the non-redundant top hits were selected for taxo
nomic annotation. For this purpose, each sequence was compared with 
all other sequences and sequences sharing identity above 98% identity 
were assigned to one taxon. OTUs assignment was done using the NCBI 
database, considering that eleven species of the genus Burkholderia have 

Table 1 
Basic characteristics and description of the four forest soils and their parent materials at Bad Brückenau (BBR), Mitterfels (MIT), Vessertal (VES) and Conventwald 
(CON).  

Site Soil depth 
[cm] 

C [g 
kg− 1] 

N [g 
kg− 1] 

P [g 
kg− 1] 

Microbial biomass 
C [mg kg− 1] 

Microbial biomass 
P [mg kg− 1] 

Specific surface area (SSA) of 
ground parent material [m2 

g− 1] 

Total P of parent 
material [g kg− 1] 

Total Si of parent 
material [g kg− 1] 

BBR 30–35 42.0 3.2 2.5 170.4 2.0 16.7 3.05 190            

65–70 26.2 1.9 2.0 112.6 1.0 28.1 3.1 183           

MIT 30–35 31.4 1.7 0.9 215.7 3.9 3.7 2.1 311            

65–70 26.8 1.4 0.9 140.8 3.3 5.7 1.8 278           

VES 30–35 37.7 2.3 1.0 110.6 6.1 10.9 2.6 267            

65–70 12.8 0.8 0.9 102.9 7.8 10.9 2.7 263           

CON 30–35 45.7 2.0 0.6 183.9 0.8 3.5 2.05 348            

65–70 7.7 0.6 0.4 126.6 1.2 6.1 0.6 274 

Adapted from Lang et al., 2017.) 
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been transferred to the genus Paraburkholderia and three species of the 
genera Burkholderia have been transferred to the new genus Caballeronia 
gen. nov. which represents a distinctive clade in phylogenetic trees 
(Dobritsa and Samadpour, 2016). Major phylogenetic changes were 
detected at the order and genus levels. Based on their partial 16S rRNA 
gene sequence, a phylogenetic tree for each of the two most abundant 
genera (Burkholderia sp. and Peanibacillus sp.) was constructed, using 
Ralstonia pickettii (AY741342) and Brevibacillus brevis (AB271756) as 
outgroups, respectively. Phylogenetic trees were reconstructed and 
edited in MEGAX (v. 10.1.5) based on the neighbor-joining method with 
1000 bootstrap replicates. The maximum composite likelihood method 
was the chosen distance method. The partial 16S rRNA gene sequences 
were deposited in GenBank (https://www.ncbi.nlm.nih.gov/genbank/) 
under the accession numbers MN727301-MN727311 and 
MN728272-MN728288. 

2.9. Soil microbial biomass 

Soil microbial biomass C (MBC) and P (MBP) were determined using 
the chloroform fumigation-extraction method (Brookes et al., 1982; 
Vance et al., 1987). Briefly, 10 g of fresh soil were split into two equal 
parts, of which 5 g were fumigated at room temperature for 24 h with 
ethanol-free CHCl3. Organic C was extracted from the fumigated and 
non-fumigated samples using 0.5 M K2SO4 with a soil: solution ratio of 
1:5 and measured by a TOC/TN analyzer (Multi N/C 2100S, Analytik 
Jena, Germany). Dissolved P was extracted from the fumigated and 
non-fumigated samples using a solution of 0.025 M HCl and 0.03 M 
NH4F (Bray-1 extractant) with a 1:10 soil to solution ratio (Bray and 
Kurtz, 1945) and determined using the molybdenum-blue assay (Mur
phy and Riley, 1962). Microbial biomass C and P were calculated as the 
difference between extractable C and P in the fumigated and 
non-fumigated soil samples using a conversion factor of 2.22 for MBC 
(Joergensen et al., 1996) and 2.5 for MBP (Brookes et al., 1982; Jen

kinson et al., 2004). 

2.10. Organic acids 

The amounts of four organic acids (citric, oxalic, 2-keto-D-gluconic 
and D-gluconic) were determined in filtered samples from the soil ex
tracts on day 7 and 14 after the beginning of the experiment. All filtrates 
were examined by means of high-performance liquid chromatography 
(Agilent series 1100, USA) coupled to a diode array HPLC detector 
(DAD) and a mass spectrometry (Agilent 6130 single quadrupole). 
Separation of the organic acids was carried out on a hydro-reversed- 
phase column (Phenomenex Synergi 4 u Hydro-RP 80A) combined 
with a guard column. Organic acids were identified based on their 
retention times and selected ions in negative ionization mode. Quanti
fication was performed according to the external standard calibration 
method. HPLC-MS data were processed using the Agilent’s Chemstation 
software package (v. 3.3.1). The amounts of each organic acid were 
calculated by multiplying the corresponding concentration (mg l− 1) in 
the soil extracts by the volume (l) present in the flask at the time of 
sampling and subsequently expressed in μmol. In addition, the concen
tration of the carboxylic groups was calculated from the concentrations 
of organic acids and the respective number of carboxyl groups they 
contain. 

2.11. Calculation and statistics 

The amounts of Si and P in the incubated soil extracts were calcu
lated by multiplying the element concentration (nmol l− 1) by the vol
ume (l) of the soil extract at the time of sampling. The total Si 
mobilization rates were computed according to the following equation 
(Eq. (1)): 

Total Si mobilization rate
(
nmol d− 1)=

(
Si[nmol]day14 − Si[nmol]day0

)

14 [days]
(1)  

Where Si[nmol] represents the amount of Si at the end (day 14) and the 
beginning (day 0) of the experiment. Additionally, to determine the 
chemical effects of the soil extracts on the amounts of Si released from 
the silicate parent material, the amounts of Si released in the sterile 
control were also calculated. The net Si solubilization rate (nmol d− 1, 
Eq. (2)) from each silicate parent material was estimated as the differ
ence between the total Si mobilization rate and the release rate deter
mined in the sterile experiment: 

Net Si solubilization rate
(
nmol d− 1)= total Si mobilization rate

(
nmol d− 1)

− Si release rate in sterile control
(
nmol d− 1)

(2) 

We consider this a net rate since we cannot exclude microbial 
immobilization (i.e., uptake) of Si. The net Si solubilization rates were 
divided by the corresponding amount of silicate parent material utilized 
as well as by the respective specific surface area (m2 g− 1) of the ground 
parent material to result in a final rate expressed as nmol m− 2 d− 1. Also, 
we estimated the solubilization of P from silicate parent materials based 
on the Si and P content of the parent materials and the Si solubilization 
rates using the equation below (Eq. (3)):   

We consider this a gross rate because microbial immobilization (i.e., 
uptake) of P is not taken into account here and the net P solubilization is 
likely smaller due to microbial P immobilization. The gross P solubili
zation rates were divided by the corresponding amount of silicate parent 
material utilized as well as by the respective surface area (m2 g− 1) to 
result in a final rate expressed as nmol m− 2 d− 1. To check if variables 
were normally distributed, the Shapiro-Wilk test was performed (P >
0.05). Further, all data sets were tested for equality of variance using 
Levene’s test. When variances were not significantly different between 
groups, analysis of variance (one-way ANOVA) was applied to test for 
differences between soil chemical properties, net Si solubilization rates 
and gross P solubilization rates. Differences in net Si solubilization rates 
and the relative abundance of PSB between the two soil depths of each 
soil were analysed by t-test followed by post-hoc Tukey HDS (P < 0.05). 
The non-parametric Kruskal-Wallis H test was used with a pairwise 
Wilcox test when variances were unequal. Relations between net Si 
solubilization rates and chemical properties of the soil extracts were 
assessed by Spearman rank correlations. Additionally, linear regressions 
for net Si solubilization and the variables pH and carboxyl groups 
(-COOH) determined in the soil extracts were conducted. All statistical 
analysis was performed using SigmaPlot (version 13.0, Systat Software, 
San Jose, California, USA). 

Gross P solubilization rate
(
nmol d− 1)=

(
Net Si solubilization rate

[
nmol d− 1

]
*P content [g kg− 1]

)

Si content [g kg− 1]
(3)   
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3. Results 

3.1. Net Si solubilization from silicate parent material 

The concentrations of dissolved Si ranged between 2.9 and 13.0 mg 
l− 1 after two weeks of incubation of the soil with weathered parent 
materials and glucose. The concentrations of dissolved Si from weath
ered parent materials and autoclaved soil solution (sterile control) were 
equal on average to 0.4 mg l− 1. The Si concentrations were up to 32 
times higher in the biotic experiment compared to the abiotic experi
ment, indicating that microbes strongly enhance silicate dissolution. 
Rates of Si solubilization normalized to the surface area of silicates 
differed significantly among the four soils and the two soil depth in
crements (Fig. 1). The net Si solubilization rate from the soil extracts 
incubated with the respective parent material and glucose ranged be
tween 5.0 (±1.8) and 91.0 (±2.4) nmol m− 2 d− 1. At 30–35 cm depth, 
BBR (basalt) had the highest net Si solubilization rate in comparison to 
the other three sites, whereas MIT (paragneiss) had the lowest (P <
0.05). At 65–70 cm depth, the net Si solubilization rate in MIT was 
significantly higher than in the other soils (+70%; P < 0.01). We found 
that the Si concentrations increased during the first week of incubation, 
while the pH showed a twofold trend: it increased in the first 3 days and 
then decreased from day 4 to day 6 (Fig. S1). After day 7 no substantial 
changes in pH were recorded at all sites. At site MIT, the soil extracts 
from 65 to 70 cm depths showed the highest pH decline compared to the 
extracts from the other soils (Figs. S1–b). Further, linear regression 
analysis pointed out that the Si content of the parent material at 30–35 
cm depth was negatively related with the Si solubilization rate (R2 =

0.63, P < 0.001), whereas at 65–70 cm depth, a positive relationship was 
observed (R2 = 0.93, P < 0.001). 

3.2. P solubilization from silicate parent material 

We did not measure net P solubilization but rather P immobilization, 
as indicated by a steady decline in the concentration of phosphate over 
the two-week period (data not shown). The likely reason for this is that 
microorganisms took up more P than they released from the parent 
material. However, we determined the gross P solubilization rates from 
the P and Si content of the parent materials and the Si solubilization rate 
based on stoichiometric considerations. This approach allowed us to 
estimate the gross release of P. Gross P solubilization ranged from 0.1 

nmol m− 2 d− 1 (±0.00) to 1.1 nmol m− 2 d− 1 (±0.1). Overall, the gross P 
solubilization rates were significantly higher at the P-rich site (BBR) 
compared to the P-poor site (CON) in the upper soil depth (Table 2). 

3.3. Organic acids in soil extracts 

We found that the amounts of organic acids from BBR and VES were 
significantly larger than those measured at sites MIT and CON (P <
0.05). Further, our data show that monocarboxylic acids (D-gluconic 
and 2-keto-D-gluconic acid) represented together up to 88% of all 
detected acids. At site BBR, 2-keto-D-gluconic acid was found in higher 
amounts, whereas in the other three soil extracts D-gluconic acid was 
predominant (Fig. 2). We found that the sum of the four organic acids 
decreased significantly from day 7 to day 14 in all soil extracts (Fig. 2, P 

Fig. 1. Net Si solubilization rates for silicate parent 
materials incubated with glucose in aqueous extracts 
obtained from the four forest soils. The rates were 
calculated per specific surface area and over 14 days 
of incubation. The samples were taken at two soil 
depths (30–35 and 65–70 cm). Bars show means, and 
error bars indicate standard deviations (n = 3). 
Different letters indicate significant differences tested 
separately for the two soil depths by one-way ANOVA 
followed by post-hoc Tukey HDS (P < 0.05). Stars 
indicate significant differences between the two 
depths of each soil, tested by t-test followed by post- 
hoc Tukey HDS (P < 0.05).   

Table 2 
P solubilization from four weathered parent materials at two different soil 
depths (30–35 and 60–65 cm). The stoichiometrically-derived gross P solubili
zation rates were determined according to the measured Si and P content of the 
respective weathered parent material and the amount of Si that was released 
over the course of 14 days. Mean values and standard deviations (±SD, in pa
rentheses) are shown (n = 3). Uppercase and lowercase letters show significant 
differences tested separately for the two soil depths by one-way ANOVA, fol
lowed by post-hoc Tukey HDS (P < 0.05).  

Site Parent material Soil depth 
[cm] 

Gross P solubilization rate [nmol m− 2 

d− 1]a     

BBR Basalt 30–35 1.1 (±0.1)a       

65–70 0.1 (±0.03)B     

MIT Paragneiss 30–35 0.1 (±0.01)d       

65–70 0.5 (±0.01)A     

VES Trachyandesite 30–35 0.3 (±0.02)b       

65–70 0.3 (±0.07)A     

CON Paragneiss 30–35 0.1 (±0.01)c       

65–70 0.1 (±0.00)B  

a Computed per g of parent material. 
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< 0.05), except at site CON. Citric acid was detected only during the first 
week of incubation in MIT and CON, but not thereafter (Fig. 2-a). The 
amounts of carboxyl groups in the soil extracts were not significantly 
correlated with pH (P > 0.05). Also, we found that the amounts of 
carboxyl groups measured in the soil extracts at 30–35 cm depth 
explained 51% of the variation in the net Si solubilization, while at 
65–70 cm depth they explained only 14% of the overall variability 
(Table 3). 

3.4. Relative abundance and community composition of PSB 

The relative abundance of PSB ranged from 2.0% to 22.1% of all 
bacterial colonies from all soils and soil depth increments (Fig. 3). 
Overall, we found that the relative abundance of PSB was significantly 
higher in CON (at both soil depths) than in any other soil (P < 0.001). At 
65–70 cm depth, the abundance of PSB was significantly larger at site 
BBR than at MIT and VES. In total, 333 PSB colonies were identified by 
16S rRNA gene sequence analysis. The sequenced PSB belonged to five 
phyla (Proteobacteria, Cyanobacteria, Firmicutes, Actinobacteria, 
Deinococcus–Thermus) and seven different classes (α-Proteobacteria, 

Fig. 2. Amounts of citric (a), oxalic (b), 2-keto-D-gluconic (c), and D-gluconic (d) acids measured at day 7 and 14 of the incubation experiment conducted with soil 
extracts from two different soil depths (30–35 and 65–70 cm). Bars represent means and error bars indicate standard deviations (n = 3). Different lowercase and 
uppercase letters show significant differences between soils and soil depths tested separately for day 7 and day 14 by one-way ANOVA followed by post-hoc Tukey 
HSD (P < 0.05). Stars indicate significant differences between two depths of one soil, tested by t-test followed by post-hoc Tukey HDS (P < 0.05). 

Table 3 
Relationships between the net Si solubilization rates (Sisol) and the changes in pH (ΔpH) and the mean concentrations of carboxyl groups (-COOH) determined in the 
soil extracts over 14 days and calculated separately for the two soil depths (30–35 cm and 65–70 cm).  

Mineral soil depth [cm] Linear equation Coefficient of determination (R2) and p-value 

30–35 Sisol = − 3.0792x + (16.209 * ΔpH) 0.43, P < 0.05    

30–35 Sisol = 0.5979x - (3.1603 * COOH) 0.51, P < 0.05    

65–70 Sisol = − 5.7113x + (34.086 * ΔpH) 0.73, P < 0.05    

65–70 Sisol = 0.3093x + (4.7554 * COOH) 0.14, P < 0.05  
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β-Proteobacteria, γ-Proteobacteria, Cyanophyceae, Bacilli, Actino
bacteria, Deinococci). At 30–35 cm depth, Bacillales dominated at the 
site BBR and Pseudomonadales at site CON. Burkholderiales was the 
dominant order in MIT and VES (Fig. 4-a). At 65–70 cm depth, Bur
kholderiales were found to be the dominant order at all sites (Fig. 4-b). 
For comparative purposes with other studies, the relative abundance of 

different OTUs of PSB is shown also at the genus level in the supple
mentary material (Fig. S2). We found that Caballeronia sp., Collimonas 
sp., Paraburkholderia sp. and Paenibacillus sp. were present in all soils, 
while Herbaspirillum sp. and Variovorax sp. were found in all soils except 
MIT and CON, respectively. Among all sequenced PSB colonies, 51 
different OTUs were obtained as defined by clustering of the 16S rRNA 

Fig. 3. Relative abundance of P-solubilizing bacteria 
(PSB) in the four forest soils at two different depths 
(30–35 and 65–70 cm). Bars represent means and 
error bars indicate standard deviations (n = 3). 
Different uppercase and lowercase letters indicate 
significant differences between sites tested separately 
for each soil depth using one-way ANOVA followed by 
post-hoc Tukey HSD (p < 0.05). Stars indicate sig
nificant differences between the two depths of each 
soil, tested by t-test followed by post-hoc Tukey HDS 
(P < 0.05).   

Fig. 4. Relative abundance of different OTUs of P-solubilizing bacteria (PSB) from four forest soils in 30–35 cm (a) and 60–65 cm (b) soil depth. Isolates identified as 
PSB were grouped into operational taxonomic units (OTU) at 98% cut-off similarity. Taxonomic classification of isolates is shown at the order level. 
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gene similarity. Of these, Paenibacillus (17 OTUs), Burkholderia (11 
OTUs), and Pseudomonas (6 OTUs) were the most abundant across all 
sites. Since Peanibacillus sp. and Burkholderia sp. made up together at 
least 70% of all P-solubilizing OTUs across all sites, we further explored 
the species composition for the two genera. A significant genetic di
versity existed within the same OTU species from the four tested soils. 
Overall, at site BBR we found the highest genetic diversity, while the 
lowest was found at site VES. The mineral composition of the bedrock 
had a strong effect on the distribution of Burkholderia species, but not on 
the distribution of Paenibacillus species (Figs. S3–S4). 

4. Discussion 

4.1. Factors controlling the weathering of silicate parent materials 

Here we found that the Si solubilization rates were 7–32 times higher 
in the biotic experiment compared to the abiotic experiment (sterile 
conditions) indicating that microbes exert a strong biological control 
over the dissolution of silicates, especially when provided with an easily 
accessible C source. High Si concentrations in the solution went along 
with high P concentrations. The reason for this can be that Si and P 
compete for binding sites on mineral surfaces, as suggested by other 
authors who showed that with high concentrations of Si more P was 
dissolved in peat and permafrost soils (Schaller et al., 2019; Hömberg 
et al., 2020). We found a significant positive relationship between the 
carboxyl groups of the organic acids and the net Si solubilization rates 
(Table 3), in accordance with Hömberg et al. (2020). Organic acids 
accounted for 51% of the total variability in the net Si solubilization 
rates in the extracts from the upper soil depth. These findings suggest 
that organic acids effectively complexed metal cations present in the 
crystal lattice (i.e. Al, Fe, Ca, Mg) or served as silicon substituents 
(ligand exchange), thereby promoting the solubilization reaction (Liu 
et al., 2006; Violante et al., 2010; Smits and Wallander, 2017; Lee et al., 
2019). Our results are in agreement with several previous studies 
reporting that the formation of stable complexes of metal ions and 
organic ligands results in an increase in dissolved Si in the soil solution 
(Welch and Ullman, 1993; Vandevivere et al., 1994; Blume et al., 2016). 
Dissolution rates depend on the amounts of functional groups (-COOH) 
that can react with mineral surfaces as well as on the strength of the 
bond that is established between the ligand (mono-, di- and 
tri-carboxylic acids) and the metal ion. The net Si solubilization rates 
from basalt (BBR) were up to three times higher than the net Si solu
bilization rates from paragneiss and andesite in the soil extracts from the 
upper soil depth (Fig. 1). As shown in Table S1, we found that the 
amounts of carboxyl groups at site BBR were 1.6–3.7 times higher than 
the amounts of carboxyl groups in the other soil extracts after seven days 
of incubation. Oxalic and 2-keto-D-gluconic acids made up together 84% 
of the total carboxyl groups measured in the soil extract from BBR 
(Fig. 2). Therefore, the higher dissolution of basalt compared to the 
other parent materials likely resulted from the higher amounts of 
carboxyl functional groups released by microbes in the soil BBR, espe
cially mono- and di-carboxylic acids (Goldstein, 1995). 

In the soil extracts from the lower soil depth, organic acids explained 
only 14% of the variation in the net Si solubilization rates, whereas the 
change in pH accounted for 73% of the total variability. Thus, in the 
lower soil depth, complexation by organic acids played only a marginal 
role for the Si solubilization rates possibly as a result of a lower soil 
microbial activity, as also described previously (Vandevivere et al., 
1994; Sverdrup, 2009). The negative relationship between the decrease 
in pH (ΔpH) and the net Si solubilization rates suggests that the release 
of Si from silicates resulted from acidification of the soil extract. Our 
results agree with Drever (1994) who found that silicate dissolution rate 

depends on pH: below pH 4–5, the rate increases with decreasing pH, in 
the circumneutral region the rate is pH-independent, and at pH values 
above 8 the rate increases with increasing pH. The decrease in pH (ΔpH) 
was particularly pronounced in the soil extracts from MIT and CON 
(paragneiss) where the pH significantly decreased during the incubation 
in comparison to the pH of the soil extracts from BBR (basalt) and VES 
(andesite). With decreasing pH of the soil extract there was an increase 
in the number of protons capable to binding to oxygen atoms at the 
mineral surfaces. Protonation induced increase in reactivity of surface 
sites weakens the metal cations-oxygen bonds, thus favoring dissolution 
of the mineral (Hinsinger, 2001; Brown et al., 2008). Taken together our 
findings confirm the first hypothesis that the dissolution of silicates in 
these acid soil extracts is primarily controlled by a decrease in pH and 
the release of organic acids by microbes (Harley and Gilkes, 2000; Cama 
and Ganor, 2006). In addition, this study shows how the general 
mechanisms of silicates dissolution are impacted by the different organic 
acids released by microbes from different soils and soil depths. 

4.2. Organic acids 

We found that the amounts of organic acids released by microbial 
communities in our study were fairly low compared to other solubili
zation experiments (Frey et al., 2010; Li et al., 2016) which we relate to 
the initial acidic conditions of our soil extracts. Marra et al. (2015) 
showed that the pH of the soil solution significantly affects the growth as 
well as the biochemical processes that microbes perform and, therefore, 
the total amounts of acids they produce. Marra et al. (2015) showed that 
at a relatively high pH (~pH 7.0), the production of organic acids was up 
to 25% greater than at pH 5.0, which was the mean pH measured in our 
experiments. The organic acid concentrations decreased over time 
indicating that microbes may have quickly faced conditions of low C 
availability. In addition, the increase in pH in the soil extracts during the 
first 3 days of incubation suggests the metabolization (decomposition) of 
organic acids by organisms at the early stages of the experiment (Jones 
et al., 2003; Sauer et al., 2008). Most of the pH variation in the soil 
extracts took place in the first days of incubation (Fig. S1). Therefore, it 
is plausible that the production of organic acids must have been high 
during this phase, in particular after glucose addition, to then decline 
thereafter. Therefore, the relatively low detection of organic acids at day 
seven of the incubation might be the result of previous intense microbial 
utilization of organic acids, similarly to what was documented by 
Menezes-Blackburn et al. (2016) who found that nearly all organic acids 
were degraded by soil microbes within 24 h of incubation. 

Considering the pKa values of the four tested organic acids, their total 
amounts as well as the pH values of the solutions, only 8.9%–10.1% of 
protons released during the incubations were likely derived from 
organic acids after 7 days of incubation, when the peak of solubilization 
occurred. Therefore, the production of organic acids by microbes did not 
contribute significantly to the acidification of the soil extracts from day 
7 to day 14. We assume that the acidification of the soil extracts was 
mainly due to carbonic acid production based on CO2 respired by the 
microorganisms (Cornelis and Delvaux, 2016; Kanakiya et al., 2017). 

4.3. The role of parent material in P nutrition strategies 

Our results suggest that the gross P solubilization rates from parent 
materials in the upper soil depth were ~11 times higher at the P-rich site 
(BBR) compared to the P-poor site (CON) (Table 2). This finding sup
ports the idea that the proportion of plant-available P derived from the 
bedrock, as opposed to that derived from the soil organic matter, de
creases along the geosequence of the four soils from BBR to CON (Lang 
et al., 2017). As hypothesized by Lang et al. (2016), plant and microbes 
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at sites rich in mineral-bound P introduce P from primary minerals into 
the P cycle (acquiring systems). In contrast, ecosystems poor in 
mineral-bound P recycle P between soils and plants more efficiently 
(recycling systems). Overall, the gross P solubilization rates calculated 
for basalt (BBR) and andesite (VES) point out at a higher release of P 
from these weathered rocks than for paragneiss (MIT, CON) (Table 2). 
Similarly, some authors indicated that basalts have a larger weathering 
rate than other major continental silicate rocks (Dessert et al., 2003; 
Wolff-Boenisch et al., 2006). Taken together, our findings partially 
confirm the second hypothesis that in the upper soil depth, the rates of 
microbial gross P solubilization increased with decreasing crystallinity 
of the weathered bedrock (paragneiss < andesite < basalt). 

4.4. Abundance and activity of PSB 

We found that the abundance of PSB in the four mineral soils ranged 
from 2% at VES to 22.1% at CON (Fig. 3) which is in accordance with 
previous studies reporting that the relative abundance of PSB ranges 
from 0.5% to 53% in soils (Kucey, 1983; Chen et al., 2006; Browne et al., 
2009; Azziz et al., 2012; Widdig et al., 2019). The higher relative 
abundance of PSB in P-poor environments such as CON might be the 
result of a selective pressure which favors organisms that actively 
mobilize inorganic P when P is scarce. The lower occurrence of PSB in 
nutrient-rich soils might be related to a lower microbial investment in 
the processes of P solubilization when nutrients are easily available. This 
finding is in accordance with other authors who found that the abun
dance of PSB is higher in P-poor environments than in P-rich environ
ments (Mander et al., 2012; Nicolitch et al., 2016; Widdig et al., 2019; 
Spohn et al., 2020). The higher abundance of PSB at the P-poor site 
(CON) fits well with the high P release rates from hydroxyapatite at this 
site (Pastore et al., 2020), indicating that the abundance of PSB is related 
to the capacity of the microbial community to release P from apatite. On 
the contrary, despite the higher abundance of PSB at the P-poor site 
(CON) the gross P solubilization rates from the parent material at this 
site (paragneiss) were relatively low. This apparent incongruence was 
likely due to the fact that all structurally complex silicates undergo a 
stepwise weathering in the natural environment and that apatites are 
shielded by other minerals from biochemical weathering (White, 2003). 

4.5. Diversity of PSB communities 

We found that Burkholderiales and Bacillales together were by far the 
two most abundant bacterial orders in all soils and depths (Fig. 4). Re
sults from the BLASTn analysis showed a high intraspecific diversity 
within Burkholderiales and Bacillales, especially at sites BBR and CON. 
Burkholderiales and Bacillales are adapted to live in C and N-rich envi
ronments (Fierer et al., 2007; Mandic-Mulec et al., 2015). We observed 
that the distribution of Burkholderiales seems highly influenced by the 
mineral chemistry of the rocks, with some members enriched in the 
presence of high-weatherable minerals and others enriched in the 
presence of less-weatherable minerals. Bacillales appeared less affected 
by the mineral composition of the rocks, and thus showed no significant 
variations between the different parent materials (Fig. S4). This finding 
fits with the recent view that members within the same bacterial order 
might be adapted to different functional strategies (Ho et al., 2017). 
Notably, we found the genus Arthrobacter only at sites BBR and MIT. This 
finding is of particular interest since the studied soils are characterized 
by the prevalence of P bound to Fe oxyhydroxides (Prietzel et al., 2016) 
and members of the genus Arthrobacter are relatively effective at 
mobilizing iron (Nicolitch et al., 2019). Our data show that the genus 
Pseudomonas, which is reputed to have superior P solubilization ability 
among the PSB (Gulati et al., 2008; Browne et al., 2009), was only found 
at the P-poor site CON, suggesting the existence of a selective advantage 
for bacteria with this functional trait under P-poor conditions. As 
detailed in Fig. S2, Pseudomonas predominated in the upper soil depth. 
Some authors (Sutra et al., 2000; Qessaoui et al., 2019) showed that 

members of the genus Pseudomonas represent typically root-associated 
microorganisms and might have positive effects on plant yields. 

Soil PSB are known to also solubilize Si (Kang et al., 2017; Adhikari 
et al., 2020). We found that the highest release of Si occurred at site BBR 
and coincided with a significant prevalence of Bacillales which repre
sented alone 41% of all PSB OTUs in this soil. Olsson-Francis et al. 
(2015) found that Bacillales solubilized up to 32.8% more Si from basalt 
than other bacterial groups. Surprisingly, in the lower soil depth, the 
highest Si solubilization rates were measured at site MIT where Bur
kholderiales represented ~80% of all PSB OTUs. Previous studies showed 
that the members of the genus Burkholderia exhibit stronger mineral 
weathering effectiveness compared to members of the genera Bacillus 
and Paenibacillus (Collignon et al., 2011; Lepleux et al., 2012; Wang 
et al., 2014; Nicolitch et al., 2019). Therefore, the high release of Si from 
paragneiss at site MIT might be due to the higher occurrence of Bur
kholderia alpina that likely acidified the soil extract. Our findings are 
partially in accordance with Bist et al. (2020) who showed that Bacillus 
and Pseudomonas in addition to Sphingobacterium have the capacity to 
strongly solubilize Si. 

5. Conclusions 

Taken together, we found that Si solubilization was increased by 
microbial activity. Si solubilization was negatively related to the 
observed decrease in pH (proton-promoted dissolution) and positively 
related to organic acids released by microbes (ligand-promoted disso
lution). The four measured organic acids did not contribute significantly 
to the acidification of the soil extracts. Thus, the acidification was likely 
due to carbonic acid production based on CO2 respired by microorgan
isms. Stoichiometrically-derived gross P solubilization rates in the upper 
soil depth were much higher at the P-rich site (BBR) compared to the P- 
poor site (CON). However, at site CON we found a significantly higher 
abundance of PSB compared to other soils. This finding might be related 
to a higher microbial investment in the processes of P solubilization in 
the P-poor soil, suggesting that P availability is a selective force driving 
the occurrence of bacteria with this functional trait. Overall, Bur
kholderiales and Bacillales were the two most widely occurring PSB OTUs 
across the four mineral soils and the genus Pseudomonas, reputed to have 
superior P solubilization ability among the PSB, was only found at the P- 
poor site. In conclusion, this study shows that the activity and the 
taxonomic composition of PSB varied significantly across the four forest 
soils and underpinned the observed differences in Si solubilization rates. 
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