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Abstract 
Forest information for management planning is today gathered through a 
combination of field inventories and remote sensing, but the available flow of remote 
sensing data over time is not yet utilized for continuously improving predictions of 
forest variables. In the thesis, the utility of data assimilation, in particular the 
Extended Kalman filter, for forest variable prediction is investigated. This is an 
iterative algorithm, where data are repeatedly merged and forecasted.  

The test site was a forest estate in southern Sweden (Lat. 58°N Long. 13°E). Data 
assimilation of remote sensing predictions of canopy surface models from digital 
aerial photogrammetry in paper I and predictions based on interferometric synthetic 
aperture radar in paper II provided a marginally improved accuracy. This gain was, 
however, far from the theoretical potential of data assimilation. The reason for this 
was suggested to be correlation of errors of subsequent predictions across time, i.e. 
residuals from different predictions over a certain forest area had a similar size and 
sign. In paper III these error correlations were quantified, and an example of the 
importance of considering them was given. In paper IV, it was shown that classical 
calibration could be applied to counteract regression toward the mean, and thus 
reduce the error correlations. In paper V, it was shown that data assimilation applied 
to a time series of data from various remote sensing sensors could be used to, over 
time, improve initial predictions based on aerial laser scanning data. It was also 
shown how the combination of classical calibration and a suggested modified 
version of the extended Kalman filter, that accounted for error correlations, 
contributed to these promising results. 

Keywords: Forest inventory, remote sensing, growth, data assimilation, prediction, 
extended Kalman filter. 
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Sammanfattning  
Information för skogligplanering samlas idag in genom en kombination av 
fältinventering och fjärranalys, men det finns ett flöde av fjärranalysdata som inte 
används för att förbättra skattningen av skogstillståndet. I avhandlingen undersöks 
dataassimilering, särskilt metoden ”Extended Kalman Filter”, för skattning av 
skogliga variabler. Detta är en iterativ algoritm där data viktas samman och 
framskrivs upprepade gånger. 

Studierna utfördes på en större skogsfastighet i Västergötland (Lat. 58 ° N Long. 
13 ° E). Dataassimilering av serier av fjärranalysskattningar från tredimensionella 
krontaksmodeller från flygburen digitalfotogrammetri i studie I och radar 
interferometri (InSAR) i studie II gav en något förbättrad noggrannhet. Vinsten var 
dock långt ifrån den teoretiska potentialen för dataasssimilering. Anledningen antogs 
vara att felen hos följande skattningar korrelerar, dvs. avvikelser från sanna skogliga 
variabeln över ett visst skogsområde är en över eller underskattning av liknande 
storlek som följande skattningar. Felkorrelationerna kvantifierades i studie III och 
ett exempel gavs på hur viktigt det är att beakta dem. I studie IV visades hur klassisk 
kalibrering kunde tillämpas för att motverka regressionsanalysens dragning mot 
medelvärdet, och därmed minska felkorrelationerna. I studie V visades att 
dataassimilering av en tidsserie med data från olika fjärranalyssensorer kunde 
användas för att över tid förbättra skattningar där start tidpunkten var en skattning 
från flygburenlaserskanning. Det visades också hur kombinationen av klassisk 
kalibrering och en föreslagen modifierad version av metoden ”Extended Kalman 
Filter” som tar hänsyn till felkorrelationer bidrog till lovande resultat. 

Nyckelord: Skogsinventering, fjärranalys, tillväxt, dataassimilering, skattning, 
extended Kalman filtrering 

Författarens adress: Nils Lindgren, Sveriges Lantbruksuniversitet, Institutionen för 
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Forest owners require knowledge about the state of their forests for 
management planning, for ascertaining that governmental regulations are 
followed, and sometimes also for environmental certification purposes, e.g. 
according to the Forest Stewardship Council (FSC) practices (Svenska FSC 
2020). Production of timber and pulpwood is generally the main goal of 
forestry in the Nordic countries, and thus economic considerations are 
important for management decisions. A typical management cycle in 
Swedish forestry starts with plantation of coniferous tree species. Norway 
spruce (Picea abies) and Scots pine (Pinus sylvestris) sum up to 80% of the 
growing stock volume. Of the deciduous species birch (Betula spp.) is most 
common. Pre-commercial thinning with brush saws follows upon planting. 
The established forest stand is often thinned at least once, and, lastly, the 
stand is finally felled in an operation where almost all trees are removed and 
the cycle starts again. Thus, even-aged forestry is typically practiced, 
although uneven-aged forestry is attracting increasing interest. 

Wall-to-wall forest mapping has traditionally been carried out through 
delineation of the forest into compartments, which normally contain one 
stand each. This step has been guided by visual interpretation of air photos. 
Forest data for the compartments are then assessed using field surveys, with 
quick manual measurements at subjectively selected locations. Forest data 
have also been captured by interpretation and measurements of stereo air 
photos in photogrammetric work stations (Åge 1985; Ståhl 1992). To support 
forest owners in their decision making, several computer programs, e.g. the 
Heureka system developed at the Swedish University of Agricultural 
Sciences (SLU) (Wikström et al. 2011), are available. These systems require 
a starting state of the forest stands across the holding. For large holdings, 

1. Introduction 
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computer aided planning tools are sometimes based on a sample of 
objectively surveyed stands. 

Typical practices have been to make a new stand delineation and 
assessment of forest characteristics in the stands every 10-30 years. During 
such intervals, a significant amount of growth and mortality will occur, and 
some stands will be thinned or final felled before the new inventory cycle 
starts. At a national level about 1% of the forest area is final felled and about 
2% is thinned yearly (Nilsson et al. 2015). Traditionally, forest managers 
have handled growth and other changes by updating the stand registers using 
various models. Growth models are used to account for the growth, based on 
Site Index (SI) and other input variables, as well as any registered 
management actions during the update period (Wikström et al. 2011). If data 
would be acquired more frequently better management decisions could be 
made, but this must be balanced with the cost of acquiring data (Ståhl et al. 
1994; Holopainen and Talvitie 2006; Kangas et al. 2018b). In practical 
forestry, old data have usually been discarded once new data are acquired, 
and updating relies mainly on growth forecast models. Methods that could 
utilize new data in combination with the forecasted existing data would 
contribute to increased accuracy and cost efficiency of forest inventories.  

1.1 Remote sensing data commonly available for 
data assimilation 

An increasing amount of remote sensing datasets are currently being 
supplied, from several sensors that provide data useful for prediction of 
variables of interest to forestry, such as Lorey’s mean height (HL), basal area 
(BA) and volume. Airborne Laser Scanning (ALS) has led to a breakthrough 
in data acquisition for many of the variables needed for forest management 
planning (Næsset et al. 2004). However, ALS data are typically made 
available only at long intervals because of the acquisition costs. In Sweden, 
new ALS data from Lantmäteriet (the Swedish National Land Survey) are 
currently expected every seven years (Lantmäteriet 2019). Other kinds of 
remote sensing data are made available more frequently, but they are not as 
good as ALS data for predicting forest stand characteristics. The remote 
sensing sensors used in this thesis were ALS, Digital Photogrammetry (DP) 
from aerial photographs, Interferometric Synthetic Aperture Radar (InSAR) 
from the TanDEM-X satellite constellation, and Optical satellite data (OS). 
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ALS provides measurements related to canopy height and stand density 
(e.g. Nilsson et al. 2017). However, tree species composition information is 
difficult to obtain through the common Area-Based Approach (ABA) 
(Næsset 2002) with the ALS-scanners currently in operation. Studies show 
that predictions of deciduous dominated stands in a mixed 
coniferous/deciduous forest landscape tend to be biased if scanning is made 
during seasons with leaf-on conditions (Naesset 2005; Bohlin et al. 2017; 
Nilsson et al. 2017). However, if the point density of the ALS data is high, 
crown shapes can give information about tree species (Holmgren and 
Persson 2004), but 1-2 returns/m2, used in the current nationwide ALS 
campaign in Sweden, is too low for single tree detection (Kaartinen et al. 
2012). 

Acquisition of aerial photos has a long history in many countries, 
including Sweden, and manual interpretation of orthophotos is still a very 
important component of forest mapping. Government-sponsored programs 
make data available at relatively low cost or even freely. New images with 
16 x 16 cm pixels are acquired every second year for southern Sweden and 
the northern coastal parts of Sweden (Lantmäteriet 2019) whereas the 
remaining parts of Northern Sweden are photographed more seldom and with 
larger pixels. Digital Photogrammetric processing of images, taken with 
stereo overlap, can provide three dimensional (3D) point clouds that describe 
the upper part of the canopy (St-Onge et al. 2008; Bohlin et al. 2012). The 
ground level must be known to make predictions from DP; such information 
can be obtained from Digital Elevation Models (DEMs), which are nowadays 
very accurate through the use of laser scanning. Forest attributes can be 
predicted from DP point clouds in a similar area-based fashion as from ALS 
point clouds. For example, HL is successfully predicted, while density related 
forest variables such as BA are predicted less accurately, compared to ALS-
based predictions (Bohlin et al. 2012, 2017; Vastaranta et al. 2013; Rahlf et 
al. 2014; Yu et al. 2015; Ali-Sisto and Packalen 2017).  

Forest variables can also be predicted from Optical satellite data (OS); 
examples are the nationwide maps produced in Finland and Sweden that have 
been trained with National Forest Inventory (NFI) plot data (Reese et al. 
2003; Tomppo et al. 2008). Whereas OS data are not as good as ALS- and 
DP-data for predicting characteristics such as BA and HL, perhaps the most 
important remaining roles for OS images in forestry are assessment of tree 
species information (Reese et al. 2003) and detection of changes (Kennedy 
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et al. 2010). A plethora of OS platforms is at hand; these satellites produces 
images with pixel sizes ranging from kilometers down to sub-meter. 

InSAR is a technique to derive 3D Digital Surface Models (DSM) from 
the phase shifts in pairs of radar images. A major benefit of radar remote 
sensing techniques is their independence of cloud cover, which is a 
substantial obstacle for many of the other sensors. The InSAR data in this 
thesis were derived from the satellite constellation TanDEM-X, acquiring 
data at X-band, i.e. 3,7 cm wavelength (Moreira et al. 2004).  

Many additional sources of remote sensing data are available, but they 
did not fit into the scope of this thesis. Drones that can carry sensors (Puliti 
et al. 2015), and equipment mounted on backpacks or cellphones can 
measure trees from the ground (Liang et al. 2018). A noteworthy 
development is the use of harvester machine data to update stand registers 
after partial harvests such as thinning (Hannrup et al. 2015). Table 1 presents 
an overview of important sensors available for providing data useful for 
predicting forest characteristics. 
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Table 1. A selection of repeated sensor acquisitions readily available over Sweden. 
Lantmäteriet collects airborne laser scanning (ALS) and digital photogrammetry (DP) 
data.  

Sensor category Sensor Frequency Comment 
OS Sentinel 2 5 days The revisit time for a given point at 

northern latitudes is more frequent, 
but most images are disturbed by 
clouds. 

OS Landsat 8 16 days 

OS WorldView-2  Images can be ordered on request 
OS Planet   Images can be received several 

times per week. 
ALS ALS 7 years Revisit time for the current nation-

wide ALS program in Sweden. 
DP Aerial 

photographs 
2 years 2 years refer to southern Sweden 

and the coastal part of northern 
Sweden  

InSAR TanDEM-X 11 days TanDEM-X is not a long term 
operational program. 

Table 2 presents the typical accuracies of volume assessment reported in 
some other studies, focusing on the sensors utilized in this thesis. All the 
studies regards Nordic conditions.  
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Table 2. Reported accuracies of volume predictions in Nordic conditions, from sensors 
included in this work. Relative Root Mean Squared Errors (rRMSE) is given in percent 
of the mean value of the true volume in the validation material. 

Sensor type Reported rRMSEs Validation Reference 
OS 
 

59–69% 
33% 

Plots 
Stand 

(Reese et al. 2003) 

 
50–56% Small stands (Hyyppä et al. 2000) 

ALS 19% 
12% 
16–17% 
19-25% 
17-22% 
21-25% 
14-16% 

Plots 
Stands 
Large plots 
Plots 
Stands 
Plots 
Stands 

(Rahlf et al. 2014) 
 
(Yu et al. 2015) 

(Nilsson et al. 2017) 
 
(Persson and Fransson 
2016)* 
 

DP 31% 
18% 

29-33% 
22-23 

Plots 
Stands 
Plots 
Stands 

(Rahlf et al. 2014) 
 

(Bohlin et al. 2017) 

InSAR 42% 
18% 

22% 
26-29% 
15-17% 

Plots 
Stands 
Large plots 
Plots 
Stands 

(Rahlf et al. 2014) 
 

(Yu et al. 2015) 
(Persson and Fransson 
2016)* 

*Aboveground biomass 

1.2 Data assimilation 
There is a frequent flow of data from various remote sensing sources  
(Table 1), providing information about forests as often as several times a 
week. All predictions from remote sensing data contain noise, but if many 
measurements are combined the noise could, in theory, be reduced. 
However, since the forest state may change between remote sensing data 
acquisitions, updates to account for growth and management operations must 
also be made. Data assimilation (DA) is a group of methods to combine 
predictions across time in cases where the system evolves over time (Kalman 
1960). DA has reached extensive use in several fields, not least in 
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meteorology where the weather forecasts are improved by DA (Ghil and 
Malanotte-Rizzoli 1991). A schematic figure of the problem that DA tries to 
solve is given in Figure 1. At each time point, there are noisy data about the 
state available through measurements, and we want to use the time series of 
measurements, together with updates, in a fashion so that maximum accuracy 
is obtained for our state estimates (“results”) at each time point. The updating 
step accounts for changes in the system between the time points where 
measurements are made, so that the old data can be used in combination with 
the new data to improve the accuracy of the estimates. 

 

 
Figure 1. The problem formulation (adapted from Kangas (1991)) using a repeated 
supply of data and updates to obtain best possible results at each time point. 

When applying DA to improve forest stand databases, a forecast model could 
be used to update existing state predictions until a new remote sensing 
prediction is available. A new prediction could then be obtained using a 
combined estimate from both sources of information. The idea is that the 
merged prediction should be more accurate than each of the individual 
predictions that are combined. Reducing error by applying DA, caused by 
forecasting or in the starting forest state prediction, can bring advantages for 
forest management planning (Saad et al. 2017). 

Remote sensing-predictions have their strengths and weaknesses, and 
combining data from several sensors can bring advantages (Xu et al. 2015). 
HL correlates weakly with OS data, and thus the addition of height-related 
metrics from other sensors than OS is beneficial when predicting variables 
such as volume and biomass (Magnusson and Fransson 2005). On the other 
hand, OS metrics contain information that is lacking in other types of remote 
sensing data. In particular leaf-on ALS data can benefit from the combination 
with OS metrics (Wallerman and Holmgren 2007; Xu et al. 2015). Leaf-off 
ALS data suffer less from discrepancies in volume predictions depending on 
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deciduous or coniferous forest (Naesset 2005; Nilsson et al. 2017), but OS 
data can still improve the accuracy of volume predictions (Kukkonen et al. 
2018) and probably of other forest variables as well.  

If the properties are similar for a set of remote sensing metrics, concerning 
sensor and season, a given forest area (e.g. a sample plot) will tend to have 
errors of the same sign and magnitude. For example, two consecutive ALS 
predictions over a deciduous sample plot will probably have a positive 
prediction error in both cases; thus, the prediction errors are likely to be 
correlated.  

A large number of studies have successfully assessed changes in forested 
landscapes across time (Kennedy et al. 2010; Xu et al. 2015; Deutscher et al. 
2017; Grabska et al. 2020). Several satellite sensors, e.g. OS and some 
InSAR sensors, will provide frequent data at hand for change detection. Site 
Index and growth have successfully been predicted based on height from 
remote sensing metrics in combination with age from either long time series 
of OS data (Lefsky et al. 2002), age from stand registers (Holopainen et al. 
2010), or long time series of height data (Véga and St-Onge 2009; 
Noordermeer 2020). Update through models to account for growth and 
changes is common practice in Nordic forestry, but updating through models 
accumulates errors as time passes.  

Some earlier studies have advocated DA approaches for forest inventory, 
such as the Kalman filter for making use of old inventory data to improve 
precision in new inventories (Dixon and Howitt 1979). Kangas et al. (1991) 
proposed the use of prior information and growth updates as an estimator for 
forest inventories, with field-based inventories in mind. Other notable 
examples are Czaplewski (1990), Czaplewski and Thompson (2008) and 
Ståhl et al. (1994) who suggested DA in field-based forest inventory 
contexts. 

Ehlers et al. (2013) demonstrated the potential of DA for estimating stand 
level characteristics in a simulation study, where a time-series of remote 
sensing-data were utilized together with a growth model. In this study, DA 
with an Extended Kalman Filter or a Bayesian filter improved the accuracy 
of predictions compared to discarding old data as new were made available. 
The simulation study involved new acquisitions every two or five years 
throughout a 50 years period. Vastaranta (2018) evaluated an approach 
similar to DA with two predictions of biomass from stereo satellite point 
clouds: a two years old prediction was updated by a forecast model and 
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combined with a new prediction. This resulted in a gain in accuracy, and a 
reduction of bias. Series of remote sensing data can also be used for 
improving the growth part of a DA framework. A method for updating forest 
variables in a DA framework using best linear unbiased prediction (BLUP) 
was proposed by Hou et al. (2019). However, this study left out forecasting 
and worked with data from a single season. 

Use of forecasted old information in combination with new data might 
also be a useful method for improving estimates for large areas, for example 
in the context of NFIs. In the Finnish multi-source NFI a combination of NFI 
plot data and optical satellite data have been used for enabling forest statistics 
to be presented on municipality level. The variation between estimates form 
different years is, however, quite large. Katila and Heikkinen (2020) showed 
that more stable estimates could be obtained by modeling trends and 
combining estimates from three different years. In a simulation study, 
Kangas et al. (2020) showed the benefit of using Kalman filtering for 
combining new and old NFI data even if good auxiliary data is available. 
One of their observations was the necessity to find and compensate for 
changes like cuttings.  

The work in this thesis further developed the application of DA based on 
remote sensing data, taking a few steps towards practical implementation of 
DA routines for practical forestry. 
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The overall aim of this thesis was to investigate the potential of DA for 
predicting core forest inventory variables using the extended Kalman filter, 
and variations of this filter, based on time series of remote sensing data. 
Specifically, the objectives of the included papers were: 

1. To make a first evaluation of the usefulness of DA for forest 
inventory purposes based on a time series of real remote sensing 
data. In this study, DP predictions were made for large sample 
plots.  

2. To assess the potential of the Extended Kalman Filter applied to a 
time series of InSAR data (TanDEM-X) over sample plots 
estimating HL, BA and volume. The study was based on a dense 
time series of remote sensing data across a short period.  

3. To investigate the magnitude of correlated prediction errors when 
basing predictions on different sources of remote sensing data. The 
sensors applied were ALS, OS and InSAR. 

4. To evaluate if classical calibration has a potential to reduce error 
correlations caused by the tendency of regression models to 
overestimate low true values and underestimate high true values, 
which reduces the efficiency of DA. The study was conducted 
through simulations.   

5. To assess the efficiency of DA when applied to a time series of 
data from a mix of remote sensing sensors, accounting for error 
correlations in the assimilation method through a modified filter. 
The sensors used were ALS, DP, InSAR and OS and the validation 
was done at the level of sample plots. 

 

2. Aims and objectives 
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3.1 Study area 
The test site for the studies in this thesis was the Remningstorp research 
estate in southwestern Sweden (58°27´N, 13°39´E, Figure 2). The estate 
covers roughly 1500 ha of mainly highly productive managed forest. The 
forestry practice at the estate follows a cycle common in the Nordic 
countries, with planting, pre-commercial thinning, thinning and final felling. 
Norway spruce (Picea abies) is the dominating species at the estate, followed 
by Scots pine (Pinus sylvestris) and deciduous forests consisting of birch 
(Betula spp) with some oak as well as other deciduous species. Field 
measurements have been carried out on this research estate for a long time.  
 

 
Figure 2. The study area for the thesis was the Remningstorp forest estate in southwestern 
Sweden. The map to the right shows the location of the sample plots (see Table 3). 

3. Materials and methods 
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3.2 Sample plot datasets 
Field sample plots from several different campaigns were used for the studies 
in this thesis, each with somewhat different designs but all sharing a similar 
measurement protocol at the sample plot level. All trees above a threshold 
diameter were calipered and the stem diameter was registered together with 
the tree species. Heights were measured for a subsample of the trees; height 
for the remainder of the trees was predicted with models based on the 
relationship between diameter and height. The subsample trees were also 
cored for age. Site Index (SI) was assessed according to the Swedish system 
for site index assessment based on vegetation characteristics (Hägglund and 
Lundmark 1977). Plot level forest variables (HL, BA, Volume, Mean 
Diameter, tree species composition, basal area weighted age) were 
computed, and in case of BA and Volume aggregated to per hectare units. 
The sample plot data sets are presented in table 3.  
Table 3. An overview of the sample plot data used in the studies in this thesis. Number 
of plots that were used depends on the study as well as the time point within each study. 

Year Dataset Radius Site Papers No. Plots in study 
2011-2013 A 40 m Remningstorp I 9 
2004 B 10 m Remningstorp I 258-416 
2010 C 10 m Remningstorp I, II, III, IV,V 117-214 
2014 D 10 m Remningstorp II, III, IV,V 117-148 
1988-2010 E 10 m NFI I,II,V 15131 

Dataset A consists of large sample plots with 40m radius, measured in 2011-
2013, all placed subjectively in homogenous stand areas in different types of 
forest. All trees above 4 cm diameter at breast-height were calipered.  

A centrally located area of the estate was sampled with a dense grid of 
sample plots in 2004 (dataset B). In total 849 plots were measured, with 10 
m radius. In 2010, a second sample of 10 m radius plots was inventoried 
across the major part of the property, spread out across the entire estate in a 
regular grid, initially measuring 263 plots (dataset C). These plots were 
measured again in 2014 (dataset D).  

Permanent NFI sample plots, spread out across Sweden, were used for 
developing growth forecast models. In the Swedish NFI sample design, there 
are both temporary plots, that are never revisited, and permanent plots, that 
are measured every five years. The measurement protocol of the NFI 
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resembles the protocol used at the Remningstorp test site (Fridman et al. 
2014).  

All studies were limited to forests with normal growth patterns, i.e. plots 
with disruptions due to management actions such as harvest or major 
damages were left out. This reduced the number of plots available for the 
studies.  

3.3 Remote sensing data used in the studies 
ALS data were acquired for scientific purposes in 2010 and 2014 during leaf-
on season. In addition Lantmäteriet, acquired data in 2011 during leaf-off 
conditions (Lantmäteriet 2019). Processing of the ALS point clouds involved 
flight line overlap and removal of isolated points before the point cloud was 
height-normalized to height above ground.  

DP data were acquired from Lantmäteriet (2019). Images were delivered 
with camera orientation parameters, and processing into point clouds was 
done using the SURE software (Rothermel and Wenzel 2012). Area-based 
metrics were calculated using FUSION (McGaughey 2014) for both DP and 
ALS. 

The optical satellite data in this thesis were obtained from the now 
decommissioned SPOT-5 satellite, which provides images with 10 x 10 m 
pixel size. Until the de-orbiting of SPOT-5 in 2015, Lantmäteriet made 
images from it available for the public in a geo-corrected format, with one 
image per year covering Sweden (Lantmäteriet 2020). Metrics over the 
sample plots were extracted from the rasters at the sample plots locations. 

The TanDEM-X mission has scientific purposes and thus its settings vary 
(Moreira et al. 2004; Krieger et al. 2007), which means that the InSAR 
products have varying suitability for forest variable estimation (Soja and 
Ulander 2013). DSM rasters were generated with standard InSAR processing 
and the heights were normalized with an ALS-based DEM (Persson and 
Fransson 2016). Remote sensing data were extracted for areas corresponding 
to the field sample plots and regression-based prediction models were 
developed, linking remote sensing metrics with field measurements. 

An overview of the remotely sensed data applied in the thesis is given in 
Table 4. 
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Table 4. Remote sensing acquisitions used in this thesis  

Sensor type Date Included  
in papers 

Sensor 

DP 
 

2003-10-13 I Z/I DMC01 
2005-06-28 I 
2007-05-26/ 
2007-06-03 

I 

2009-09-01 I 
2010-05-02 I 
2012-05-23 I, V 
2014-07-26 V Vexcel UltraCam-Xp WA 

ALS 
 

2010-08-29 III, V TopEye s/N 700 
2011-04-21 III Leica ALS60/23 
2014-09-14 III, V Riegl LMS Q680i 

OS 
 

2010-06-04 III SPOT-5 HRG 
2011-06-06 III, V 
2013-07-17 III, V 

InSAR 
 

2011-06-04 II, III TanDEM-X 
 2012-02-01 II 

2012-02-12 II 
2012-02-23 II, V 
2012-06-01 II, III 
2012-08-28 II,V 
2012-11-09 II 
2013-02-27 II  
2013-03-21 II  
2013-07-02 II  
2013-07-24 II  
2013-08-04 II  
2013-08-11 II  
2013-09-13 II  
2013-11-18 II , V 
2014-03-08 II  
2014-06-08 II, III 
2014-06-26 II  
2014-08-02 II 
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3.4 Data assimilation: The extended Kalman 
filter 

A large set of DA methods is available, with various approaches to the 
problem of merging information from several sources. In this thesis I focus 
on the well-known Extended Kalman Filter (EKF; Kalman 1960; Kalman 
and Bucy 1961). The Kalman filter is an iterative method that consists of two 
major parts: Updating and Merging, repeatedly applied to the time series of 
measurements. The EKF was applied as in the study by Ehlers et al. (2013) 
in  papers I, II and V (papers III and IV omit the updating step). This involves 
the following steps: 

 
1. At the starting point of the time series, initial predictions are made 

from remote sensing data and field reference data. Along with the 
predictions, there are also estimates of uncertainty. 

2. The predictions are updated through a growth forecast model until 
the next time point when remote sensing data are available. The 
variance of the updated predictions is estimated along with the 
predicted values. 

3. Predictions from the new remote sensing data are made. The 
forecasted and the new predictions are merged with weights 
assigned inversely proportional to the variance of the predictions. 

4. The growth forecast model is applied, starting from the merged 
predictions of step 3. The uncertainty measures are updated along 
with the predicted values. 

5. Yet another set of remote sensing-predictions is available, and a 
new merger can take place as described in step 3. 

The steps 4 and 5 are repeated, as new data sets are made available.  
The merger is a weighted average, with weights inversely proportional to the 
respective variance of the two predictions. The weighted average (at time 
point t2) is: 

(1)  

Where is the merged prediction for time point two for sample plot i 
based on the updated prediction from time step one,  and the new 
prediction at time point two, .  
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The weight, , for EKF is: 

(2)   

The variance of the merged prediction is: 

(3)  

During the update step, the variance must also be updated along with the 
target variable, as it is required as an input in the next time step. Thus the 
forecast model must be of a type that allows the variance of the prediction to 
be updated. In the studies, a non-linear growth function was applied, of 
similar kind as in many other fields of science and real world applications, 
and thus the EKF rather than the standard Kalman filter had to be used. In 
EKF the updating function is linearized through Taylor Expansion to 
approximate the variance of the predictions after the update. This 
approximation works best if the linearized function is relatively close to 
being linear.  

The standard Kalman filter and the EKF further stipulate that errors of 
predictions and forecasts have a zero mean, i.e. that predictions and forecasts 
are unbiased. Further, in applications variances normally need to be 
estimated from data and thus the variances in (2) and (3) need to be replaced 
by variance estimators, in which case (3) is an approximation. 

3.5 Growth forecast models 
The same set of growth forecast models were used for studies I, II and V; the 
models are described in the appendix to paper I. Studies III and IV did not 
involve any forecasting steps. Separate growth models were estimated for 
five classes according to dominating tree species on the sample plot, namely 
spruce, pine, mixed coniferous, deciduous and mixed coniferous/deciduous 
forest. The forecast models were of the form: 

(4)  
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Where  is net growth for five growing seasons, and  is the jth predictor 
variable for plot i at time point t Models were developed using sample plots 
from the Swedish NFI (dataset E in Table 3).  

We used SI, age and tree species proportions from field data for all papers 
and assumed them to be known without errors to simplify calculations. An 
input starting value for the forecast period was, however, taken from the 
predictions. 

The notation used in this summary part of the thesis corresponds to the 
notation used in the last paper. The other papers use different notation, and 
the gradually changing notation throughout the course of the studies can be 
seen as a receipt of a gradually increased understanding of what is required 
for DA to work for merging remote sensing-based predictions of plot and 
stand level forest characteristics.  

3.6 Prediction from remote sensing data  
All papers followed an empirical tradition and the ABA approach to predict 
forest attributes. In the empirical tradition the variable of interest is related 
to the measurements through a model, in this case regression models of 
somewhat varying type. Selection of variables as predictors in the models 
was based on conceptual understanding of the relations in the data and by 
studying residual plots of preliminary and final models, fit through 
regression analysis. Slightly different methods of regression analysis were 
used in the different papers.  

A well-known property of predictions from regression analysis is the 
central tendency, which implies that high true values are underestimated and 
low true values overestimated. Regression models are specified to deliver 
unbiased predictions conditional on the predictor variables (the remote 
sensing metrics in this thesis), but not conditional on the true values. This is 
a problem in DA applications, since predictions ideally should be unbiased 
conditional on the true value for every unit predicted. Classical calibration is 
a means to obtain approximately unbiased predictions throughout the entire 
range of true values (Osborne 1991). The first step of classical calibration is 
to specify an error characterisation model, which describes the relationship 
between a sample plot’s true value  and the remote sensing-based 
prediction  (Tian et al. 2016; Persson and Ståhl 2020). The error 
characterisation model was assumed to be linear: 
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(5)    

Here, At and Bt are parameters, and  a random error term with zero 
expectation. Estimating the parameters and rearranging the terms leads to the 
formula for calibrated predicted values, : 

(6)   

Note that calibration works only of is non-zero. Since  typically is 
smaller than 1, the variance of the calibrated prediction increases compared 
to the variance of the original prediction. 

3.7 Validation 
Bias and RMSE, and RMSE relative to the mean of the true variable of 
interest (rRMSE) were used to evaluate the performance of the different DA 
filters in the studies. They were defined as: 

(7)   

(8)   

(9)   

(10)   

Here , and , for the variable of interest on 
sample plot i at time point t. 
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3.8 Materials and methods for the individual 
articles 

3.8.1 Paper I 
To our knowledge, this is the first empirical study of DA applied to a time 
series of remote sensing predictions of forest inventory variables. Six DP 
acquisitions were included. The first prediction was from 2003 and the last 
from 2012, covering eight growth periods. The aerial images were processed 
into 3D point clouds. A standard ABA processing was used, in which the 
metrics from the point cloud were calculated for both the plots and grid-cells 
(pixels) equally large as the sample plots. Non-linear prediction models were 
developed, predicting HL, BA and volume at plot level (sample plot datasets 
B and C forecasted to the acquisition year). The prediction models were also 
applied to the grid-cells. EKF was then used to assimilate the grid-cell level 
predictions within the validation stands, for each pixel separately. At the time 
point for the final validation (2012) the grid-cell values were aggregated into 
stand-wise mean values and compared with the volume measured in the field 
(sample plot dataset A). The EKF method was compared with the last single 
prediction, and with the first prediction (from 2003) updated with growth 
forecasts to the state of 2012, without DA. 

3.8.2 Paper II 
In paper II, we investigated the use of a dense time series of InSAR data for 
DA. Nineteen predictions over four growth seasons, from 2010 to 2014, were 
assimilated using EKF. We used sample plots of 10 m radius (sample plots 
C and D), rather than stands as in paper I. Field plot values for the time in 
between the inventory years were interpolated. Plots were excluded in case 
of harvest or severe damage during the study period. To exclude a plot, we 
set a threshold of 10% maximum loss of the BA from 2010 to the re-
inventory in 2014.  

Each pair of images was processed using a standard interferometric 
processing, which gives a height map that is normalized to height above 
ground using an ALS-based DEM (Lantmäteriet 2019). Linear regression 
models predicting HL, BA and Volume were estimated and evaluated with 
Leave-One-Out Cross-Validation (LOOCV).  
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3.8.3 Paper III 
This study investigated the correlation of errors across time points for remote 
sensing-based predictions. Error correlation between predictions at different 
time points reduces the efficiency of the EKF, and thus the variance of the 
assimilated prediction decreases at a slower rate. This article investigated the 
size of the correlations and gave an example of the effect of overlooking 
correlations in the filter. 

Acquisitions from three sensors were used in this study: ALS, OS and 
InSAR, with three acquisitions each, covering the test site at Remningstorp 
at the time in between the field inventory campaigns in 2010 and 2014 
(sample plot datasets C and D, interpolated). Similar as in paper II, plots with 
decreasing BA (due to harvest or other disturbance) were removed, like 
forests younger than 20 years. This left 117 plots for model development for 
prediction of HL BA, volume, and basal area weighted mean diameter. 

Correlation coefficients between predictions from all pairs of sensors 
were calculated. This study also demonstrated the effects of correlated errors 
in a simulated example, where weighting was performed according to: 

(11) , 

which includes the covariance. The variance of the assimilated prediction 
will then be: 

(12)  

 

3.8.4 Paper IV 
This study evaluates the importance of calibrating remote sensing-based 
predictions before utilising them in DA. A population of forest plots was 
simulated as well as remote sensing metrics obtained from two different 
types of sensors (resembling ALS and OS). The EKF was applied either with, 
or without, calibration of remote sensing-based predictions. The variable 
studied was volume and the population comprised 10 000 sample plots. 

Ten acquisitions with each sensor were simulated. The simulated metrics 
were used for predicting volume through ordinary least-squares regression. 
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Thus, we had two types of sensors and calibrated as well as non-calibrated 
data for each plot, summing up to four types of predictions.  

EKF was used to assimilate the data for three different cases (time series): 
(i-ii) ten predictions with each of the sensors separately and (iii) an initial 
ALS-based prediction followed by nine OS-based predictions.  

3.8.5 Paper V 
In paper V, predictions from various remote sensing sensors and time points 
were assimilated: two ALS, two DP, three InSAR and two OS acquisitions 
over the four growth seasons between 2010 and 2014. The time series started 
and ended with an ALS-acquisition. The study variable was volume per 
hectare. Datasets C and D were used, interpolating field reference values in 
between 2010 and 2014. We applied classical calibration to the predicted 
values and compared with non-calibrated predictions. The predictions were 
assimilated using EKF and a new filter, which we name EKFm, which takes 
error correlations into account. Weights were used to merge the predictions 
in the same way as in EKF but in calculating weights the covariance between 
predictions was taken into account, like in paper III (eq. 11). The EKFm filter 
was compared to the standard EKF, using either calibrated or non-calibrated 
predictions as input. Thus, we compared four cases of DA. We also 
compared the DA predictions with the predictions from individual time 
points and with the first ALS prediction, updated only with a growth forecast 
model across the study period.  
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DA requires adaption to the specific field of application. In meteorology, DA 
has been adapted and applied for several decades, a work that has only 
recently started for DA in forest inventories. This thesis has contributed to 
some important development and identified areas that need to be investigated 
further.  

Paper I presents, to our knowledge, the first empirical study where DA is 
applied together with remote sensing-based predictions of common forest 
variables. Paper I concluded that the theoretical gain from DA was far from 
being realised in practice, despite the substantial potential of DA 
demonstrated in an earlier simulation study (Ehlers et al. 2013). Assimilation 
of six acquisitions over eight growth periods resulted in only a small gain in 
accuracy for all variables, compared with the last prediction, but a notable 
gain for Volume and BA when compared with the forecast from the first 
prediction. HL was almost equally accurate irrespective of method (Table 5).  
Table 5. Results from paper I, with EKF, last prediction and forecast from first prediction 

 rRMSE 
 Volume BA HL 
DA 13.5% 12.0% 9.3% 
Last prediction 15% 12.8% 9.6% 
Forecast from first prediction 19.7% 14.2% 9.5% 

The validation in paper I was done on dataset A (Table 3), measured once in 
the field at the end of the time series. The results indicate the strength of DP 
to predict HL at a single time point, as well as the relatively high accuracy of 
forecast models for HL. In cases where predictions and forecasts are already 
sufficiently accurate, there seems to be little practical gain in including new 
data.  

4. Results and discussion 
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EKF of 19 InSAR predictions of HL, BA and volume was investigated in 
paper II. A difference compared to paper I was that the validation method 
was LOOCV. Using LOOCV meant that the sampling distribution of the 
validation data did not differ from the training data, as in paper I. This 
assured that the overall bias was small. Further, validation was made on 
sample plots, i.e. the same type of data was used for estimating and 
evaluating models. In addition, validations after each assimilation iteration 
made it possible to analyse the results at all time points. Results showed that 
the rRMSE dropped during the first few iterations for all variables (Figure 
3). Data assimilation with EKF consistently improved the predictions of HL, 
compared to the individual predictions. For BA and volume, the assimilated 
predictions were better or roughly equal to the predictions based on 
individual data acquisitions at most time points. Following a short initial 
rRMSE decrease, however, the trend turned to being increasing. Since the 
weight for new InSAR acquisitions was very low after the first few iterations 
cf. eq. 2), the results of DA turned out to be almost like simple growth 
forecasts of the merged data after the first few iterations.  



41 

 
Figure 3 Results from paper III, for predictions of HL, BA and volume. Purple lines 
represent the rRMSE of assimilated predictions and black dashed lines the rRMSE of 
predictions from single acquisitions. 

Even though EKF gave an improved accuracy the potential of DA, as 
previously shown for simulated data (Ehlers et al. 2013), was not fully 
realized in papers I and II. The theory for standard EKF assumes uncorrelated 
prediction errors between predictions, for the weighting to be optimal. If this 
does not hold the variance of the EKF prediction will be underestimated. As 
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the next iteration of EKF then is based on an underestimated variance for the 
next computation of weights, the updated prediction will be given a too high 
weight in comparison with the new prediction to be assimilated (cf. Figure 
4). The results from paper II suggests that many non-optimal iterations of 
EKF notably decrease the accuracy. A very important part of DA is therefore 
to assess the accuracy of predictions properly. The importance of 
investigating the error correlation across predictions based on different 
remote sensing acquisitions was an evident insight from the results of paper 
I and II.  

 

 
Figure 4. The weight, i.e. the Kalman gain, to new data in the merged prediction across 
iterations, for the InSAR predictions in paper II. EKF gives a very low weight to new 
predictions after a few iterations. The yellow line shows Kalman gain for HL, the grey 
for BA, and the blue for volume. 

The study by Vastaranta et al (2018) have similarities to mainly paper I 
and II. World View-2 stereo images were processed into 3D point clouds, 
from which predictions of biomass were derived at two time points with two 
years in between The first prediction time point were updated with forecast 
models to the second time point, and a simple average were used to combine 
the two predictions. This procedure, which resembles a DA method, 
improved rRMSE by 0.9%, from 21.8% to 20.9%, and reduced the bias, 
indicating that the small but present gain of combining data across time may 
hold outside our test site and studies.  
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In paper III, we quantified the error correlations of ALS, OS and InSAR 
predictions. In general, the error correlations were positive and rather strong. 
They also tended to be stronger between two predictions from the same 
sensor, while lower correlations were found for two acquisitions from 
different sensors. In particular, acquisitions from OS had low error 
correlation with acquisitions from all the other sensors. When it comes to 
season of the year, it was noticeable that the ALS from 2011, acquired during 
leaf-off conditions, had lower error correlation with the other ALS 
acquisitions, acquired during leaf-on conditions. 

Paper III also gives examples of the theoretical effect of error correlations 
on DA results. Ten equally precise predictions were iteratively assimilated. 
Error correlations were accounted for in the assimilation (eq. 11) and were 
assumed to be of three different levels. Results after ten iterations, as percent 
of the initial standard deviation, are presented in Table 6.  
Table 6. Results from paper III. The standard deviation after assimilation of ten equally 
precise predictions were calculated assuming different levels of error correlation.  

 Error correlation 
 0 0.4 0.8 
Standard deviation 
after ten iterations 

32% 68% 91% 

Error correlations thus impede on the potential of DA, although the results 
in Table 6 assumes that there are no growth updates between the data 
acquisitions. For practitioners it will therefore not be very useful to 
assimilate highly correlated data. Practical data assimilation would also add 
further error sources, like imperfect error statistics, which would make the 
estimation of weights uncertain and possibly remove all benefits from 
assimilating highly correlated data.  

Paper IV concerns one of the reasons why prediction errors correlate: the 
tendency that predictions from regression-based models overestimate small 
true values and underestimate large true values. A large population of sample 
plots and remote sensing metrics was simulated to study the effects of this 
tendency and classical calibration was applied to counteract it. Results 
showed that regression-based prediction contributes to correlated errors and 
that this effect can be removed through classical calibration. The reduced 
correlation of errors improved results from assimilation with EKF (Figure 
5).  
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Figure 5. Results from paper IV. RMSE for 10 simulated (i) ALS predictions and (ii) OS 
predictions, assimilated with EKF. In (iii) the time series starts with an ALS-based 
prediction, which is followed by 9 OS-based predictions. The DA algorithm uses either 
non-calibrated or calibrated predictions. 
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The improvement obtained by reducing the error correlation through 
calibration is encouraging; however, there are many other reasons for errors 
to correlate across acquisitions apart from the regression towards the mean. 
For example, OS data lacks height related information (e.g. Magnusson and 
Fransson 2005). Another example is DP, where several studies point out the 
lack of density related metrics (Bohlin et al. 2012, 2017; Ali-Sisto and 
Packalen 2017); thus sparse forest is likely to be overestimated and the 
opposite applies for dense forests. Across time, sparse forest will likely 
repeatedly be overestimated in all predictions from DP, leading to errors that 
correlate. This happens regardless of whether the data are calibrated, as in 
paper IV, or not. Such lack of sensitivity is present in predictions from all 
studied sensors, causing error correlation. Regarding ALS, many studies 
point out the effect of dominating tree species, especially in deciduous forest 
during leaf-on conditions (Naesset 2005; Nilsson et al. 2017). InSAR from 
TanDEM-X has shown to be affected by whether or not the forest is 
deciduous or coniferous during leaf-on conditions (Soja and Ulander 2013), 
which has also been noticed for DP data (Bohlin et al. 2017). These effects 
due to the combination of sensor and forest type make the errors correlated 
across sensors. Although residuals from predictions based on various sensors 
can have trends over the same variable, different methods of measuring the 
forest as well as varying timing when it comes to phenology (season) will 
have an impact on the correlations. A mix of sensors in DA might therefore 
be beneficial. An additional reason for correlated errors, which will not be 
remedied by mixing sensors, is erroneous geolocation of field plots. Such 
errors may potentially mislead analysts to assert that the error correlations 
are stronger than they, in fact, are. This follows since the field reference state 
for a plot is different from the state on the plot for which predictions were 
made. However, the impact of geolocation errors on the results from the 
studies included in this thesis were judged to be minor, due to the use of GPS 
equipment with sub-meter accuracy.   

Paper V utilises several of the findings from paper I-IV: the importance 
of error correlation discovered in paper I-III, along with the classical 
calibration approach suggested in paper IV. Error correlations requires 
adaption of the assimilation method, and/or the predictions as in paper IV. In 
paper III, we also found error correlations to be lower for predictions from 
different sensors compared to predictions based on the same sensor, and 
there might thus be an advantage to use several sources of remote sensing 
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data in DA schemes. The logical step in paper V was then to evaluate 
assimilation of a time series of predictions from various remote sensing 
sensors. Paper V provides an empirical validation of an adapted filter 
(EKFm) which accounts for error correlations (eq. 11) and compares it with 
results from the standard EKF. Predictions with or without classical 
calibration were assimilated. The results from paper V (Figure 6) showed a 
steadily improved rRMSE across iterations of DA using EKFm. Such 
success was not obtained for EKF applied to predictions without calibration, 
which was the method applied in paper I and II. The modified DA filter 
(EKFm) combined with calibrated predictions was much more efficient.  

 
Figure 6. Results from paper V, where nine predictions of volume based on ALS, OS, 
DP and InSAR where assimilated using EKF or a modified filter (EKFm) that accounts 
for error correlations. Classical calibration applied to the predictions improved the 
results. 

Paper V also gives an empirical example of the effect of classical 
calibration on the error correlation. Figure 7 shows the correlation of 
prediction errors for different combinations of sensors. 
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Figure 7. Error correlation coefficients for the predictions of volume in paper V. Number 
and abbreviated sensor refers to acquisitions in paper V in the order they were assimilated 
in the study.  

The ALS data used in paper V were leaf-on. Leaf-on ALS acquisitions are 
recognised as less optimal for datasets with both deciduous and coniferous 
dominated sample plots. In such cases sample plots with deciduous forest 
tend to be overestimated (Nilsson et al. 2017). The main gain by adding an 
OS acquisition is reducing the difference between deciduous and coniferous 
plots, which often gives a large reduction in the overall rRMSE as well. The 
two OS predictions had the highest rRMSEs of all sensors in the study but 
still contributed to a large improvement in rRMSE in the DA scheme. This 
indicates the value of incorporating data of varying kind; even if the data 
have poor correlation with the target variable, they may be useful in 
combination with other sources. If the ALS acquisition had been leaf-off, the 
results would likely have been a less dramatic improvement. Even though 
the included ALS data were leaf-off, Kukkonen et al. (2018) found that 
metrics from auxiliary optical data improved the accuracy when added in the 
same model as ALS. This indicates that a gain could also be achieved if DA 
is used in a time series including leaf-off data and OS data. Based on the 
findings in other studies, and the positive effect of assimilating an OS 
acquisition after a leaf-on ALS scanning, it could have been possible to 
obtain even better accuracy at the end of the time series in paper V. As the 
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ALS-scanning was made during leaf-on season, a negative bias is expected 
for deciduous forests. The OS acquisitions could contribute with some 
information about tree species, and thus assimilated predictions could 
potentially be more accurate than ALS alone. 

The test site Remningstorp has high growth rates compared to the average 
conditions in Sweden, and the predicted growth seemed too low already in 
paper I. This led to positive bias of the forecasts in paper I and V, and also 
in paper II where, however, bias was not presented in the article. In this 
thesis, I used classical calibration to reach approximate unbiasedness for 
remote sensing-based predictions across the entire range of true values, but 
EKF assumes zero mean for the errors of the growth models as well. 
Classical calibration could potentially be a way to remove bias also for 
predictions of growth. 

The importance of incorporating error correlation was evident in studies 
III and V. The assumption was that parts of the random prediction error for 
a given plot would remain relatively constant. Over longer time periods this 
approximation is probably not going to hold and further research needs to be 
conducted to gain knowledge of how error correlations between remote 
sensing acquisitions should be incorporated in DA systems across longer 
time periods. 

The scenario in paper V is of practical relevance; an ALS based prediction 
initiates the time series and predictions from other more frequently available 
sensors follow. An advantage of OS is the high temporal availability of free 
data (Table 1), but the high residual error correlation between OS predictions 
(Figure 7) reduces the potential gain (Table 6). It is therefore perhaps only 
worthwhile to include a selection of OS images in an operational DA method. 
There is thus a need to develop selection criteria regarding what new 
acquisitions to include, based on what data are already assimilated. The 
major advantage of OS is the access of frequent data and thus the possibility 
to detect changes. Persson et al. (2018) improved tree species classification 
using four sets of Sentinel-2 data , referring to phenological differences 
between acquisitions as a reason for the improved results over using data 
from a single time point. The frequent flow of data from Sentinel-2 might 
thus be more important for predictions of tree species composition than for 
volume predictions, but also for detecting changes. Seasonal changes 
between acquisitions have been suggested as an advantage also for ALS; a 
study by Räty (2019) predicted volume with data from leaf-off and leaf-on 
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conditions used together, which improved the accuracy. Sensor type is 
important for error properties, but the forest conditions, including phenology, 
are important too. 

Given the results of paper III, IV and V, we have achieved a better 
understanding of the results of paper I and II. The method used in paper I and 
II was standard EKF of predictions without classical calibration, which gave 
poor results in paper V. In addition, the validation data in paper I were stands, 
subjectively selected and with another range of the forest variables than the 
training data. Provided the findings in paper IV, there could have been a gain 
in calibrating the predictions. Paper V presents high error correlation 
coefficients for volume predictions from DP (Figure 7). Similar error 
correlations could be expected also from the predictions in paper I, which 
likely impeded on the results of DA. The error correlation between 
predictions from InSAR data varies more than error correlations from other 
sources of data, probably due to the settings of the TanDEM-X satellites, as 
well as season and weather conditions at the particular acquisitions. In paper 
III, all three InSAR acquisitions were from the summer season, while for the 
three in paper V the season varied, but so did also the satellite settings. 
Combined experiences from the studies stress the importance of considering 
error correlation in DA applications, which likely had an impact on the 
results in both papers I and II.  
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Many studies combine metrics from several sensors with promising results. 
What distinguishes most of these studies from DA approaches are short time 
periods, so that growth and changes can be disregarded. The results point at 
the potential in combining data from different sensors, but growth forecasts 
and updates after management actions and damages needs to be included in 
an operational system. Such a system would be a DA system. 

The results presented in paper V are promising for DA-based prediction 
of forest variables from remote sensing data. The scenario in paper V is of 
interest for operational forestry, implying that an ALS prediction can be 
improved upon and kept up-to-date with the aid of other sensors until a new 
ALS prediction is available. The time span studied in paper V was four 
growing seasons, while the currently planned interval for ALS acquisitions 
by the Lantmäteriet is approximately seven years (Lantmäteriet 2019). A 
study that covers a slightly longer time span than paper V could thus be an 
interesting next step. In the studies in this thesis, it is not always clear to what 
extent the errors derive from forecasts or from predictions, but the relatively 
short periods in most papers suggests that prediction contributes more than 
growth forecasts to the total error. If longer periods are studied, sensors that 
capture height development (e.g. DP) could be more valuable.  

Poor estimation of uncertainties will impede on DA through improper 
Kalman gains. As highlighted in mainly paper III and V this is important, 
especially after a few iterations of DA. Running the filter through many 
iterations will therefore require very accurate error propagation. Many data 
sets will, on the other hand, improve the accuracy, at least in theory. It should 
be noted, however, that theory also suggests that the more data that are added, 
the less an extra iteration will add to the accuracy. In addition, the more the 
errors correlate, the less the gain. 

5. Conclusions 
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A DA system adapted for practical usage has been the scope of this thesis. 
The papers have taken DA a few steps closer to practical implementation and 
have left other areas for future research. 

A step closer to an operational system would be to include handling of 
disturbances in the DA system. Change detection is a well-researched area 
of remote sensing, which could be well integrated into a DA framework.  

Forest management planning in the Nordic countries have traditionally 
been done with stands as the spatial unit. Aggregation through simple 
averaging of the pixels in a stand is straightforward, but as e.g. Kangas 
(2018a) points out, error statistics are of interest as well and deserve more 
research. 

Accounting for error correlations brings practical issues as well. Not only 
does it require the remote sensing acquisitions to cover the same sample 
plots, but keeping field measurements up to date is also necessary. Further 
studies are needed about how to possibly overcome this in order to make DA 
more feasible for practical forestry. Perhaps error correlations could be 
modeled based on the acquisition properties, such as sensors, phenology etc.  

The EKF filter relies on Taylor linearization to propagate the variances 
through the growth forecast model in the updating step. A Bayesian filter 
could make better approximations, but could also be computationally 
expensive. Particle filters uses a set of particles, samples from the 
predictions´ error distribution, to resemble the distribution following update 
in a less computationally demanding way. While EKF is restricted to models 
that can be linearized, particle filter handles any type of forecast method. In 
this work, we have applied DA for forest variables separately, but making 
DA multivariate is a desired development. 

6. Further research 
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The papers base the weighting on variances after a DA iteration on 
theoretical estimates (eq. 3 and 12). An alternative could be to replace this 
procedure with empirical estimates solely based on field plot data after each 
iteration. In the current setting, field plots are anyway required for training 
the predictions at all time steps. But in practice many remote sensing datasets 
would have different areal extents and the intersecting areas, with similar 
remote sensing data history, might be small, and thus schemes to derive all 
uncertainty measures empirically from field data might require large and 
costly field datasets. Thus, reliable theoretical variance and covariance 
estimation procedures has a potential to reduce the need for costly field 
sample plot data. 

Overall, DA for forestry looks promising given the development in this 
thesis. But many details remain to be solved before a reliable system for 
practical forestry can be developed. 
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Forest management planning use maps with the forest delineated into stands, 
and associated databases with the stands forest properties. This information 
has traditionally been gathered by visiting all stands in the field at regular 
intervals, whereby the forest is measured and assessed with manual methods. 
Recently, an automated data collection by means of remote sensing has been 
introduced. The main technology is airborne laser scanning, which provides 
measurements for ground elevation and the height and density of the canopy. 
With aid of field-measured sample plots and statistical models, these 
measurements can be translated into forest variables of interest. Predictions 
of the forests height, basal area, average diameter and volume can thereby be 
done with at least the similar accuracy as the traditional field assessments. 
Several other remote sensing techniques, e.g. canopy height models from 
aerial images or radar data, or color from satellite image pixels are also 
available. These are often available at lower cost and more frequently than 
laser scanning, but have so far not provided as good forest data. Forests 
change over time, through growth and tree mortality or being harvest. 
Therefore, a prediction of the forest conditions at a time point must be 
updated. So far this has been made with forecast models until mew data 
collection, at which the old data have been discarded.  

In this thesis, data assimilation is investigated to use the information from 
several types of remote sensing data to update and maintain the quality of 
forest data without discarding old data. The investigated method, Kalman 
filter, means that data of the forest is forecasted and that new remote sensing 
predictions is combined with it by weighted average in proportion to its 
information content. After a number of adaptations of the basic Kalman filer, 
this has proven to work. The developed methods thus lay the foundation for 

Popular science summary 



64 

a new way of automatically use several types of remote sensing data to 
automatically keep forest data up to date. 
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Vid skötsel och förvaltning av skog används kartor där skogen är indelad i 
bestånd, med tillhörande databas som anger skogens egenskaper. Denna 
information har traditionellt samlats in genom att alla bestånd på en fastighet 
besökts återkommande, varvid skogen mätts och bedömts med manuella 
metoder. På senare tid har datainsamlingen börjat automatiseras med 
fjärranalys. Den främst använda tekniken är flygburen laserskanning, vilket 
ger mätvärden på såväl markens läge som trädskiktets höjd och täthet. Med 
stöd av fältmätta referensytor och statistiska modeller kan sedan dessa 
mätvärden översättas till skogliga variabel. Skattningar av trädens höjd, 
grundyta, medeldiameter och volym har med laserskannings kunnat göras 
automatiskt minst lika bra om med de traditionella fältmetoderna. Flera andra 
fjärranalystekniker, t.ex. trädhöjdsmodeller beräknade från flygbilder eller 
radardata, eller skogens färg enlig satellitbildspixlar finns också tillgängliga, 
ofta till lägre kostnad och mer frekvent än laserskanning, men har hittills inte 
givit lika bra skogliga data. Skogar ändras över tiden, med tillväxt och träd 
som dör eller avverkas. En uppskattning av skogstillståndet vid en tidpunkt 
måste därför uppdateras för att vara aktuellt, vilket hittills gjorts med 
framskrivningsfunktioner till dess att nya data samlats in och de gamla 
kastats bort.  

I denna avhandling undersöks om dataassimilering kan användas för att 
ta tillvara informationsinnehållet i flera typer av fjärranalysdata och 
kontinuerligt uppdatera och bibehålla kvaliteten i den skogliga databasen 
utan att gamla data kastas bort. Den undersökta metoden, Kalman filtrering, 
innebär att skattningar av skogstillståndet framskrivs med tillväxtfunktioner 
och att varje ny fjärranalysregistrering viktas ihop med den framskrivna 
skattningen i proportion till sitt informationsinnehåll. Efter ett antal 
anpassningar av den grundläggande metoden för Kalman filtrering så har 

Populärvetenskaplig sammanfattning 
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detta visat sig fungera. De utvecklade metoderna lägger därmed grunden för 
ett nytt sätt att automatiskt använda flera typer av fjärranalysdata för att 
automatiskt hålla skogliga data ajour. 
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