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Abstract
Globally, soils store two to three times as much carbon as currently resides in the 
atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emis-
sions and uptake will respond to ongoing climate change. In particular, the soil-to-
atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is 
one of the largest carbon fluxes in the Earth system. An increasing number of high-
frequency RS measurements (typically, from an automated system with hourly sam-
pling) have been made over the last two decades; an increasing number of methane 
measurements are being made with such systems as well. Such high frequency data 
are an invaluable resource for understanding GHG fluxes, but lack a central database 
or repository. Here we describe the lightweight, open-source COSORE (COntinuous 
SOil REspiration) database and software, that focuses on automated, continuous and 
long-term GHG flux datasets, and is intended to serve as a community resource for 
earth sciences, climate change syntheses and model evaluation. Contributed data-
sets are mapped to a single, consistent standard, with metadata on contributors, 
geographic location, measurement conditions and ancillary data. The design empha-
sizes the importance of reproducibility, scientific transparency and open access to 
data. While being oriented towards continuously measured RS, the database design 
accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, 
chamber-measured net ecosystem exchange, methane fluxes) as well as experimental 
treatments (heterotrophic only, etc.). We give brief examples of the types of analyses 
possible using this new community resource and describe its accompanying R soft-
ware package.

K E Y W O R D S

carbon dioxide, greenhouse gases, methane, open data, open science, soil respiration
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1  | INTRODUC TION

Fluxes of greenhouse gases (GHGs) between soils and the atmo-
sphere constitute a significant component of global carbon and 
biogeochemical cycling (Friedlingstein et al., 2019), with the two 
most commonly measured being those of carbon dioxide (usu-
ally referred to as soil respiration, RS) and methane. Soil respi-
ration constitutes one of the largest carbon fluxes in the entire 
Earth system (Bond-Lamberty, 2018; Raich & Potter, 1995; Xu 
& Shang, 2016) and is useful, but underutilized for constraining 
and understanding other components of the carbon cycle (Barba 
et al., 2018; Davidson et al., 2002; Phillips et al., 2017; Wang 
et al., 2017). Atmospheric methane causes higher 100 year radia-
tive forcing on a mass basis relative to carbon dioxide (Neubauer 
& Megonigal, 2015) and its production exhibits high temporal 
and spatial variability often associated with redox conditions 
(Tang et al., 2016) and climate. This contributes substantial un-
certainty to global methane budgets (Friedlingstein et al., 2019; 
Kirschke et al., 2013; Saunois et al., 2016; Tian et al., 2015). 
Other GHG fluxes are also measured, albeit less frequently, e.g. 
nitrous oxide (Gruber & Galloway, 2008), and researchers are be-
ginning to measure multiple gases concurrently as well (Courtois 
et al., 2019).

These GHG fluxes are measured using a number of techniques 
(Pumpanen et al., 2004), most commonly infrared gas analyzers 
(IRGAs; Detto et al., 2011; DuBois et al., 1952) connected to cham-
bers that sit on collars shallowly embedded into the soil surface (Nay 
et al., 1994; Xu et al., 2006). Continuous measurements of RS can also 
be made using in situ solid-state sensors (Hirano et al., 2003; Jassal 
et al., 2005; Tang et al., 2003) and forced diffusion technology (Lavoie 
et al., 2012, 2015). In the last 30 years, continuously operating auto-
mated systems multiplexing multiple chambers to a single IRGA have 
been developed (Goulden & Crill, 1997; Irvine & Law, 2002; Rayment 
& Jarvis, 1997). Laser-based and spectroscopic methods for non-CO2 
gases are also increasingly used in field research (Brannon et al., 
2016; Savage et al., 2014). These high frequency data, particularly 
when paired with complementary observations, open up new pos-
sible research applications, including understanding rapid plant-soil 
ecohydrological links (Volkmann et al., 2016), the coupling of phenol-
ogy and respiration (Järveoja et al., 2018; Migliavacca et al., 2015; 
Raich, 2017), the contribution of root respiration (Högberg et al., 
2001; Subke et al., 2006), validation of eddy covariance measure-
ments in complex ecosystems (Miao et al., 2017), responses of soil 
GHG emissions to extreme climate events (Petrakis et al., 2017) and 
rising atmospheric carbon dioxide concentrations (Drake et al., 2018) 
and novel inversion techniques (Latimer & Risk, 2016).

The resulting GHG flux datasets, however, remain widely dis-
persed and frequently unavailable. There is no centralized data-
base for chamber fluxes akin to FLUXNET (Baldocchi et al., 2001), 
although annual (Bond-Lamberty & Thomson, 2010) and some daily 
to seasonal (Jian, Steele, Day, et al., 2018; Jian, Steele, Thomas, 
et al., 2018) RS flux databases do exist. This is troubling, both be-
cause of the lost or unavailable research opportunities for synthetic 
work with respect to temporally high-resolution GHG fluxes, but 
also because of the inevitable loss of data (Wolkovich et al., 2012). 
Fortunately, the tools and knowledge to support a ground-up com-
munity GHG flux database are now available (Lowndes et al., 2017). 
Here we describe an open database, COSORE (originally derived 
from ‘COntinuous SOil Respiration’), that focuses on continuous 
and long-term soil-atmosphere GHG flux datasets and is intended 
to serve as a community resource for future synthesis and model 
evaluation.

2  | METHODS

COSORE is designed to be a relatively lightweight database: as simple 
as possible, but not simpler. It is targeted at continuous—i.e. measured 
by automated systems—soil respiration flux data, but the database 
design accommodates manual point (survey-style) RS fluxes, methane 
fluxes and chamber measurements of net ecosystem exchange as well, 
paralleling the recent Soil Incubation Database database (Schädel et al., 
2020). Its development started in April 2019, and as of this writing 
(2020-09-04) the COSORE version number is 0.8.0.

2.1 | Database and dataset structure

The database is structured as a collection of independent contrib-
uted datasets (Table 1), all of which have been standardized to a 
common structure and units. Each dataset is given a reference name 
(internal to COSORE) that links its constituent tables, and provides a 
point of reference in reports. Each constituent dataset normally has 
a series of separate data tables:

• description (Table 2) describes site and dataset characteristics;
• contributors (Table 3) lists individuals who contributed to the mea-

surement, analysis, curation and/or submission of the dataset;
• ports (Table 4) gives the different ports (generally equivalent to 

separate measurement chambers) in use, and what each is mea-
suring: flux, species and treatment, as well as characteristics of 
the measurement collar;

National Commission for Scientific 
and Technological Research, Grant/
Award Number: FONDECYT 1171239, 
FONDEQUIP AIC-37 and AFB170008; 
NSFC–NSF, Grant/Award Number:  
51861125102
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IGBP class Datasets Records First record Last record

Closed shrubland (CSH) 1 1,115 2013-04-01 2013-05-11

Cropland (CRO) 3 91,201 2016-07-17 2020-02-06

Deciduous broadleaf forest (DBF) 21 988,547 2003-04-20 2019-12-20

Deciduous broadleaf plantation 
(DBP)

1 11,337 2014-03-25 2014-08-31

Deciduous needleleaf forest 
(DNF)

2 153,495 2012-09-30 2018-01-01

Desert woodland (DWO) 1 11,581 2004-01-17 2004-05-07

Evergreen broadleaf forest (EBF) 11 1,477,747 2001-12-20 2017-12-12

Evergreen needleleaf forest (ENF) 18 2,944,839 2004-01-01 2019-11-11

Evergreen needleleaf plantation 
(ENP)

1 89,662 2009-01-21 2015-12-02

Grassland (GRA) 8 542,457 2005-07-19 2019-11-27

Mixed forests (MFO) 3 112,149 2006-01-01 2008-02-08

Open shrubland (OSH) 5 871,477 2005-07-22 2018-11-08

Savannas (SAV) 1 531,352 2015-05-22 2020-02-29

Wetland (WET) 4 180,868 2009-07-01 2017-04-21

Woody savanna (WSA) 4 129,437 2003-06-01 2020-02-12

(Total) 89 8,135,010 2001-12-20 2020-02-29

TA B L E  1   Summary of COSORE v. 
0.7.0 datasets with deposited data by 
International Geosphere-Biosphere 
Programme land cover classification 
(Loveland et al., 2000) as provided by data 
contributors. Columns include number 
of datasets, total number of records (flux 
observations) and dates of first and last 
records

TA B L E  2   Individual datasets in COSORE have a number of sub-tables. The first of these is the description table, the fields of which are 
summarized below. Columns include field name, description, class (i.e. type of data), units and whether or not the field is required (required 
fields are marked by an asterisk)

Field name Description Class Units Req.

CSR_DATASET Dataset name character *

CSR_SITE_NAME Site name character *

CSR_LONGITUDE Decimal longitude of site (positive = north) numeric degrees *

CSR_LATITUDE Decimal latitude of site (positive = east) numeric degrees *

CSR_ELEVATION Elevation of site numeric m *

CSR_TIMEZONE Site timezone code, from https://en.wikip edia.org/wiki/
List_of_tz_datab ase_time_zones

character *

CSR_IGBP Site IGBP class, from http://www.eomf.ou.edu/stati c/ 
IGBP.pdf

character *

CSR_NETWORK Site network name character

CSR_SITE_ID Site ID in network character

CSR_INSTRUMENT Measurement instrument (i.e. model) character *

CSR_MSMT_LENGTH Length of a single measurement numeric s *

CSR_FILE_FORMAT Raw data file format character *

CSR_TIMESTAMP_FORMAT Raw data timestamp format, in R’s strptime() format character *

CSR_TIMESTAMP_TZ Instrument timestamp timezone; usually but not always  
the same as CSR_TIMEZONE. From https://en.wikip edia.
org/wiki/List_of_tz_datab ase_time_zones

character *

CSR_PRIMARY_PUB Primary publication (DOI or URL) character

CSR_OTHER_PUBS Other publications (DOI or URL) character

CSR_DATA_URL Data link (DOI or URL) character

CSR_ACKNOWLEDGMENT Acknowledgment text character

CSR_NOTES Miscellaneous notes character

CSR_EMBARGO Embargo flag. If this field is present, data will not be  
released

character

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
http://www.eomf.ou.edu/static/IGBP.pdf
http://www.eomf.ou.edu/static/IGBP.pdf
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
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• data (Table 5), the central table of the dataset, records flux 
observations;

• ancillary (Table S1) summarizes site-level ancillary measurements;
• columns (Table S2) maps raw data columns to standard COSORE 

columns, providing a record for reproducibility; and
• diagnostics (Table S3) provides automatically generated statistics 

on the data import process: errors, columns and rows dropped, 
etc.

The common key linking these dataset tables is the CSR_
DATASET field, which records the unique name assigned to the 
dataset. In addition, a CSR_PORT key field links the ports and data 
tables. These links make it straightforward to extract datasets that 

have measured particular fluxes in certain ecosystem types, or 
isolate only non-treatment (control) chamber fluxes, for example.

2.2 | Versioning and archiving

COSORE uses semantic versioning (https://semver.org/), meaning 
that its version numbers generally follow an ‘x.y.z’ format, where x 
is the major version number (changing only when there are major 
changes to the database or package structure and/or function, in a 
manner that may break existing scripts using the data); y is the minor 
version number (typically changing with significant data updates); 
and z the patch number (bug fixes, documentation upgrades or other 

Field name Description Class Units Req.

CSR_FIRST_NAME First (personal) name character

CSR_FAMILY_NAME Family name character

CSR_EMAIL Email address character

CSR_ORCID ORCID ID; see https://orcid.org character

CSR_ROLE CReDiT role; see https://www.
casrai.org/credit.html

character

TA B L E  3   Summary of COSORE’s 
contributors table, which provides 
information on the researchers (at least 
one; there may be arbitrarily many listed) 
who measured and contributed each 
dataset. Columns include field name, 
description, class (i.e. type of data), units 
and whether or not the field is required 
(required fields are marked by an asterisk)

Field name Description Class Units Req.

CSR_PORT Port (chamber) number; ‘0’  
means all ports

integer *

CSR_MSMT_VAR Flux should be interpreted as: 
‘Rs’ (soil respiration, whether 
CO2 or CH4), ‘Rh’ (heterotrophic 
respiration only), ‘Reco’ 
(ecosystem respiration), or  
‘NEE’ (net ecosystem exchange)

character *

CSR_TREATMENT Chamber treatment; default is 
‘None’

character *

CSR_AREA Area of measurement chamber numeric cm2

CSR_VOLUME Volume of measurement  
chamber

numeric cm3

CSR_DEPTH Depth of collar insertion numeric cm

CSR_OPAQUE Opaque chamber? logical *

CSR_PLANTS_
REMOVED

Plants removed from chamber? logical *

CSR_FAN Mixing fan in chamber? logical

CSR_SPECIES Comma-separated species list character

CSR_SENSOR_
DEPTHS

Comma-separated list of sensor 
depths

character cm

CSR_LONGITUDE Decimal longitude of 
measurement chamber, 
positive = north

numeric degrees

CSR_LATITUDE Decimal latitude of measurement 
chamber, positive = east

numeric degrees

CSR_ELEVATION Elevation of measurement 
chamber

numeric m

TA B L E  4   Summary of COSORE’s 
ports table, which provides information 
on the various multiplexed chambers 
that are frequently connected to a single 
measurement analyser. Columns include 
field name, description, class (i.e. type of 
data), units and whether or not the field is 
required

https://semver.org/
https://orcid.org
https://www.casrai.org/credit.html
https://www.casrai.org/credit.html
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changes that are completely backwards compatible). Following each 
official (major) release, a DOI will be issued and the data permanently 
archived by Zenodo (https://zenodo.org/). All changes to the data or 
codebase are immediately available through the GitHub repository, 
but only official releases will be issued a DOI; we anticipate this hap-
pening on an approximately annual basis.

2.3 | Data license and citation

The database license is CC-BY-4 (https://creat iveco mmons.org/
licen ses/by/4.0/); see the ‘LICENSE’ file in the repository. This is 
identical to that used by e.g. FLUXNET Tier 1 and ICOS RI. In gen-
eral, this license provides that users may copy and redistribute the 

TA B L E  5   Summary of COSORE’s data table, which holds the actual flux observations and accompanying time-stamped data. Columns 
include field name, description, class (i.e. type of data), units and whether or not the field is required (required fields are marked by an 
asterisk); although not indicated, at least one flux observation (CSR_FLUX_CO2 or CSR_FLUX_CH4) is required in every database row. Note 
that all data in this table are acquired at the point of GHG flux measurement; see Table S1 for site-level data

Field name Description Class Units Req.

CSR_DRY_CO2 Chamber CO2 concentration during flux measurement numeric ppmv

CSR_DRY_CH4 Chamber CH4 concentration during flux measurement numeric ppbv

CSR_CO2_AMB Ambient CO2 concentration at measurement chamber numeric ppmv

CSR_CH4_AMB Ambient CH4 concentration at measurement chamber numeric ppbv

CSR_COMMENTS Comments character

CSR_CRVFIT_CO2 CO2 flux computation method (‘Lin’ or ‘Exp’ for linear and 
exponential)

character

CSR_CRVFIT_CH4 CH4 flux computation method (‘Lin’ or “Exp” for linear and 
exponential)

character

CSR_ERROR Error raised by instrument or during import logical

CSR_FLUX_CO2 CO2 flux (positive = to atmosphere) numeric µmol CO2 m−2 s−1

CSR_FLUX_CH4 CH4 flux (positive = to atmosphere) numeric nmol CH4 m−2 s−1

CSR_FLUX_SE_CO2 Standard error of CO2 flux numeric µmol CO2 m−2 s−1

CSR_FLUX_SE_CH4 Standard error of CH4 flux numeric nmol CH4 m−2 s−1

CSR_LABEL Port/chamber label character

CSR_PAR Photosynthetically active radiation inside measurement  
chamber

numeric µmol 
photons m−2 s−1

CSR_PAR_AMB Photosynthetically active radiation outside measurement 
chamber

numeric µmol 
photons m−2 s−1

CSR_PORT Port/chamber number integer *

CSR_PRECIP Precipitation at measurement chamber numeric mm

CSR_R2_CO2 CO2 flux computation R2 numeric fraction

CSR_R2_CH4 CH4 flux computation R2 numeric fraction

CSR_RECORD Record number within file integer

CSR_RH Chamber relative humidity numeric %

CSR_SMx Volumetric soil moisture at × cm (other CSR_SMx fields follow 
same format)

numeric m3/m3

CSR_SOIL_O2 Soil oxygen level at measurement chamber numeric %

CSR_Tx Soil temperature at × cm (other CSR_Tx fields follow same  
format)

numeric °C

CSR_TAIR_AMB Ambient air temperature at measurement chamber numeric °C

CSR_TAIR Chamber air temperature numeric °C

CSR_TWATER Groundwater temperature at measurement chamber numeric °C

CSR_TIMESTAMP_ 
BEGIN

Timestamp of beginning of flux observation, written  
YYYY-MM-DD HH:MM:SS

POSIXct *

CSR_TIMESTAMP_END Timestamp of end of flux observation, written YYYY-MM-DD 
HH:MM:SS

POSIXct *

CSR_VPD Vapour pressure deficit at measurement chamber numeric Pa

CSR_WTD Water table depth at measurement chamber, positive numbers 
are depth

numeric cm

https://zenodo.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


     |  7275BOND-LAMBERTY ET AL.

database and R package code in any medium or format, adapting 
and building upon them for any scientific or commercial purpose, 
as long as appropriate credit is given. We request that users cite 
this article and strongly encourage them to (a) cite all constituent 
dataset primary publications, and (b) involve data contributors 
as co-authors whenever possible, as is commonly done for other 
global databases such as FLUXNET (Baldocchi et al., 2001; Knox 
et al., 2019). In addition, users should also reference the specific 
version of the dataset they used (e.g. v0.6.0), access date and ide-
ally the specific Git commit number. This supports reproducibility 
of any analyses.

3  | DATA ACCESS AND USE

Major COSORE data releases are available via Zenodo (as noted 
above), as well as the GitHub ‘Releases’ page at https://github.
com/bpbon d/cosor e/releases; we anticipate that institutional 
repositories such as ESS-DIVE (Environmental Systems Science 
Data Infrastructure for a Virtual Ecosystem, https://ess-dive.lbl.
gov/) may host releases at some point in the future. Downloads 
via this page are flat-file CSV (comma-separated values), and 
readable by any modern computing system. Missing values are 
encoded by a blank (i.e. two successive commas in the CSV 

format). A release download is fully self-contained, with full 
data, metadata and documentation; a file manifest; a copy of the 
data license; an introductory vignette; a summary report on the 
entire database; and an explanatory README with links to this 
publication.

An alternative way to access COSORE data, including minor up-
dates between major releases, is to install and use the cosore R (R Core 
Team, 2019) package. This provides a robust framework, including 
dedicated access functions, dataset and database report generation 
and quality assurance and checking (see below). Because the flux 
data are currently included in the repository itself, the latter is quite 
large (compared to most Git repositories), ~215.4 MB. (Note that the 
data are stored in R’s compressed RDS file format; when loaded into 
memory, the entire database is significantly larger, ~565 MB.) It thus 
cannot easily be hosted on CRAN (the Comprehensive R Archive 
Network), the canonical source for R packages. Installing directly 
from GitHub is however straightforward using the devtools or re-
motes packages:

devtools::install_github("bpbond/cosore")library(cosore)
Four primary user-facing functions (cf. Figure 1) are available:

• csr_database() summarizes the entire database in a single conve-
nient data frame, with one row per dataset, and is intended as a 

F I G U R E  1   Summary of COSORE structure (multiple datasets, each with six tables; Tables 2–7) and primary accessor R functions, as 
described in the text (see Section 2.1 in text). For example, R users can join specific tables across all datasets using the csr_table() function, 
and can access individual datasets with csr_dataset(). Non-R users access flat-file versions of the same data, with essentially the same 
structure as the R internal structure shown here

https://github.com/bpbond/cosore/releases
https://github.com/bpbond/cosore/releases
https://ess-dive.lbl.gov/
https://ess-dive.lbl.gov/
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high-level overview. It returns a selection of variables summarized 
in Tables 2–5 and Tables S1–S3, including dataset name, longitude, 
latitude, elevation, IGBP code, number of records, dates and vari-
ables measured;

• csr_dataset() returns a single dataset: an R list structure, each 
element of which is a table (description, contributors, etc., as de-
scribed above);

• csr_table() collects, into a single data frame, one of the tables of 
the database, for any or all datasets;

• csr_metadata() provides metadata information about all fields in all 
tables.

Two additional reporting functions may also be useful to users:

• csr_report_database() generates an HTML report on the entire da-
tabase: number of datasets, locations, number of observations, 
distribution of flux values, etc.;

• csr_report_dataset() generates an HTML report on a single dataset, 
including tabular and graphical summaries of location, flux data 
and diagnostics.

Finally, a number of functions are targeted at developers, and in-
clude functionality to ingest contributed data, standardize data and 
prepare a new release. See the package documentation for more 
details.

3.1 | Documentation

The primary documentation for the COSORE database is this manu-
script. Both the flat-file releases and cosore R package include exten-
sive documentation, including an in-depth vignette included both in the 
package and online (https://rpubs.com/bpbon d/502069). The R pack-
age includes documentation available via R’s standard help system.

F I G U R E  2   Geographic distribution 
of COSORE datasets (N = 89), with point 
sizes corresponding to the number of 
records in each dataset. Map tiles show 
USGS land cover and national elevation 
data and are by Stamen Design, under CC 
BY 3.0; data by OpenStreetMap, under 
ODbL; figure rendered using R’s ggmap 
(Kahle & Wickham, 2013) 
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F I G U R E  3   Distribution of COSORE 
datasets (black markers) in global climate 
space (WorldClim 2, Fick & Hijmans, 2017) 
of mean annual temperature (MAT) 
versus mean annual precipitation (MAP). 
Background colours indicate the number 
of half-degree grid cells with each 
particular MAT–MAP combination. Inset 
plot shows the same points in Whittaker 
biome space (Ricklefs, 2008) 
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F I G U R E  4   Flux observations, by 
IGBP (defined in Table 1), over time. Each 
square represents 5,000 observations, 
with categories of <5,000 observations 
rounded up so that they occupy a single 
square
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F I G U R E  5   Temporal density of 
COSORE datasets, by latitude of the 
observational site
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F I G U R E  6   Number of observations by day of year, for northern 
and southern hemisphere and by gas (CO2 or CH4), in the current 
COSORE datasets; the database currently has no CH4 data from the 
Southern hemisphere (bottom left)

Southern hemisphere

CH4

Southern hemisphere

CO2

Northern hemisphere

CH4

Northern hemisphere

CO2

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300
14,000

16,000

18,000

20,000

22,000

24,000

26,000

1,500

2,000

2,500

500

1,000

1,500

2,000

0

0

0

0

0

Day of year

N
um

be
r o

f o
bs

er
va

tio
ns

F I G U R E  7   Temporal resolution (time interval between 
successive measurements, minutes; note logarithmic scale of x-axis) 
of COSORE data
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3.2 | Data quality and testing

When contributed data are imported into COSORE, the package 
code performs a number of quality assurance checks. These include:

• Timestamp errors, for example illegal dates and times for the 
specified time zone;

• Bad email addresses or ORCID identifiers;
• Records with no flux value;
• Records for which the analyzer recorded an error condition.

Any errors flagged or records removed during this process are 
summarized in the diagnostics table that is part of each dataset 
(Table S3 below). Across all contributed datasets, a median of 7.9% 
of raw observations were removed for one of these reasons. Note 
however that no checking on the flux values themselves is per-
formed (e.g. for outliers, improbable values); currently this is the 
responsibility of the user.

The cosore R package also has a wide variety of unit tests 
(Zhao, 2003) that test code functionality via assertions about func-
tion behaviour and by verifying behaviour of those functions when 

importing test datasets (of different formats and with a variety of er-
rors, for example). In total these tests cover 97.8% of the codebase.

4  | CURRENT DATA AND COMMUNIT Y 
CONTRIBUTIONS

The database currently has 89 contributed datasets with a total of 
8.14 million flux observations across 20 years and five continents 
(Table 1; Figure 2), widely distributed in climate and biome space, 
from Arctic to tropical ecosystems (Figure 3). In terms of data vol-
ume, the current database is dominated by CO2 fluxes in evergreen 
and deciduous forests (Table 1; Figure 4) from the mid-northern 
latitudes (Figures 2 and 5). These data are unequally distributed 
around the year, with many more data available during the Northern 
Hemisphere growing season (Figure 6). There is an order of mag-
nitude more data in COSORE from the Northern than Southern 
Hemisphere, and currently no CH4 data at all from the Southern 
Hemisphere. The interval between measurements ranges from 3 to 
1,440 min, with 25%–50%–75% quantile values of 30, 60 and 60 min 
respectively. A one hour interval between measurements is thus by 

F I G U R E  8   Distribution of CO2 fluxes in COSORE datasets, by IGBP classification (cf. Table 1). For visual clarity this figure excludes fluxes 
<−1 and >10 µmol m−2 s−1 (210,752 observations, 2.6% of the data). Number of datasets (sites) making up data is given in parentheses after 
IGBP abbreviations in each panel
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far the most common choice (Figure 7). Currently 92% of the data-
sets, and 99.999% of the data, provide sub-daily temporal resolution. 
Such resolution allows novel analyses of the ‘hot moments’ of CO2 
and other GHG fluxes (e.g. Diefenderfer et al., 2018).

Dataset CO2 fluxes (mostly soil respiration, but as noted above 
also some heterotrophic respiration and net ecosystem exchange) 
are generally log-normally distributed in most IGBP classifications 
(Figure 8). The distribution of CH4 is more complex, with most data 
clustered around 0 nmol m−2 s−1 but featuring long distribution tails 
to many orders of magnitude larger fluxes for both net uptake and 
release (Figure 9), due to the complexity and variety of biochemical 
processes involved in methane production and oxidation (Riley et al., 
2011).

The COSORE team welcomes data contributions of soil-atmo-
sphere GHG flux data. We prioritize continuously measured (i.e. 
from automated systems including non-chamber approaches) soil 
respiration datasets, but the database structure also accommodates 
(discontinuous, i.e. manual) data, as well as measurements of meth-
ane, net ecosystem exchange and heterotrophic respiration fluxes. 
Contributors receive a QA/QC report for all submissions, including 
details on invalid data, removed data, etc., and can then request cor-
rections or changes before the data are uploaded and go ‘live’; con-
tributors may also request a temporary embargo on their data. There 
currently is no standardized data template that contributors must 
follow, but we anticipate this changing before version 1.0 (planned 
for late 2020). There is no minimum data coverage required, either 
in time or space, although we suggest datasets should at a minimum 
span a growing season.

It is important to note that COSORE itself is not (yet) a perma-
nent data repository: it is an open community database, but not in-
stitutionally backed in the manner of Figshare (https://figsh are.com), 
DataONE (https://www.datao ne.org), ESS-DIVE (https://ess-dive.
lbl.gov/) or ORNL-DAAC (https://daac.ornl.gov). Its design reflects 
extensive consultation with many of these groups for seamless 

interoperability and perhaps future merging. Nonetheless, currently 
we recommend that contributors deposit data in such a repository 
first, and provide its Digital Object Identifier (DOI) in the COSORE 
dataset metadata.

We use the GitHub issue tracker (https://github.com/bpbon d/
cosor e/issues) to track and categorize user improvement sugges-
tions, problems or errors with the R package code or database data, 
requests for new variables or functionality and/or asking questions 
on any other aspect of COSORE. The COSORE team welcomes 
questions, contributions and suggestions (see the ‘CODE_OF_
CONDUCT.md’ file in the repository).

5  | CONCLUSIONS: STRENGTHS, 
LIMITATIONS AND FUTURE DIREC TIONS

COSORE is a ‘coalition of the willing’ (sensu Novick et al., 2018), and 
intended to be a community-driven resource for analyses of soil-at-
mosphere GHG exchange. Possible analyses and next steps include 
syntheses, model evaluation and methodological developments, 
e.g. in gap filling algorithms (Gomez-Casanovas et al., 2013; Zhao 
et al., 2020). Soil-atmosphere GHG flux measurements can be used 
at individual sites to check and constrain estimates of other carbon 
cycle fluxes (Miao et al., 2017; e.g. Phillips et al., 2017). Aggregated 
data across multiple ecosystems can be used to test proposed 
conceptual frameworks and model structures for expanding our 
understanding beyond first-order temperature driven responses, 
and improving representation of RS and other GHG fluxes in global 
ecosystem models (Abramoff et al., 2017; Mitra et al., 2019; Subke 
& Bahn, 2010). Finally, open data and open-source harmonization 
tools (with which to compile disparate datasets) support scientific 
reproducibility, serve as an educational resource (Mouromtsev 
& d’Aquin, 2016) and reduce loss of data over time (Powers & 
Hampton, 2018).

F I G U R E  9   Distribution of CH4 
fluxes in COSORE datasets, by IGBP 
classification (cf. Table 1). For visual clarity 
this figure excludes some extreme values 
(18,719 observations or 4.5% of the data). 
Number of datasets (sites) making up 
data is given in parentheses after IGBP 
abbreviations in each panel. Positive 
values are emissions to the atmosphere, 
and negative values uptake by the soil
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A crucial attribute of COSORE is its relationship to preexisting 
databases and efforts. The older Global Soil Respiration Database 
(SRDB, Bond-Lamberty & Thomson, 2010) focuses on seasonal to 
annual fluxes, with monthly- and daily-resolution offshoots of the 
SRDB (Jian, Steele, Day, et al., 2018; Jian, Steele, Thomas, et al., 
2018) following similar designs. Others, such as ForC (Anderson-
Teixeira et al., 2018), take a broader scope and also focus on 
annual fluxes. We hope that the large volume of standardized, high- 
frequency GHG flux data in COSORE will enable novel global scale syn-
theses, modelling activities, new insights driven by machine learning 
(Albert et al., 2017; Vargas et al., 2018) and conceptual advances (e.g. 
Petrakis et al., 2017) that are currently impossible. Linking COSORE 
data with other high-resolution, open databases such as FLUXNET 
(Baldocchi et al., 2001) and the ICOS RI Carbon Portal (https://www.
icos-cp.eu/data-services) is also likely to yield new insights.

COSORE has a number of limitations, some peculiar to the ef-
fort and others intrinsic to the discipline and community. First, as 
with many observations in the ecological and Earth sciences, it is 
spatially non-representative at the global scale (Xu & Shang, 2016), 
and currently dominated by datasets from North America and East 
Asia (Figure 2). There are no datasets from Africa (cf. Epule, 2015) 
and little South American data. The IGBP representation is skewed 
as well (Figure 4), although the database's climate space coverage is 
reasonable (Figures 3 and 6). This spatial patchiness—a function of 
many factors including economic development, infrastructure, sci-
entific investment—imposes significant restrictions on our ability to 
draw global inferences and analyses from extant observational data.

A second category of limitations arises from COSORE’s particu-
lar design. The database is oriented towards lightweight and minimal 
requirements, aiming for breadth over depth. This has benefits and 
costs. Having low barriers to entry shifts the burden of contributing 
data away from data providers, and keeping the design lightweight 
(with limited controlled vocabularies, ancillary data, etc.) has kept 
the burden on COSORE’s designers and maintainers manageable; 
we are acutely aware that every additional field or piece of informa-
tion imposes a cost, both immediately (for implementation) and in 
perpetuity (for maintenance). This was the rationale behind focusing 
initially on previously uncollated continuous measurements: to maxi-
mize scientific impact in terms of labour involved. In fact, nothing in 
COSORE’s design itself precludes incorporation of spatially distrib-
uted, survey-style measurements. COSORE also remains relatively 
immature, with e.g. no ‘level 2’ data product incorporating external 
data (e.g. Fick & Hijmans, 2017). This imposes an additional cost—of 
time and effort—on database users to locate and integrate externally 
available data themselves.

Finally, analyses using COSORE will be limited by the nature of 
soil respiration and other soil-atmosphere gas flux measurements, 
and the state of the disciplines’ networks and community. Automated 
measurements trade space for time: the systems are more expensive 
and require dedicated power, and do not perform well under cer-
tain conditions, limiting their spatial and temporal coverage at many 
scales (Barba et al., 2018). There remains no institutionally backed 
network akin to AmeriFlux or ICOS, and while there have been 

efforts to integrate chamber flux data into these networks’ data 
products, this has inevitable consequences for continuity and con-
sistency. There is also no standardization of measurement depths for 
ancillary measurements (e.g. soil temperature and moisture) in the 
manner of a top-down network such as NEON (Schimel et al., 2007) 
or ICOS RI (Op de Beeck et al., 2018).

5.1 | Future directions

As noted above, every expansion or addition to a database imposes 
both immediate development costs and unending maintenance 
costs. Nonetheless, there are some areas into which COSORE could 
be expanded. Many automated systems record isotopes and H2O in 
addition to CO2 and/or CH4, and these data could be incorporated 
at relatively low cost; N2O and NH3 are other frequently measured 
GHGs. As noted above, downstream users would also benefit in the 
future from COSORE data premerged with global climate, ecologi-
cal, field inventory or remote sensing data products. This feature is 
provided by the International Soil Radiocarbon Database (Lawrence 
et al., 2020), for example.

Currently, the COSORE team accepts flux data in any tabular for-
mat and performs unit conversion, restructuring and/or reformat-
ting, etc., as needed. This was useful in the database's initial stages, as 
minimizing the work for contributors meant increased submissions. 
We intend however to shift this responsibility to data contributors 
before version 1.0, providing a template form that contributors must 
follow. This will allow for semiautomated data ingestion and follows 
the practices of many other earth sciences databases. Unusual or 
outlier measurements could also be automatically flagged for down-
stream users. More ambitiously, we have put substantial design work 
into ensuring interoperability so that COSORE data should flow rel-
atively seamlessly into (or from) ESS-DIVE, Ameriflux and ICOS RI. 
A long-term vision is that COSORE data could, for example, auto-
matically be made available in the larger community database. It is 
crucial, we believe, that COSORE contributors have assurances that 
their data contributions are traceable across versions and that it is 
not necessary to prepare and submit their data to multiple reposito-
ries. Finally, currently all data are included in the COSORE R package 
download. While convenient for users, this model will likely break 
down when the database doubles or triples in data volume. At that 
point, the data will need to be hosted elsewhere and downloaded 
only on demand.
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