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Arachis hypogaea (peanut) is a globally important oilseed crop with high nutritional value. 
However, upon exposure to overnight chilling stress, it shows poor growth and seedling 
necrosis in many cultivation areas worldwide. Calcium (Ca2+) enhances chilling resistance 
in various plant species. We undertook a pot experiment to investigate the effects of 
exogenous Ca2+ and a calmodulin (CaM) inhibitor on growth and photosynthetic 
characteristics of peanut exposed to low night temperature (LNT) stress following warm 
sunny days. The LNT stress reduced growth, leaf extension, biomass accumulation, gas 
exchange rates, and photosynthetic electron transport rates. Following LNT stress, 
we observed larger starch grains and a concomitant increase in nonstructural carbohydrates 
and hydrogen peroxide (H2O2) concentrations. The LNT stress further induced photoinhibition 
and caused structural damage to the chloroplast grana. Exogenous Ca2+ enhanced plant 
growth following LNT stress, possibly by allowing continued export of carbohydrates from 
leaves. Foliar Ca2+ likely alleviated the nocturnal chilling-dependent feedback limitation on 
photosynthesis in the daytime by increasing sink demand. The foliar Ca2+ pretreatment 
protected the photosystems from photoinhibition by facilitating cyclic electron flow (CEF) 
and decreasing the proton gradient (ΔpH) across thylakoid membranes during LNT stress. 
Foliar application of a CaM inhibitor increased the negative impact of LNT stress on 
photosynthetic processes, confirming that Ca2+–CaM played an important role in alleviating 
photosynthetic inhibition due to the overnight chilling-dependent feedback.
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INTRODUCTION

Arachis hypogaea, peanut or groundnut, is a grain legume crop 
with high nutritional value that is primarily grown in tropical 
and subtropical regions (annual production ∼46 million tons). 
It originates from tropical South America and provides a vital 
global source of vegetable oil and protein (Prasad et  al., 2003; 
Bertioli et  al., 2016; Lambers et  al., 2020). Temperature is 
critical for peanut growth. Low, but non-freezing (0–12°C) 
temperature stress, particularly overnight chilling, is a major 
factor limiting peanut growth, which restricts its production 
areas (Bagnall et  al., 1988; Wan, 2003; Liu et  al., 2013; Song 
et al., 2020). Low-temperature extremes impose variable stresses 
on plant growth, and the chilling/low-temperature episodes in 
both the dark and the light may range from several hours to 
days (Allen and Ort, 2001).

Photosynthesis, a pivotal growth process, is sensitive to 
low-temperature stress. Preceding warmer ambient temperature 
and/or following high light exposure further intensifies the 
chilling-induced negative effects on photosynthetic processes 
(Powles et  al., 1983; Liu et  al., 2013; Zhang et  al., 2014; Liu, 
2020; Song et al., 2020). In peanut cultivation regions, especially 
those in northern China, severe low-temperature stress often 
occurs at night, followed by warm sunny days with high light 
intensity. The effects of nocturnal chilling stress (0–12°C) on 
the photosynthetic machinery have been assessed in several 
species with a tropical/subtropical origin, including coffee (Coffea 
arabica; Guo and Cao, 2004; Bauer et al., 2006), tomato (Solanum 
lycopersicum; Liu et  al., 2012), soybean (Glycine max; Van 
Heerden et  al., 2004), avocado (Persea Americana; Whiley, 
1999), and mango (Mangifera indica; Nir et  al., 1997; Allen 
et al., 2000). Little attention has been given to the physiological 
responses to peanut overnight chilling stress (Liu et  al., 2013; 
Song et  al., 2020). In regions prone to nocturnal chilling, the 
peanut is at risk of variable foliar curling and necrosis 
(Bagnall et  al., 1988; Wan, 2003; Liu et  al., 2013). With global 

climate change associated with the increasing frequency of 
extreme weather events, such as low night temperature (LNT), 
nocturnal/overnight chilling stress, and frost attacks in recent 
years, peanut production in temperate climate zones is facing 
new challenges (Cramer et  al., 2018; Maxwell et  al., 2019).

“Chemical priming” or the pretreatment of plants with 
selected chemical compounds can stimulate plant physiological 
mechanisms to cope with biotic or abiotic stresses (Beckers 
and Conrath, 2007; Savvides et  al., 2016). Several approaches 
have been tested to examine its efficacy in ameliorating the 
adverse effects of chilling stress on crops. Exogenous foliar 
calcium (Ca2+) application can alleviate leaf damage and 
growth inhibition during chilling stress. Pretreatment of 
exogenous Ca2+ improved acclimation to chilling stress in 
low-temperature sensitive plant species, such as peanut (Liu 
et  al., 2013; Song et  al., 2020), wheat (Triticum aestivum; 
You et  al., 2002), Chinese crab apple (Malus hupehensis; Li 
et  al., 2017b), and tomato (Liu et  al., 2012; Zhang et  al., 
2014), although the mechanism remains unclear (Liu, 2020). 
Ca2+, as an essential plant mineral nutrient, plays an important 
role in maintaining the stability of cell walls and membranes 
(Ali et  al., 2003; Song et  al., 2020). Ca2+ ions also serve as 
a ubiquitous second messenger in plant signal-transduction 
networks (Anil and Rao, 2001). Under abiotic stress, plants 
can initiate a series of physiological and biochemical processes 
by increasing the concentration of free Ca2+ in the cytosol 
and combining Ca2+ with calmodulin (CaM), thus playing 
an important role in the transmission, response, and acclimation 
of plants to multiple stresses (Kader and Lindberg, 2010). 
Ca2+ ions participate in a wide variety of environmental 
stresses, such as drought (La Verde et  al., 2018), salt (Knight 
et  al., 1997), low-temperature (Knight et  al., 1996), oxidative 
stress (Price et al., 1994), and hypoxia (Subbaiah et al., 1994). 
Furthermore, Ca2+ is involved in regulating carbohydrate 
metabolism in the cytosol (Brauer et  al., 1990), as well as 
increasing the translocation of photosynthetic carbohydrates 
to sinks (Joham, 1957; Navazio et al., 2020; Song et al., 2020).

Studies have demonstrated that foliar application of Ca2+ 
maintains leaf gas exchange and plant growth in peanut (Liu 
et  al., 2013; Song et  al., 2020), tomato (Zhang et  al., 2014), 
and cucumber (Cucumis sativus; Zhang et  al., 2012) exposed 
to LNT stress. Exogenous Ca2+ application sustains photosynthetic 
capacity by maintaining stomatal conductance (Chen et  al., 
2001), key enzyme activities in the Calvin-Benson-Bassham 
(CBB) cycle (You et  al., 2002; Navazio et  al., 2020), continued 
thylakoid electron transfer (Ai et  al., 2006), and sustaining 
antioxidant capacity (Liu et  al., 2015). Other studies have 
indicated that Ca2+ reduces the concentration of reactive oxygen 
species (ROS; Bhattacharjee, 2009; Liu et  al., 2015), enhances 
cyclic electron flow (CEF; Zhang et  al., 2014), and increases 
the xanthophyll cycle (Yang et  al., 2013) during temperature 
stress. Applying Ca2+ improves cold resistance in tomato by 
increasing the concentration of soluble sugars, slowing down 
freezing, and enhancing the concentration of protoplasm in 
cells (Jiang et  al., 2002; Liu et  al., 2012).

In our previous study, foliar application of Ca2+ significantly 
enhanced peanut growth and photosynthesis under LNT stress 

Abbreviations: CK, Control; Ci, Intercellular CO2 concentration; CEF, Cyclic 
electron flow; DAT, Days after temperature treatment; ETR(I), Relative electron 
transport rate in Photosystem I; ETR(II), Relative electron transport rate in 
Photosystem II; F, Fluorescence yield measured briefly before application of a 
saturation pulse; Fo, Minimal fluorescence yield of the dark-adapted sample with 
all PSII centers open; Fo’, Minimal fluorescence yield of the illuminated sample 
with all PSII centers open; Fm, Maximal fluorescence yield of the dark-adapted 
sample with all PSII centers closed; Fm′, Maximal fluorescence yield of the 
illuminated sample with all PSII centers closed; Fv/Fm, Maximal photochemistry 
efficiency in Photosystem II; FH2, Fenghua 2; gs, Stomatal conductance; LNT, 
Low night temperature stress; TFP, Trifluoperazine; PAR, Photosynthetically active 
radiation measured in μmol quanta·m−2·s−1; Pred, P700 reduction coefficient under 
light; NPQ, Non-photochemical quenching; Fv’/Fm′, Light-adapted maximum 
quantum yield of PSII; OEC, Oxygen-evolving complex; PQ, Plastoquinone; Pm, 
Maximal P700 signal; Pm′, Real-time P700 signal under light; Pn, Net photosynthetic 
rate; PSI, Photosystem I; PSII, Photosystem II; qP, Photochemical quenching 
coefficient; ROS, Reactive oxygen species; Tr, Transpiration rate; Y(II), ΦPSII 
– Actual quantum yield in PSII under light; Y(NO), Non-regulatory quantum 
yield in PSII under light; Y(NPQ), Regulatory quantum yield in PSII under 
light; Y(I), ΦPSI – Actual quantum yield in PSI under light; Y(ND), Quantum 
yield of PSI non-photochemical energy dissipation due to the donor-side limitation; 
Y(NA), Quantum yield of PSI non-photochemical energy dissipation due to the 
acceptor-side limitation; Y(CEF)/Y(II), Ratio of the quantum yield of CEF to Y(II).
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and during its recovery under normal temperature (Liu et al., 2013; 
Song et  al., 2020); however, the underlying physiological 
mechanism how exogenous Ca2+ alleviating inhibition of 
photosynthesis by nocturnal chilling in peanut remains poorly 
understood. Therefore, the present study examined the effects 
of exogenous Ca2+ and a CaM inhibitor, trifluoperazine (TFP) 
on photosynthetic reactions and growth in peanut exposed to 
long-term (days) and short-term (hours) LNT stress.

MATERIALS AND METHODS

Plant Material and Experimental Design
The widely planted high-yielding peanut cultivar in China, 
Fenghua No. 2, was used in this study. Uniform peanut seeds 
were pre-germinated in a Petri dish for 36  h at 27°C and 
then planted in 32-cavity trays (one seed per cavity) for 7 days. 
Seedlings with average sizes were then transplanted into 150 
pots (200  mm height, 260  mm diameter, 1 seedling per pot) 
filled with 4 kg of a standard horticultural substrate (Changchun 
Xihe Agro-technology Co. Ltd., Jilin, China). The pots were 
moved into an artificial climate chamber (Conviron, Winnipeg, 
Canada) with a day temperature of 25°C, night temperature 
of 20°C, and relative humidity (RH) of 60  ±  5%. All seedlings 
received a 12  h (from 6:00 to18:00) photoperiod at a 
photosynthetic photon flux density (PPFD) of 1,000  μmol 
quanta·m−2·s−1 and CO2 concentration of 400  ±  5  μmol·mol−1. 
After 5  days of acclimation, 100 pots with uniform seedlings 
were selected and divided into four groups (25 pots per group) 
for the four treatments [LNT, LNT  +  Ca, LNT  +  TFP, and 
the control (CK); Table  1].

The optimum concentration of exogenous Ca2+ (15  mM 
CaCl2) and CaM inhibitor (5  mM TFP) and the application 
technique were established in our previous experiments (Liu 
et al., 2013; Song et al., 2020). The seedling leaves were sprayed 
until dripping with ultrapure water. For the LNT  +  Ca and 
LNT + TFP treatments, 15 mM Ca2+ or 5 mM TFP, respectively, 
was evenly applied twice a day (at 8:00 and 16:00) on 3  days 
[0, 5, and 10  days of LNT treatment (DoL)]. In our previous 
experiments, we  found that long-term LNT stress reduced leaf 
photosynthetic gas exchange significantly during the seedling 
stage. In our system, a duration of ≥1 DoL was defined as 
long-term LNT stress and <1  DoL was short-term LNT stress. 
This study assessed the effects of exogenous Ca2+ and a CaM 
inhibitor (TFP) on both long-term and short-term LNT stresses.

Plant Sampling and Measurements
Three seedlings per treatment at 1, 6, and 11 DoL were selected 
for measurements of biomass, plant height, leaf area, leaf relative 
chlorophyll concentration, leaf gas exchange, and leaf hydrogen 
peroxide (H2O2) concentration. Chlorophyll was estimated on 
the third-youngest fully expanded leaf of the main stem with 
a chlorophyll meter (SPAD-502 Plus, Japan). Leaf gas exchange 
was measured on the same leaf using an open system (GFS-
3000, Heinz Walz GmbH, Effeltrich, Germany) at 1, 6, and 
11  DoL. During gas exchange measurements, the leaf cuvette 
temperature was set to 25°C and 60% RH. The CO2 concentration 
was maintained at 400  μmol·mol−1. An LED array provided a 
PPFD of 1,000  μmol quanta·m−2·s−1. The third-youngest fully 
expanded leaf was kept in the chamber, ensuring that the 
thermocouple touched it on the lower side. Leaf gas exchange 
parameters included net photosynthetic rate (Pn), stomatal 
conductance (gs), atmospheric CO2 concentration (Ca), 
transpiration rate (Tr), intercellular CO2 concentration (Ci), 
water-use efficiency ( WUE Pn Tr= / ), and leaf stomatal 
limitation ( Ls C Ci a= −1 / ). Leaf area was measured using 
an LI-3000C (LI-COR Biosciences, Lincoln NE, United States). 
After oven-drying at 105°C for 30  min and then 70°C to a 
constant weight, dry weights of leaves and whole plants were 
recorded. Leaf mass per unit leaf area (LMA) was 
calculated as LMA leaf dry weight leaf area= / .

Hydrogen peroxide concentration was measured on the 
third-youngest fully expanded leaf of the main stem, as described 
by Li et  al. (2017a). Briefly, finely ground leaves (60  mg fresh 
weight) were placed in a 2  ml microcentrifuge tube before 
adding 2  ml of 5% (w/v) TCA, and centrifuged 10,000  g for 
10  min at 4°C. The supernatant (1  ml) was added to 0.1  ml 
of 20% (v/v) TiCl4 and 0.2  ml of concentrated ammonia. The 
mixture was centrifuged at 5,000  g for 10  min at 4°C. The 
pellet was dissolved in 3 ml of 1 M H2SO4 and the absorbance 
recorded at 410  nm.

At 6:00  AM  on 1, 6, and 11  DoL, the third-youngest fully 
expanded leaves from six seedlings per treatment (pooled as 
three biological replicates per treatment) were ground to a 
powder after oven-drying at 105°C for 30  min and 70°C to 
constant weight for carbohydrate analysis. Soluble sugars were 
extracted from approximately 100  mg of the above leaf powder 
with 80% (v/v) ethanol at 85°C and quantified using the microtiter 
method (Hendrix, 1993). Pellets containing starch were oven-
dried overnight at 60°C. Starch in the pellet was first gelatinized 
by adding 1  ml of 0.2  M KOH and incubated in a boiling 
water bath for 30  min (Rufty and Huber, 1983). After cooling, 
0.2 ml of 1 M acetic acid was added, and the solution incubated 
with 2  ml acetate buffer (pH 4.6) containing amyloglucosidase 
(6 units, Roche, Basel, Switzerland) at 55°C for 1 h. The reaction 
was terminated in a boiling water bath, and the resulting 
supernatant analyzed for glucose (Song et  al., 2020).

Chloroplast ultrastructure and chlorophyll fluorescence 
parameters were measured at 11  h of LNT treatment (HoL). 
Chloroplast ultrastructure was determined using methods 
previously reported (Strand et  al., 1999). The third youngest 
fully expanded leaves were sliced and observed under a microscope 
at Centre for Microscopy, Characterization, and Analysis at 

TABLE 1 | Details of the four treatments used in the study.

Treatment Day 
temperature

Night 
temperature

Foliar spray 
application 

(2 × daily) at 0, 5, 
and 10 days of 
LNT treatment

Control (CK)

25°C

20°C Ultrapure water
LNT 8°C Ultrapure water
LNT + Ca 8°C 15 mM Ca2+

LNT + TFP 8°C 5 mM TFP
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Shenyang Agricultural University. The samples were fixed in 
4% (v/v) glutaraldehyde, fixed after 2% (w/v) osmic acid, washed 
in 20  mM phosphate buffer, dehydrated by gradient ethanol, 
soaked in Epon812 resin, embedded, and polymerized. The 
resin was sliced (90  nm thickness) with a LEICA EM UC7 
ultrathin slicer (Leica Microsystems, Wetzlar, Germany) and 
stained using uranyl acetate and lead citrate. The slices were 
observed and photographed by transmission electron microscopy 
(TEM; LSM 510; Carl-Zeiss AG, Oberkochen, Germany).

Chlorophyll fluorescence images were determined at 11  HoL 
with an imaging-pulse-amplitude-modulated (PAM) chlorophyll 
fluorometer (Heinz Walz, GmbH, Effeltrich, Germany) as described 
elsewhere (Li et  al., 2014). Plants were fully dark-adjusted for 
>30 min at 11 HoL to measure the maximal photochemical efficiency 
of photosystem II Fv Fm Fm Fo Fm/ /= −( )   and the coefficient 
of non-photochemical quenching NPQ Fm Fm= ′−( )/ 1 . 
Fluorescence images of leaves were obtained accordingly.

Measurements of rapid light curves (RLCs) of chlorophyll 
fluorescence parameters were determined at 11 HoL with Dual-
PAM-100 measuring systems (Heinz Walz, GmbH, Effeltrich, 
Germany). The software Dual PAM v1.19 was used to control 
Dual-PAM-100 measuring systems to calculate the chlorophyll 
fluorescence and absorption changes simultaneously. 
Measurements were conducted using the software’s standard 
procedures and appropriate modifications based on our previous 
research (Shi et  al., 2019; Song et  al., 2020). The RLCs were 
determined after fully dark adjustment at 11  HoL (>30  min) 
at light intensities of 24, 32, 50, 108, 186, 286, 515, 773, 1,192, 
1,469, and 1,823  μmol quanta·m−2·s−1. The exposure for each 
light intensity was 30 s and the saturation pulse was 1,000 μmol 
quanta·m−2·s−1 for 300  ms. All measurements were conducted 
at 25°C. The PSII parameters were measured using a  
Dual-PAM 100 device based on the saturation pulse method. 
The chlorophyll fluorescence parameters were calculated  
as: the actual quantum yield of PSII in the actinic  
light [AL; Y II Fm F Fm( )= −( )' / ] , the quantum yield of 
non-regulatory energy dissipation Y NO F Fm( )= / , the regulatory 
quantum yield in PSII Y NPQ Y II Y NO( )= − ( )− ( ) 1 , and 
the relative electron transfer rate of PSII 
ETR II PAR Y II( )= × ( )× × 0 84 0 5. . . The PSI parameters were 

measured using a Dual-PAM 100 device based on the P700 
signal (absorption differences between 830 and 875  nm). The 
P700 parameters were calculated as: the actual quantum yield 
of PSI Y I Y NA Y ND( )= − ( )− ( ) 1 , the quantum yield of 
non-photochemical energy dissipation due to donor-side  
limitation Y ND P red( )= − 1 700 , the quantum yield of 
non-photochemical energy dissipation due to acceptor side 
limitation Y NA Pm Pm Pm( )= − ′( ) / , and the electron transfer 
rate of PSI ETR I PAR Y I( )= × ( )× × 0 84 0 5. .  (Schreiber and 
Klughammer, 2008). The CEF value CEF ETR I ETR II= ( )− ( )   
and the ratio of the quantum yield of CEF to Y(II) 
Y CEF Y II Y I Y II Y II( ) ( )= ( )− ( )( ) ( )



/ /  were used to determine 

cyclic electron transfer (Yang et  al., 2018).
A functionally intact photosynthetic apparatus was 

characterized by the slow decay of P515 signal after dark 

adaptation (high membrane integrity) and fast decay after 
illumination (high ATP-synthase activity; Schreiber and 
Klughammer, 2008; Zhang et  al., 2014; Yang et  al., 2018). In 
this study, the dual-beam 550–515  nm difference signal 
(electrochromic shift) was monitored simultaneously at 11 HoL 
using the P515/535 module of the Dual-PAM-100 (Heinz Walz, 
GmbH, Effeltrich, Germany). Balancing and calibrating of the 
P515 signal using the automated routine of the software 
Dual-PAM v1.19 occurred before each measurement (Schreiber 
and Klughammer, 2008; Suzuki et  al., 2011). After 1  h of 
dark adjustment, P515 changes induced by saturating single 
turnover flashes were recorded to evaluate the integrity of the 
thylakoid membrane. After 10  min of pre-illumination at 
630  μmol quanta·m−2·s−1 and 4  min of dark adjustment, P515 
changes induced by saturating single turnover flashes were 
recorded to evaluate ATP-synthase activity. Slow dark–light–
dark induction transients of the 550–515  nm signals reflect 
changes in both membrane potential (electrochromic pigment 
absorbance shift) and zeaxanthin concentration. These transients 
were measured after 11 h of full dark adjustment. AL (630 μmol 
quanta m−2  s−1) was turned on after 30  s and off at 330  s. 
Based on analyzing light-off responses of the P515 signal, the 
membrane potential (Δψ) and proton gradient (ΔpH) 
components of the proton-motive force (pmf) were also 
assessed accordingly.

Statistical Analyses
Statistical analyses were carried out using one-way ANOVA 
in SPSS 19.0 (Chicago, IL, United States). One-hundred uniform 
seedlings were included in this study and allocated to four 
groups (i.e., 25 seedlings per group). Three of the 25 seedlings 
per group were used for non-destructive measurements of leaf 
gas exchange, chlorophyll fluorescence, and P700 parameters. 
The remaining seedlings per treatment were selected for 
destructive sampling for seedling growth, TEM observations, 
and measurements of leaf area, biomass, and H2O2 and 
carbohydrate concentrations. The results are presented as mean 
values and SEs of three biological replicates. Post hoc LSD 
tests at p  ≤  0.05 were performed to determine differences 
among treatments. Significant differences are indicated as 
*p  ≤  0.05 among treatments. All graphs were plotted using 
Origin 8.0 and Excel 2016 software.

RESULTS

Long-Term LNT Stress
Plant Growth
At 6 and 11  DoL, LNT decreased plant height, total plant 
dry weight, leaf dry weight, leaf area, LMA, and relative 
chlorophyll concentration in peanut, while the opposite was 
true for LNT  +  Ca. LNT  +  TFP further decreased these 
parameters at 6 and 11 DoL (Figures 1A–F). The LNT treatment 
had higher leaf H2O2 concentration than CK at 6 and 11  DoL; 
in contrast, LNT + Ca reduced it dramatically, and LNT + TFP 
increased it further (Figure  1G).
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Concentrations of Soluble Sugars, Starch, and 
Total Nonstructural Carbohydrates
Low night temperature enhanced soluble sugar concentrations 
at 6 and 11  DoL, particularly and starch and total  
nonstructural carbohydrates at 1, 6, and 11  DoL. The  
reverse was true for LNT  +  Ca, relative to LNT. LNT  +  TFP 
increased the concentrations of soluble sugars, starch,  
and total nonstructural carbohydrates at 6 and 11  DoL 
(Figures  2A–C).

Leaf Gas Exchange
Low night temperature decreased Pn, gs, Tr, WUE, and Ls 
and dramatically increased Ci at 1, 6, and 11  DoL. Compared 
with LNT, LNT  +  Ca increased dramatically Pn at 1, 6, and 
11 DoL, increased gs, Tr, and Ls at 6 and 11 DoL, and markedly 
decreased Ci at 6 and 11  DoL. Conversely, LNT  +  TFP 
dramatically decreased Pn, gs, Tr, and Ls at 6 and 11  DoL, 
decreased WUE at 11  DoL, and increased Ci at 6 and 11  DoL 
(Figures  3A–E).

A B

C D

E

G

F

FIGURE 1 | Effect of exogenous calcium (Ca2+) and a calmodulin inhibitor (TFP) on (A) plant height, (B) total plant dry weight (per plant including all organs), (C) leaf 
dry weight, (D) leaf area, (E) leaf mass per unit leaf area (LMA), (F) relative chlorophyll concentration (SPAD value), and (G) hydrogen peroxide (H2O2) concentration in 
peanut leaves under long-term low night temperature (LNT) stress [1, 6, and 11 days of LNT treatment (DoL)]. Values are means of three biological replicates ± SE 
(n = 3). *indicate significant differences among treatments at p ≤ 0.05. Significant differences between the three treatments under LNT stress are shown in parentheses.
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Short-Term LNT Stress
Chloroplast Ultrastructure
Short-term LNT stress (11 HoL) damaged the chloroplast grana; 
LNT + Ca alleviated the damage, while LNT + TFP exacerbated 
the damage. Short-term LNT stress increased the size of starch 
grains and reduced the number of plastoglobules; LNT  +  Ca 
alleviated this effect, while LNT  +  TFP exacerbated it 
(Figures  4A–D).

Fv/Fm and NPQ
The leaves in LNT treatment had lower Fv/Fm than CK, while 
LNT  +  Ca had similar values to CK (Figure  5A). The leaves 
in the LNT treatment had significantly higher NPQ than CK; 
LNT  +  Ca had lower NPQ and LNT  +  TFP had higher NPQ 
than LNT (Figure  5B).

Photosystems Activities
The effective quantum yield of PSII photochemistry [Y(II)] 
decreased gradually with increasing light intensity in all 
treatments. The LNT treatment had significantly lower Y(II) 
than CK. LNT + Ca increased Y(II), while LNT + TFP reduced 
it further, relative to LNT (Figure  6A). The quantum yield 
of regulated energy dissipation in PSII [Y(NPQ)] increased 
rapidly with increasing light intensity in all treatments. The 
LNT treatment had significantly higher Y(NPQ) than CK 
before the light intensity reached 773  μmol quanta m−2  s−1. 
LNT  +  Ca decreased Y(NPQ), while LNT  +  TFP increased 
it further, relative to LNT (Figure 6B). In contrast, the quantum 
yield of non-regulated energy dissipation in PSII [Y(NO)] 
increased gradually with increasing light intensity. The LNT 

treatment had higher Y(NO) than CK. LNT  +  Ca decreased 
Y(NO), while LNT  +  TFP increased it, relative to LNT 
(Figure  6C).

The effective quantum yield of PSI photochemistry [Y(I)] 
followed the same trend as Y(II) (Figure  6D). The quantum 
yield of PSI non-photochemical energy dissipation due to the 
donor-side limitation [Y(ND)] increased gradually with increasing 
light intensity in all treatments. The LNT treatment had 
significantly higher Y(ND) than CK. LNT  +  Ca decreased 
Y(ND) while LNT  +  TFP increased it further, relative to LNT 
(Figure  6E). The quantum yield of PSI non-photochemical 
energy due to the acceptor-side limitation [Y(NA)] increased 
rapidly when initially exposed to light, before quickly declining 
and stabilizing in all treatments. The LNT treatment had 
significantly lower Y(NA) than CK. LNT + Ca enhanced Y(NA), 
while LNT  +  TFP decreased it further, relative to LNT 
(Figure  6F).

Photosynthetic Electron Transport
The electron transfer rate of PSII [ETR(II)] and PSI [ETR(I)] 
in leaves rapidly rose with increasing light intensity. The LNT 
treatment had significantly lower ETR(II) and ETR(I) than 
CK. LNT  +  Ca increased both ETR(II) and ETR(I), while 
LNT  +  TFP reduced them (Figures  7A,B). The CEF around 
PSI (CEF) increased with increasing light intensity in all 
treatments. The LNT treatment significantly increased CEF, 
relative to CK, and LNT  +  Ca stimulated it more than LNT, 
while LNT  +  TFP inhibited it from 186  μmol quanta m−2  s−1 
onwards (Figure  7C). All LNT treatments had higher ratios 
of the quantum yield of CEF to Y(II) [Y(CEF)/Y(II)] than 
CK beyond 186  μmol quanta m−2  s−1 (Figure  7D).

A B

C

FIGURE 2 | Effect of exogenous Ca2+ and a calmodulin inhibitor (TFP) on the concentrations of (A) soluble sugars, (B) starch, and (C) total nonstructural 
carbohydrates in peanut leaves under long-term LNT stress (1, 6, and 11 DoL). Values are means of three biological replicates ± SE (n = 3). *indicates significant 
differences among treatments at p ≤ 0.05. Significant differences between the three treatments under LNT stress are shown in parentheses.
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Proton-Motive Force, Thylakoid Membrane 
Integrity, and ATP-Synthase Activity
The faster decay of the P515 signal after adjustment to darkness 
and the slower decay after irradiation to AL in the LNT 
treatments indicated that the thylakoid membrane integrity 
was impaired and inhibited ATP-synthase activity, relative to 
CK (Figures  8A,B). It also indicated that the rate of proton 
transfer from the lumen to the stroma via ATP-synthase was 
largely inhibited at 11 HoL. LNT  +  Ca pretreatment increased 
thylakoid membrane integrity and ATP-synthase activity while 
LNT  +  TFP decreased it.

The Δψ and ΔpH components of the proton-motive force 
(pmf) can be  estimated by analyzing light-off responses of the 
P515 signal (Figure  8C). The difference between the signal of 
steady-state and the “dark baseline” reflects substantial Δψ. 
The “undershoot” below the “dark baseline” is considered a 
measure for the steady-state ΔpH. The LNT treatments had 
significantly lower Δψ than CK; LNT + Ca increased it further, 
and LNT  +  TFP slightly decreased it (Figure  8D). In contrast, 
the LNT treatments had significantly higher ΔpH than CK; 

LNT  +  Ca decreased it slightly, and LNT  +  TFP increased it 
slightly (Figure 8D). The relative extent of zeaxanthin formation 
can be judged from the increase in the “dark baseline” apparent 
after light-off (Figure  8E). The “dark baseline” of the LNT, 
LNT  +  Ca, and LNT  +  TFP treatments decreased significantly 
more than CK, indicating a decline in zeaxanthin concentration. 
Compared with LNT, LNT  +  Ca increased zeaxanthin 
concentration, while LNT  +  TFP decreased it.

DISCUSSION

LNT Stress-Induced Feedback Inhibition of 
Photosynthesis Was Mainly Due to Limited 
Growth/Sink Demand
Nocturnal chilling stress significantly inhibited growth and leaf 
expansion (Figures  1A–E), which is consistent with earlier 
findings in tomato (Zhang et  al., 2014; Lu et  al., 2020) and 
melon (Cucumis melo; Hao et  al., 2016). Other studies have 
demonstrated that peanut exhibited poor growth (associated 

A B

C D

E F

FIGURE 3 | Effect of exogenous Ca2+ and a calmodulin inhibitor (TFP) on peanut gas exchange characteristics (A) net photosynthetic rate (Pn), (B) stomatal 
conductance (gs), (C) transpiration rate (Tr), (D) intercellular CO2 concentration (Ci), (E) water-use efficiency (WUE), and (F) leaf stomatal limitation (Ls) in peanut 
leaves under long-term LNT stress (1, 6, and 11 DoL). Values are means of three biological replicates ± SE (n = 3). *indicates significant differences among 
treatments at p ≤ 0.05. Significant differences between the three treatments under LNT stress are shown in parentheses.
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with foliar necrosis and curling) when grown below 15°C 
(Wan, 2003; Liu et  al., 2013). LNT stress generally reduces 
leaf area, stem diameter, and shoot and root dry matter 
accumulation (Solanke and Sharma, 2008; Dias et  al., 2011; 
Hajihashemi et  al., 2018). Leaf expansion rates change with 
the environmental temperature. Specifically, chilling stress reduces 
leaf expansion rates and leaf area in sorghum (Sorghum bicolor), 
maize, and sunflower (Helianthus annuus; Tardieu et al., 1999). 
LNT stress can also reduce leaf growth, the concentration of 
photosynthetic pigments and shoot and root dry matter 
accumulation in tomato (Latef and He, 2011), melon 
(Hao et  al., 2016), and peanut (Song et  al., 2020).

We demonstrated that even a short-term (11 HoL) overnight 
chilling stress significantly increased soluble sugar, starch, and 
total nonstructural carbohydrate concentrations in leaves 
(Figures  2A–C). Our TEM results confirmed that the 

short-term (11 HoL) LNT stress severely damaged the chloroplast 
grana and expansion of starch grains in leaves, relative to CK 
(Figures  4A,B). The accumulation of major photoassimilates 
(soluble sugars and starch) in leaves is critical for balancing 
photosynthate production and sugar consumption for tissue 
growth and development. A coordinated mutual relationship 
exists among plant growth/sink utilization and photosynthesis, 
rather than a simple one-way dependence of growth on 
photosynthesis (Adams et  al., 2013; Lambers and Oliveira, 
2019). Carbohydrate synthesis occurs in photosynthesizing leaves 
(sources) to provide substrates for plant growth (e.g., leaf 
expansion, stem, and root development) and maintain 
non-photosynthetic plant tissues (sinks; Cohu et  al., 2014; 
Lambers and Oliveira, 2019). Our findings suggest that nocturnal 
chilling stress directly inhibits peanut growth and nonstructural 
carbohydrate translocation from source to sink, resulting in a 

A B

C D

FIGURE 4 | Effect of exogenous Ca2+ and a calmodulin inhibitor (TFP) on chloroplast ultrastructure of peanut leaves under short-term LNT stress (11 HoL). (A) CK; 
(B) LNT; (C) LNT + Ca, and (D) LNT + TFP.

A B

FIGURE 5 | Effect of exogenous Ca2+ and a calmodulin inhibitor (TFP) on chlorophyll fluorescence parameters and images (A) maximum photochemical efficiency 
of PSII (Fv/Fm) and (B) non-photochemical quenching (NPQ) coefficient in peanut leaves under short-term LNT stress (11 HoL). Values are means of three biological 
replicates ± SE (n = 3). *indicates significant differences among treatment at p ≤ 0.05. Significant differences between the three treatments under LNT stress are 
shown in parentheses.
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significant accumulation of nonstructural carbohydrates in 
photosynthetically active leaves (Figures  2, 4), which are 
consistent with studies on maize (Adams et  al., 2013) and 
peanut (Song et  al., 2020).

This study showed that the negative impact of LNT stress 
on peanut photosynthesis was due to reduced export of 
nonstructural carbohydrates, as we  only exposed plants to 
nocturnal chilling stress (Figures 1–4). The imbalance between 
source and sink/growth can further exert feedback 
downregulation or inhibition of leaf photosynthesis via 
nonstructural carbohydrate accumulation in photosynthesizing 
leaves (Foyer, 1988; Koch, 1996; Paul and Foyer, 2001; Paul 
and Pellny, 2003). In particular, we demonstrated that significant 
accumulation of nonstructural carbohydrates in leaves, even 
in short-term (11  HoL) LNT-stressed plants impaired 
photosynthetic machinery, including photosystems activities, 
thylakoid electron transport, carbon fixation, chloroplast 
morphology, and photoinhibition (Figures  3–8). Our results 
suggest that in the early stage of short-term LNT stress (without 
light), the significant accumulation of nonstructural carbohydrates 

damaged thylakoid membranes (Figures  4–6). Consequently, 
thylakoid membrane disintegration might be  related to over-
reduction and damage of the photosynthetic electron transport 
chain after short-term or long-term LNT stress followed by 
warm sunny days (with light; Figures  5–8; Song et  al., 2020). 
Our findings are consistent with other studies, which reported 
that insufficient sink activity and growth inhibition can lead 
to significant accumulation of nonstructural carbohydrates in 
leaves and severe photoinhibition (Urban and Alphonsout, 2007; 
Adams et  al., 2013). Indeed, there is evidence that long-term 
chilling/cold stress can inhibit the activities of photosynthetic 
reaction centers, thus restricting the electron transport chain 
and carbon fixation (Kasuga et al., 2004; Baker, 2008; Lu et al., 
2020; Song et  al., 2020). Our results further demonstrated that 
even a short-term LNT stress could also result in the decreases 
of the thylakoid membranes integrity and ATPase activity 
(Figure 7) and the increase of Y(NO), which is the non-regulated 
energy loss in PSII – a high value of Y(NO) reflecting the 
inability of the plant to protect itself against damage by excess 
excitation (Figure 6). It is plausible that the PSII super-complex 

A B

C D

E F

FIGURE 6 | Effect of exogenous Ca2+ and a calmodulin inhibitor (TFP) on the rapid light curves (RLCs) of photosystems parameters (A) Y(II), (B) Y(NPQ), (C) Y(NO), 
(D) Y(I), (E) Y(ND), and (F) Y(NA) in peanut leaves under short-term LNT stress (11 HoL). Values are means of three biological replicates ± SE (n = 3). *indicates 
significant differences among treatments at p ≤ 0.05. Significant differences between the three treatments under LNT stress are shown in parentheses.
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was photo-damaged after the short-term (11  HoL) LNT stress 
(Figures  5, 6). The impact of the short-term LNT (11  HoL) 
stress on the light-dependent reactions was mainly reflected 
by slower electron transfer of thylakoids (Figure  7), reduced 
ATP and NADPH formation, and inhibition of carbon 
assimilation (Figures  3, 8), leading to significant H2O2 
accumulation (Figure 1G) and impaired photosynthetic apparatus 
(Figures  5, 6). We  also found that short-term LNT (11  HoL) 
stress stimulated the operation of cyclic photosynthetic electron 
transport around PSI, consistent with findings in Scots pine 
(Pinus sylvestris; Ivanov et  al., 2001), maize (Savitch et  al., 
2011; Zhang et al., 2014), and tomato (Lu et al., 2020) exposed 
to long-term chilling stress.

Chemical Priming by Exogenous Ca2+ 
Restored Nocturnal Chilling-Dependent 
Feedback Inhibition of Photosynthesis 
Was Mainly Due to Improved Growth/Sink 
Demand
Exogenous Ca2+ reduced the accumulation of nonstructural 
carbohydrates and H2O2 in leaves (sources) when undergoing 
overnight chilling stress (Figures  1, 2, 4). There are pieces of 
evidence that exogenous Ca2+ can serve to maintain 
photosynthetic processes by improving chilling stress resilience 
(Brauer et  al., 1990) in tomato (Zhang et  al., 2014; Liu et  al., 
2015), wheat (You et  al., 2002), Chinese crab apple (Li et  al., 
2017b), and peanut (Liu et  al., 2013; Song et  al., 2020). In 
particular, Ca2+ is a critical essential element for peanut – a 
calciphilous legume crop – and directly connected to plant 
growth processes and responses to phytohormones (Wan, 2003; 

White and Broadley, 2003; Thor, 2019); and Ca2+ is involved 
in regulating a series of cellular activities, including plant  
cell division and elongation, cytoplasmic flow, and 
photomorphogenesis (Kader and Lindberg, 2010). The key 
function of Ca2+ is to serve as an intracellular messenger 
involved in many physiological processes and signaling pathways, 
ranging from plant tissue development (Michard et  al., 2011; 
Monshausen et  al., 2011; Ortiz-Ramírez et  al., 2017; Zhang 
et  al., 2017) to environmental stress responses (Knight et  al., 
1996, 1997). Ca2+ is involved in the regulation of carbohydrate 
metabolism, which can directly contribute to the regulation 
of sucrose synthesis, such as the inhibition of cytosolic Fru1,6-
bisPase, activation of sucrose-phosphate synthase, and turnover 
of inorganic pyrophosphate (Brauer et  al., 1990; Eckardt, 2001; 
Lu et  al., 2013). In particular, Ca2+ is an important component 
of several signal-transduction pathways including sugar-signaling 
and auxin-signaling (Ohto and Nakamura, 1995; Gounaris, 
2001). Moreover, Ca2+ regulation has been implicated in phloem 
function (Eckardt, 2001). Our results demonstrated that 
exogenous Ca2+ indirectly relieved a further decline in gs and 
Tr under LNT stress (Figure 3), consistent with previous studies 
in Arabidopsis (Dong et al., 2013), cotton (Gossypium hirsutum; 
Joham, 1957), tomato (Liu et  al., 2015), and spinach (Spinacea 
oleracea; Brauer et al., 1990), where Ca2+ improved the synthesis, 
phloem loading, and export of photosynthetic carbohydrates 
(Joham, 1957; Eckardt, 2001; Lu et  al., 2013).

Based on our analyses, leaf morphology (Figures  1A–E), 
analytical chemical profiling (Figures  1F, 2), ultrastructural 
observations by TEM (Figure  4), gas exchange (Figure  3), 
and photosynthetic apparatus activity assessment (Figures 5–8) 
demonstrated that the restored LNT-linked damage to the 

A B

C D

FIGURE 7 | Effect of exogenous Ca2+ and a calmodulin inhibitor (TFP) on the RLCs of photosynthetic electron transport (A) ETR(II), (B) ETR(I), (C) CEF, and 
(D) Y(CEF)/Y(II) in peanut leaves under short-term LNT stress (11 HoL). Values are means of three biological replicates ± SE (n = 3). *indicates significant differences 
among treatment at p ≤ 0.05. Significant differences between the three treatments under LNT stress are shown in parentheses.
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photosynthetic machinery by exogenous Ca2+ might be  a 
consequence, rather than a cause, of enhanced growth (sink 
demand) and stimulated export of nonstructural carbohydrates 
in photosynthesizing leaves. The accumulation of nonstructural 
carbohydrates in leaves generally impairs chloroplast structure, 
thylakoid membranes, and the photosynthetic electron transport 
chain (Foyer, 1988; Pammenter et  al., 1993; Paul and Foyer, 
2001; Song et  al., 2020). We  observed similar LNT-linked 
damage to peanut chloroplast structure and thylakoid membranes 
(Figures  3–8). Interestingly, exogenous Ca2+ relieved LNT 
impairment to chloroplast structure, thylakoid membranes, and 
photosystems activities; Ca2+ can bind to extrinsic luminal 
protein PsbO and sustain the oxygen-evolving complex (OEC; 
Heredia and Rivas, 2003; Sasi et al., 2018). The high concentration 
of Ca2+ in the lumen of the thylakoid membrane would stabilize 

the OEC against photodamage during environmental stress 
(Takahashi and Murata, 2008). In the present study, exogenous 
Ca2+ priming reduced Y(NO) undergoing short-term LNT stress, 
whereas short-term LNT and LNT + TFP resulted in an increase 
of Y(NO) indirectly (Figure 6C). It is known that Ca2+ application 
affects the expression of LHC stress-related protein 3, which 
is crucial for the energy-dependent component of NPQ 
(Terashima et  al., 2012). In addition, exogenous Ca2+ can 
enhance the activities of several key enzymes in the Calvin-
Benson-Bassham cycle, improving CEF and the PSII reaction 
center activity (Terashima et  al., 2012; Hochmal et  al., 2015). 
Our data suggested that Ca2+ priming helped to reduce damage 
to the PSI acceptor-side of the short-term LNT-stressed leaves 
by inducing a rapid increase in the CEF rate, thereby protecting 
the PSI reaction center (Figures  6E, 7C,D). More research is 

A B
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D

FIGURE 8 | Effect of exogenous Ca2+ and a calmodulin inhibitor (TFP) on slow P515 induction transients of peanut leaves under short-term LNT stress (11 HoL). 
(A) Rapid kinetics of P515 induced by saturating single turnover flashes after dark acclimation for 1 h; (B) fast kinetics of P515 induced by saturating single turnover 
flashes after pre-illumination for 10 min at 1,000 μmol photons·m−2·s−1 followed by 4 min darkness; (C) complete recording of light-on and light-off responses and 
enlarged display of light-off response to light quality with the indication of the estimated proton gradient (ΔpH) and membrane potential (Δψ) components of 
proton-motive force (pmf). Slow “dark–light–dark” induction transients of the 515 nm signal were measured. Actinic light (AL; 630 μmol·photons m−2 s−1) was turned 
on after 30 s and off after 330 s; (D) ∆pH and ∆ψ components of the pmf estimated from the curves of slow P515 kinetics; (E) changes in the P515 signal of slow 
dark–light–dark induction transients indicate the relative zeaxanthin concentration. Values are means of three biological replicates ± SE (n = 3). *indicates significant 
differences among treatments at p ≤ 0.05. Significant differences between the three treatments under LNT stress are shown in parentheses.
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needed to ascertain the molecular changes associated with short 
and long-term LNT stress and the associated CEF pathway 
(i.e., the PGR5/PGRL1‐ or NDH-dependent CEF pathway) 
during Ca2+ priming.

We found that exogenous application of a CaM inhibitor 
(TFP) caused further downregulation of leaf physiology and 
additional growth inhibition (Figures  1–3). The LNT  +  TFP 
treatment caused a significant increase of soluble sugar, starch, 
and total nonstructural carbohydrate concentrations, relative 
to LNT (Figure  2). TFP enters plant cells through the cell 
membrane and prevents the formation of a Ca2+–CaM complex, 
which is essential for the functional CaM-linked signaling 
pathways during abiotic stress (Hepler, 2005; Liu et  al., 2013). 
The Ca2+–CaM complex may play an important role in facilitating 
Ca2+ signal transduction to alleviate nocturnal chilling-dependent 
feedback inhibition of photosynthesis under short-term and 
long-term LNT stress. More research is needed to unravel the 
specific molecular mechanism(s) underpinning the Ca2+–CaM 
complex formation and signaling events during LNT stress.

Taken together, we  show that exogenous Ca2+ alleviated 
nocturnal chilling-dependent feedback inhibition of 
photosynthesis. The impairment of the photosynthetic apparatus 
was prevented by improving sink demand through the continued 
export of nonstructural carbohydrates during exogenous Ca2+ 
priming.

CONCLUSION

Both short-term (11 HoL) and long-term (1, 6, and 11 DoL) 
LNT stress inhibited peanut growth, leaf nonstructural 
carbohydrates export, and photosynthetic processes. Even a 
short-term LNT stress altered photosystems activities, thylakoid 
electron transport, and chloroplast morphology by causing 
significant accumulation of nonstructural carbohydrates in leaves. 
Our findings demonstrate that exogenous Ca2+ alleviated 
LNT-dependent feedback inhibition of photosynthesis by 
improving sink demand and facilitating nonstructural 
carbohydrate export from chloroplasts. In addition, Ca2+ priming 
reduced damage to the foliar photosynthetic electron transport 
chain by stimulating CEF and reducing the ΔpH. The poorer 
growth performance of TFP-pretreated seedlings than 

LNT-stressed seedlings confirmed the role of Ca2+ in alleviating 
LNT stress. These observations confirm the involvement of 
CaM in this Ca2+ priming restorative effect against LNT stress.
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