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Abstract

Background: Potato is the third most consumed crop in the world. Breeding for traits such as yield, product
quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important
traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding
line, SW93–1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop
understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to
these traits. Transcript markers with predictive value for field performance applicable under controlled environments
would be of great value for plant breeding.

Results: A total of 34 progeny lines from SW93–1015 and Désirée were phenotyped for 17 different traits in a field
in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34
progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a
controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson
and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene
expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and
tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance
and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-
domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated
to growth rate.

Conclusion: In our study, we identify 100’s of transcripts, putatively linked based on expression with 17 traits of
potato, representing both well-known and novel associations. This approach can be used to link the transcriptome
to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal
environments to traits in a progeny population with different methods introducing the application of DUO for the
first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in
another progeny population.
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Background
Potato is the world’s third largest food crop. It has a high
yield potential and constitutes an almost irreplaceable part
of many countries’ cuisines [1]. Since the cultivated tetra-
ploid potato in Europe originates from the limited germ-
plasm at the time of introduction, it has a narrow genetic
base [2]. Due to its high degree of heterogeneity and in-
breed depression, DNA markers have so far had rather
limited use in potato breeding [3]. Next-generation se-
quencing (NGS) offers new possibilities to do high
throughput transcriptome profiling of plant progeny pop-
ulations and offers new ways to also study transcript ex-
pression associated to phenotypic traits.
Linking transcripts to phenotypes can be a way to de-

velop new transcript markers and transcript profiles, so-
called molecular signatures, associated to a certain trait.
This has been shown in other crops where, e.g., tran-
scripts important in leaf development were identified in
a maize mapping population [3, 4]. Recently, a number
of transcript and metabolite markers associated to the
complex trait drought tolerance in potato was described
[5]. These putative transcript markers also provide the
first step in revealing genes involved in complex traits of
polygenic origin, which could possibly overcome part of
the challenge in analysing polyploid species.
Many studies have found clearer expression differences

between parents than between the progeny lines. Indeed,
it has been reported that the majority of differentially-
expressed genes between two parents are expressed at
inter-parent levels in the hybrid offspring [6]. In maize,
six different genotypes in the F1 generation revealed a
correlation between genetic diversity and transcriptional
variation, however, one-quarter of the genes showed
non-additive effects in expression [4, 7, 8]. The extent of
variation in gene expression profiles between parents
and progeny and in between progeny may depend on
the species, parental genotypes, environmental discrep-
ancies and plant tissue studied.
Here, we explore the differences in transcriptome com-

position between members of a population from two tetra-
ploid parents by generation of RNA-seq from controlled
conditions. We do this by applying three different correl-
ation methods, Pearson and Spearman correlation, and the
novel DUO similarity metric to compare the transcripts as-
sociated to certain phenotypic traits. DUO classifies the
values of a matrix as high, low or neutral, and then calcu-
lates the co-occurrence of high, low or high/low values.
(Climer et al., submitted). The DUO metric is an adaptation
of an existing and published metric called the Custom Cor-
relation Coefficient – CCC [9]. The CCC is a Single Nu-
cleotide Polymorphism (SNP) correlation metric designed
specifically for the case where the data vector’s elements
are divided into two main categories. The structure of the
DUO formula is identical to that of the CCC formula,

except that in this case, the categories are high/low expres-
sion level/phenotype level instead of allele. This is a useful
metric to use in addition to Pearson and Spearman correl-
ation metrics as it naturally deals with categorical data.
In this way, we find potential new transcript markers

and profiles associated with different traits in a progeny
population of potato that at the same time indicate the
underlying molecular mechanisms with the specific
traits. Ideally, transcript markers should be robust
enough to be useful in a controlled setting to further en-
hance the screening process as several generations of
plants per year can be generated in controlled condi-
tions. Thus, whereas the transcriptome was captured
from unstressed plants grown in controlled conditions,
the phenotypic data depending on trait were recorded
either from field or controlled climate settings.
Late blight resistance (caused by Phytophthora infes-

tans) has previously been studied in this population, and
the receptor resistance (R-) gene behind the resistance
has been cloned [10]. From a previous quantitative pro-
teomics study of this population based on selective reac-
tion monitoring (SRM), we concluded that even in the
absence of the pathogen, the resistance gene was affect-
ing the abundance of a number of selected secreted pro-
teins [11]. Here, we found transcriptome effects of this
R-gene again without any pathogens present. In addition,
we report phenotypic data from a resistance screening in
controlled conditions of Alternaria solani inoculation in
leaves and tubers as well as Dickeya solani inoculation.
In field trials we recorded agronomical important traits
for potato and analysed associated transcripts for height,
growth rate, flowering time, leaf texture, leaf lesions,
number of tubers, number of green tubers and yield.

Results and discussion
Phenotyping correlations in the progeny population
We phenotyped 34 lines for 17 plant traits in three trait
categories (Table 1), namely Biotic Stress: P. infestans re-
sistance in leaves (PIR), tuber blight caused by P. infestans
(TBS), Dickeya response (DR, suseptibility), Lesions after
Alternaria infection in leaves (LAI), Alternaria infection
volume (AIV) in tubers, degree of HR-like lesions (HRL);
Tuber: Number of tubers (NoT), Tuber greening in field
(TGF), Visible tubers close to soil surface (VT), Yield per
plant 2013 (YP13), Yield per plant 2014 (YP14); Leaf/
Shoot/Flower: Senescence level in the late season (SLS),
Growth rate (GR), Height (H), Level of necrotic leaves in
the late season (NLL), Leaf texture (LT), Flowering time
(FT). Among the 17 traits, three were categorical and the
rest were quantitative (Table 1). The progeny lines show
clear difference in scoring values for most traits and scor-
ing values of the parents are often different from the aver-
age values of the traits in the segregating progeny lines
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(Table 1). The phenotype data for all traits underlying the
analysis is included as Additional file 1: Table S1.
In order to relate phenotypes to each other, Spearman

correlation was calculated based on trait values (Table 2).
As could be expected, several growth phenotypes such as
tuber yield (2013 and 2014; linear regression of R2 = 0.31
between seasons), height and growth rate are positively
correlated with each other. These trait correlations are
well-known in different potato growing systems (e.g. [12,
13]). The growth-related traits were negatively coupled to
flowering time and senescence, which if late led to less
tuber yield, reflecting the necessity for not too late devel-
opment for high yielding cultivars in Nordic climates,
which have relatively short growth seasons. Similarly, nec-
rotic lesion development in field and HR-like response in
the lab were negatively correlated with yield. The degree
of HR-like lesions observed in the lab were clearly posi-
tively correlated with an increased number of necrotic
spots observed in the field.
Of the disease traits measured, Alternaria infection in

tubers correlated positively with yield, growth rate and
height, whereas less Alternaria infection was correlated
with later senescence in the field, and late flowering time
as reported earlier [14].
P. infestans susceptibility did not correlate with any of

the other measured traits, and this reflect the 1:1 pres-
ence or absence of this single dominant resistance gene

recently identified by us to drive the late blight resist-
ance in this progeny population [10]. Interestingly, a
number of transcripts changing in abundance were iden-
tified as possible effects of the presence of the R-gene,
discussed below.

Transcriptome assembly and annotation
In total, 875.6 million paired-end reads were sequenced
from the 34 segregating potato lines. The average read
count per line was approximately 25 million reads. After
read quality control, only cleaned reads with a quality
score higher than 20 and read length longer than 20 bp
were considered for the analysis.
Sequence variations between genotypes can affect read

alignment. Therefore, we generated a master transcrip-
tome based on sequence data from all lines and the two
parents to map all reads back to. In order to build a
master transcriptome, all the sequenced samples from
the 34 lines were pooled. The de novo assembly of the
master transcriptome yielded a total of 212,536 contigs
with a minimum length of 201 bp, a N50 value of 1177
bp and an average length of 724 bp. To ensure quality of
the assembly, reads were mapped back to the master
transcriptome and a satisfactory average of 83% success-
fully mapped reads per sample was achieved (Table S2.
The assembly was further evaluated for sequence com-
pleteness through BUSCO, which identified 1258 out of

Table 1 Mean, maximum and minimum of the traits determined form the 34 progeny lines and two parents

Abbreviation Trait Unit Condition Mean ± SD Max Min Désirée SW93–
1015

N (plants/
tubers per line)

Time of
observation

DR Dickeya resistance score Lab 1.9 ± 1.7 6.8 0.00 5.4 0.7 12 NA

LAI Lesions after Alternaria
infection (leaf)

% Greenhouse 3.3 ± 0.8 4.9 1.9 1.9 3.6 10 NA

AIV Alternaria infection
volume (tuber)

mm3 Lab 535 ± 371 1946 112 322 523 6 NA

TBS Tuber blight score score Lab 2.5 ± 0.90 5.0 0.3 2.2 0.3 7 NA

VT Visible tubers/plant number Field 3.2 ± 2.4 14.5 0.3 0.3 2.8 10 2 Sep 2013

TGF Tuber greening/plant number Field 0.08 ± 0.12 0.60 0 0 0.10 10 2014

YP13 Yield/plant 2013 kg Field 1.46 ± 0.7 4.1 0.5 1.3 1.0 10 2013

YP14 Yield/plant 2014 kg Field 1.21 ± 0.5 2.1 0.33 1.2 0.3 10 2014

NoT Number of tubers number Field 112 ± 52 245 29 96 104 10 2014

H Height cm Field 43.5 ± 11.2 61.5 18.5 46.6 54.1 10 22 July 2014

GR Growth rate cm/day Field 0.75 ± 0.31 1.23 0.15 0.71 1.14 10 2014

HRL Degree of HR-like lesion Score Field 4.0 ± 1.5 6.0 1.0 3.0 2.0 10 22 Jul 2014

SLS Senescence late season % Field 38.5 ± 28.2 100.0 5.0 30.0 8.8 10 26 Aug 2014

NLL Necrotic leaves, late-
season

% Field 40.5 ± 39.8 95.0 0 22.5 1.3 10 22 Aug 2014

PIR Phytopthora infestans
resistance (leaf)

Resistant,
susceptible

Greenhouse Categorical
Traits

Lenman et al.
2016

NA

LT Leaf texture soft/stiff Field 10 26 July 2013

FT Flowering time early/late Field 10 2013/2014
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1440 ultra-conserved core proteins as ‘complete’ in the
transcriptome assembly, corresponding to 87% complete
genes. Sixty eight sequences were identified as ‘fragmen-
ted’ b BUSCO (Additional file 2: Table S3). This is
slightly lower completeness than has been reported for
potato transcriptomes, however it should be remem-
bered that the master transciptome originates from leaf
tissue only and excludes roots, possibly leading to a
lower completeness. The master transcriptome was an-
notated against the ITAG and PGSC genome annota-
tions and the Uniprot database by BLASTX. A total of
185,189 (87.13%) ITAG annotations, 178,635 (84.04%)
PGSC annotations and 122,104 (57.45%) Uniprot anno-
tations were associated to assembled transcripts. All the
transcripts were matched against sequenced potato
genome by BLASTN to identify genomic locations of as-
sembled transcripts. A detailed summary of Uniprot,
ITAG, PGSC and Gene Ontology (GO) annotation along
with transcripts identifiers can be found in Additional
file 2: Table S4.

Transcript abundance and differential gene expression
analysis
Transcriptome abundance estimation was performed to
find common transcripts among all 34 progeny and two
parent lines. Common transcripts were identified from
normalized read count with FPKM value greater than or
equal to 1 and it revealed that 21,708 (10.25%) transcripts
were expressed in all 34 progeny lines and both parents,
Desirée and SW93–1015. As expected, highly abundant
transcripts were related to plant photosynthesis and cen-
tral metabolism. A list of commonly expressed transcripts
along with their functional annotation is given as Add-
itional file 3: Table S5. five thousand four hundred eighty-
four transcripts with annotations were differentially
expressed between lines (FDR < 0.05, 2-fold change). A list
of differentially expressed transcripts is given in Add-
itional file 3: Table S6. A principle component analysis
(PCA) of the transcriptome data was done, which shows a
distinction between the parents as well as that several lines
are different compared to the parents (Additional file 4:
Fig. S1a), and numbers of differential gene expression in
progeny lines in comparison to parents are shown in Fig.
S1b together with the method to calculate these in
Methods S1 (Additional file 4: Fig. S1b and Methods S1).
GO analysis did not show clear overrepresentation of cer-
tain categories (data not shown).

Gene expression analysis for categorical traits
Phenotype of three traits were categorical: Phytophthora
infestans resistance (PIR; resistance or susceptible), Leaf tex-
ture (LT; soft or stiff), and Flowering time (FT; early or late).
In addition to the correlation analysis, we therefore per-
formed a differential gene expression analysis for categorical

traits by DESeq2 (p < 0.05) using the trait categories as repli-
cates. However, significantly differentially expressed genes
were found only for P. infestans resistance. A total of 83
transcripts were differentially expressed between resistant
and susceptible lines (p < 0.05; Fold Change> 2; Add-
itional file 5: Table S7, see below).

Phenotype and transcriptome correlations to identify
trait-associated transcripts
For transcriptome-to-phenotype association, we only se-
lected transcripts with an expression count (FPKM) more
than five in at least eight of the 34 progeny lines and the
two parents. A total of 18,542 transcripts fell within these
selection criteria. This stringent threshold led to a consid-
erable loss of transcripts identified by Trinity (212,536).
To test the effect of the high loss of transcripts we
matched the Trinity-identified transcripts, 212,536 and 18,
542, respectively, to the PGSC genome (BLAST, e-value<
1e-05), and found that these represented 28,933 and 10,
926 unique PGSC transcripts, respectively. The true num-
ber of transcripts present in the leaf tissue probably lies
somewhere in between these two numbers, but we de-
cided to maintain the threshold chosen in order to avoid
false positives. Previously ca 22,000 transcripts were de-
tected in the leaf transcriptome in Phureja [15].
In order to explore gene expression and phenotype rela-

tionships, expression data and the phenotypic data were
combined and scaled through mean and standard devi-
ation. Pearson correlation coefficient (PCC), Spearman
correlation coefficient (SCC) coefficient and DUO metric
were calculated between transcript expression and trait
values across all 34 progeny lines and the two parents.
Among 18,542 transcripts subject for transcriptome-to-
phenotype association, we identified 1685, 2185 and 273
transcripts related to traits by Pearson (r = ≤ − 0.5 or ≥
0.5), Spearman (r = ≤ − 0.5 or ≥ 0.5) and DUO (≥0.65), re-
spectively. The number of transcripts identified from
Pearson, Spearman and DUO, for each trait and common
transcripts between methods, and among all three
methods, are given in Table 3 and Fig. 1. The top 20 asso-
ciated transcripts for each trait and PCC and SCC correl-
ation are given in Additional file 6: Table S8 and S9.

Differences between DUO and Pearson/Spearman
To link transcripts to traits, first Pearson correlation and
Spearman’s rank correlation coefficients were applied
since they complement each other as the relationship be-
tween traits and transcripts can be expected to exhibit
both linear and non-linear relationships. As can be seen in
Table 3, most associated transcripts show a clear overlap
between the methods. However, for some traits such as
Tuber blight score there is a clear discrepancy. For a given
transcript-trait pair, the DUO similarity metric measures
the co-occurrence of extreme values between those two
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Table 3 Number of correlated transcripts for the collected traits at thresholds Pearson (r = ≤ − 0.5 or ≥ 0.5), Spearman (r =≤ − 0.5
or ≥ 0.5) and DUO (≥0.65), as well the overlap between the correlation metrics

Traits Abbr. DUO Pearson Spearman Duo∩
Pearson

Duo∩
Spearman

Pearson∩
Spearman

Pearson∩ Spearman∩
Duo

Biotic Stress Dikeya resistance DR 33 8 8 1 0 3 0

P. infestans resistance PIR 52 16 23 1 2 16 1

Tuber blight score TBS 0 19 23 0 0 4 0

Lesions after Alternaria
infection

LAI 0 224 244 0 0 142 0

Alternaria infection
volume

AIV 5 18 18 0 0 4 0

HR-like lesion HRL 4 56 65 0 1 38 0

Tuber Tuber greening, field TGF 0 20 2 0 0 1 0

Number of tubers NoT 0 464 790 0 0 384 0

Yield/plant 2014 YP14 0 9 21 0 0 7 0

Yield/plant 2013 YP13 25 57 11 0 0 4 0

Visible tubers/plant VT 0 41 7 0 0 0 0

Leaf/shoot/
flower

Senescence late season SLS 75 62 43 6 5 29 4

Growth rate GR 0 7 10 0 0 6 0

Height H 5 8 14 0 0 6 0

Necrotic leaves, late-
season

NLL 48 39 37 5 6 24 5

Leaf texture LT 26 11 14 4 4 9 3

Flowering time FT 0 26 33 0 0 23 0

Fig. 1 Venn diagram showing the number of transcripts shared between the Pearson, Spearman and Duo metrics at respective threshold (r = ≤
− 0.5 or≥ 0.5, r = ≤ − 0.5 or≥ 0.5 and≥ 0.65)
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objects. DUO is unique in that it returns separate values
for each type of correlation (e.g. high values of the first
with low values of the second) thereby reducing errors in-
duced by heterogeneity in the samples. Though the DUO
metric finds lower numbers of associations than Pearson
and Spearman, it does discover trait-transcript associa-
tions missed by those metrics (for example see Fig. 2) and
can thus be seen as complementary in nature. In Add-
itional File 7: Fig. S2 the correlation network (p ≥ 0.65)
based on DUO shows that some transcripts correlate with
more than one trait, such as late senescence (SNS) and
few necrotic lesions in field (NLN). More tests with em-
pirical data and biological validations of gene-to-trait rela-
tions are needed, however, to better benchmark the
methods against each other.

Identified trait-associated transcripts
Biotic factors
The population was tested with three different patho-
gens, which are common problems in European potato

cultivation: Phytophthora infestans causing late blight,
Alternaria solani causing early blight and Dickeya solani
causing blackleg disease.
We identify several transcripts associated to the P.

infestans leaf resistance (late blight) with DUO as well as
Pearson and Spearman correlations (see below). Tran-
scripts are regulated both positively and negatively with
resistance. Interestingly, these can be seen as effects of
the identified Rpi-ABPT (closest sequence identity with
DMG400032576) gene in this population [10], and indi-
cate that this receptor has some kind of basal role with-
out challenge by P. infestans or other stresses as the
transcriptomes were generated from plants in optimal
conditions in controlled environments.
Low levels of the Rpi-ABPT gene transcripts were de-

tected in some, but not all resistant lines, and this tran-
script did therefore not pass the threshold to be included
in the association analyses (see Methods and Material;
data not shown). The regulated genes also associates to
the study of secreted peptides in this population, where all

Fig. 2 Three of the genes associated with the P. infestans leaf resistance (a) and their respective line plots over the progeny lines and parents (b)
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peptides used to predict resistance were less abundant in
the resistant combination even without any disease [11].
This data also adds to the discussion about cost and
trade-offs of resistance [16].
In the differential expression analysis by DESeq2

only up-regulated transcripts as a consequence of leaf
blight resistance passed the threshold (adjusted p <
0.05; Fold Change> 2), in total 56 unique genes from
different chromosomes (Additional file 5: Table S6).
As can be seen in Additional file 8: Fig. S3 there is a
substantial number of transcripts only detected by dif-
ferential expression analysis. It should be noted that
in the differentially expression analysis all detected
transcripts were included, and the majority of tran-
scripts only identified by in this analysis had low ex-
pression levels and consequently did not pass the
threshold to be included in the association analyses
(see above and Materials and Methods). Among dif-
ferentially expressed genes were several related to
disease resistance, whereof three fall in the large TIR-
NBS-LRR resistance gene family (DMG400007743,
DMG400032576 and DMG400011529) and other into
smaller families unique to potato according to
PLAZA4.0, such as Late blight resistance protein
(DMG400046318) and Plant disease resistant protein
(DMG400044298). Yet another NBS-LRR family mem-
ber annotated as NRC1 (DMG400007462) was de-
tected by Pearson correlation as negatively correlated
with P. infestans resistance. Other noteworthy tran-
scripts only identified by differential expression ana-
lysis are a Rhicadhesin receptor (DMG400037420), an
Erwinia induced protein 2 (DMG400023621) and
several members of Zinc knuckle family proteins
(DMG400036915, DMG400022758, DMG400028865).
Not much is known about their role in resistance, but
the Zinc knuckle family has previously been shown to
be expanded in Solanum species with high level of P.
infestans resistance [17].
Few transcription factors were associated to leaf

blight resistance. However, a TCP transcription factor
(DMG400016363) was less expressed in lines with leaf
resistance towards P. infestans, indicating that this tran-
scription factor can be a putative susceptibility factor.
This is a diverse group of transcription factors, many of
which are involved in organ development but also in
plant defence and in effector-triggered immunity (ETI)
[18]. In fact, in a protein-protein interaction network of
effectors and Arabidopsis immune proteins, no less
than three of the identified immune interactors
belonged to the TCP family. These were found to be
directly targeted by effectors from both bacterium
Pseudomonas syringae and the obligate biotrophic
oomycete Hyaloperonospora arabidopsidis (Hpa), and
single mutants of all these three TCPs lead to disease

susceptibility of two normally avirulent Hpa isolates
[19]. Apart from the TCP transcription factor DUO
picks up a negatively associated MADS transcription
factor (DMG400000008) with weak similarity to
MADS-box transcription factor 50 (OsMADS50) in
rice.
Three of the most highly correlated transcripts with P.

infestans leaf resistance were an Arabinogalactan protein
(DMG402032565), a Sodium/potassium/calcium exchan-
ger (DMG400006339) and an Associate of C-myc tran-
script (DMG400025428) with unknown function, all of
which were detected by the differentially expression ana-
lysis as well. A transcript encoding a chromodomain
remodeling complex (DMG400006925) was clearly posi-
tively regulated with resistance and highly similar to
AtBAF60 (AT5G14170), which was recently shown to
mediate repression of seedling growth [20].
Flavonoids are generally associated to plant defence and a

flavonoid 3-hydroxylase (DMG400006354) was found to be
negatively regulated with leaf resistance also by differential
expression analysis. Furthermore, DUO identified a Leu-
coanthocyanidin dioxygenase (DMG400003091), which is
similar to the AtSRG1 (SENESCENCE-RELATED GENE
1) involved in flavonoid biosynthesis.
In this progeny population, tuber blight resistance was

not linked to foliar blight resistance [11, 21], and there were
only two transcripts, which correlated with P. infestans re-
sistance in both leaves and tubers. The two transcripts,
actin-depolymerizing factor 2 (DMG400027752) and
FGFR1 oncogene partner (DMG400032551), are involved
in cellular organisation were positively correlated to resist-
ance. The latter is weakly similar to Arabidopsis AtTON1A,
which mutant exhibit abnormal cell growth and patterns of
division in epidermal and cortical cells [22].
However, a weak correlation existed between Alternaria

tuber and tuber blight resistance (Table 2) but only one
transcript encoding a gene of unknown function with a
Rhodanese-like domain (DMP400033223) was correlating
with both traits. For tuber resistance three WRKY transcrip-
tion factors (DMG400020608; DMG400009530; DMG4
00028520) and a VAMP protein SEC22 (DMG400016420)
linked to the enriched GO terms biotic stimulus and chitin
response, were all negatively correlated with tuber blight re-
sistance (Additional file 6).
D. solani susceptibility seems to be a quantitative trait

in potato and no single gene resistance has so far been
identified, which makes this trait especially interesting to
study by expression correlation. Still, DUO, which
should efficiently identify binary differences, found a
number of putative receptors and transcripts associated
to signalling. For example a transcript (DMG401017405)
highly expressed in resistant lines, and which has
homology to a gene encoding a GPCR-type G protein in
Arabidopsis (AT4G27630). This protein is membrane-
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bound and reported to bind the phytohormone ABA,
but does not show transcriptional regulation by abiotic
stress [23]. A receptor serine-threonine protein kinase
(DMG400017596) highly homologous to CDG1 kinases
was also highly expressed with increased resistance.
Contrarily, a transcript with low expression in resistant
lines was an Arabidopsis nitrate transporter homolog
(DMG400013815). An Arabidopsis protein has been re-
ported to act as a sentinel of nitrogen availability, and to
be associated with increased susceptibility to infections
by bacteria Pseudomonas [24]. Three other transcripts
associated by DUO with low expression in Dickeya
resistant lines were a disease resistance protein in the
CC-NBS-LRR class (DMG400018462), a Cf-2.1-like re-
ceptor (DMG400006655) and a reticuline oxidases
(DMG400021111). The latter is regularly appearing as
part of induced resistance responses in potato [25].
Much fewer transcripts were associated to D. solani re-
sistance by Pearson and Spearman, but a Permease I
homolog (DMG400024588) overlapped between the
methods and was more lowly expressed in more resist-
ant lines.
Only a handful of transcripts were matched to Alter-

naria leaf infections with DUO. However, GO analysis of
transcripts identified by Pearson correlations showed an
enrichment of transcripts linked to Systemic acquired
resistance as well as jasmonic and ethylene responses
(Additional file 9). Among these was a Jar1 homolog
(DMG400033879), for which lines with higher expres-
sion show increased resistance. Jar1 catalyzes the forma-
tion of jasmonyl-isoleucine (JA-Ile) conjugate, which in
its turn promote the interaction between JAZ1 and
COI1 in the jasmonate signalling pathway. Similarly, an
EIN3 transcription factor (DMG400005915) was gener-
ally more lowly expressed in more resistant lines. EIN3
interacts with MYC2, MYC3 and MYC4 to regulate
plant defense. This indicates that these hormone path-
ways are varying depending on resistance level even in
the absence of the pathogen.

Development and yield traits
To investigate the development and yield-related traits, we
related the subset of 84 transcripts associated by DUO to
these traits to Arabidopsis homologous genes (Add-
itional file 10: Table S10). Indeed, several of the Arabidop-
sis homologs are related to growth and development, and
several families of transcription factors are represented,
and this is also true for the GO analysis (Additional file 9).
However, transcripts related to the yield data of 2013 and
2014 did not show enrichment of specific GO terms.
Photosystem II CP47 chlorophyll apoprotein (DMG

400046303) positively correlated according to Pearson
and Spearman with yield, as was the gene encoding a
Photosystem Q(B) protein (DMG400004211), also active

in the light reactions. Contrary, transcript levels of UBX-
domain protein UBX2 (DMG400029482) and an Acyl-
CoA synthetase (DMG400020593) were negatively
correlated to yield in both years. In Arabidopsis, the
knock-out of a member of the UBX family led to in-
creased growth rates [26].
For the highly correlated traits height and growth rate,

the GO term “regulation of timing of transition from vege-
tative to reproductive phase” was overrepresented (Add-
itional file 9). Associated to this term was a MADS box
transcription factor (DMG400022748) and Flowering locus
T (DMG400016179), which were negatively and positively
correlated to the traits, respectively. Highly negatively cor-
related with height and growth rate was a GLABRA2 ex-
pression modulator (DMG400023632), which homolog in
Arabidopsis regulates cell division and is part of the ABA
signalling pathway [27]. High expression of this gene was
also linked to less necrotic leaves in the late season. Fur-
thermore, a putative squamosa promoter binding protein
(DMG400022824), which is a transcription factor in Arabi-
dopsis involved in regulation of flowering [28], was highly
negatively correlated with height and growth rate, but posi-
tively related to early senescence.
Number of tubers showed many highly positively and

negatively correlated transcripts. There was a GO en-
richment for sugar-meditated signalling pathway (Add-
itional file 9). Examples were a positively correlating
mannitol transporter (DMG400011964) and a hexose
transporter (DMG400009994), highly similar to Arabi-
dopsis TMT2 (AT1G45249). Negatively correlating was
an ABRE binding factor (DMG400008011), which is a
transcription factor involved in ABA signalling. Also re-
lated to ABA signalling was a NAC domain transcription
factor (DMG400009245; AT1G01720).
The leaf texture trait were associated with several

transporters, such as an ammonium transporter 1
(DMG400028710), and cell wall proteins such as a poly-
galacturonase (DMG400002931).
Late flowering was associated to the increased expres-

sion of a gene encoding a Tuftelin interacting protein,
which is highly similar to AtNTR1 (AT1G17070). A muta-
tion in this Arabidopsis gene alters the circadian period
[29]. Associated with late senescence was also a zinc finger
protein (DMG401017733), which homolog in Arabidopsis
is suppressing late flowering time [30]. Early senescence
was also associated to higher expression of a Serine/threo-
nine-protein kinase PBS1 homolog (DMG400004594).
PBS1 is well described in Arabidopsis and is involved in
PAMP-triggered immunity (PTI) [31].

Verification of marker transcripts by qPCR
To verify some of our putative transcript biomarkers ex-
pression was analysed in a separate progeny population de-
rived from an independent crossing using the same parents.
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Four lines with contrasting resistance and susceptibility for
either early blight, Dickeya or tuber blight was chosen. The
expression of five of these putative transcript biomarkers
are shown in Fig. 3 and all showed a trend with differences
in expression between the pairs of more resistant and more
susceptible lines as could be expected.
Thus, at least when crossing the same parents these

results confirmed Glycerol-3-phosphate dehydrogenase
(DMG400012712) and Aldo/keto reductase (DMG4040
06439) as biomarkers identified by DUO for early blight.
Furthermore, an AP2 domain class transcription factor
(DMG400000681) and GPR89A (DMG401017405) could be
confirmed for Dickeya resistance, the latter of which was
identified by DUO. Finally, the expression of a peroxidase
(DMG400032199) was as expected in the separate progeny
population for tuber blight disease.

Conclusions
We identify well-known as well as novel transcripts as-
sociated with 17 traits important for potato as a crop.
This approach can be used to link the transcriptome and
other molecular expression data to traits in future char-
acterizations in segregating populations and elite mater-
ial. In this study, we verify the expression pattern for five
of the putative transcript markers in an independent
progeny population However, further studies are needed
to establish the predictive value of the transcript markers
and profiles associated to the different traits in this study
by testing other potato progeny populations, breeding
lines and cultivars as well as over additional growing
seasons and climates. We also show the benefit of ana-
lysing this type of data with different association
methods. To this end, we try the novel method DUO on
transcriptome data for the first time. DUO calculates the

co-occurrence between phenotype value and expression
level and are, thus, clearly different from the more regu-
larly used Pearson and Spearman correlation.

Materials and methods
Plant growth, phenotyping, sample collection and
preparation
The tetraploid parents, the cultivar Desirée obtained
from Plant Science Sweden AB and the breeding line
SW93–1015 obtained from Svalöf Weibull AB, have pre-
viously been described in Ali et al. 2012 and 2014 [21,
32]. The segregating population has also been described
in relation to P. infestans leaf resistance screening data
[10]. Field trials were conducted in Borgeby (55°45′5.8″
N 13°2′13.5″E), Sweden and phenotypes were recorded
in 2013 and 2014. Field growth conditions and manage-
ments have previously been described in Chawade et al.
[11]. Table 1 contain information about number of
plants or tubers that were investigated in each pheno-
type study, and under what conditions it was carried
out. Dickeya scoring of in vitro plants was done accord-
ing to [33]. P. infestans resistance on tubers (tuber
blight) were assessed as described in [21], and the Phy-
tophthora resistance data on leaves (late blight) is de-
scribed in Lenman et al. 2016. Alternaria resistance in
leaf and tuber was carried as in [34]. Nectrotic leaves
late season and senescence were scored as a percentage
of leaves affected by lesions and senescence, respectively,
in the field. Degree of HR-like lesion was scored 1–6,
with 1 denoting no necrotic leaves in the field.
For RNA extraction, potato plants were grown under

controlled conditions (the Biotron at SLU Alnarp) with 16
h/8 h day and night regime with a fluorescent lamp light in-
tensity of 200 μmolm-2 s-1. The temperature was set to

Fig. 3 The expression of five putative transcript biomarkers as determined by qPCR. Error bars show technical variation as standard deviation
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20 °C and the relative humidity was 65%. Pots were circu-
lated every week to avoid positional effects. All sampling
was done before flowering and and 10 fully expanded leaf-
lets from the middle part of two plants were pooled and
RNA extracted as described Ali et al. 2014 [32].

Sequencing, de novo transcriptome assembly and
annotation
Samples were sequenced through Illumina sequencing plat-
form HiSeq 2000 as paired-end reads (2 × 100 bp) at BGI
(Shenzhen, China). Sequences were deposited in ArrayEx-
press (E-MTAB-5996). Sequencing reads were trimmed by
removing adapter sequences and low quality sequences
with an average quality score of less than 20 were removed
using Nesoni clip (v0.128). Reads with a length of less than
20 bp were also removed [35]. The remaining reads were
assembled into a master transcriptome using Trinity ver-
sion trinityrnaseq_r20140717 with default parameters [36].
To assess the quality of the transcriptome assembly, se-
quencing reads were mapped back to the assembled tran-
scripts using the bowtie2 aligner [37]. The completeness of
the transcriptome assembly was estimated using BUSCO
[18], run on default parameters to evaluate the complete-
ness of an assembly through estimating the presence and
completeness of conserved genes. Assembled transcriptome
data were annotated through BLASTX against the UniProt
database. BLASTX was used for sequence similarity search
against the NCBI non-redundant protein database using an
e-value cut-off of 1e-10. Transcripts were also annotated
against PGSC DM v 3.04 [38] and ITAG 2.3 annotation
[39]. A GO enrichment analysis was done in GOEast using
default settings [40], which includes a FDR adjustment
(Yekutieli) and p < 0.1. GO terms assigned to transcripts
using the best-performing functional annotation for the po-
tato genome as determined by Amar et al. 2014 [41]. Se-
quence identities and gene families of identified transcripts
were explored in PLAZA4.0 [42].

Abundance estimation and differential gene expression
analysis
RSEM (v1.2.7) was used for abundance estimation of the
transcriptome assembly using the default parameters
[43] to estimate the gene and isoform expression levels
of RNA transcripts. The relative measure of transcript
abundance was TPM (Transcripts Per Million) and
FPKM (Fragments Per Kilobase of transcript per Million
mapped reads). DESeq2 was used to find differentially
expressed genes between the categorical traits [44, 45].
DESeq2 use negative binomial distribution method for
differential expression analysis. DESeq2 were used in
identification and analysis of differentially expressed
genes and transcripts through Trinity version trinityrna-
seq_r20140717 with default settings.

Phenotype and transcript correlation
In order to establish phenotype and transcript relation, a
core transcriptome was generated through filtering of tran-
scripts by using FPKM values for crossing lines. Pearson
correlation coefficient (PCC) and Spearman correlation co-
efficient (SCC) were calculated for each transcript and
phenotypic traits for the lines in the crossing population
and the parents [4]. We also explored the phenotype and
transcriptome relationship through newly developed similar-
ity measure, DUO (Discovery of synchronized gene expres-
sion modules using a vector-based correlation coefficient,
Climer et al., in press). The gene expression data and trait
data were combined into a matrixM in which each row rep-
resented a gene or a phenotype and each column repre-
sented a sample. A custom Perl script was used to scale
each row by dividing each entry xi by the maximum value
of that row max(X), as in the following equation:

x�i ¼
xi

max Xð Þ
where x�i is scaled entry i of row vector X, xi is the ori-
ginal entry i of row vector X and max(X) is the max-
imum value of row X. This ensures that all genes and
phenotypes take values between 0 and 1.
The DUO similarity metric was then calculated be-

tween all pairs of genes and phenotypes according to the
following procedure:
An upper threshold and a lower threshold were deter-

mined for the matrix M, such that 25% of the values in
the matrix lay above the upper threshold, and labelled
“high”, and 25% of the values in the matrix lay below the
lower threshold, and labelled “low”. For each pair of fea-
tures (rows in matrix) A and B, four comparisons were
performed, namely the co-occurrence between high
values in feature A and high values in feature B, low
values in feature A and low values in feature B, high
values in feature A and low values in feature B, and the
co-occurrence between low values in feature A and high
values in feature B, using to the following equation:

Dij ¼ 4Rij 1−
f i
1:5

� �
1−

f j
1:5

� �

where i represents either high values of gene A or low
values of gene A, j represents either high values of gene
B or low values of gene B, Rij represents the fraction of
the vector length in which i and j co-occur and fi and fj
represent the relative frequencies of i and j respectively.

Phenotype-transcriptome correlation network
A transcript-trait association network was constructed
across all the transcripts correlated with at least one
trait, with transcripts and phenotypes represented as
nodes and correlation values between transcripts and
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phenotypes represented as edge weights. For DUO net-
work visualization, edges below 0.65 were discarded and
the resulting trait-transcript associations were visualized
in Cytoscape version 3.4.0 [46]. Each node represented
high or low values of a gene or a trait, and edges repre-
sented the Duo similarity between those two nodes. Line
plots were constructed using ggplot2 [41], RStudio [38],
and various R packages/resources [37, 40, 42].

Network comparison
The Pearson, Spearman and DUO networks were compared
by counting the number of edges (transcript-trait associa-
tions) that were shared between these networks. This was
done on a whole-network level (Fig. 2) and a per-trait level
(Table 3). The Venn diagram was constructed using R [37],
the R VennDiagram package [39] and RStudio [38].

Verification by qPCR
The expression levels of five genes were validated by
qPCR. Primers were designed with the help of Primer
Blast (NCBI) according to the following criteria: pre-
dicted melting temperature of 59–71 °C, primer length
of 18–24 nucleotides, product size of 100–250 base pairs
(bp) and GC content of 40–60%. Primer sequences and
efficiencies are given in Additional file 11: Table S14.
For cDNA synthesis 500 ng of total RNA was transcribed
to cDNA using SuperScript® III Reverse Transcriptase
including degradation with RNase H according to the
manufacturer’s protocol (InvitroGen). qPCR was per-
formed with a CFX96 (ABI) using Power SYBR® Master
Mix (InvitroGen) and PCR cycles ran according to the
manufacturer’s recommendations. The comparative CT
method was used for relative quantification of tran-
scripts. The data was normalized to the 3 reference
genes using the Pfaffl method [47]. The gene expression
was calculated using Modified form of geNorm with
multiple reference genes.
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