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Abstract
1. Conflicts of interest between resource extraction and conservation are widespread, 

and negotiating such conflicts, or trade-offs, is a key issue for ecosystem manag-
ers. One such trade-off is resource competition between fisheries and marine top 
predators. Managing this trade-off has so far been difficult due to a lack of knowl-
edge regarding the amount and distribution of prey required by top predators.

2. Here, we develop a framework that can be used to address this gap: a bio- 
energetic model linking top predator breeding biology and foraging ecology with 
forage fish ecology and fisheries management.

3. We apply the framework to a Baltic Sea colony of common guillemots Uria aalge and 
razorbills Alca torda, two seabird species sensitive to local prey depletion, and show 
that densities of forage fish (sprat Sprattus sprattus and herring Clupea harengus) 
corresponding to the current fisheries management target BMSY are sufficient for 
successful breeding. A previously proposed fisheries management target for con-
serving seabirds, 1/3 of historical maximum prey biomass (B1/3), was also sufficient.

4. However, the results highlight the importance of maintaining sufficient prey den-
sities in the vicinity of the colony, suggesting that fine-scale spatial fisheries man-
agement is necessary to maintain high seabird breeding success.

5. Despite foraging on the same prey, razorbills could breed successfully at lower 
prey densities than guillemots but needed higher densities for self-maintenance, 
emphasizing the importance of considering species-specific traits when determin-
ing sustainable forage fish densities for top predators.
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1  | INTRODUC TION

Conflicts between biodiversity conservation and human utilization of 
natural resources are widespread, with examples ranging from for-
estry and agriculture to fisheries (Cury et al., 2011; Henle et al., 2008; 
Hobday et al., 2015; Niemelä et al., 2005). Negotiating such conflicts 
or trade-offs is a key issue for ecosystem managers across continents 
and ecosystem types (Redpath et al., 2013; Rodríguez et al., 2006). 
The apparent competition for forage fish between industrial fisheries 
and marine top predators is one such conflict that has been difficult 
to resolve due to a lack of knowledge of the prey requirements for top 
predators and how they vary over time and space (Cury et al., 2011; 
Furness & Tasker, 2000; Grémillet et al., 2018; Hill et al., 2020; 
Sydeman et al., 2017). Despite the well-known fact that forage fish 
fisheries can affect reproduction and survival of marine top preda-
tors (Bertrand et al., 2012; Cook et al., 2014), management measures 
to protect their prey are relatively rare (but see for example North 
Sea: Frederiksen et al., 2008; Namibia: Ludynia et al., 2012; South 
Africa: Sherley et al., 2015). Furthermore, it is unknown whether 
targets commonly used to ensure sustainable exploitation of fish 
stocks, that is, maintaining biomasses (B) corresponding to Maximum 
Sustainable Yield (MSY) or a precautionary approach (PA; Jennings 
et al., 2001; List of Abbreviations), are compatible with top predator 
conservation (Cury et al., 2011). As several international and national 
policy frameworks call for comprehensive measures to protect pop-
ulations of seabirds and marine mammals (EC, 2008; Pacific Fishery 
Management Council, 2019), this is an urgent question in the context 
of the general ongoing transition towards ecosystem-based manage-
ment of the marine environment (Pikitch et al., 2004). A new gen-
eration of holistic policy frameworks to aid the implementation of 
ecosystem-based management such as Dynamic Ocean Management 
(Dunn et al., 2016) and Marine Spatial Planning (White et al., 2012) 
are specifically designed to handle conflicts by taking spatiotempo-
rally explicit approaches. However, such approaches are difficult to 
apply without more detailed models of the underlying ecosystems.

Here, we present a spatiotemporally explicit mechanistic frame-
work that can be used to determine the amount of prey required for 
central-place foraging top predators, and how this varies between spe-
cies and depends on their population sizes. We build on existing work in 
bio-energetic modelling for colonial seabirds, which has previously been 

used to investigate their responses to prey conditions, and how it may 
differ depending on species-specific characteristics (Elliott et al., 2013; 
Houston et al., 1996; Thaxter et al., 2013). Many predatory marine mam-
mals and all seabirds are central-place foragers during the breeding sea-
son, which means that parents need to return to the colony regularly 
for breeding activities. As such, they are highly dependent on prey avail-
able close to the colony and within their maximum foraging depth (Boyd 
et al., 2017; Campbell et al., 2019; Matthiopoulos et al., 2008; Wanless 
et al., 2005). This may result in the top predators gradually depleting 
the prey around their colonies, potentially creating an ‘Ashmole's halo’ 
(lower prey density near the colony and within diving depth of the birds) 
(Ashmole, 1963; Birt et al., 2007; Jovani et al., 2016), an effect that will 
be stronger for large colonies (Ainley et al., 2004; Gaston et al., 2007; 
Lewis et al., 2001; Wakefield et al., 2013). While foraging further from 
the colony may partially compensate for local prey depletion, there is a 
limit to the distance that any top predator can travel without negative 
impacts on the breeding attempt, and this limit may be particularly low 
for species in which locomotion is slow and/or energetically costly (Elliott 
et al., 2013; Thaxter et al., 2010). Therefore, colony size and species- 
specific traits will both determine the area used by foraging top preda-
tors, and both will thus be important to consider when designing fisheries 
management approaches that aim to maintain sufficient prey resources.

As an example of how to apply our framework, we used two seabird 
species from the Alcidae family, the common guillemot Uria aalge (here-
after: guillemot) and the razorbill Alca torda, breeding sympatrically at a 
colony in the Baltic Sea and foraging on the same two forage fish spe-
cies, sprat Sprattus sprattus and herring Clupea harengus. As wing-pro-
pelled pursuit-divers, the two seabird species have high flight costs 
(Elliott et al., 2013; Thaxter et al., 2010), which are reflected in their 
relatively short foraging ranges (Davoren & Montevecchi, 2003; Gaston 
et al., 2007). However, the razorbill, which has more energetically effi-
cient flight, has been observed to spend relatively more time flying and 
less time diving, whereas guillemots are able to reach greater depths 
(Linnebjerg et al., 2015; Thaxter et al., 2010), suggesting that prey dis-
tribution effects are species-specific. The limited foraging range of the 
two study species makes them particularly sensitive to local prey de-
clines, hence making them suitable as indicators of forage fish depletion 
(Cairns, 1988; Furness & Camphuysen, 1997; Piatt et al., 2007; Velarde 
et al., 2019). Apart from being the principal prey of both seabirds in this 
study system, the two forage fish species are also targeted by a large 

6. Synthesis and applications. Our bio-energetic modelling framework provides spa-
tially explicit top predator conservation targets that can be readily integrated 
with current fisheries management. The framework can be combined with exist-
ing management approaches such as dynamic ocean management, marine spatial 
planning and management strategy evaluation to inform ecosystem-based man-
agement of marine resources.
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industrial fishery that is regulated by annual quotas (ICES WGBFAS, 
2019). To date, it has been unknown to what extent these quotas align 
with prey requirements for fish-eating top predators.

We investigated the following three questions: (a) What is the 
minimum density of prey fish required for successful breeding in the 
two seabird species and how does this depend on their population 
size? (b) How do species-specific traits, in particular diving and flying 
capabilities, influence this density? (c) Are current fisheries manage-
ment targets sufficient for maintaining favourable conservation sta-
tus of the two species?

The study provides a general framework for how bio-energetic 
modelling can be combined with commonly available data to design 
fishery management measures that maintain sufficient prey re-
sources for top predators, thus contributing to the development of 
an ecosystem-based approach to fishery management.

2  | MATERIAL S AND METHODS

2.1 | Bio-energetic model

Our framework is built around a bio-energetic model that simulates 
daily time and energy budgets for individual guillemots and razor-
bills during the breeding season, building on a number of previous 
bio-energetic models for these species (Gaston et al., 2007, 2013; 
Houston et al., 1996; Langton et al., 2014; Thaxter et al., 2013). A 
key model assumption is that birds minimize foraging distance and 
time as they seek to lower daily energy expenditure while still cover-
ing their energetic needs. This assumes that the birds have perfect 
knowledge of fish distribution. The location and time spent foraging 
will then depend on forage fish distribution, breeding stage, meta-
bolic cost for different activities as well as the energetic gain of for-
aging at different prey densities (Figure 1).

2.1.1 | Population structure and breeding 
stage dependence

The populations of both species were assumed to consist of two-
thirds of breeding adults and one-third of non-breeding individu-
als, based on previous observations (Appendix S4 in Supporting 
Information). It was assumed that non-breeding individuals are pre-
sent throughout the breeding season. Over the course of a breeding 
season, the breeding individuals go through four stages: pre-laying, 
incubation, chick-feeding and post-fledging, with stage-specific time 
and energy budgets. During the incubation and chick-feeding stages, 
each parent is bound to the colony for 12 hr each day to take turns 
in incubation/chick-guarding. In all stages but the chick-feeding stage 
each parent is assumed to make only one foraging trip per day, as 
this is the strategy that minimizes energy expenditure. The number of 
foraging trips during chick-feeding is species-specific, for details see 
Appendix S2 Foraging trips. We set a fixed chick-provisioning period 
of 21 days which is supported by previous observations in our colony.

2.1.2 | Activity-specific metabolic rates

Within a day, an individual breeding seabird can carry out four 
different activities: flying, foraging, incubating/brooding and rest-
ing. How much time they spend on each activity in a 24-hr cycle 
is an outcome of the model (Figure 1). Each activity has an associ-
ated metabolic rate through which daily time budgets are trans-
lated into energy budgets. We defined a physiological upper limit 
for daily energy consumption (Field Metabolic Rate, FMRlim) as 
a multiplier of Basal Metabolic Rate (Table S3). If either species 
reached FMRlim during a time-step of a simulation, it was defined 
as breeding failure and parents were assumed to abandon the 
chick in favour of self-maintenance (Regular et al., 2014; Wanless 

F I G U R E  1   Structure of the bio-
energetic model with inputs, daily 
time steps and seasonal metrics. One 
simulation covers a full breeding season 
(Appendix S2 Breeding phenology). For 
each time step, the model simulates the 
distribution of seabird foraging locations 
and forage fish, time-activity budgets, 
energy expenditure and prey consumption 
for individual birds, which is scaled up to 
the population using population numbers 
of the two species
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et al., 2005). However, we still let simulations continue until the 
end of the season to investigate the prey densities required for 
self-maintenance.

2.1.3 | Foraging submodel

To model prey capture of foraging seabirds, we calculated energy 
intake rates as a function of prey density, based on a simple foraging 
model previously used for foraging fish (e.g. Varpe & Fiksen, 2010). 
Prey capture Cri (number of prey s−1) was calculated as follows:

where Ss is swimming speed (ms-1), Dd is the prey detection distance 
(m), Fdens is the prey density (number of prey m−3), Ddistr is the propor-
tion of prey available within diving depth, Cs is proportion of successful 
prey captures and DtPDI is the proportion of time spent actively for-
aging during a dive cycle, that is, foraging time compensated for the 
pre- and post-dive intervals, and i is the index for the two species. See 
Appendix S2 for parameter values.

Energy gain (Ecapt, [kJ s-1]) was calculated as follows:

where Cri is from Equation (1), Fw is the prey weight (g) and Ef is the 
prey energy density (kJg-1).

2.1.4 | Aggregate seasonal metrics

Our measures of seasonal individual fitness were as follows: (a) whether 
birds could breed successfully, that is, cover the energetic demands for 

themselves and their chick over a whole breeding season and (b) whether 
adult birds could meet their own energetic demands without success-
fully raising a chick (referred to as ‘self-maintenance’ from hereon). We 
calculated the prey densities required for successful breeding at current 
population sizes by iteratively lowering initial densities until breeding 
would fail (FMR > FMRlim) and denoted those densities BCG* and BRB* 
for guillemots and razorbills, respectively. Prey densities required for 
colony-based self-maintenance were estimated in a similar way by in-
vestigating the point where FMR > FMRlim in the non-breeding popula-
tion. Population size limits at different prey densities were calculated by 
gradually increasing the population sizes until bird-driven prey depletion 
resulted in breeding failure (FMR > FMRlim). These limits were calculated 
for one seabird species at a time while the other species' population size 
was kept constant.

2.2 | Uncertainty and sensitivity analyses

An uncertainty analysis was run to assess the confidence with which 
we could determine the prey densities required for successful breed-
ing and self-maintenance. We also ran a sensitivity analysis to inves-
tigate the relative contribution of individual model parameters to the 
uncertainty in the results. For details, see Appendix S3.

2.3 | Study system and fisheries management  
targets

The model was parameterized for guillemots and razorbills at 
their largest colony in the Baltic Sea, the island of Stora Karlsö 
(57°17ʹN, 17°58ʹE), with 15,700 and 12,000 breeding pairs, re-
spectively (Olsson & Hentati-Sundberg, 2017; Figure 2). The two 
species feed almost exclusively on sprat and herring (Appendices 

(1)Cri = Ssi × �Dd
2

i
× Fdens × Ddistri × Csi × DtPDIi,

(2)ECapt = Cri × Fw × Ef,

F I G U R E  2   (a) Map of the Baltic Sea 
with fisheries management areas for 
sprat (area 22 − 32) and herring (area 
25 − 29 + 32, purple coloured), map inset 
with Stora Karlsö (black star) and model 
foraging areas constructed as circular 
bands centred on the colony with a width 
of 5 km each, of which the red and blue 
are the observed maximum foraging 
distances for guillemots and razorbills, 
respectively. (b and c) Trends in biomass 
and management targets for (b) sprat and 
(c) herring
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1 and 2), which are managed under the Common Fisheries Policy 
(CFP) of the European Union (EU), based on scientific advice from 
the International Council for Exploration of the Seas (ICES). ICES 
uses a multi-annual plan that specifies management targets for 
biomass to be conserved and fishing mortality for each fish spe-
cies. Three biomass targets are currently defined for each spe-
cies: BMSY, BPA and Blim. BMSY is the biomass level that is expected 
to produce Maximum Sustainable Yield for fisheries, which is the 
main management goal for all stocks managed under the CFP 
(EC, 2013), whereas BPA and Blim represent the PA and limit bio-
mass reference points, respectively (see List of Abbreviations). A 
previous empirical study suggested prey biomass above 1/3 of 
the historical maximum as a seabird conservation target (Cury 
et al., 2011) and this level (denoted B1/3) was also included in our 
analysis. The management strategy does not currently consider 
prey requirements of top predators. For further details on the 
management targets and how they were used in the analysis, see 
Appendix S1.

3  | RESULTS

3.1 | Seabird performance in relation to fisheries 
management targets

Forage fish density had a strong effect on breeding performance as 
well as time and energy budgets for both seabird species (Figures 3 and 
4). At the lowest forage fish density considered (only herring at Blim), 
breeding failed for both species due to prey depletion in the first week 
of the season, whereas in the highest prey density scenario (current 
biomass for both prey species), both species reproduced successfully 

while foraging within a 25 km radius of the colony throughout the sea-
son (Figure 3). By examining a wide range of plausible values around 
the best estimates for all parameters in the uncertainty analysis, we 
concluded that these results are robust to parameter value uncertain-
ties (Appendices S2 and S3). With a prey biomass corresponding to 
the main fisheries management target (BMSY), successful reproduction 
occurred in 76% and 80% of model runs for guillemots and razorbills, 
respectively, which is sufficient for maintaining population sizes for 
these two seabirds in our system (Appendix S4). The results for B1/3 
were similar, that is, also sufficient for both species at current popula-
tion levels and survival estimates (success in 68 and 73% of model 
runs, respectively). Numerical results for all scenarios are given in 
Appendix S3; Table S4.

The minimal forage fish densities required for successful 
breeding (BCG* and BRB*) were 56 and 55% of BMSY, respectively. 
Interestingly, while razorbills could breed successfully at lower prey 
densities than guillemots, guillemots could self-maintain at slightly 
lower prey densities than razorbills by abandoning the chick and 
making only one trip per day (17% and 21% of BMSY for guillemots 
and razorbills, respectively; Table S5). Guillemots’ higher tolerance 
for colony-based self-maintenance and razorbills' higher tolerance  
for successful breeding was consistent across prey densities (Table S4). 
According to our model, the current fisheries management target 
can support substantially larger populations of the two seabird spe-
cies (Figure 4).

The sensitivity analysis showed that maximum energy consump-
tion, activity-specific metabolic rates and flight speed were the most 
influential parameters for guillemot model predictions, while met-
abolic rates, prey detection distance and number of trips were the 
most influential parameters for razorbills (Figure S4). The sensitiv-
ity analysis also showed that the parameter values for one species 

F I G U R E  3   Foraging distance as a 
function of breeding stage and prey 
density for (a) guillemots and (b) razorbills. 
Open symbols indicate failed breeding at 
a given prey density and breeding stage. 
Missing data for razorbills at BlimH indicate 
that they cannot self-maintain at this prey 
density. Horizontal black lines indicate 
previously reported average foraging 
distances for different years obtained 
through GPS tracking (Appendix S2 
Foraging trips). Prey densities in the legend 
are sorted from lowest on top to highest 
density (Appendix S1: Tables S1 and S2)
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affected the energetics of other species (through their effect on 
consumption).

3.2 | Species-specific and stage-dependent 
foraging patterns

The model predicted different foraging patterns for the two spe-
cies in relation to prey density. Guillemots were predicted to forage 

closer to the colony than razorbills and both species were predicted 
to forage at an increasing distance from the colony over the course 
of the breeding season (Figure 3). Average foraging distance also 
varied strongly as a function of initial prey densities—in razorbills 
the mean foraging distance in the chick-rearing period varied be-
tween 14 and 47 km in Bcurrent and BRB*, respectively. The mod-
elled difference between species in foraging distance corresponds 
qualitatively to earlier observed differences between the two spe-
cies (Hentati-Sundberg et al., 2018) and the foraging distances 

F I G U R E  4   Upper limits to seabird 
population size (number of breeding 
pairs) at different forage fish densities 
for (a) guillemot and (b) razorbill. Dotted 
horizontal lines denote current population 
sizes. Note logarithmic scale on y-axis. 
For a description of forage fish density 
scenarios, see Table S2

F I G U R E  5   Gradients of fish density 
with increasing distance from the colony 
in the beginning, middle and end of the 
breeding season, based on initial densities 
BRB*(a–c), that is, the prey density 
scenario with the most far-reaching 
depletion effect, and at all prey densities 
(d–f). Although the model allowed birds 
to forage up to 110 km over-sea distance 
from the colony, no foraging took place 
beyond 55 km, that is, the maximum 
foraging distance which makes energetic 
sense for these two species in this system. 
In (e) empirical data for the prey gradient 
observed in 2014 are shown as a green 
semi-transparent line
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predicted by the model agree with data obtained from GPS track-
ing at the colony (Evans et al., 2013; Isaksson et al., 2019; Figure 3; 
Appendix S2).

3.3 | Prey depletion by foraging seabirds

The increase in foraging distance over the season reflects the 
gradually declining prey densities close to the colony (Figure 5). An 
Ashmole's halo emerged at all prey densities but its size varied from 
15 to 55 km in Bcurrent and BRB*, respectively. The total size of the for-
aging area in the successful breeding scenarios varied between 700 
and 7,400 km2. The near-colony fish density at the end of the season 
varied between 0.05 and 0.28 tkm-2, which corresponds to 7%–15% 
of the densities in the unaffected areas far from the colony. This 
steep gradient in prey density agrees with a previously estimated 
fish density of 0.018 tkm-2 close to Stora Karlsö in the middle of 
the breeding season, that is, an even lower number than suggested 
by the model (Figure 5e). The total seabird consumption over one 
breeding season varied between 1659 and 2020 t and showed a neg-
ative relationship with initial prey densities, meaning that seabirds 
consumed more at lower prey densities. This reflects the higher for-
aging costs (flying and diving) of birds facing prey shortages, which 
requires a greater energy intake. Our consumption estimates largely 
agree with results from other colonies (Appendix S4).

4  | DISCUSSION

Mitigating conflicts in ecosystem management requires frame-
works for evaluating and reconciling targets from different 
spheres, such as resource use management and environmental con-
servation. To that end, we developed a mechanistic bio-energetic  
model linking seabird breeding biology and foraging ecology with 
forage fish and fisheries management targets. Our model shows 
that densities of forage fish corresponding to currently used fish-
eries management targets are sufficient for successful breeding 
of guillemots and razorbills at the largest colony in the Baltic Sea. 
A previously proposed target for conserving seabirds, 1/3 of his-
torical maximum prey biomass (Cury et al., 2011) was also found 
sufficient. However, the large size of the fishery management 
area (>100,000 km2) compared to the size of the seabird forag-
ing area during the breeding season (<3,000 km2 when successful) 
highlights the need for a spatially explicit approach, which could 
mitigate local conflicts between top predator conservation and in-
dustrial fishing.

4.1 | Seabird traits and prey availability

At low prey densities, guillemots had a competitive advantage for 
self-maintenance, whereas razorbills were better at breeding suc-
cessfully, something that is in line with earlier empirical findings 

and model results for these species (Linnebjerg et al., 2015; Thaxter 
et al., 2010, 2013). In contrast with many other study systems, ra-
zorbills at Stora Karlsö often bring only one prey item to their chick 
per trip (Appendix S2), which indicates that high-quality prey is 
available to razorbills during chick-feeding despite their more limited 
diving capacity (Figure S2). The Atlantic biogeographical population 
of guillemots is substantially larger than that of razorbills, suggest-
ing that the superior diving capacity of guillemots is a competitive 
advantage in deep, well-oxygenated waters (Berglund & Hentati-
Sundberg, 2014). More generally, our findings highlight that species-
specific traits of top predators determine how fish biomass (the unit 
used in fisheries management) translates into prey availability.

To better capture the interaction between seabirds and their prey, 
possible model improvements include to consider: seasonal prey 
movements (Durant et al., 2007), prey patchiness (Fauchald, 2009), 
prey depth distribution (Boyd et al., 2017; Shoji et al., 2014), costs 
of thermoregulation (Ellis & Gabrielsen, 2002) and seabirds' knowl-
edge of the prey field (Ward & Zahavi, 1973). Interspecific competi-
tion and/or local enhancement may also be relevant to consider, for 
example, surface-feeders that depend on fish being chased to the 
surface by other predators (Thiebault et al., 2014). It would also be 
interesting to apply the framework to species with longer foraging 
ranges (e.g. Carneiro et al., 2020).

4.2 | Spatial scales of seabird foraging and 
fisheries management

Competition with fisheries for prey has been identified as one of 
the main threats to seabird populations globally (Dias et al., 2019). 
Still, most fisheries are managed without consideration for poten-
tial impacts on seabirds (Hill et al., 2020; Sydeman et al., 2017). We 
find that BMSY are enough to maintain the populations of guillemots 
and razorbills at current sizes at our study colony, but this requires 
a fish density within the seabirds’ foraging area that corresponds to 
the average level for a much larger area. Forage fish management in 
the Baltic Sea today is on a scale (>100,000 km2) that is more than 
one order of magnitude larger than the foraging range of any top 
predators breeding in the region (e.g. Isaksson et al., 2016; Oksanen 
et al., 2014). Among the 14 sprat and herring stocks currently man-
aged with advice from ICES (www.ices.dk/advice), the mean size of 
the management area is 720,000 km2, suggesting that this type of 
spatial mismatch is a general pattern. This indicates a need for pro-
tection of important foraging areas of seabirds at appropriate spatial 
scales in addition to general fisheries management practices. While 
the estimated seabird consumption in our system is small compared 
to commercial fisheries (around 2,000 t for this colony during the 
breeding period and approximately 25,000 t for all seabirds through-
out the Baltic Sea annually, in contrast to >500,000 t for fisheries; 
Hansson et al., 2017) the effect is still significant for ecological pro-
cesses at a seasonal and local scale.

Our framework can be extended to any central-place foraging top 
predator to calculate spatiotemporally explicit prey requirements. The 

http://www.ices.dk/advice
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resulting numbers can be used directly as top predator targets within 
ecosystem-based fisheries management, taking an appropriately PA 
in setting these targets given the inherent uncertainties in parameter 
estimates within the bio-energetic modelling. There are several pos-
sible ways to integrate such targets within the present quota-based 
fisheries management. The most straightforward and precautionary 
way would be to define the whole seabird foraging area as a Marine 
Protected Area and use Marine Spatial Planning to distribute fishing 
effort to other areas (Frederiksen et al., 2008). Voluntary commitments 
from the fishing sector to avoid key areas for top predators, especially 
during breeding seasons, would be another alternative (Abbott & 
Wilen, 2010). A third and more data-intensive and dynamic approach 
would be to set up continuous fish stock monitoring around seabird 
colonies and regulate fishing effort in real time based on the state of 
the prey resources, in the spirit of Dynamic Ocean Management (Dunn 
et al., 2016). Novel technologies such as drones for fish data collection 
could be useful tools in this transition (Mordy et al., 2017).

In our case, the fishery losses for avoiding seabird foraging 
areas are relatively moderate, but in areas where top predator con-
sumption is greater and/or the overlap between top predator for-
aging areas and important fishery grounds is greater, the trade-off  
between fisheries and conservation may be stronger. In such cases, our 
framework can be integrated with Management Strategy Evaluation 
to identify and negotiate balanced strategies for fisheries and conser-
vation (Dichmont et al., 2013).

5  | CONCLUSIONS

Mechanistic models of top predator breeding and foraging ecology, 
such as the one introduced here, improve our ability to manage the 
trade-off between fisheries and conservation. While our results sug-
gest that current fisheries targets are sufficient to ensure success-
ful breeding of both guillemots and razorbills in our study system, 
they also point to the strong dependence on local prey resources, 
suggesting a need for fisheries management at a much finer scale 
than what is applied today. The study also highlights the importance 
of a multi-species approach, as sensitivity analyses revealed that 
changing parameter values in one top predator had an effect on 
prey requirements of the other, which reflects the complexity and 
interactions inherent to marine ecosystems. As animal tracking data 
become increasingly available, the presented framework can be a 
useful tool for making ecosystem-based management decisions that 
minimizes conflict between marine wildlife and fisheries.
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