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A B S T R A C T   

In this study, data from the satellite sensors TanDEM-X and Sentinel-2 were combined with national field in-
ventory data to predict forest above-ground biomass (AGB) and stem volume (VOL) over a large area in Sweden. 
The data sources were evaluated both separately and in combination. The study area covers approximately 
20,000,000 ha and corresponds to about 70% of the Swedish forest area. The study area was divided into tiles of 
2.5 × 2.5 km2, which were processed sequentially. The field plots were inventoried on 7 m and 10 m circular 
plots by the Swedish National Forest Inventory, and plot AGB and VOL at the year of the satellite data were 
estimated based on a 10-year period of field data. The AGB and VOL were modelled using the k nearest neighbor 
(kNN) algorithm, with k = 5 neighbors. The combined use of two data sources with different scene extents 
enabled the generation of seamless AGB and VOL maps. Moreover, the kNN algorithm provided the VOL divided 
per tree species, which was used for classification of the dominant tree species at stand-level. The overall ac-
curacy for the dominant tree species classification was 77%. The predicted AGB and VOL rasters were evaluated 
using 549 field inventoried forest stands distributed over Sweden. The RMSE for the predictions based on both 
data sources were 31.4 t/ha (29.1%) for AGB, and 59.0 m3/ha (30.2%) for VOL. By estimating and removing the 
variance due to sampling (the stand values were estimated from sample plots), the RMSE was improved to 18.0 t/ 
ha (16.6%). The evaluated approach of using kNN was suitable for estimating forest variables from a combi-
nation of different satellite sensors, provided sufficient field reference data are available. The TanDEM-X data 
were most important for the AGB and VOL predictions, while Sentinel-2 data were essential to map the tree 
species.   

1. Introduction 

Remote sensing (RS) has proved invaluable for many sectors that rely 
on forest, since it enables predictions of variables with complete 
coverage in terms of raster maps. Yet, practical challenges hampers the 
continuous generation of such maps, especially at large scales, e.g., due 
to temporally harmonizing reference data (mostly inventoried in field) 
with the RS data, pre- and post-processing of the RS data, and 
mosaicking and filtering. 

In Sweden, wall-to-wall raster maps with predictions of common 
forest variables (e.g., above-ground biomass (AGB), stem volume (VOL), 
tree height, and basal area) have been produced for the entire country 
using laser scanning data and field data from the Swedish National 
Forest Inventory (NFI) (Nilsson et al., 2017). In the past, such maps were 
produced on a five years cycle (starting in 2000), based on Landsat or 
SPOT imagery. Swedish authorities and users in the forest industry have 

now got used to free high quality forest variable maps, but new laser 
scanning campaigns will only be repeated on five to seven years cycles 
(the time required to scan the entire country). Since most of the Swedish 
forests are managed, there is a strong demand for maps updated more 
frequently. It is also preferred to acquire all data within a short period to 
avoid temporal mismatches. An ongoing project aims at combining 
Sentinel-2 data with tree heights obtained from photogrammetric image 
matching, in order to generate forest maps more frequently. Sentinel-2 
data are acquired from Sweden every three to five days, but the time 
for complete coverage depends greatly on the weather conditions. 
Photogrammetric height data are acquired nationally at two- to four 
years cycles. In this study, the photogrammetric heights were replaced 
with synthetic aperture radar (SAR) TanDEM-X data from a previous 
project. TanDEM-X has shown good potential for mapping of forest AGB 
and VOL, and has the advantage of working in all weather conditions 
(Karila et al., 2015; Persson et al., 2017; Persson and Fransson, 2017; 
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Rahlf et al., 2014; Soja et al., 2017). TanDEM-X acquires data at an 11 
days repeat-cycle, but for complete coverage of the entire Sweden, a 
period of about 4 months was nevertheless required in this project 
(October 2015–January 2016) (Persson et al., 2017). For efficient co-use 
of resources, this study is based on the frameworks developed within the 
two projects. 

Past studies that combined data from different satellite sensors for 
forest mapping have also aimed at taking advantage of complementing 
sensor techniques, such as SAR and spectral sensors (Alan et al., 2017; 
Chang and Shoshany, 2016; Chen et al., 2018; Chirici et al., 2020; 
Debastiani et al., 2019; Mendes et al., 2019). Several studies combined 
Sentinel-1 and Sentinel-2 or Landsat, due to its free availability. How-
ever, these studies have been based on SAR backscatter which suffer 
from saturation of volumetric predictions, as does spectral sensors 
(Fagan and DeFries, 2009; Imhoff, 1995; Lu, 2006). They have also 
aimed at predicting the total AGB or VOL, and not tree species. The 
limitation of saturation in the SAR data is largely overcome by using the 
single-pass interferometry available with TanDEM-X, since it provides 
observations related to both forest height and density (Askne et al., 
2019, 2018). The saturation in the optical data is less critical, since the 
main contribution from the spectral wavelengths is to improve species 
separation. 

The objective of this study was to generate and evaluate large-area 
maps of forest above-ground biomass and stem-volume, predicted 
from the combination of TanDEM-X, Sentinel-2, and field reference data 
using the k nearest neighbor algorithm. An additional objective was to 
investigate the possibly added value of separating the predictions to 
individual tree species (pine, spruce and birch), and to assess the tree 
species-classification accuracy with this approach. Furthermore, the 
effects of using a recently developed error model was assessed, by 
compensating for sampling errors in the field references. 

2. Material and methods 

2.1. Background 

This paper is based on the work from two other applied projects, 
which therefore have set boundary conditions for some of the practi-
calities, such as the study area (the map is not covering the entire 
Sweden) and the investigated methods. The study area was selected in 
the other projects due to the availability of high-resolution airborne 
photogrammetric data at 2-year cycles. Thus, the replacement of 
airborne data with TanDEM-X data for this study was limited by the 
extent of that project. The study area covers approximately 20,000,000 
ha (Fig. 1) and corresponds to about 70% of the Swedish forest area 

2.2. Satellite data 

The SAR data from TanDEM-X were acquired between October 2015 
and January 2016. In total, 518 scenes for entire Sweden were processed 
within a previous project (Persson et al., 2017), but only 169 scenes 
were used in this paper, since these were overlapping the study area. The 
height-of-ambiguity (HOA) is a parameter determining the sensitivity of 
the InSAR measurements to height changes (Krieger and De Zan, 2014; 
Papathanassiou and Cloude, 2001; Soja and Ulander, 2013). For all 
images, the HOA was between 46 m and 68 m, resulting in good forest 
height sensitivity and a low probability of phase ambiguities. The im-
ages were acquired during late fall and winter conditions, with tem-
peratures ranging from − 32 ◦C to +11 ◦C, and they were acquired in 
strip-map mode, HH polarization, and with the single-look complex 
resolution 2.5 m in slant range and 3.3 m in azimuth. The incidence 
angles at the scene centres were all between 38◦ and 45◦. A digital 
terrain model (DTM) derived from the national laser scanning data was 
provided by Lantmäteriet (The Swedish National Land Survey) at a 2 m 

Fig. 1. (a) The extent of all 518 TanDEM-X scenes (outlined in orange) and the locations of all NFI plots (in red) for the investigated area. (b) Extent in gray of the 
study area and the locations (in red) of the 549 evaluation stands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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grid cell resolution. The DTM was used as ground reference during 
interferometric processing. 

The TanDEM-X data were delivered in the Coregistered Single look 
Slant range Complex (CoSSC) format. Following a common InSAR pro-
cessing approach, explained extensively in Persson et al. (2017), a 
complex interferogram (γ̃) was computed using: 

γ̃ =

〈
s1s*

2e− iϕ0
〉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅〈
|s1|

2〉〈
|s2|

2〉
√ (1)  

where s1 and s2 are the two interferometric images, * is the complex 
conjugate operator, ϕ0 is the interferometric phase due to topographic 
variations (simulated from the DTM), and 〈⋅〉 denotes spatial averaging 
using a window of 5 × 5 in range and azimuth, respectively. 

The complex interferogram was flattened with respect to the Earth 
curvature, and then filtered using the method by Richard M. Goldstein 
and Werner (1998). The flattened phase was unwrapped and converted 
to the phase height by scaling with the wavenumber kz (Persson et al., 
2020b, 2017; Persson and Fransson, 2017), where 

kz =
2πB⊥

λRsin(θ)
(2)  

and B⊥ is the perpendicular baseline, λ is the wavelength 3.1 cm, R is the 
average range to the satellites, and θ is the angle of incidence. The 
interferometric coherence γ was estimated from the flattened interfer-
ogram, using a coherence window of 3 × 3 pixels: 

γ =

⃒
⃒
∑

s1s*
2

⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
|s1|

2
∑

|s2|
2

√ (3) 

The estimated coherence was then corrected for decreasing signal-to- 
noise ratio as described in (Chen et al., 2016; Kugler et al., 2014; Persson 
et al., 2017). 

The backscatter σ0 was computed from the multilooked intensity 
images (β0), based on the CoSSC data. The calibration gain (provided in 
the metadata for each acquisition) was subtracted and then a radio-
metric normalization based on the pixel-area method was applied, as 
described in (Frey et al., 2013; Small, 2011). The backscatter for each 
scene was computed as the arithmetic mean of the normalized back-
scatter image from respective satellite. 

The spectral Sentinel-2 images were downloaded from the image 
portal ‘Saccess’, which is provided by the Swedish National Land Survey. 
The images were acquired with both the Sentinel-2A and Sentinel-2B 
satellites, and made available in the portal as level 1C only (top-of-at-
mosphere reflectance). The images were acquired mostly in 2017, but 
due to clouds, the period was extended to 2015 and 2016 as well to 
obtain a full cloud free mosaic over the study area. About 88% of the 
study area was covered with only four Sentinel-2 images (the full 290 ×
290 km2), but eight additional images were required to reach 100% 
coverage. All 12 images were manually selected, and resampled to 12.5 
× 12.5 m2 resolution using the nearest neighbor algorithm, in order to 
match the other data used. All 10 m and 20 m bands were downloaded, 
while the 60 m bands were considered to have too low resolution and 
were hence skipped. Additional pre-processing of the Sentinel-2 images 
was found to be unnecessary. 

The pixel values corresponding to the NFI plots were extracted from 
the TanDEM-X and Sentinel-2 images, using the average from a circle 
with 30 m radius for the TanDEM-X metrics (PH, COH, S0). Experience 
from previous studies (Persson et al., 2019, 2017) showed that the 
extraction of SAR data for areas of such sizes decreased the variability 
and improved the estimation accuracy, in terms of lower standard error, 
compared to using only a few pixels overlapping the small field plots. 
The bilinear average of the pixels matching the field plots were used for 
the Sentinel-2 images. 

2.3. Field reference data 

Sweden has a land area of 41 million ha and about 23.6 million ha is 
productive forest (SLU, 2019). Sweden is located mainly in the boreal 
forest region, though the southernmost parts are within the hemi-boreal 
and nemoral regions. The forest is dominated by Norway spruce (Picea 
abies (L.) H. Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula spp.), 
where pine and spruce constitutes about 80% of the growing stock and 
birch 12%. In this study, all deciduous forest types were approximated 
as birch forest, since birch constitute 86% of the deciduous forest vol-
ume in Sweden. Yet, in the hemi-boreal and nemoral regions there are 
also forests dominated by beech (Fagus sylvatica) and oak (Quercus 
robur). The current total stem volume of growing stock is 3,533 million 
m3 and the total AGB is more than 2,660 million tons (t). For the area 
used in this study, the average AGB and VOL is 91.9 t/ha and 165 m3/ha, 
respectively. 

The Swedish NFI is collecting data on about 11,000 circular plots 
annually, where about 1/3 are temporary plots, and 2/3 are permanent 
plots (Fridman et al., 2014). The latter are revisited every 5 years. The 
temporary plots have a radius of 7 m and the permanent plots 10 m. The 
plots are distributed in clusters (Fig. 1a), but the spatial separation of 
plots within each cluster is always >200 m, which means the plots can 
be regarded as spatially uncorrelated. All trees are registered for species, 
diameter at breast height (DBH), and the tree heights are measured on a 
sub-sample of trees. Refined variables, i.e., the AGB and VOL, were 
estimated tree-wise using established formulae (Brandel, 1990; Mar-
klund, 1988, 1987; Näslund, 1947) and then aggregated to plot-level 
values. Statistics for the field data are presented in Table 1. 

The entire forest map was processed tile-wise, but the number of 
available field plots for a single tile (2.5 × 2.5 km2) in one year was too 
few to attain robust predictions. Therefore, plots from a longer time 
period (forecasted or backdated to 2016 to match the satellite data) and 
outside the tile (but within the same Sentinel-2 satellite scene) were 
used. Earlier projects (Persson et al., 2020b; Reese et al., 2003; Tomppo 
et al., 2008) have shown that about 500–1000 plots are suitable, to 
sufficiently cover the range of available volumes, which is necessary for 
accurate estimations using the kNN method. The search radius (from the 
tile center) and temporal period were therefore successively increased in 
an iterative process until a sufficient number of plots were included. The 
time range was on average − 4 years (max 10 years) and 2.5 year stan-
dard deviation, while the spatial radius was on average 70 km (max 110 
km in northern Sweden due to the narrow shape) and 32 km standard 
deviation. To filter field plots that had been thinned or clear-cut between 
the field inventory and the satellite data acquisition, a linear regression 
model was created as AGB = k∙Band11, where k denotes the slope co-
efficient. Then, all plots with model residuals exceeding 2.5 standard 
deviations were removed, which resulted in approximately 800 avail-
able field plots for each tile. 

For evaluation, stand-level data from the company Sveaskog were 
used. The company is owned by the Swedish state and is the largest 
forest owner in Sweden (it owns about 13% of Sweden’s total forests). In 
2017, they carried out an extensive field inventory of about 2% of their 
entire forest assortment, covering 2400 forest stands. The purpose was 
to obtain an accurate estimate of their entire forest holding, reference 
data for prediction modeling, and evaluation data for their previous 

Table 1 
Properties for field datasets (for the evaluation also divided per tree-species).  

Dataset Mean (t/ 
ha) 

Sd (t/ 
ha) 

Min (t/ 
ha) 

Max (t/ 
ha) 

N 

NFI (training) 91.9 74.3 0 598.1 25,520 
Sveaskog 

(evaluation) 
108.1 48.3 2.75 289.3 549 

Sveaskog (pine) 44.0 34.4 0 167.5 549 
Sveaskog (spruce) 50.3 49.3 0 270.9 549 
Sveaskog (birch) 10.0 15.2 0 142.1 549  
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forest management. Out of these, 928 stands were covering the area 
investigated in this paper. Due to the time difference between the sat-
ellite and field datasets, clear-cut stands and stands largely overlapping 
with non-forest land features (e.g., roads and mires) were removed. This 
resulted in 549 forest stands (Fig. 1b) used for the evaluation (Tables 1 
and 2). The inventoried stands were sampled with circular plots of dy-
namic radius (from 5 to 10 m), using a probability sample approach with 
a systematic grid, but with random reference location. The radius was 
fixed for all plots within a stand, but adjusted between stands, to obtain 
on average 15–20 trees per plot. This approach led to an average of 7 
plots per stand (5–12, depending on the stand size and shape). The 
separate plot averages were used to compute the within-stand variance 
between the plots. Trees with a DBH > 4 cm were measured and the 
subjectively estimated tree-species composition was registered. The 
plot-level AGB and VOL was computed using established equations valid 
for the region (the same approach as for the NFI plots in the first data-
set). Stand-level estimates were computed as plot averages for each 
stand, and the dominant tree species was determined. The stand size 
properties are presented in Table 2, and the distribution of stand size is 
presented in Fig. 2. 

2.4. Modelling and prediction 

The modelling was based on the kNN algorithm, which was imple-
mented in the software R using the package yaImpute (Crookston and 
Finley, 2007). It requires two parameters: method and k. yaImpute 
provides an implementation of kNN regression where the “random-
Forest” method was used for computing the distance and finding 
neighbors. It assumes the distances are following a beta distribution and 
the distance measure is one minus the proportion of trees where a target 
observation is in the same terminal node as a reference observation 
(Crookston and Finley, 2007). Different values for the number of 
neighbors (k) have been tested in a previous Swedish study, and the 
results for k = 1, 3, or 5 neighbors were reported in Persson et al. 
(2020a). It was found, that lower values on k allowed a wider range of 
predicted values, but also a larger variance at the pixel level. A larger k 
caused predictions with a smaller variety between nearby pixels, hence 
giving a map that appeared smoother. The parameter k = 5 was selected 
for this study, since this caused the smallest bias and with a low RMSE in 
Persson et al. (2020a). Unbiased predictions are particularly important 
for products where aggregation over larger regions may be used, since a 
bias would otherwise cause the error to accumulate with increased 
areas. 

Previous experience from generating national forest maps from op-
tical satellite data and kNN (Reese et al., 2003, 2002; Tomppo et al., 
2008) were used as a basis for the selection of relevant bands and radar 
metrics, and then further empirical testing were carried out at the cur-
rent study area. We found that the Sentinel-2 bands 4 (red) and 8 (NIR) 
with 10 m resolution, and the 20 m bands 5 (vegetation red edge), 7 
(vegetation red edge), 8a (narrow NIR), 11 (SWIR), and 12 (SWIR) were 
meaningful to include and contributed to the overall performance. From 
the available radar metrics, the inclusion of only the interferometric 
phase height (PH) gave the best results. A project requirement was that 
the same explanatory variables should be used for all tiles, which fa-
cilitates the statistical assessments. The kNN model was used to predict 
values for all pixels (12.5 × 12.5 m2) within each tile. The predicted 
variables were AGB, and VOL divided per tree-species (pine, spruce and 
birch). The proportion of different tree-species was assumed the same 
for both AGB and VOL. Negative AGB or PH < 2 m were removed. 

To determine the accuracy of dominant tree species classification, a 

confusion matrix was computed, where the dominant predicted tree- 
species was compared with the dominant tree species from the field. 
The dominant species was defined as the most common of pine, spruce, 
and deciduous trees in terms of volume. 

2.5. Uncertainty evaluation 

The predictions were evaluated with stand level inventory data from 
Sveaskog, using root mean square error (RMSE) and bias defined as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Ŷi − Yi

)2
√

(4)  

Bias =
1
n

∑n

i=1

(
Ŷi − Yi

)
(5)  

with Y being the reference, and Ŷ the prediction for stand i, and n 
denoting the number of stands. 

The error at stand-level was furthermore estimated for AGB with a 
linear error model (Persson and Ståhl, 2020), which enabled compari-
sons with other studies using other datasets. The error model was 
defined as in Persson and Ståhl (2020): 

TRS = λ0 + λ1∙T + ε (6)  

where TRS denotes the RS-based estimate, T is the true AGB value, λ0 is a 
systematic displacement, and λ1 makes the systematic error change 
across the range of true values, and ε denotes the random errors, 
quantified by their standard deviation σε. There were two main purposes 
for using the error model. First, to illustrate how the error varies with 
varying reference value, instead of reporting a single value as RMSE. 
Second, the error model (and underlying estimators) provided a 
framework to compute estimates of the errors in the stand-level field 
data, which were propagated to the reported ordinary RMSE. It there-
fore allowed to also report the corrected RMSE*, where the variance 
contribution due to random errors in the field data was removed (which 
was assumed to appear due to the use of a sample instead of a completely 
inventoried reference). 

3. Results 

The predicted AGB and VOL maps were mosaicked, and they covered 
the area illustrated in Fig. 3a. 

Table 2 
Stand size properties for the stands used for evaluation.  

Dataset Mean (ha) Sd (ha) Min (ha) Max (ha) 

Sveaskog (evaluation) 8.68 10.4 0.370 116  

Fig. 2. Distribution of stand size in hectare for the stands used for evaluation.  
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3.1. Plot-level accuracy training data 

Since the processing of the single tiles were using plot references 
from a surrounding, extending outside the current tile, the same plots 
were used many times but for different tiles. Therefore, both the sta-
tistics for the accumulated NFI references and the corresponding 

estimated values with kNN are presented in Table 3. It also shows the 
RMSE, computed from the estimated-vs-NFI references for all the plots. 
Due to the large number of tiles (29,932) and reference plots (N =
25,520), the total number of plots became too large (N > 20 millions) to 
derive the leave-one-out accuracy, due to the processing time. The 
average VOL for the NFI plots used for the Sentinel-2 estimates was 

Fig. 3. a) The stem volume (VOL) predicted from Sentinel-2 and TanDEM-X and with the extents of b) and c) overlaid in red. b) zoomed-in extent from northeastern 
Sweden. c) zoomed-in extent from southeastern Sweden. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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lower (210.4 m3/ha) than those that used TanDEM-X (221.4 m3/ha). 

3.2. Stand-level accuracy evaluation data 

The accuracy for AGB and VOL at stand-level are presented in 
Table 4. The relative error values for AGB and VOL were similar, and the 
biases were small but not negligible. The bias constituted approximately 
8% (VOL) to 10% (AGB) of the RMSE (where MSE is bias2 + variance). 
For higher reference values, the underestimation increased, while for 
lower values, the overestimation increased (Fig. 4a and 4b). The cor-
relation between the predicted AGB and VOL was 0.98, and this in-
dicates that the prediction performance for any of these variables are 
indicative for the other as well. 

The under- and overestimation visible in the scatter plots can be 
parametrized with the error model, which parameters for AGB are listed 
in Table 5, and illustrated in Fig. 5. The positive λ*

0 parameter indicates 
the overestimation at low values, and with λ*

1 < 1 the overestimation 
decreases with increasing reference values. Approximately unbiased 
predictions were obtained for values close to the sample mean for the 
NFI dataset used as training (Table 1). The RMSE* values that were 
corrected for the uncertainty in the reference data (due to using a 
sample) are also listed. The corrected RMSE decreased to 18.0 t/ha for 
AGB, which reduced the relative accuracy to 16.6%. This means that 
about 43% of the RMSE computed with the traditional estimator (Eq. 4) 
appeared due to random errors in the sampling of the stands. The bias is 
not affected by the correction in absolute terms, but with the signifi-
cantly lower corrected RMSE*, the relative contribution due to bias* 
increased to 18%. 

3.3. Influence of tree species 

The accuracy of the predictions were also assessed for the species- 
wise AGB, predicted from the combination of TanDEM-X and Sentinel- 
2 (Table 6). The AGB for respective species-fraction for each stand 
(hence n = 549 for each species) was plotted against the corresponding 
reference in Fig. 6. The RMSE in absolute terms was similar (pine) or 
better (spruce and birch) compared to the accuracies for the overall AGB 
(in Table 4). However, since the prediction accuracy largely depends on 
the total AGB, comparisons with fraction-wise AGB averages has little 
meaning. The bias was small for pine and spruce, while evident for birch 
(Table 6). The same trend for under- and overestimation was observed 
when inspecting the individual tree species compared to the overall 
trend. 

A species-classification at the stand-level was derived by classifying 
the dominant tree species by assigning the majority species in terms of 

AGB as the dominant predicted tree-species. These were compared with 
the dominant species in the field reference and a confusion matrix was 
calculated (Table 7) in addition to the user’s, producer’s, and overall 
accuracy, and kappa statistics. The classification clearly captured 
coniferous vs. deciduous forest. The largest confusion appeared between 
pine and spruce forest, where 24% of the pine-dominated stands were 
classified as spruce, and on the other hand, 22% of the spruce stands 
were classified as pine. However, the stands were not consisting of a 
single tree-species. The overall accuracy was 77% and the Kappa value 

Table 3 
The statistics for the NFI plots (for TanDEM-X and Sentinel-2 + TanDEM-X), and also RMSE for the estimations, when accumulated over all tiles. The number of plots N 
is higher for S2, since there were orbits with missing data in the TDM images.  

Datasets (training) Mean (m3/ha) Sd (m3/ha) Min (m3/ha) Max (m3/ha) N RMSE RMSE% 

NFI 221.4 136.3 0 1050.9 20,985,934 – – 
Estimated S2 188.0 126.3 0 1050.9 23,667,925 143.1 68.0 
Estimated TDM 215.6. 136.4 0 1050.9 20,985,934 149.5 67.6 
Estimated S2 + TDM 201.9 125.8 0 1050.9 20,985,934 131.3 59.3  

Table 4 
Stand-level accuracy for kNN predictions based on the combination of Sentinel-2 
(S2) and TanDEM-X (TDM), or each data source separately.  

Dataset Variable RMSE Bias 

S2 + TDM AGB 31.4 t/ha (29.1%) 3.17 t/ha (2.93%) 
S2 + TDM VOL 59.0 m3/ha (30.2%) 4.71 m3/ha (2.41%) 
S2 AGB 39.2 t/ha (36.3%) 5.01 t/ha (4.64%) 
S2 VOL 74.2 m3/ha (37.9%) 8.36 m3/ha (4.27%) 
TDM AGB 34.0 t/ha (31.5%) 9.17 t/ha (8.49%) 
TDM VOL 62.4 m3/ha (32.0%) 15.1 m3/ha (7.75%)  

Fig. 4. Scatter plots of (a) AGB and (b) VOL, predicted with kNN vs. field 
references at stand-level. 
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57% (Table 7), which might be perceived as moderate results. The 
spectral values were extracted from a single image for each location, and 
previous studies (Grabska et al., 2019; Persson, 2018) have shown that 
using several spectral images improves such classifications. 

3.4. Influence of location and size 

The error in terms of the residuals (predicted – reference) was 
investigated with respect to location and stand-size (Fig. 7), for the 
predictions from the combination of TanDEM-X and Sentinel-2. The 
residuals in terms of absolute values did not show any trend with respect 
to northing or easting. However, since AGB tend to be higher in southern 
Sweden, the expectation was to obtain larger residuals further south and 
closer to the coasts (generally further east). 

The residuals were approximately normally distributed with respect 
to stand size, but the distribution was negatively skewed, with a median 
of 8.56 t/ha. 

4. Discussion 

This study used kNN to predict AGB and VOL from TanDEM-X, 

Sentinel-2 and field plots. The contributions from each data source 
separately and in combination were evaluated (Tables 3 and 4). The 
RMSE at stand-level (Table 4) for the AGB and VOL predictions were 
lower when only TanDEM-X (~32% RMSE) was used as data source, 
compared with the predictions from only Sentinel-2 (~37%). Such dif-
ferences could not be seen clearly at the plot-level (Table 3, training 
data), where the accuracies for the separate data sources were both 
about 68%, but the use of their combination still showed a clear 
improvement, reaching an RMSE of 59%. The predictions from the 
combination of both TanDEM-X and Sentinel-2 were significantly better 
at the stand-level, with ~29% RMSE, which indicates that both data 
sources contribute with non-overlapping information, useful for map-
ping of AGB and VOL. The authors do not know about other studies 
where TanDEM-X and Sentinel-2 have been combined for mapping of 
AGB and VOL. However, Wittke et al. (2019) compared Sentinel-2 with 
other sensors for the prediction of forest variables in boreal forest. They 
reported that Sentinel-2 had a similar accuracy as predictions of AGB 
and VOL based on TerraSAR-X, which in another study using the same 
test site, showed lower accuracy than predictions based on TanDEM-X. 
In Persson et al. (2013), they investigated how the inclusion of heights 
from different image-matched stereo data combined with spectral SPOT- 
5 images could be used for AGB estimation. The best combination 
improved the results based only on spectral data by lowering the RMSE 
from 33% to 22%. Other studies combining optical satellite images and 
some height data source were mainly relying on airborne laser 
(Badreldin and Sanchez-Azofeifa, 2015; Fernández-Landa et al., 2018) 
or image matched heights from drones (Puliti et al., 2018). Other 
combinations did not add any height data, but only two-dimensional 
metrics, e.g., backscatter (Alan et al., 2017; Chang and Shoshany, 

Table 5 
Error model results.  

Parameter Value 

λ*
0  47.3 

λ*
1  0.592 

σ2
ε

*(t2/ha2)  314 

RMSE* (t/ha) 18.0 (16.6%) 
Bias* (t/ha) 3.17 (2.93%)  

Fig. 5. Visualization of the error structure for the stand-level evaluation. The 
solid line is due to the residuals, computed from λ*

0 and λ*
1, and the band width 

represents the random errors as ±2σ*
ε . 

Table 6 
Accuracy per tree species for evaluation stands. Since both the total AGB and the 
fractions for each tree-species is available for the stands, it is possible to derive 
separate RMSEs, and hence n = 549 for all species.  

Model RMSE (t/ha) Bias (t/ha) n 

Spruce AGB 25.1 0.572 549 
Pine AGB 30.7 0.610 549 
Birch AGB 18.4 5.49 549  

Fig. 6. Visualization of the predicted vs. reference AGB fractions divided on 
tree-species. 

Table 7 
Confusion matrix for the dominant tree species.   

Reference  

Prediction Birch Pine Spruce Users accuracy 

Birch 15 9 12 0.417 
Pine 1 240 61 0.795 
Spruce 3 77 207 0.721 
Producers accuracy 0.789 0.736 0.739 Overall 0.769 

Unweighted Kappa statistic: 0.570. 
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2016; Debastiani et al., 2019). 
The RMSEs of our study were in the upper range in absolute terms 

(31.4 t/ha, 59.0 m3/ha) compared to those presented in Persson et al. 
(2017), 27–30 t/ha and 52–65 m3/ha, where a regression model was 
used for the entire country. However, Persson et al. (2017) used a 
different reference dataset for the evaluation, and different samples of 
NFI plots were used for the predictions. In relative terms, the accuracy of 
29–30% RMSE (Table 4) at stand-level was similar or lower than most 
large-area studies based on SAR backscatter for the boreal region 
(Fransson and Israelsson, 1999; Santoro et al., 2011, 2006, 2002). It was 
higher though, compared to the previous study by Persson et al. (2017, 
21–25%) which was based on TanDEM-X data, but employing linear 
regression instead of kNN as estimation method. 

Studies reporting lower RMSE have generally used multitemporal 
data and/or reported the accuracies from local regions. This tendency 
has been noted with the dataset used in this study as well, where its 
accuracy at a local test site was reported in Persson et al. (2020a). The 
RMSE was about 77–83 m3/ha (24–26%), compared to the 59 m3/ha 
(30%) in the current study where a large part of the country was used. 
Hence, the relative RMSE can be misleading, due to the different sample 
means. In addition, reference data from test sites are often collected with 
greater care (and sometimes without using a sample – fully inventoried 
stands), than in large-scale operational inventories. The evaluation 
stands in our study were collected within such a large-scale inventory 
and may therefore contain more errors than the evaluation data used in 
Persson et al. (2020a). The stands were reasonably distributed over the 
entire study area, which decreases the risk of large deviations from the 
prediction accuracies if used locally. 

When the uncertainties in this study were removed (related to using 
sampled stands as reference), the accuracy was evidently improved, to 
16.6% (18.0 t/ha). That difference supports the previous statement that 
the reported accuracy really depends on the quality, size and number of 
reference data. Additional support for this premise can be noticed by 
comparing the error parameter value σ2

ε
*. It was 314 t2/ha2 in this study, 

and 114 t2/ha2 at a test site in northern Sweden, reported in (Persson 
and Ståhl, 2020) and based on estimates made from TanDEM-X data 
only. The λ*

1 parameter (0.592, Table 5) deviated considerably from one, 
which showed a weakness with the current approach, since it should be 
close to one to avoid varying under- or overestimation. 

Reported accuracies depend largely on the empirical data used, and 
the size of the evaluation units. In Tomppo et al. (2008), they reported 
the relative RMSE vs. stand size, when using the kNN method with 
spectral data and field plots, and when the areas decreased below 10 ha 
(which was approximately the mean evaluation stand size in this study, 
Table 2), the relative RMSE reached 40–80%. In our study, no such 
changes in RMSE were noticed with varying stand size (Fig. 7c). The 
residuals appeared approximately normally distributed, but positively 

biased (3 t/ha, described in Table 4). The residuals were similar 
regardless of northing, and easting. This suggests that the evaluated 
approach is robust, likely explained by the predictions being carried out 
locally and tile-wise. 

The assessed approach based on kNN is generally taking advantage 
of using reference data only from the “local” surrounding (region), 
which therefore should make the predictions more valid at the local 
level, although the overall accuracy in terms of RMSE appears moderate. 
Yet, a large advantage of using kNN over parametric models was that it 
allowed to easily (and smoothly) combine the TanDEM-X and Sentinel-2 
data in a way that caused the predicted tiles to not show any seamlines. 
The Sentinel-2 images extended over many TanDEM-X scenes and hence 
balanced this problem. Seamlines were obvious in the kNN raster based 
only on TanDEM-X, and they were also noticed between different sat-
ellite scenes in Persson et al. (2017), particularly for scenes acquired in 
different weather conditions. The kNN approach therefore facilitates 
combining different data sources, which implies that when the data 
sources have their extents at different locations, it contributes to a 
smoother mosaic. 

Species-wise information was possible to derive due to the inclusion 
of Sentinel-2 images, and although not all the spectral data may be 
possible to acquire within a single year, the tree species do not change 
rapidly, and hence a higher tolerance can be accepted for a temporal 
discrepancy between the spectral data and the other data sources. The 
species-wise fractions of AGB or VOL were used to classify the dominant 
tree-species at stand-level, and the overall accuracy of 77% (Table 7) 
was similar as reported by Grabska et al. (2019) and Persson et al. 
(2018). Persson et al. (2018) found, that by using a single Sentinel-2 
image, classification accuracies of about 72–79% could be reached. By 
extending the dataset from one to four images, these values were 
improved to 86%. The Kappa value of 0.57 in our study indicated a 
moderate reliability of the classification, and was slightly lower than 
those reported by Persson et al. (2018). 

The main application in Sweden for this type of map is to cover the 
time gaps in-between the national laser scannings, which currently 
repeat about every seven years. This time-span, however, describes the 
interval before the same area is covered again. The scanning of Sweden 
is carried out continuously. Corresponding laser based products provide 
stand-estimates with an accuracy of about 20% RMSE (Nilsson et al., 
2017). Therefore, some users may use the kNN prediction rasters pro-
posed in this study directly, while others may prefer to forecast a laser 
based base product, and only use the kNN product to filter out large 
changes or to estimate the growth rate for a forecasting. In the past, kNN 
based maps were generated every five years and used by many Swedish 
users, since there were no other alternatives at the national level. With 
the proposed method, the map gives a national snapshot valid for a 
single year, in contrast to laser based maps where different parts of the 
country are acquired in different years. Many countries globally do not 

Fig. 7. Visualization of the error vs. northing, easting and stand size.  
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have operational laser scanning programs, although most countries 
operate national forest inventories. Therefore, the tested kNN approach 
is likely even more valuable globally. The approach is expected to 
transfer well, since the required training data come from a limited, 
rather local, surrounding of each tile. 

To contrast the positive aspects discussed earlier, the kNN method is 
however rather slow to apply, requires much field data, and the pre-
dicted values cannot be extrapolated. Depending on the preconditions, 
these may crucially affect the best choice of method. The approach was 
yet convenient for combining uncalibrated data sources (TanDEM-X 
with respect to weather conditions, especially temperature, and 
Sentinel-2 reflectance levels with respect to the other scenes) for pre-
diction of forest variables. 

5. Conclusions 

This study demonstrated the use of the kNN method with k = 5 
neighbors, applied to data from TanDEM-X, Sentinel-2, and their com-
bination, together with field reference data, to predict above-ground 
biomass and stem volume of a large area in Sweden. The kNN method 
was an efficient and convenient way of combining the data sources in 
order to generate a seamless mosaic of predictions with sufficient ac-
curacy. It did furthermore provide species-wise fractions, which were 
used to classify the dominant tree species at stand-level. The overall 
accuracy of 77% was similar to what has been shown in previous studies, 
and since the prediction accuracy of above-ground biomass and stem 
volume was not negatively affected, this approach may be in favor over 
other methods with similar accuracy, due to its benefits. 

The prediction accuracy was similar to previous large-area products 
based on the assessed data sources, and similar or better than large-area 
products based on SAR backscatter or only spectral data. The use of a 
linear error model enabled the use of estimators that correct for the 
sampling errors in the field references. This improved the accuracy of 
above-ground biomass in terms of RMSE with 43%, which was reduced 
from 31.4 t/ha to 18.0 t/ha. The error model moreover enabled the 
separation of bias and variance, where the influence of bias was 
generally limited. 

We conclude that when sufficient amounts of field data are available, 
the kNN algorithm provides a convenient way of deriving above-ground 
biomass and stem volume, and obtain a solid source for the dominating 
tree species. The use of interferometric phase height from TanDEM-X 
provided the basis for accurate volumetric predictions, while the spec-
tral reflectance from Sentinel-2 was key to the predictions of tree- 
species. 
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Näslund, M., 1947. Funktioner och tabeller för kubering av stående träd. Meddelanden 
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