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Abstract
The search for mates and food is mediated by volatile chemicals. Insects sense food 
odorants and sex pheromones through odorant receptors (ORs) and pheromone 
receptors (PRs), which are expressed in olfactory sensory neurons. Molecular phy-
logenetics of ORs, informed by behavioral and functional data, generates sound 
hypotheses for the identification of semiochemicals driving olfactory behavior. 
Studying orthologous receptors and their ligands across taxa affords insights into 
the role of chemical communication in reproductive isolation and phylogenetic di-
vergence. The female sex pheromone of green budworm moth Hedya nubiferana 
(Lepidoptera, Totricidae) is a blend of two unsaturated acetates, only a blend of 
both elicits male attraction. Females produce in addition codlemone, which is the 
sex pheromone of another tortricid, codling moth Cydia pomonella. Codlemone also 
attracts green budworm moth males. Concomitantly, green budworm and codling 
moth males are attracted to the host plant volatile pear ester. A congruent behavioral 
response to the same pheromone and plant volatile in two tortricid species suggests 
co-occurrence of dedicated olfactory channels. In codling moth, one PR is tuned to 
both compounds, the sex pheromone codlemone and the plant volatile pear ester. 
Our phylogenetic analysis finds that green budworm moth expresses an orthologous 
PR gene. Shared ancestry, and high levels of amino acid identity and sequence simi-
larity, in codling and green budworm moth PRs offer an explanation for parallel at-
traction of both species to the same compounds. A conserved olfactory channel for 
a sex pheromone and a host plant volatile substantiates the alliance of social and 
habitat signals in insect chemical communication. Field attraction assays confirm that 
in silico investigations of ORs afford powerful predictions for an efficient identifica-
tion of behavior-modifying semiochemicals, for an improved understanding of the 
mechanisms of host plant attraction in insect herbivores and for the further develop-
ment of sustainable insect control.
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1  | INTRODUC TION

Olfactory perception of food cues and sex signals is intimately inter-
connected in insects (Borrero-Echeverry, Bengtsson, Nakamuta, & 
Witzgall, 2018; Conchou et al., 2019; Lebreton et al., 2017; Reddy 
& Guerrero, 2004; Rouyar et al., 2015; Varela, Avilla, Gemeno, & 
Anton, 2011). Deciphering the chemicals encoding food and mates 
is basic to understanding insect ecology and evolution. Moreover, 
the knowledge of such behavior-modifying chemicals can be ap-
plied for detection and environmentally safe control of insects 
(Evenden & Silk, 2016; Gregg, Del Socorro, & Landolt, 2018; Reddy 
& Guerrero, 2010; Ridgway, Silverstein, & Inscoe, 1990; Suckling 
et al., 2014; Witzgall, Kirsch, & Cork, 2010; Witzgall, Stelinski, Gut, 
& Thomson, 2008).

New tools for insect management are needed in the wake 
of a changing climate that accelerates insect invasions and out-
breaks, aggravating food insecurity (Deutsch et al., 2018). Recent 
efforts to deregulate the most toxic compounds have left growers 
with few efficient insecticides (Chandler et al., 2011; Jactel et al., 
2019). The overwhelming majority of insect species, however, do 
not feed on our food crops. Including pollination services, insects 
are integral to all terrestrial food webs. The overuse of synthetic 
pesticides affects nontarget and beneficial insects and other ar-
thropods and is a contributing cause of the biodiversity apoca-
lypse. This has been a point of debate since DDT (Carson, 1962), 
yet despite this, the currently most widely used insecticides, 
the neonicotinoids show severe side effects (Chmiel, Daisley, 
Burton, & Reid, 2019; Longing et al., 2020; Seibold et al., 2019; 
Wagner, 2020; Yamamuro et al., 2019).

The development of pheromones and other semiochemicals as 
a species-specific and environmentally safe alternative to conven-
tional insecticides has always been the rationale for chemical ecology 
research. Air permeation with synthetic pheromones, for disruption 
of premating sexual communication, is used against key orchard 
and forest insects (Reddy & Guerrero, 2010; Witzgall, Kirsch, et al., 
2010; Evenden & Silk, 2016). Pheromone lures for specific and sen-
sitive detection are available for hundreds of species. Such lures, 
in combination with traps, insect pathogens or insecticides, may 
even achieve population control, when the female sex becomes at-
tracted (El-Sayed, Suckling, Byers, Jang, & Wearing, 2009; Ridgway 
et al., 1990; Suckling et al., 2014). In stark contrast to pheromones 
attracting insects for mating, only few semiochemicals have been 
identified that attract gravid females for oviposition. Designing fe-
male or bisexual lures is therefore a current challenge toward a more 
widespread use of behavior-modifying chemicals for insect control.

Identification of many hundreds of sex pheromones, across all 
insect orders (El-Sayed, 2019), has been facilitated by a mutual coor-
dination of production and response in both sexes. Pheromones are 

produced in dedicated glands, produce strong antennal responses, 
and immediately trigger a sequence of distinctive behaviors.

Identification of semiochemicals, or kairomones, that mediate 
oviposition behavior meets substantial methodological difficulties. 
Synthetic plant volatile blends that have been found to attract insect 
herbivores typically build on compounds found across many plant 
species (Bruce & Pickett, 2011; Lu, Wang, Wang, Luo, & Qiao, 2015; 
Najar-Rodriguez, Galizia, Stierle, & Dorn, 2010; Tasin et al., 2010). 
The attractant power of such ubiquitous plant volatiles is sometimes 
faint, compared with sex pheromones.

Some plant compounds, that are unique or characteristic for lar-
val food plants, have been found to mediate significant attractancy. 
One such key host plant compound is ethyl (E,Z)-2,4-decadienoate, 
pear ester, a bisexual attractant for codling moth Cydia pomonella 
(Lepidoptera, Tortricidae) (Light & Knight, 2005; Light et al., 2001). 
Pear ester is efficient for population monitoring (Knight, Light, & 
Chebny, 2013; Knight, Mujica, Herrera, & Tasin, 2019) and for behav-
ioral disruption of codling moth larvae and adults, alone or combined 
with sex pheromone (Knight & Light, 2013; Knight et al., 2012; Light 
& Beck, 2012; Light & Knight, 2011). The discovery of pear ester 
demonstrates the potential of kairomones to both improve pher-
omone-based techniques and to design stand-alone applications. 
That pear ester is released only in trace amounts from green apples 
(Gonzalez et al., 2020) underlines that the abundance of volatiles in 
plant headspace does not correlate with their behavioral saliency. 
Compounds released in large amounts often stem from main bio-
synthetic pathways shared by many plants and cannot account for 
specific host plant finding.

The most widely employed tool for studying plant compounds 
mediating host attraction is gas chromatography coupled to elec-
troantennographic detection (GC-EAD). GC-EAD measures 
the response of the entire antenna to odorants (Arn, Städler, & 
Rauscher, 1975), and biases compounds occurring in large amounts 
in headspace collections. An active compound such as pear ester, on 
the other hand, has been overlooked in GC-EAD recordings due to 
its low abundance.

The discovery of the genetic code of insect odorant receptors 
(ORs) (Clyne et al., 1999) enables a new approach. The ligand bind-
ing specificity of ORs determines the spectrum of volatile chemi-
cals transmitted by OSNs from the antenna to olfactory centers in 
the brain. Sequencing antennal RNA extracts and gene transcript 
annotation provides OR expression data and a first functional dif-
ferentiation, between pheromone receptors (PRs) and ordinary 
ORs, responding to environmental odorants. Subsequent phy-
logenetic analysis groups orthologous ORs from related species 
and provides leads on putative ligands, through comparison with 
an accumulating database of deorphaned insect ORs (Fleischer, 
Pregitzer, Breer, & Krieger, 2018; Robertson, 2019; Zhang & 
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Löfstedt, 2015). Single ORs are accordingly a tool of choice to 
interrogate the plant and microbial odorscape for bioactive com-
pounds. A powerful experimental approach is to express ORs sin-
gly in defined sensilla of the antenna of Drosophila melanogaster 
(Dobritsa, Van Naters, Warr, Steinbrecht, & Carlson, 2003; Hallem, 
Ho, & Carlson, 2004), where they can be addressed with single 
sensillum electrophysiological recordings, coupled to gas chroma-
tography (GC-SSR).

In codling moth Cydia pomonella (Lepidoptera, Tortricidae), 
CpomOR3 has been deorphaned, following transcriptome anal-
ysis (Bengtsson et al., 2012; Walker, Gonzalez, Garczynski, 
& Witzgall, 2016) and heterologous expression (Bengtsson 
et al., 2014; Cattaneo et al., 2017; Wan et al., 2019). The main li-
gand of CpomOR3, which belongs to the PR clade, is the plant 
volatile pear ester (Bengtsson et al., 2014; Light & Knight, 2005; 
Light et al., 2001). A recent assembly of the codling moth genome 
reveals presence of two paralogues of CpomOR3, which, accord-
ing to functional characterization in Xenopus oocytes, respond to a 
lesser extent also to codling moth sex pheromone, codlemone (Wan 
et al., 2019). A seemingly conserved response in a closely related 
species underscores this deeply rooted interconnection of phero-
mone and plant volatiles: Green budworm moth Hedya nubiferana 
(Lepidoptera, Tortricidae) is attracted to codlemone (Arn, Schwarz, 
Limacher, & Mani, 1974; El-Sayed, 2019) and to pear ester (Jósvai, 
Koczor, & Tóth, 2016; Schmidt et al., 2007).

We have reinvestigated sex pheromone production by green 
budworm moth H. nubiferana females and the male response to cod-
ling moth C. pomonella sex pheromone and to pear ester, in labo-
ratory and field bioassays. A comparative phylogenetic analysis of 
ORs in the antennal transcriptome of green budworm and codling 
moth aligns with the behavioral evidence and suggests the presence 
of a conserved olfactory channel dedicated to these compounds, in 
both species. This demonstrates how functional characterization of 
ORs in model species such as codling moth (Bengtsson et al., 2014; 
Gonzalez, Witzgall, & Walker, 2016), followed by in silico studies of 
antennal transcriptomes in the taxonomically related species will ad-
vance the identification of insect kairomones, and the development 
of insect management.

2  | MATERIAL S AND METHODS

2.1 | Insects

Green budworm moth Hedya nubiferana Haworth (dimidioalba 
Retzius) (Lepidoptera, Tortricidae) (Figure 1) is a polyphagous leaf-
roller on Rosacean trees and shrubs and co-occurs with codling moth 
Cydia pomonella on apple, throughout the Northern Hemisphere. 
The larvae feed on fruit in autumn and on flower buds in the spring 
(Bradley, Tremewan, & Smith, 1979). For pheromone analysis, last-in-
star larvae were field-collected in apple orchards in Scania (Sweden) 
during May. Larvae were fed with apple leaves and a semisynthetic 
agar-based diet (Rauscher, Arn, & Guerin, 1984). Pupae and adults 

were kept under a 18:6 hr light–dark cycle in screen cages and were 
supplied with fresh apple branches and sucrose solution.

2.2 | Pheromone gland extraction and 
chemical analysis

Female abdominal sex pheromone glands were dissected at the 
onset of the calling period, toward the end of the scotophase. 
Glands of 2- to 4-day-old females were extracted in batches of 5 
to 15 in 7 µl of redistilled hexane for 1 min (Bäckman, Bengtsson, & 
Witzgall, 1997). Identification of female gland compounds by cou-
pled gas chromatography-mass spectrometry (GC-MS) was done on 
a Hewlett Packard 5970 B instrument, with electron impact ioniza-
tion (70 eV), interfaced with a Hewlett Packard 5890 GC. Helium 
was used as carrier gas on a 30 m × 0.25 mm DB-Wax column 
(J&W Scientific), programmed from 80°C (hold 2 min) at 10°C/min 
to 230°C. The compounds were identified by comparing retention 
times and mass spectra of natural and synthetic compounds. Double 
bond position was determined by co-injection with synthetic sam-
ples and by evaluation of mass spectra.

2.3 | Field trapping

The geometric isomers of E8,E10-12Ac and E8,E10-12OH were syn-
thesized (Witzgall, Bengtsson, Unelius, & Löfqvist, 1993). All other 
compounds were purchased from S. Voerman (Institute for Pesticide 
Research, Wageningen, The Netherlands). Purity of synthetic phero-
mone compounds was ≥96.2% (chemical) and ≥99.7% (isomeric). 
Compounds in hexanic solution were formulated on red rubber 
septa (Merck ABS, Dietikon, Switzerland), which were replaced 
every 2 weeks. Tetra traps (Arn, Rauscher, & Schmid, 1979) were 
hung in apple trees at eye level and were ca. 5 m apart within one 
replicate. Traps were placed in untreated apple orchards at Alnarp, 
Scania (Sweden), and at Halásztelek, Pest county (Hungary), and 

F I G U R E  1   Green budworm moth Hedya nubiferana Haworth 
(dimidioalba Retzius) (Lepidoptera, Tortricidae). Photograph by 
Lubomír Hlásek
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checked twice a week. Further traps were placed in orchards treated 
with commercial pheromone dispensers for mating disruption of 
codling moth. These dispensers were polyethylene tubes contain-
ing 87 mg E8,E10-12OH, 49 mg 12OH, and 10 mg 14OH (Shin-Etsu 
Chemical Co., Tokyo), and they were applied at a rate of 1000/ha. 
For statistical analysis, trap captures were transformed to log(x + 1) 
and submitted to a 2-way ANOVA, followed by Tukey's test.

2.4 | Wind tunnel

The wind tunnel had a flight section of 63 × 90 × 200 cm (Witzgall 
et al., 2001). Air was blown by a horizontal fan onto an array of ac-
tivated charcoal cylinders. The wind tunnel was lit diffusely from 
above at 6 lux, the wind speed was 30 cm/s, and the temperature 
ranged from 22 to 24°C. Two-day-old males were transferred to 
glass tubes (2.5 × 12.5 cm) stoppered with gauze before testing. 
Males were flown individually, in batches of 15. Two batches of 15 
males were tested on one day, 1 to 3 hr after onset of the scoto-
phase, each blend was tested four times (n = 60 males), on different 
days. The following types of behavior were recorded: taking flight, 
flying upwind over 100 cm toward the source, and landing at the 
source.

2.5 | Phylogenetic analysis

Sequences of predicted pheromone receptors from C. pomonella 
(Walker et al., 2016) were used for direct comparison with puta-
tive PRs of H. nubiferana (Gonzalez, Witzgall, & Walker, 2017). All 
amino acid sequences were aligned using MAFFT online (Katoh, 
Rozewicki, & Yamada, 2019; version 7.220; http://mafft.cbrc.jp/align 
ment/serve r/phylo geny.html) with the FFT-NS-i iterative refine-
ment method, with JTT200 scoring matrix, and default parameters. 
Aligned sequences were used to calculate the best fitting model for 
comparison in MEGA6 software (Tamura, Stecher, Peterson, Filipski, 
& Kumar, 2013). The analysis involved 23 amino acid sequences, with 

a total of 564 positions in the final dataset. An initial tree for the heu-
ristic search was obtained by applying the neighbor-joining method 
to a matrix of pairwise distances estimated using a JTT model. Then, 
a Maximum Likelihood Tree was generated using a JTT matrix-based 
model with bootstrap support inferred from 600 replicates. A dis-
crete Gamma distribution was used to model evolutionary rate dif-
ferences among sites (5 categories (+G, parameter = 3.3624)). The 
tree is drawn to scale, with branch lengths measured in the number 
of substitutions per site.

3  | RESULTS

3.1 | Sex pheromone identification

Analysis of green budworm moth H. nubiferana pheromone gland 
extracts by GC and GC-MS showed eight further compounds, in 
addition to the previously identified acetates (Frerot, Priesner, & 
Gallois, 1979). The major compound codlemone acetate E8,E10-
12Ac was accompanied by the monounsaturated 8- and 10-dodece-
nyl acetates, its three geometric isomers (EZ, ZE, and Z8,Z10-12Ac) 
as well as the analogous alcohol codlemone, E8,E10-12OH (Table 1).

Field attraction of H. nubiferana males to compounds identi-
fied from the female gland confirms that the sex pheromone of H. 
nubiferana is a blend of E8,E10-12Ac and Z8-12Ac (Table 2; Frerot 
et al., 1979). The main compound, E8,E10-12Ac, by itself was not 
attractive, while addition of Z8-12Ac had a strong synergistic effect 
(F(7,72) = 61.95, p < .0001). Addition of E8-12Ac further increased 
male attraction in untreated apple orchards, but the difference was 
not significant. Blends of E8,E10-12Ac and the ∆10–12 monoenes or 
the analogous alcohol, codlemone, did not produce significant cap-
tures. Adding these compounds to the 3-component acetate blend 
slightly diminished trap catch (Table 2).

The gland compounds identified from female glands with no 
apparent effect on attraction may be biosynthetic by-products or 
precursors. A study of the female effluvium will show whether they 
are released at all, and at which ratio. The full blend of compounds 

Compound Short form ng/female %

Decyl acetate 10Ac 0.2 2

Dodecyl acetate 12Ac 1.0 15

(Z)-5-dodecenyl acetate Z5-12Ac 0.1 2

(E)-8-dodecenyl acetate E8-12Ac 0.7 10

(Z)-8-dodecenyl acetate Z8-12Ac 3.6 56

(E)-10-dodecenyl acetate E10-12Ac 0.7 11

(Z)-10-dodecenyl acetate Z10-12Ac 0.1 2

(Z,E)-8,10-dodecadienyl acetate Z8,E10-12Ac 0.3 4

(E,E)-8,10-dodecadienyl acetate E8,E10-12Ac 6.5 100

(E,Z)-8,10-dodecadienyl acetate E8,Z10-12Ac 0.4 6

(Z,Z)-8,10-dodecadienyl acetate Z8,Z10-12Ac <0.01 trace

(E,E)-8,10-dodecadienol E8,E10-12:OH 0.4 6

TA B L E  1   Sex pheromone gland 
components identified from H. nubiferana 
females by GC/MS

http://mafft.cbrc.jp/alignment/server/phylogeny.html
http://mafft.cbrc.jp/alignment/server/phylogeny.html
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may also carry information that cannot be revealed by a field trap-
ping test.

3.2 | Attraction to codlemone and pear ester

Wind tunnel observations and a trap test in an apple orchard, ad-
jacent to a pea field, corroborate that codlemone acetate E8,E10-
12Ac as a single compound does not attract green budworm moth. 
Attraction of pea moth C. nigricana confirms that the trap lures 
released E8,E10-12Ac at high isomeric purity (Table 3; Witzgall 
et al., 1993, 1996). In comparison, traps baited with codlemone alone 
regularly captured few green budworm moth males, in addition to 
codling moth. Blends of codlemone and codlemone acetate attract 
far fewer codling moths and no green budworm moths at all (Table 3).

Interestingly, a blend of codlemone and its three geometric iso-
mers significantly increased green budworm moth captures over 
codlemone alone (Table 4; F(7,72) = 2.62, p = .04413). In contrast, 
this isomer blend captured fewer codling moth males (Table 4; 
F(7,72) = 4.22, p = .02135; El-Sayed et al., 1998).

Green budworm moth has also been reported to respond to pear 
ester (Jósvai et al., 2016; Schmidt et al., 2007). A further field test in 
Hungary confirmed this and showed that addition of codlemone to 
pear ester does not enhance attraction of either sex (Table 5).

Orchard mating disruption treatments with codlemone strongly 
diminished attraction of H. nubiferana males to synthetic pheromone 
(Table 2), corroborating a behavioral effect of codlemone via a dedicated 
olfactory channel. This supports the idea that communication disruption 
in moths may be achieved with single pheromonal compounds or incom-
plete pheromone blends (Carde & Minks, 1995; Porcel et al., 2015), which 
is of practical importance for the implementation of pheromonal control 
of codling moth and leafrollers in European orchards.

3.3 | Phylogenetic analysis and antennal expression

Hedya nubiferana Haworth and Hedya dimidioalba Retzius are syn-
onymous taxonomic names for green budworm moth. The National 

Center for Biotechnology Information (NCBI) lists OR sequences (in-
cluding PRs) as "HnubOR##."

Predicted putative PRs from H. nubiferana displayed orthology 
to PRs in Cydia pomonella (CpomOR3, CpomOR6, and CpomOR22; 
Figure 2a). Notably, HnubOR6 was >50% similar to CpomOR6. 
Sequence comparison analysis revealed that CpomOR1 and 
HnubOR2.1 shared 49% amino acid identity and 66% similarity, 
while the OR3 orthologs of both species shared 64% and 76% iden-
tity and similarity, respectively. Amino acid differences between 
these putative PRs are observed across the entire length of the pro-
tein sequences (Figure 3).

Abundance estimation of the predicted sequences showed 
that the most highly expressed were HnubOR2.1 and HnubOR8.1 
(Gonzalez et al., 2017). The other 3 putative PRs detected 
in male antennae were one or two orders of magnitude lower 
(Figure 2b).

Compound μg/trap

E8,E10-12:OAc 10 10 10 10 10 10 10 10

E8-12:OAc 1 1 1 1

Z8-12:OAc 5 5 5 5

E10-12:OAc 1 1 1

Z10-12:OAc 0.2 0.2 0.2

E8, E10-12:OH 1 1

Number of males/trap

Untreated 0 b 0 b 6.1 a 6.9 a 6.3 a 4.7 a 0.1 b 0 b

Mating disruption 0 a 0 a 0.2 a 0.3 a 0.3 a 0.3 a 0 a 0 a

Note: Means followed by the same letter are not significantly different (Tukey test, F(7,72) = 61.95, 
p < .0001).

TA B L E  2   Field attraction of H. 
nubiferana males to components identified 
from the female pheromone gland, in 
untreated apple orchards (N = 10) and 
orchards permeated with codlemone, 
E8,E10-12OH (N = 6), June to July 1997

TA B L E  3   Field trapping in apple orchards (N = 10) and wind 
tunnel attraction (N = 60) of H. nubiferana males to compounds 
identified from the female pheromone gland

Compound μg/trap

E8,E10-12Ac 10 10 10 1

E8-12Ac 1 1

Z8-12Ac 5 5

E8,E10-12OH 10 10 10

Number of males/trap

H. nubiferana 0 c 57.5 a 53.9 a 0.4 bc 1.4 b

C. nigricana 20.1 a 3.4 b 0 0 0

C. pomonella 0 0 0 3 b 12.2 a

Male H. nubiferana wind tunnel behavior (%)

Taking flight 48 a 51 a 47 a –* –

Upwind flight 0 b 39 a 33 a – –

Landing at source 0 b 22 a 17 a – –

Note: Field traps attracted also codling moth C. pomonella and pea moth 
Cydia nigricana. Means followed by the same letter are not significantly 
different (Tukey test, p < .05).
*Not tested. 
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4  | DISCUSSION

4.1 | In silico identification of semiochemicals for 
the development of insect control

Semiochemicals are efficient tools for insect control by air permea-
tion and mass trapping (El-Sayed et al., 2009; Witzgall, Kirsch, et al., 
2010), and inform push-pull techniques and plant breeding (Khan 
et al., 2014; Stenberg, Heil, Åhman, & Björkman, 2015; Tamiru, 
Khan, & Bruce, 2015). A current bottleneck and main research chal-
lenge is the identification of the chemicals that mediate host plant 
recognition.

Availability of compounds that attract insects to mating sites, 
elicit oviposition or feeding in adults and larvae, enables multiple ap-
plications. Pear ester, for example, is efficient for monitoring codling 
moth males and females, is used to supplement pheromone-based 
communication disruption, and is a stand-alone tool for the disrup-
tion of larval host-finding and feeding (Knight & Light, 2013; Knight 
et al., 2012; Kovanci, 2015; Light, 2016; Light & Beck, 2012; Light & 
Knight, 2011; Schmidt, Tomasi, Pasqualini, & Ioriatti, 2008). Apple 
fruit moth, Argyresthia conjugella, mates outside apple orchards 
in forests, which precludes the use of sex pheromone for control. 
Specific attraction of gravid females to host plant volatiles has been 
translated into an efficient kairomone lure for monitoring and con-
trol (Bengtsson et al., 2006; Knudsen et al., 2008; Knudsen, Norli, & 
Tasin, 2017; Knudsen & Tasin, 2015).

Chemical analysis of plant or microbial volatomes returns a 
large number of compounds (Knudsen, Tollsten, & Bergström, 

1993; Lemfack et al., 2018; Ljunggren et al., 2019), necessitating 
careful selection of candidate compounds for subsequent behav-
ioral analysis (Figure 4a). The traditional and most widely used 
approach is to screen volatile collections, eluting from a gas chro-
matograph, with the entire insect antenna. GC-EAD was conceived 
for sex pheromone identification in moths (Arn et al., 1975), where 
mutually coordinated production and response lead to distinct 
male antennal signals to a few bioactive compounds in female 
pheromone glands.

GC-EAD suffers, however, from serious bias and produces false 
positives when screening plant or microbial headspace. Typically, 
ORs respond, to some extent, to diverse volatiles that are structur-
ally similar to their cognate ligands. Ubiquitous compounds present 
in large amounts, for example, short aliphatic acetates or alcohols, 
farnesenes, linalools, and caryophyllenes, invariably elicit an an-
tennal response, generated by the ensemble of olfactory sensory 
neurons (OSNs) on the antenna, expressing the entire olfactory re-
ceptor (OR) repertoire. Their behavioral relevance remains, however, 
uncertain.

On the other hand, GC-EAD potentially overlooks active 
compounds released in small amounts. Pear ester, the strongest 
known attractant for codling moth, is present in trace amounts in 
apple headspace and has not been detected by GC-EAD (Gonzalez 
et al., 2020). Recordings from single sensilla, instead of the entire 
antenna, provide higher resolution, but are technically demanding. 
Reliable replication is a main obstacle for recordings from sensillum 
types other than sensilla trichodea, containing pheromone-sensitive 
OSNs. In codling moth, SSR produced conclusive results when inves-
tigating sex pheromones, not plant volatiles (Ansebo, Ignell, Löfqvist, 
& Hansson, 2005; Bäckman et al., 2000).

Antennal transcriptomes and phylogenetic analysis of ORs, fol-
lowed by heterologous expression (Figure 4b,c), emerge as an oppor-
tune methodological advancement to experimentally address single 
ORs. Functional characterization of ORs expressed in cultured cell 
lines, such as human embryonic kidney cells or Xenopus oocytes, de-
pends, however, on the quality of the odorant panel used, where 
chemical purity (Schorkopf et al., 2019) and selection of test com-
pounds are main limitations. An experimental difficulty is the aque-
ous delivery of solubilized volatiles. In comparison, heterologous 
expression of ORs in select sensory neurons in Drosophila enables 
in vivo single sensillum recordings (SSR). Coupled to a GC, GC-SSR 
eliminates differences in volatility of test compounds and makes 

Compound μg/trap

E8,E10-12OH 10 10 10 10 10 10 10 10

E8,Z10-12OH 0.5 2 2

Z8,E10-12OH 0.5 2 2

Z8,Z10-12OH 0.5 2 2

H. nubiferana 2.0 b 3.5 ab 3.2 ab 2.3 ab 2.1 ab 1.8 b 3.8 ab 6.6 a

C. pomonella 8.0 a 9.0 a 4.8 ab 10.5 a 11.9 a 10.2 a 6.4 ab 3.2 b

Note: Means followed by the same letter are not significantly different (Tukey test, p < .05).

TA B L E  4   Field trapping of H. 
nubiferana and C. pomonella males to the 
geometric isomers of codlemone E8,E10-
12OH (N = 10)

TA B L E  5   Field trapping of H. nubiferana males and females with 
blends of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone 
E8,E10-12OH (N = 4)

Compound μg/trap

Pear ester 6.000 6.000 6.000 6.000

E8, E10-12OH 1 3 10

Number of moths/trap

Males 0.3 a 0.3 a 0.1 a 0.1 a

Females 0.1 a 0.1 a 0.04 a 0.2 a

Note: Means followed by the same letter Means followed by the 
same letter are not significantly different (Tukey test, p < .05).are not 
significantly different (Tukey test, p < .05).
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it even possible to screen entire headspace collections (Dobritsa 
et al., 2003; Fleischer et al., 2018; Gonzalez et al., 2016; Hallem 
et al., 2004).

Nonetheless, attempts to deorphan ORs are far from always 
successful. For example, the orthologous CpomOR19 and SlitOR19 
both respond best to indanone analogs (Gonzalez et al., 2015), but 
their behavioral role remains unclear. An intriguing idea is that the 
ligand is instead 1,4-dimethylindanyl acetate (W. Francke, pers. 
comm.), a rare floral compound (Braunschmid et al., 2017), which is 
unstable and not available as synthetic standard.

Chemical analysis and functional OR assays deliver candidate 
compounds for behavioral tests (Figure 4a,c). This selection of com-
pounds may be incomplete, as outlined above, but candidate com-
pounds may anyhow elicit behavioral responses and suffice the 
criterium of validly identified semiochemicals—while key compounds 
remain unknown. A prominent example is α-farnesene, early on iden-
tified as a codling moth kairomone (Sutherland & Hutchins, 1972). It 
is ubiquitously found in most green plants, has some effect on cod-
ling moth adult and larvae, but does not encode specific host plant 
recognition.

In silico identification of OR ligands now emerges as an additional 
experimental approach and opportune advancement in semiochem-
ical research (Figure 4d). OR expression levels in the sexes, in adult 
versus larval stages, in combination with phylogenetic analysis and 
computational approaches (Caballero-Vidal et al., 2020; Chepurwar, 
Gupta, Haddad, & Gupta, 2019; De Fouchier et al., 2017), informed 
by a rapidly accumulating database of deorphaned insect ORs, af-
ford powerful predictions of putative OR ligands and behavior-mod-
ifying chemicals.

Promising targets for future work include, for example, tephritid 
fruit flies, in view of our thorough knowledge of Drosophila ORs (Liu, 
Smagghe, Lei, & Wang, 2016; Muench & Galizia, 2016) or moths 
from several families, aided by a rapidly accumulating database of 
lepidopteran antennal transcriptomes (Cao et al., 2014; Cao, Huang, 
Shen, Liu, & Wang, 2020; Chang et al., 2017; Corcoran, Jordan, 
Thrimawithana, Crowhurst, & Newcomb, 2015; Dong, Song, Li, Shi, & 
Wang, 2016; Du et al., 2018; Feng, Guo, Zheng, Qin, & Du, 2017; Jia 
et al., 2016; Jia, Zhang, Liu, Wang, & Zhang, 2018; Jiang et al., 2014; 
Koenig et al., 2015; Li, Du, Li, & Wu, 2015; Park, Withers, Suckling, 
& Collaboration, 2015; Steinwender, Thrimawithana, Crowhurst, & 

F I G U R E  2   (a) Maximum likelihood 
unrooted phylogenetic tree of candidate 
Hedya nubiferana (Hnub) pheromone 
receptors (PR), including PR sequences 
from codling moth Cydia pomonella 
(Cpom). Node support was assessed with 
600 bootstrap replicates, values >70% are 
shown. (b) Hedya nubiferana PR transcript 
abundance estimates in male antennae. 
Expression levels quantified by RSEM and 
indicated as fragments per kilobase of 
transcript per million reads (FPKM). Data 
from Walker et al. (2016) and Gonzalez 
et al. (2017)
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Newcomb, 2015; Tian et al., 2018; Yang, Cao, Wang, & Liu, 2017; 
Zeng et al., 2015; Zhang et al., 2013, 2015, 2017; Zhang, Zhang, 
Wang, & Kong, 2014) Rojas et al. 2018).***

4.2 | Green budworm moth response to 
codlemone and pear ester

We here employ a reverse approach, to interpret behavior in the 
light of transcriptome data and the tortricid OR phylogeny. The 
empirical finding that green budworm moth H. nubiferana males re-
spond to codling moth C. pomonella sex pheromone and kairomone, 
codlemone and pear ester, correlates with the ORs found in antennal 
transcriptomes.

Functional characterization of CpomOR3, a codling moth 
OR, has established pear ester as its principal ligand. This was 
achieved through heterologous expression of CpomOR3 in olfac-
tory sensory neurons of ab3 and T1 antennal sensilla in Drosophila 
melanogaster, followed by single sensillum electrophysiological re-
cordings (SSR) (Bengtsson et al., 2014; Gonzalez et al., 2016), and 
has meanwhile been corroborated by luminescence assays after 
expression in human embryonic kidney cells and Xenopus oocytes 
(Cattaneo et al., 2017; Wan et al., 2019). CpomOR3, albeit tuned 
to a plant volatile compound, is part of the lepidopteran phero-
mone receptor (PR) clade (Bengtsson et al., 2012, 2014; Walker 
et al., 2016).

The hypothesis that H. nubiferana perceives pear ester via 
HnubOR3 is parsimonious. A PR phylogeny of H. nubiferana and 
C. pomonella (Figure 2a), together with sequence similarity analy-
sis (Figure 3), show that CpomOR3 and HnubOR3 are orthologues, 
which is in line with the behavioral data (Table 5; Jósvai et al., 2016; 
Schmidt et al., 2007). This compares to the receptor orthologs 
CpomOR19 and SlitOR19 (Spodoptera littoralis). Following functional 
characterization of SlitOR19, ligand affinity of CpomOR19 was 
predicted on the basis of amino acid sequence similarity (Gonzalez 
et al., 2015).

Oriental fruit moth Grapholita molesta, although taxonomically 
closer to C. pomonella than to H. nubiferana (Bradley et al., 1979; 
Regier et al., 2012), is not known to respond to dienic pheromone 
compounds or pear ester, which is corroborated by PR phylogeny 
(Gonzalez et al., 2017; Li et al., 2015). The broad host range of G. 
molesta overlaps only partially with C. pomonella and H. nubiferana 
food plants.

4.3 | Attraction to sex pheromone and codlemone 
employs distinct olfactory channels

Attraction of green budworm moth H. nubiferana to its multicompo-
nent sex pheromone and to codling moth pheromone employs sepa-
rate olfactory channels. Codlemone E8,E10-12OH does not mimic 
the H. nubiferana main pheromone compound codlemone acetate 

F I G U R E  4   Semiochemical identification workflow, (a) traditional, (b,d) informed by antennal transcriptomes, and (c) by functional 
characterization of single ORs. (a) Identification of behavior-modifying chemicals requires analysis of production and response. In insects, 
screening of candidate compounds in headspace collections, for subsequent behavioral assays, often employs electrophysiological 
recordings from entire antennae, coupled to a gas chromatograph (GC-EAD). (b) Transcriptomes reveal olfactory receptors (ORs) expressed 
in insect antennae, and their phylogenetic relationship with ORs from other species. (c) ORs are expressed singly in cultured cell lines for 
functional analysis by screening odorant panels. Panels are composed according to chemical analysis of bioactive sources and semiochemical 
databases. Expression in Drosophila olfactory sensory neurons enables GC-coupled SSR screening of volatile collections (see icon to left). 
(d) Antennal transcriptomes afford OR sequences, for phylogenetic analysis and topology modeling of ligand binding, and deliver viable 
hypotheses for accelerated identification of semiochemicals. Behavioral results, across insect taxa, feed back into chemical, transcriptomic, 
and functional analysis

(a)

(c)

(b)

(d)

F I G U R E  3   Amino acid alignments of selected Hedya nubiferana and Cydia pomonella PRs. HnubOR2 and CpomOR1 (a), HnubOR3 and 
CpomOR3 (b). Sequence data from Walker et al. (2016) and Gonzalez et al. (2017). Amino acid sequence differences are indicated as highly (:) 
and moderately (.) conservative, and as nonconservative substitutions (blanks). Asterisks indicate identity across both sequences
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E8,E10-12Ac, since codlemone is active as single compound, while 
codlemone acetate is not (Tables 2, 3). Tortricid moths differentiate 
analogous alcohol from acetate pheromone compounds at high reso-
lution (Witzgall et al., 1991, 1993, 1996, 2010), probably since the 
functional groups strongly affect receptor interactions (Bengtsson, 
Liljefors, Hansson, Löfstedt, & Copaja, 1990). From analysis of PR 
phylogeny and expression levels in H. nubiferana and C. pomonella 
(Figure 2; Walker et al., 2016), we hypothesize that CpomOR1 and 
HnubOR2.1 are tuned to codlemone, and CpomOR6 and HnubOR8.1 
to codlemone acetate (Cattaneo et al., 2017). In codling moth, cod-
lemone acetate is a pheromone synergist or antagonist, when added 
to the main pheromone compound codlemone at small and large 
amounts, respectively (Hathaway et al., 1974; Witzgall et al., 2001).

The presence of two pheromone channels in H. nubiferana males 
is reminiscent of the "hopeful monster" (Baker, 2002; Dietrich, 2003) 
and "asymmetric tracking" (Phelan, 1992) concepts, suggesting that 
new communication channels arise through saltational shifts in fe-
male pheromone production, which are subsequently tracked by 
the male sex. Such shifts are facilitated by redundancies in the PR 
repertoire.

Three related species, H. ochroleucana, H. pruniana, and H. 
salicella, are best attracted to the Z,E isomers of codlemone and 
codlemone acetate, and Z,E-codlemone is active in codling moth 
(El-Sayed et al., 1998; Witzgall, Trematerra, Liblikas, Bengtsson, & 
Unelius, 2010). A candidate PR for Z,E-codlemone is HnubOR2.2 
(Figure 2). Regarding HnubOR8.1 and HnubOR8.2, which are close 
to GmolOR1 and GmolOR11 (Gonzalez et al., 2017; Li et al., 2015), 
we hypothesize that they respond to the minor acetate pheromone 
components (Z)- and (E)-8-dodecenyl acetate (Tables 2, 3), which 
are main pheromone compounds of Oriental fruit moth G. molesta 
(Carde, Baker, & Carde, 1979).

4.4 | Interaction of plant volatiles and pheromones

Food and mate finding, the essential components of insect reproduc-
tive behavior, depend on a finite number of ORs encoding relevant 
odor signals. Peripheral olfactory perception employs 39 ORs in the 
fruit fly Drosophila melanogaster (Grabe, Strutz, Baschwitz, Hansson, 
& Sachse, 2015; Menuz, Larter, Park, & Carlson, 2014), 58 ORs in 
codling moth C. pomonella (Walker et al., 2016), and a similar num-
ber of ORs in other tortricids (Corcoran et al., 2015; Steinwender 
et al., 2015, Rojas et al., 2018). Evolution of host specialization in 
insects is associated with accelerated OR gene loss, combined with 
strong selection on the remaining, intact ORs (Arguello et al., 2016; 
McBride & Arguello, 2007; Robertson, 2019; Sánchez-Gracia, 
Vieira, & Rozas, 2009). Receptors that are conserved across taxo-
nomic clades, such as CpomOR3 and HnubOR3 (Figure 2; Gonzalez 
et al., 2017), likely play adaptive roles.

Green budworm moth attraction to pear ester and codlemone is 
intriguing, because it provides further evidence for the association of 
olfactory channels dedicated to social and environmental signals in 
phytophagous insects. Transcriptome data and phylogenetic context 

confirm this association. CpomOR3 is tuned to the plant volatile pear 
ester, while it belongs to the pheromone receptor clade (Figures 2a, 
3; Bengtsson et al., 2012, 2014; Walker et al., 2016). That PRs re-
spond to pheromones and plant volatiles has even physiological 
consequences: OR genes with highest sequence similarity tend to 
be expressed in OSNs that project to neighboring glomeruli in the 
antennal lobe, facilitating interactions between the circuits encoding 
these signals (Couto, Alenius, & Dickson, 2005; Krieger et al., 2009; 
Ramdya & Benton, 2010). This has indeed been confirmed in codling 
moth, by intracellular recordings from olfactory projection neurons 
and functional imaging of the antennal lobe, showing a powerful 
synergistic interaction between codlemone and pear ester (Trona 
et al., 2013; Trona, Anfora, Bengtsson, Witzgall, & Ignell, 2010).

HnubOR3 has not been deorphaned, but the recent discovery 
that CpomOR3 responds to pear ester and to a lesser extent also 
to codlemone (Wan et al., 2019) provides an explanation for con-
sistent attraction of H. nubiferana to codlemone (Tables 3, 4; Arn 
et al., 1974). Codling moth C. pomonella and H. nubiferana both feed 
on apple, but belong to different tortricid tribes (Bradley et al., 1979; 
Regier et al., 2012). Occurrence of conserved olfactory genes con-
tributing to mate finding and host plant attraction lends further 
support to the concept that host plant recognition and sexual com-
munication are interlinked (Borrero-Echeverry et al., 2018) and that 
a combination of natural and sexual selection gives rise to reproduc-
tive isolation in insect herbivores (Boughman, 2002; Paterson, 1978; 
Rosenthal, 2017). A more complete analysis of olfactory genes and 
their behavioral and ecological functions will contribute to the study 
of phylogenetic divergence in phytophagous insects. Equally re-
warding is the perspective that this research also drives the develop-
ment of semiochemicals for efficient and sustainable insect control.
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