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Abstract 

 

Wheat is a major food source in a range of countries, thereby largely contributing to food 

security in vast areas worldwide. Stripe rust (Puccinia striiformis f. sp. tritici), stem rust (P. 

graminis f. sp. tritici) and leaf rust (P. triticina erikson) are three major wheat diseases which 

cause yield and quality loss of wheat. Wild relatives of wheat are dynamic resources for unique 

traits, not present in cultivated wheat. Different breeding strategies have been used for 

introgression of alien genes into wheat, to transfer genes contributing tolerance/resistance 

against biotic and abiotic stresses. The secondary and tertiary gene pools are playing a pivotal 

role in developing wheat-alien introgression lines. In this paper, the importance of wheat, types 

of rust, rust resistance types, wheat gene pools, molecular methods used for gene deployment 

and utilization of alien germplasm are discussed.  
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1.0 Introduction  

 

1.1 Wheat 

The universal cereal of old world agriculture is wheat, which belongs to Triticeae (botanical 

tribe) and the family Poaceae. Almost, 10,000 years ago, when agriculture started, the diploid 

Triticum monococcum (2n = 2x = 14, AA), and tetraploids Triticum dicoccum (2n = 4x = 28, 

AABB) and Triticum timopheevii (2n = 4x = 28, AAGG), were domesticated in the Fertile 

Crescent (Feldman and Levy 2005). Thereafter, the process of natural hybridization occurred 

between diploid species i.e., T. monococcum/T. urartu (2n = 2x = 14, AA) and Aegilops 

speltoides (2n = 2x = 14, BB) and as a result tetraploid T. turgidum (2n = 4x = 28, AABB) was 

originated (Wrigley et al., 2009).  

The evolution of hexaploid wheat (T. aestivum, 2n = 6x = 42 AABBDD) resulted from natural 

polyploidization events between tetraploid T. turgidum ssp. durum (2n=4x=28, AABB 

genome) and diploid Ae. tauschii (2n = 2x = 14, DD) (Marcussen et al., 2014). Today, the 

cultivation of hexaploid wheat (bread wheat), the most widely grown cereal crop in the world, 

provides a central pillar for national food security and is a daily staple food source for humans. 

Currently, 95% of the cultivated wheat is hexaploid wheat, and the remaining 5% is durum 

wheat (Shewry, 2009). 

The unique gluten in wheat, contributes to baking and pasting properties resulting in the 

production of various flavored food (Ragaee et al., 2006). Wheat is broadly cultivated in the 

Mediterranean Basin, Russia, Australia, Canada, India, United States, and some other countries 

(Tidiane et al., 2019).  

 

1.2 Economic significance of wheat 

Bread wheat has high naturally nutritious values and has become a staple food for ~40% of 

the human population, thereby contributing more than 20% of the total proteins and 22% of 

the food energy from wheat (Koehler et al., 2013). Hexaploid wheat is cultivated on ~ 200 

million hectares globally (FAOSTAT 2017). By 2050 the global human population is expected 

to reach almost 10 billion (FAOSTAT 2017), with the population increase taking place mainly 

in developing countries where wheat is a staple food in some of the countries. According to 

FAOSTAT (2018), the largest wheat producing countries are China, India, Russia, USA, 

France, Australia, Canada, Pakistan, Ukraine, and Germany. Europe and Asia are the major 

continents that produce bread wheat, and the production of wheat in 2028 is also projected to 

https://link.springer.com/article/10.1007/s00122-019-03286-4#CR40
https://link.springer.com/article/10.1007/s00122-019-03286-4#CR40


8 

 

increase in both continents (Figure.1). Improvement of wheat production is highly needed to 

obtain global food security. High yield depends largely on crop management strategies i.e., 

sowing occasion, agricultural management and selection of cultivars (Scarcioffolo et al., 2018).   

The development of new cultivars resistant against biotic and abiotic stresses is a major 

challenge for the wheat breeders. Traditional wheat breeding programs have been used to 

produce cultivars resistant and/or tolerant to biotic and abiotic stresses. Several superior alleles 

of major genes, such as the vernalization response gene (Chen et al., 2013), photoperiod 

response gene (Würschum et al., 2018) and kernel size genes (Hou et al., 2014; Wang et al., 

2014), have been detected and used for selection in traditional breeding programs.  

Novel genomic tools, such as functional and comparative genomics and marker‐assisted 

selection (MAS) provide solutions to the bottlenecks faced by traditional breeding methods 

(Lei et al., 2017; Uauy, 2017). The exploitation of genetic resources suitable for wheat breeding 

is expected to contribute a key role developing new resistant and durable wheat cultivars.  

 

Figure 1: Global Bread wheat production 2016-18 (Mt) and projected production 2028 

(Mt) (FAOSTAT 2018) 

 

1.3 Gene pools 

Common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is an allohexaploid containing 

three closely related homoeologous subgenomes (i.e., A, B, and D) with 7 pairs of 

chromosomes each (Kihara, 1921; Sears, 1952). A concept of three gene pools (primary, 

secondary and tertiary) was proposed by Harlan and de Wet (1971), dividing relatives to a 

population into these groups based on evolutionary and cytogenetically relationship and 
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crossing ability (homologous/wild type or homoeologous/partially homologous) of 

chromosomes  (Chaudhary et al., 2014). Genotypes in the primary gene pool are genetically 

close to each other (i.e., T. Spelta, T. compactum, T. sphaerococcum, T. vavilovii, T. macha, T. 

yunanense, T. Triticum zhukovskyi, and T. tibetanum) and easily crossed with common wheat, 

which results in opportunities to use simple breeding techniques (Qi et al., 2007). Also, when 

genotypes from the secondary gene pool is used for gene transfer, crossing and backcrossing 

can be used for homoeologous chromosomal pairing with little difficulty between common 

genomes (i.e., T. timopheevi, T. monococcum, T. Urartu and T. timopheevii).  

An exception from this is Aegilops speltoides, which require cytogenetic manipulative methods 

for genetic transfer due to massive hybridization barriers (Nevo et al., 2012). Wild wheat 

relatives are non-homologous to wheat and belong to the tertiary gene pool of wheat. The 

tertiary gene pool includes annual (e.g. Secale cereale) and perennial (e.g. Thinopyrum spp., 

Lophopyrum and Agropyron spp.) cereal species.  For gene transfer from the tertiary gene pool, 

wheat-alien introgressions have been used, e.g. S. cereale has served as a source of resistance 

to rusts and powdery mildew (Sr31/Yr9/Lr26/Pm8) (Friebe et al., 1996), resistance to cereal 

aphid and Hessian fly (Crespo Herrera 2014; Hysing et al., 2007) and significant genetic 

diversity for yield increase, drought and salinity tolerance, micronutrient content, and further 

additive genetic variation for wheat improvement (Mujeeb-Kazi et al., 2013; Peake et al., 

2011). 

 

1.4 Role of pairing homoeologous loci  

Two pairing homoeologous (Ph) loci have been identified in the wheat genome, i.e., Ph1 and 

Ph2. The primary pairing homoeologous locus, Ph1, is present on the long arm of the 5B (5BL) 

chromosome and has been shown to control homoeologous chromosome pairing (Riley and 

Chapman 1958, 1959; Sears 1976., Griffiths et al., 2006). The secondary Ph2 locus is located 

on the short arm of chromosomes 3D (3DS) and 3A (3AS) and generally shows lower activity 

than the Ph1 locus (Mello-Sampayo 1971, 1968; Driscoll, 1972).   

The Ph loci have been shown to contribute stability to the wheat genome as they prevent 

homoeologous recombination among wheat relatives. Several mutants have been used in wheat 

breeding to suppress the activity of the Ph loci, which prevent the homoeologous 

recombination. Thus, X-ray irradiation has been used to develop wheat with mutant loci of 

Ph1, e.g. the ph1b mutant in Triticum aestivum (hexaploid, 2n=6x=42) and ph1c mutant in 

durum wheat (tetraploid, 2n=4x=28) (Sears, 1977; Giorgi, 1978). Furthermore, Sears (1982) 
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and Wall (1971) developed Ph2 mutants for ph2a on short arm of 3D (3DS) and ph2b on the 

short arm of 3A (3AS) in hexaploid wheat.  

The Chinese Spring wheat ph1b mutant has been widely used to induce homoeologous 

recombination for gene introgressions across wheat sub-genomes and from related grass 

species into the wheat genome (Qi et al., 2007, 2008; Niu et al., 2011; Zhang et al., 2016; 

Boehm et al., 2017).  

Therefore, the Ph1b mutant plays a pivotal role in identifying novel sources of resistance genes 

in wheat and its relatives to the stem rust, stripe rust and leaf rust. For example, Sr32, Sr39, 

Sr43, Sr47, Sr51, Sr53 and Sr59, Yr83 and Lr19 resistance genes have been identified from 

wheat relatives by using the Ph1b locus (Zhang &Gassmann 2007; Marais et al., 2005,2018; 

Mago et al., 2011; Niu et al., 2011; Liu et al., 2011; Rahmatov et al., 2016)   

 

2.0 Wheat Diseases 

2.1 Rust Fungi  

Rusts are obligate bio-trophic pathogenic fungi and one of the most complex groups of plant 

pathogens. Rusts of cereal crops are an old group of plant diseases reported 12,000 years ago 

(Haldorsen et al., 2011). The rust fungi belong to Uredinales, a highly specialized order of the 

Basidiomycetes, estimated to include 14 families and 166 genera. It belongs to the order 

Pucciniales, which is the largest fungal order containing more than 8000 species (Aime et al., 

2014).  

The rust fungi' bio-trophic lifestyle is described as an ancestral adaptation because the rusts use 

a wide range of host species from various genera (gymnosperms, angiosperms, monocots, and 

ferns) (Aime et al., 2014). However, specific rust species have complete dependence on the 

host plants, resulting in a complicated life cycle for the rusts and difficulties in producing the 

fungi in laboratory environments (Aime et al., 2017).  

Due to their many races and large effects on yield, rusts are considered one of the most 

devastating diseases for a wide array of agricultural crops, e.g. cereals, soybean, alfalfa, coffee 

etc. (Cummins & Hiratsuka, 2003), and wood trees, e.g. poplar, eucalypt or pines (Dean et al., 

2012). The continuous emergence of new races of rust fungi causes major threats to agricultural 

crops, and in particular to cereals. Rust fungi causes significant loss by decreasing the 

productivity of wheat at a global level (Figueroa et al., 2018). To overcome the rusts' threats, 

breeding has focused predominantly on developing and producing novel rust resistant cultivars.   
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2.2 Life cycle of rust fungi 

Rusts have five different spore forms; Pycniospores, Aeciospores, Urediniospores, 

Teliospores, and Basidiospore, and requires two unrelated host plants to complete their life 

cycles (Aime et al., 2017). Some rust fungi, e.g. the flax rust fungus Melampsora lini, are 

macrocyclic or autoecious, which means that they produce all five types of spores 

(Lawrence et al., 2007). Other rust fungi have only two types of spores, either basidiospores 

and teliospores, or pycniospores and teliospores. Such rust fungi with only two types of spores 

are defined as microcyclic, of which Puccinia graminis is one example, using barberry and 

cereals as hosts. If only the urediniospore stage is absent, the rust fungi are considered as 

autoecious or heteroecious and is determined demicyclic i.e. Gynoconia peckiana is an 

autoecious demicyclic rust (Aime et al., 2017).  

  

2.2.1 Wheat stem rust  

Stem rust in wheat is caused by Puccinia graminis f. sp. tritici Ericks and Henn (Pgt), and is 

continuously threatening the global wheat production (Leonard & Szabo, 2005; Singh et al., 

2015). The stem rust symptoms of infection are typically manifested as masses of brick-red 

urediniospores on leaf sheaths, stems, glumes and awns of susceptible plants (Singh et al., 2015). 

Barberry is known as the second host of Pgt, and therefore, barberry was eradicated in the United 

Kingdom and Scandinavia already in 1959, to break the disease cycle of the stem rust (Hessayon, 

1982). These actions were enormously successful in breaking the disease cycle and driving 

wheat stem rust to near extinction in Western Europe. However, in 2017 Sweden reported the 

first occurrence of wheat stem rust that was derived from barberry representing a worrying turn 

for wheat stem rust in Europe (Berlin et al., 2017). 

Despite the fact that stem rust has been well controlled in many parts of the world, there is a high 

requirement for cultivars with durable resistance. The presence of such cultivars may contribute 

additionally at least 6.2 million metric tons of yield in years with severe epidemics (Pardey et 

al., 2013). Recent newly emerged races of stem rust have resulted in that the majority of cultivars 

have become vulnerable to the disease (Pretorius et al., 2000; Singh et al., 2015).  

The first of these newly emerged Pgt races was Ug99, which appeared in Uganda in 1998, and 

which was found virulent to the widely deployed stem rust resistance genes Sr31 and Sr38 (Jin 

et al., 2008; Pretorius et al., 2000). This race, also known as TTKSK using the North American 

system of nomenclature for Pgt races, was found to spread throughout Africa to Middle East 

causing major yield losses since its detection. It is also found to be virulent to the Sr24, Sr36, 

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15641#nph15641-bib-0002
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15641#nph15641-bib-0072
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15641#nph15641-bib-0002
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0095
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0150
https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0150
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Sr9h and SrTmp resistance genes (Rouse et al., 2014; Patpour et al., 2016; Jin et al., 2010; Singh 

et al., 2015). 

Since 1988, several additional novel virulent Pgt races have emerged, breaking resistance in the 

majority of the currently grown wheat cultivars. Thus, the resistance of the Sr24 gene was 

defeated by the TTKST race, resulting in epidemics of stem rust (Jin et al., 2008). Generally, the 

emergence of these novel Pgt races have led to an increasing number of devastating epidemics, 

e.g. in Ethiopia in 2014 by the ‘Digalu’ race (TKTTF), and a similar race has been reported 

present in Germany (Olivera et al., 2018).  

Generally, only few resistance genes are available that has proven to be effective against all races 

of Ug99, one of those reported is Sr13 in tetraploid durum wheat lines (Zheng et al., 2017). 

Additionally, a resistance gene, Sr59, contributing resistance to all currently known stem rust 

races have been reported in Swedish rye-translocation lines (Rahmatov et al., 2016)   

The tertiary gene pool is a useful source of new durable stem rust resistance genes to stem rust. 

Sr31 has been deployed from wheat-rye introgressions and resulted in a stable resistance against 

stem rust for 30 years in commercial wheat until it was first broken by Ug99 (Singh et al., 2008). 

Thus, pyramiding of resistance genes is necessary to protect wheat against stem rust; 90% of the 

current wheat cultivars are vulnerable to Ug99 (Singh et al., 2019), and including other emerging 

races of stem rust, the proportion of sensitive cultivars are even higher. 

 

2.2.2 Wheat stripe rust 

Puccinia striiformis f. sp. tritici. (Pst) is the causal agent of yellow rust/stripe rust, which is a 

devastating disease that is threatening global wheat production (Singh et al., 2005; Wellings, 

2011). However, several additional factors are also involved in yield loss of wheat e.g. 

unfavorable climatic conditions, evolution of new pathogen races, vulnerability of cultivars and 

length of disease (Begum et al., 2014). Stripe rust can infect wheat plants already at the one-leaf 

stage and then throughout the whole plant growth period, and the disease is able to cause 100% 

yield loss on highly susceptible wheat cultivars. In 2009, major outbreaks of stripe rust (5.5 

million tons per year) were reported from different parts of West and Central Asia as well from 

Morocco (Beddow et al., 2015).  

During 2010, an epidemic of yellow rust caused major decreases in wheat production in several 

parts of Tajikistan and also in other countries of central Asia (Singh et al., 2017; Rahmatov 

2013). A range of common yellow rust (Yr) genes have been identified in European wheat 

cultivars, i.e. Yr1, Yr2, Yr6, Yr9, Yr17, and Yr32 (Hovmøller., 2007). Additional yellow rust 

genes that have been proven with effective resistance are Yr5 and Yr15, although they have never 
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been employed in the breeding of European elite wheat cultivars (Hanzalová et al., 2016; Goyeau 

& Lannou., 2011; Hovmøller et al., 2018). 

A new race in a new unique genetic group, termed PstS15, was detected in France in 2017, 2018 

and 2019 and in 2019 also in Denmark (Hovmøller et al., 2018). Thus, there is an urgent need to 

understand host-pathogen interactions as well as the mechanisms behind the evolution of new 

races in order to facilitate the development of new resistant cultivars and establish new 

management strategies to control pathogens (Johnson, 1992; Hawkesford et al., 2013). 

Pathologist have focused on identifying factors that contribute to the spreading of the pathogen 

and its genetic structure in the Himalayan and near-Himalayan regions (Ali et al., 2014; Thach 

et al., 2016; Walter et al., 2016). 

However, the virulence structure of the pathogen has often only been described at country or 

regional scales, limiting a broader concept and understanding (Hovmøller et al., 2008; Wellings, 

2007; Bahri et al., 2009; Ali et al., 2014; Hovmøller et al., 2016). Till now, only one single study 

(Sharma-Poudyal et al., 2013) has focused on stripe rust virulence patterns covering the period 

from the 1950s to the 1980s at an international level (Thach et al., 2015).  

Due to the continuous emergence of virulent Pst races, the identification and characterization of 

novel sources of resistance is a necessity. Resistant wheat cultivars are a highly effective and 

environment friendly solution for the control of stripe rust outbreaks (Zhang & Gassmann, 2007). 

Due to the fact that Pst races have continuously broken the resistance of most major genes 

available in wheat cultivars, particularly in Africa, and Asia (Figueroa et al., 2018), wheat stripe 

rust has dramatically been spreading across the globe and epidemics have been reported in 

almost 60 countries during the last 50 years (Beddow et al., 2015; Chen, 2005).  

To date, approximately 83 yellow rust resistance (Yr) genes have been permanently named in 

wheat, including the newly mapped Yr79 (Feng et al., 2018), Yr80 (Nsabiyera et al., 2018) Yr82 

(Pakeerathan et al., 2019), Yr83 and 6Rafr (Li et al., 2020). Additionally, 67 stripe rust resistance 

genes have been temporarily designated, including both all-stage resistance (also termed 

seedling resistance) and adult-plant resistance (APR) (Wang and Chen, 2017). Among these, 

APR genes comprise a minority, where several gene loci are pleiotropic for biotrophic fungal 

diseases, i.e., Yr18/Lr34/Pm38/Sr57, Yr29/Lr46/Pm39/Sr58, Yr30/Lr27/Pm48/Sr2 

and Yr46/Lr67/Pm46/Sr55. During the last 18 years, more than 160 quantitative trait loci have 

been tentatively designated in 49 regions of 21 chromosomes (Rosewarne et al., 2013; 

Maccaferri et al., 2015). Many resistance genes, such as Yr2, Yr6, Yr7, Yr8, Yr9, Yr17 and Yr27, 

have been overcome by new vulnerable races of stripe rust. Therefore, wheat breeders are 

currently struggling to identify new genetic resources with possible durable resistant genes. 

https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0009
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0031
https://www.frontiersin.org/articles/10.3389/fpls.2019.00596/full#B22
https://www.frontiersin.org/articles/10.3389/fpls.2019.00596/full#B50
https://www.frontiersin.org/articles/10.3389/fpls.2019.00596/full#B73
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2.2.3 Wheat leaf rust 

Puccinia triticina Eriks. (Pt) is the causal agent of leaf rust (Anikster et al., 1997; Bolton et al., 

2008), the most common and widely distributed among the three (stem, stripe and leaf) wheat 

rust diseases (Bolton et al., 2008; Huerta‐Espino et al., 2011). A humid temperature is required 

for the spread of the wheat leaf rust pathogen. The Fertile Crescent of the Middle East is the 

origin of leaf rust (Puccinia triticina), and in this region, both the primary (wheat) and the 

secondary (Thalictrum spp.) hosts of the pathogen are abundantly present (Bolton et al., 2008; 

Kolmer et al., 2007).  

Leaf rust is known to decrease the yield in wheat by a negative impact both on amount and 

weight of wheat grains (Huerta‐Espino et al., 2011; Kolmer et al., 2007). Losses caused by Pt is 

reported to reach over US$ 350 million only in the USA (Huerta‐Espino et al., 2011). Globally, 

leaf rust epidemics is projected to cause economic losses in the range of US$1.5 to US$3.3 

billion per year during the period of 2000-2050 (Chai et al., 2020). 

Genetic resources (transfer of resistance genes from gene pools) have successfully been used to 

control leaf rust, although the pathogen have changed constantly (Kolmar et al., 2007). For leaf 

rust, the evolution of new pathogen races have beaten a range of the resistance genes, such as, 

Lr9, Lr14a, Lr16, Lr17a, Lr24, Lr26 and Lr41 (Huerta-Espino et al., 2011). Of the 76 identified 

Lr genes, only four genes are known as slow rusting i.e., Lr34 (Dyck, 1987), Lr46 (Singh et al., 

1998), Lr67 (Hiebert et al., 2010), and Lr68 (Herrera-Foessel et al., 2012) because they are race 

non-specific resistance genes and give durable resistance during adult plant stage. Therefore, the 

identification of new sources of unique resistance genes, which are useful to produce new 

durable resistant cultivars of wheat, is highly desired, to fulfill the high demands of wheat 

production.  

 

3.0 Resistance to rust 

Biffen (1905) demonstrated that the resistance against yellow (stripe) rust in the wheat variety 

"Rivet" was due to a single, recessive gene. The epidemiologist, Van der Plank (1963), define 

the concept of resistance. Later, in the late 1960s and the early 1970s, the theory of general 

(race-nonspecific) resistance and its application in crop resistance breeding was described 

(Caldwell, 1968). Thus, the theory of general resistance was used and implemented to protect 

wheat against stem rust by Borlaug (1972), against leaf rust by Caldwell (1968) and yellow 

rust by Johnson (1988). In general, the host ranges of rust fungi are narrow and the capability 

of the fungi to infect related non-host species is poor. Recent studies have indicated non-host 

https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0003
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0017
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0017
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0076
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0017
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0089
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0076
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0089
https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12618#mpp12618-bib-0076
https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-02-17-0247-RE#b11
https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-02-17-0247-RE#b56
https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-02-17-0247-RE#b56
https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-02-17-0247-RE#b22
https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-02-17-0247-RE#b21
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resistance as a more durable, broad-spectrum form of resistance that can complement the host 

plant resistance (Lee et al., 2016). 

 

3.1 Types of disease resistance 

In principal, there are two methods to control a plant diseases i.e., by host resistance or through 

pesticide applications. The host resistance is genetically determined and is broadly classed into 

two forms: seedling or all stage resistance (ASR) and adult-plant resistance (APR). 

 

3.1.1 Seedling resistance 

Seedling resistance genes are often governed by a single major gene and they are effective only 

against specific races of the pathogen. Therefore, these genes are designated as qualitative, 

race-specific, vertical, major, seedling and/or nucleotide-binding-site (NBS) and leucine-rich-

repeats (LRR) genes (Line and Chen 1995; Qiu et al., 2010). Seedling resistance or ‘all stage 

resistance’ (ASR), is usually expressed at all growth stages of the plant. The resistance is often 

associated with a hypersensitive response of the plant.  

The ASR is race specific, it is often easily broken down by the evolution of evolving new 

pathogens. Thus, the following resistance genes such as Sr13, Sr24, Sr31, Sr36, Sr38, SrTmp 

and Sr1RSAmigo for stem rust, the Yr2, Yr6, Yr7, Yr8, Yr9, Yr17 and Yr27 for stripe rust and 

Lr9, Lr14a, Lr16, Lr17a, Lr24, Lr26 and Lr39 for leaf rust have been overcome by newly rusts 

pathogen races (Huerta-Espino et al., 2011; Singh et al., 2015; Ali et al., 2017). The ASR 

follows the gene-for-gene interaction described by Flor & Comstock (1971).  In the gene-for-

gene interaction, R-proteins interact with avirulence proteins produced by the pathogen, which 

induces the resistance reaction. 

 A susceptible reaction occur, if the resistant allele is not present in the host or the avirulence 

allele is not present in the pathogen. Then, the host is unable to recognize the presence of the 

pathogen, which allows for disease to emerge. Most of the R genes encode nucleotide-binding 

and leucine-rich repeat (NB-LRR) proteins that interact with the pathogen effectors, thereby 

inducing the defense responses (Ellis et al., 2014).  Coiled coil (CC), nucleotide-binding-site 

(NBS), and leucine-rich-repeat (LRR) motif (Wang et al., 2011) have been identified in the Lr1 

(Cloutier et al., 2007), Lr10 (Feuillet et al., 2003) and Lr21 (Huang et al., 2003) leaf rust 

resistance genes. Also, the Yr10 stripe rust resistance gene have been shown to encode proteins 

containing nucleotide binding sites and leucine‐rich repeats (Fu et al., 2009).  

The NBS-LRR-type R-genes, which are present in both monocot and dicot plant species, tend 

to be present as multi-genic families along with resistance gene analogs (RGAs) (Hammond-
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Kosack and Jones 1997; Meyers et al., 1999; Ellis et al., 2000; Zhang & Gassmann, 2007; 

Miller et al., 2008). Several ASR genes have been characterized by using molecular assisted 

approaches (Anderson et al., 2018).  

 

3.1.2 Adult plant resistance 

Adult plant resistance (APR), also called quantitative and non-race specific resistance, is 

governed by minor genes. APR is considered as a durable type of resistance, and the level of 

resistance is mostly partial, while it often provides resistance against a wide range of pathogen 

races (Krattinger et al., 2009; Moore et al., 2015). This kind of resistance is mainly observed 

in the adult stage, and specifically during field conditions. Fu et al. (2009) identified 

cytoplasmic resistance proteins in the stripe rust resistance gene, Yr36, although, ATP-binding 

cassette transporter and hexose transporter were characterized in the leaf rust resistance genes 

Lr34 and Lr67 (Rajagopalan et al., 2016; Moore et al., 2015).  

Normally, the APR genes influence the size of the pustule, the rate of the infection, and the 

dormancy period, so that the negative effect of the pathogen on the plant is decreased. 

Therefore, when it comes to rusts diseases, APR genes are often called “slow rusting” genes. 

Due to the fact that APR genes are not hindering pathogen sporulation, they do not contribute 

such a strong selection pressure on the pathogen as seedling resistance genes, and therefore, 

the speed of the genetic changes of the pathogen is reduced, leading to more durable resistance 

of APR genes compared to for seedling resistance genes (Visioni et al., 2020). Thus, the Sr2 is 

an APR stem rust resistant gene that has been in use for 100 years in wheat breeding programs 

(Moore et al., 2015).  

APR can be pleiotropic (i.e. the gene complex consists of resistance to several different rusts 

pathogens such as stem, stripe and leaf rust), as exemplified by the Sr2/Yr30/Lr27, 

Sr55/Yr46/Lr67/Ltn3, Sr57/Yr18/Lr34/Ltn1 and Sr58/Yr29/Lr46 APR genes (McFadden 1930; 

Fu et al. 2009; Yang et al., 2013; Lan et al., 2014). Furthermore, APR of stem rust has been 

conferred by the Sr12 gene (Rouse et al., 2014). 

The APR genes have been associated with a number of morphological/physiological traits in 

wheat. One such example is the Lr34 gene which is correlated with leaf tip necrosis (LTN), 

which is a post-flowering morphological trait (William et al., 2003; Singh et al., 2011; Herrera-

Foessel et al., 2014). The pseudo-black chaff (PBC) phenotype is also associated with the 

pleiotropic Sr2/Yr30/Lr27 as "slow rusting” APR genes (Singh et al., 2005; Singh et al., 2008; 

Mago et al., 2011).  The Sr2 gene is derived from the cultivar Hope and provided durable 

resistance to stem rust in the CIMMYT-Mexican spring wheat germplasm (Borlaug et al., 
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1949). The effects of the APR genes might be moderate if they are used solely, although, when 

used in combination with other major genes and/or multiple QTLs contributing additive effects, 

durable resistance may be the result. High temperature adult-plant resistance (HTAP) is a type 

of race non-specific stripe rust resistance expressed only at high temperature during the adult 

plant stage (Line and Chen, 1995). At present, a few ASR genes (all stage resistance or seedling 

resistance), such as Yr5 and Yr15, and APR genes, such as Yr18 and YrZH22 (Wang and Chen, 

2017), have kept an effective resistance to Puccinia striiformis races.  

 

3.1.3 Breeding for rust resistance  
Bread wheat is vulnerable to attacks from many pathogens but none as devastating as the stripe, 

stem and leaf rusts. The rust pathogens have plagued wheat since ancient times, but widely 

virulent races emerge and spread around the globe every year. To overcome this challenge, it 

is very important to protect wheat from rust attack by using genetic resources. Therefore, new 

genetic resources have been developed to diversify the current narrow genetic base of wheat 

using closely related species to wheat, such as rye, Thinopyrum, Aegilops, etc.  

Resistant wheat cultivars have been developed by using Neuzucht germplasm with fragment 

of rye chromosomes e.g., Kavkaz, Avrora, Bezostaya 2, Skorospelka 35 and Predgornaya 2 

and grown in various European countries (Lukyanenko, 1973). In early 1970s, the wheat 

cultivars Kavkaz and Avrora become susceptible to powdery mildew. However, these cultivars 

have many valuable disease resistant traits and became good sources for developing new 

genotypes i.e. cultivar Lukyanenko has Pm8, Lr26, Sr31 and Yr9 resistant genes originating 

from the rye genome. Furthermore, the Kavkaz and Avrora wheat cultivars were used in 

Hungary due to their high yield and resistance to stem rust. Wheat wild relatives i.e., Aegilops 

and Thinopyrum species have played an important role to transfer resistance genes to common 

wheat, e.g. Lr9 — Ae. umbellulata; Lr24 and Lr29 — Thinopyrum ponticum; Lr37 and Yr17 

— Ae. ventricosa; Lr38, Yr50, Sr44 — Th. intermedium; Sr32, Sr39, Sr47, Lr28, Lr35, Lr36, 

Lr51 and Lr66 — Ae. speltoides; Sr33, Sr45, Lr21 , Lr22a , Lr32 , Lr39 , Lr40 , Lr41 and Yr28 

— Ae. tauschii; Sr53, Lr57 and Yr40 — Ae. geniculata; Lr58 — Ae. triuncialis; Lr53 ,Lr64, 

Yr15 , Yr35 and Yr36 — Ae. longissima and T. dicoccoides (Riar et al., 2012).  

Researchers of International Maize and Wheat Improvement Center (CIMMYT) have been 

using single back cross methods from several years to produce rust resistance cultivars (Singh 

et al., 2014). Hence, different approaches have been used to develop durable resistant cultivars 

by using genetic resources.   
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4.0 Molecular-assisted breeding (MAB) 

During recent years, the DNA sequencing technologies have been developed into next-

generation sequencing (NGS), where DNA are massively processed through high-thoughput 

operations (Mosele et al., 2020). NGS technologies have been widely used for whole genome 

sequencing (WGS), whole genome resequencing (WGRS), de novo sequencing, genotyping by 

sequencing (GBS), and transcriptome and epigenetic analysis (Varshney et al., 2009; Poland 

et al., 2012). One major challenge with the use of this technology is the requirement of 

sufficient knowledge about bioinformatics, to obtain the accurate information from the 

sequence data in a short period of time (Doyle et al., 2020). 

The availability of a large amount of sequencing data, and opportunities to connect DNA and 

phenotypic data, have opened the field to link phenotypic characters to specific regions of the 

DNA, to which markers can be produced (Ritchie et al., 2015). Thus, marker-assisted selection 

(MAS) is a technology that have emerged and which provides effective and speedy selection 

in breeding programs using a large array of DNA markers linked to desired traits, e.g. 

abiotic/biotic stresses, agronomic characters, end-use qualities (Gantait et al., 2019). With 

MAS, molecular markers are used to detect genomic regions that are specifically linked to traits 

of interest and by using these markers as a proxy for the trait the selection process is more 

effective than using traditional plant breeding methods.  

The MAB (use of MAS in plant breeding) started by the use of Restriction Fragment Length 

Polymorphisms (RFLPs), which was soon followed by other and improved types of markers 

such as Randomly Amplified Polymorphic DNAs (RAPDs), Amplified Fragment Length 

Polymorphisms (AFLPs) and Simple Sequence Repeats (SSR) (Amom & Nongdam, 2017).  

Some of the above-mentioned markers are still in use both by researchers and breeders, 

although most of them have limited impact in practical plant breeding. Currently, high-density 

molecular marker systems like SNP-chip and DArT, etc. are overtaking the space as most 

useful markers within practical plant breeding and they are boosting the plant breeding 

selection cycles. The high-throughput and large-scale genotyping of SNPs has become a 

routine tool in plant breeding in all major crop species including cereals (Rasheed et al., 2017). 

SNP genotyping has almost completely replaced other genotyping technologies due to their 

high-throughput, high-speed data generation, repeatability, and cost effectiveness. 

https://www.frontiersin.org/articles/10.3389/fgene.2016.00221/full#B69
https://www.frontiersin.org/articles/10.3389/fgene.2016.00221/full#B54
https://www.frontiersin.org/articles/10.3389/fgene.2016.00221/full#B54
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4.1 Single Nucleotide Polymorphism (SNP) 

Single nucleotide polymorphism (SNP) is the designation for variation in a single base pair at 

a corresponding locus in the genome, and is the most frequent reason for variation among 

different individuals of a species (Brookes, 1999). Based on the character of the nucleotide 

substitution, the SNP is categorized into different types, e.g. transitions (C/T or G/A) or 

transversions (C/G, A/T, C/A, or T/G) (Edwards et al., 2007), and also insertions and deletions 

(InDels) are called SNPs. Moreover, SNPs are extremely useful for plant breeders, as they are 

robust with relatively low mutation rates (one SNP every 100-300 base pair of plant genomes) 

and easily recorded.  

Several SNP genotyping and next generation sequencing platforms are used to facilitate MAS, 

and these platforms are generally highly efficient with a high throughput and a low cost per 

data point. Kavanagh et al. (2013) developed an Illumina iSelect array with 9K SNPs. Later a 

90K SNP array was developed and used to characterize both hexaploid and tetraploid wheat 

populations (Wang et al., 2014). Additionally, the Affymetrix Axiom® 820K SNP array, 

containing 820 000 SNP markers, have been utilized to screen 475 accessions of hexaploid 

wheat and related species including putative progenitor species, in order to differentiate SNPs 

useful to genotype, monitor and map introgressions to hexaploid wheat (Winfield et al., 2016). 

In a recent study,  SNP markers were selected from the above described Affymetrix Axiom® 

820K SNP array, based on their suitability in wheat breeding, a wheat breeders array was 

developed and the utility of the selected markers was also confirmed (Allen et al., 2017).  

Bread wheat is an allohexaploid species, which means that the genes are present in multiple 

copies. In addition, the wheat genome is complex with more inter-chromosomal duplications 

than related grass species, i.e., 20 to 30% of the genes have been duplicated (Choulet et al., 

2014; Glover et al., 2015). Hence, the presence of homoeologous and paralogous loci makes 

the genotyping complicated (Wang et al., 2014; Akhunov et al., 2009). The SNP arrays 

development has opened novel opportunities to uncover variation in agriculturally relevant 

wheat populations (Robbins et al., 2011; Shirasawa et al., 2010). Till now, the SNP arrays have 

been of relevance in the characterization of several stem, stripe and leaf rust resistance genes 

(Zhang et al., 2018; Liu et al., 2020; Leonova et al., 2020) 

 

4.2 Genomic selection (GS) or Genome-wide selection (GWS)  

Not all traits are governed by only a few genes and the difficulty of using markers for more 

complex traits like grain yield has made it necessary to further develop the use of markers in 
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plant breeding. One method that simultaneously can predict complex traits from high density 

marker information is genomic selection (GS). This method is not only effective in predicting 

complex traits but the use of it often shortens the breeding cycle (Crossa et al., 2011; Jannink  

2010). GS may be a more reasonable option as compared to high cost phenotyping (Jannink 

2010). In GS, a Genomic estimated breeding value (GEBV) is estimated from molecular 

marker information and this (GEBV) is used for eugenic traits selection (Nakaya and Isobe, 

2012).   

To predict the GEBV, the GS models applied are important. If GS is successful, QTL mapping, 

using populations obtained from particular crosses, can be skipped (Desta and Ortiz, 2014). To 

carry out GS, a training population is first developed where both the genotypic and the 

phenotypic information is known. This data is used to develop prediction models that then 

subsequently is used on a data set where only genotypic information is available. The GEBV 

for different desired traits is calculated using the models developed with the help of the training 

set, and thereafter, selections are made by the plant breeders based on this information (Jiang, 

2013). 

 

4.2.1 The role of genomic selection in wheat breeding 

GS has been significantly used in breeding of hybrid and pure lines e.g. in wheat, rye and other 

cereal crops (Bernardo, 2016; Crossa et al., 2017). GS is applicable in breeding for increased 

yield (Belamkar et al., 2018), disease resistance (Juliana et al., 2017) and end-use quality 

(Hayes et al., 2017) of wheat, but can also be used to predict breeding value of genetic 

resources. Recently, GS has been applied to produce synthetic-derived introgression lines that 

have higher GEBVs values (gives high grain yield in heat-stress conditions) as compared to 

both the synthetic and the bread wheat parent (Jafarzadeh et al., 2016).  

When GS is used for; i) domestication of new crops such as Th. intermedium (Zhang et al., 

2016), ii) using landraces in breeding for rust resistance (Daetwyler et al., 2014; Pasam et al., 

2017) and iii) breeding for heat and drought stress adaptations (Mwadzingeni et al., 2016), iv) 

breeding for malting quality in barley (Schmidt et al., 2016) or v)  baking quality in wheat 

(Michel et al., 2018), optimization of the procedure is a necessity. 

As breeders implement GS to decrease the breeding cycle time and increase the overall gain 

rate, a continuous selection for the whole suite of traits that compose a successful cultivar will 

also be carried out (Pasam et al., 2017). Compared with QTL mapping and GWAS, GS shows 

a higher promise in harnessing gains from genetic resources for quantitative traits and is seen 
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as a more reliable and useful approach (Bernardo, 2016). Key challenges for successful practice 

of GS are the development of cost-effectiveness and less biased approaches for genotyping, 

software for handling, quality control and joint analysis of genotypic, phenotypic and 

environment data.  

Thus, GS was proven as a successful procedure, using GS models on two CIMMYT bread 

wheat screening nurseries against three major necrotrophic foliar diseases of wheat: Septoria 

tritici blotch (STB), Stagonospora nodorum blotch (SNB), and tan spot (TS). Prediction 

accuracy from GS for disease resistance traits is increased by the use of resistant gene markers 

and association mapping (Arruda et al., 2016; Daetwyler et al., 2014; Rutkoski et al., 2014). 

However, low prediction accuracies might be obtained if GS is applied with untested parents, 

because of a deficiency of accuracy of prediction as a result of multiple breeding generations 

(Arruda et al., 2016). Furthermore, the size required for the training population and marker set 

is affected by the trait under evaluation and the relationship of individuals and should thus be 

considered independently before the implementation of GS in a breeding program (Robertsen 

et al., 2019). 

 

5.0 Utilization of alien-germplasm  
Many stem, stripe and leaf rust resistance genes have been characterized that originates from 

wheat wild relatives but also from cultivated wheats. Furthermore, a range of 

resistance/tolerance genes against several biotic and abiotic stresses have been characterized 

that originates from the Triticeae (Colmer et al., 2006; Nevo and Chen 2010; recent examples 

are given in Yudina et al., 2016). Moreover, bread wheat nutritional properties, such as the zinc 

and iron content, have been improved by the use of genes from Triticum ssp. and Aegilops spp. 

(Rawat et al., 2009; Khlestkina et al., 2011; Tereshchenko et al., 2012). Below, resistance genes 

available from cultivated and wild relatives of wheat for the three rusts are summarized (Table 

1-3). 

 

Table 1. Puccinia striiformis f.sp. tritici. resistance genes from cultivated and wild relatives of 

wheat (Source), chromosomal location and linked genes. 

 

Genes Source Chromosome Location Linked Genes 

Yr5 Triticum spelta album 2BL - 

Yr7 Triticum turgidum 2B, 2BL - 

Yr8 Aegilops comosa 2D = T2DS-2M#1L.2M#1S Sr34 

Yr9 Secale cereale 1B=1BL.1RS Pm8, Lr26, Sr31 

https://www.sciencedirect.com/science/article/pii/B9780081021637000132#bb0015
https://www.sciencedirect.com/science/article/pii/B9780081021637000132#bb0065
https://www.sciencedirect.com/science/article/pii/B9780081021637000132#bb0265
https://www.sciencedirect.com/science/article/pii/B9780081021637000132#bb0015
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Table 2. Puccinia graminis tritici resistance genes from cultivated and wild relatives of wheat 

(source), chromosomal location and linked genes. 

 

Yr15 Triticum dicoccoides 1BS - 

Yr17 Aegilops ventricosa 2AS Lr37, Sr38 

Yr26 Haynaldia 23illosa 1 BS, 1BL - 

Yr28 Ae. tauschii 4DS - 

Yr35 Triticum dicoccoides 6BS - 

Yr36 Triticum dicoccoides 6BS - 

Yr37 Ae. kotschyi 2DL Lr54 

Yr38 Ae. sharonensis 6AL Lr56 

Yr40 Ae. geniculata 5DS Lr57 

Yr42 Ae. neglecta 6AL (6L.6S) Lr62 

Yr50 Thinopyrum intermedium 4BL - 

Yr53 Triticum turgidum ssp. durum 2BL - 

Yr56 Triticum turgidum ssp. durum 2AS - 

Yr64 Triticum turgidum ssp. durum 1BS - 

Yr65 Triticum turgidum ssp. durum 1BS - 

Yr83 Secale cereal 6RL - 

6Rafr Secale africanum 6R - 

Genes Chromosome Location Source Linked Genes 

Sr2 3BS Triticum dicoccum Yr30/Lr27/Pm48 

Sr9d 2BL Triticum dicoccum - 

Sr9e 2BL Triticum dicoccum - 

Sr9g 2BL Triticum turgidum ssp. durum - 

Sr11 6BL Triticum turgidum ssp. durum - 

Sr12 3BS Triticum turgidum ssp. durum - 

Sr13 6AL Triticum turgidum ssp. durum - 

Sr14 1BL Triticum turgidum ssp. durum - 

Sr17 7BL Triticum dicoccum - 

Sr21 2AL Triticum monococcum - 

Sr22 7AL Triticum monococcum - 

Sr24 3DL Thinopyrum ponticum Lr24 

Sr25 7DL Thinopyrum ponticum Lr19 

Sr26 6AL Thinopyrum ponticum - 

Sr27 3A Secale cereale - 

Sr28 2BL Triticum turgidum ssp. durum - 
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Table.3. Puccinia triticina resistance genes from cultivated and wild relatives of wheat (Source), 

chromosomal location and Linked genes. 

 
Gene Chromosome location Origin Linked genes 

Lr9 6BL Aegilops umbellulata - 

Lr14a 7BL Triticum dicoccum - 

Lr18 5BL Triticum timopheevii - 

Lr19 7DL Thinopyrum ponticum Sr25 

Lr21 1DL Aegilops tauschii - 

Lr22a 2DS Aegilops tauschii - 

Lr23 2BS Triticum turgidum ssp. durum - 

Lr24 3DL Thinopyrum ponticum Sr24 

Lr25 4BS Secale cereale Pm7 

Lr26 1RS Secale cereale Pm8, Yr9, Sr31 

Lr28 4AL Aegilops speltoides - 

Lr29 7DS Thinopyrum ponticum - 

Lr32 3DS Aegilops tauschii - 

Lr35 2B Aegilops speltoides - 

Sr31 1RS Secale cereale Pm8, Lr26, Yr9 

Sr32 2B Aegilops speltoides - 

Sr33 1DL Aegilops tauschii - 

Sr34 2A, D Triticum comosum Yr8 

Sr35 3AL Triticum monococcum - 

Sr36 2BS Triticum timopheevii - 

Sr37 4BL Triticum timopheevii - 

Sr38 2AS Triticum ventricosum Lr37, Yr17 

Sr39 2B Aegilops speltoides - 

Sr40 2BS Triticum timopheevii ssp. 

araraticum 
- 

Sr43 7DL Thinopyrum ponticum - 

Sr44 7DS Thinopyrum intermedium - 

Sr45 1DS Aegilops tauschii - 

Sr46 2DS Aegilops tauschii var. meyeri - 

Sr47 2BL Aegilops speltoides - 

Sr50 1RS Secale cereale - 

Sr51 3ABD Aegilops searsii - 

Sr52 6AS Haynaldia villosa - 

Sr53 5DL Aegilops geniculata - 

Sr59 2DS.2RL Secale cereale - 
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Lr36 6BS Aegilops speltoides - 

Lr37 2AS Triticum ventricosum Yr17, Sr38 

Lr38 2AL Thinopyrum intermedium - 

Lr39 2DS Aegilops tauschii - 

Lr42 1DS Aegilops tauschii - 

Lr44 1BL Triticum aestivum spelta - 

Lr45 2AS Secale cereale - 

Lr47 7AS Aegilops speltoides - 

Lr50 2BL Triticum timopheevii - 

Lr51 1BL Aegilops speltoides - 

Lr53 6BS Triticum dicoccoides - 

Lr54 2DL Aegilops kotschyi - 

Lr55 1BL.1HtS Elymus trachycaulis - 

Lr56 6AL Aegilops sharonensis Yr38 

Lr57 5DS Aegilops geniculata Yr40 

Lr58 2BL Aegilops triuncialis - 

Lr59 1AL Aegilops peregrina - 

Lr61 6BS Triticum turgidum ssp. durum - 

Lr62 6A Aegilops neglecta Yr42 

Lr63 3AS Triticum monococcum - 

Lr64 6AL Triticum dicoccoides - 

Lr65 2AS Triticum aestivum spelta - 

Lr66 3A Aegilops speltoides - 

Lr71 1B Triticum aestivum spelta - 

Lr72 7BS Triticum turgidum ssp. durum - 
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