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An important aspect of precision medicine is to probe the stability in molecular profiles among

healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy

individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipi-

domics, metabolomics, autoantibodies and immune cell profiling, complemented with gut

microbiota composition and routine clinical chemistry. Overall, our results show high variation

between individuals across different molecular readouts, while the intra-individual baseline

variation is low. The analyses show that each individual has a unique and stable plasma

protein profile throughout the study period and that many individuals also show distinct

profiles with regards to the other omics datasets, with strong underlying connections between

the blood proteome and the clinical chemistry parameters. In conclusion, the results support

an individual-based definition of health and show that comprehensive omics profiling in a

longitudinal manner is a path forward for precision medicine.
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A challenge for the field of precision medicine is defining a
healthy population to estimate the normal range of clin-
ical parameters across population strata1. The dawn of

many new omics tools for analyzing clinical samples such as
genomics, proteomics and metabolomics has opened up new
possibilities to study both health and disease with high
throughput along with high analytical precision and clinical
accuracy2,3 and projects with broad analytical breadth have been
initiated including the Pioneer 100 Wellness Project4, multi-
omics profiling of the blood and gut microbiota to explore weight
gain and loss5, omics-based biological phenotyping to probe
individualized aging6,7, precision medicine directed integration of
whole genome sequencing combined with imaging8, and a gen-
eration of a genome atlas for the human plasma proteome9. In
this way, personal omics profiles, composed of the genomics,
transcriptomics, proteomics, metabolomics, and fecal microbiota,
could be defined and used to monitor drug interventions.
Molecular profiling has also been the basis of the athlete biolo-
gical passport used by the World Antidoping Association for an
individualized longitudinal monitoring of elite athletes10–14.
These studies demonstrate the importance of deep profiling of
healthy individuals as a fundamental aspect of precision medicine
by probing the underlying high biological plasticity. However,
more in-depth studies are needed to define the wellness para-
meters of individuals and to analyze the variability among omics
data between individuals as well as within an individual overtime.

Here, we describe a wellness profiling study of 101 individuals
between 50 and 65 years old, based on a combination of classical
clinical chemistry, advanced medical imaging and extensive omics
profiling, including the analysis of the plasma proteome, the plasma
metabolome, blood cell composition (immune cytome), tran-
scriptome, autoantibody reactivity profiles, and gut microbiota
composition. In this study, the main objective is to allow for a high
biological and clinical data granularity based on molecular depth
with regards to the number of targets analyzed in a sensitive
manner. However, it is important to validate the results by follow-
up studies in which the most interesting targets is analyzed in larger
patient cohorts. Our aim is to probe the uniqueness and stability of
an individual’s molecular profiles during a 2-year period by sam-
pling the participants repeatedly at six different time points and
thereby investigating the relationships between omics profiles and
classical routine clinical chemistry measurements. We find that each
individual carries a unique, and stable, molecular profile that is
perturbed globally by changes in lifestyle and more transiently by
infectious disease. This lays the foundation for future precision
medicine based on the longitudinal monitoring of wellness.

Results
The study design. The Swedish SciLifeLab SCAPIS Wellness
Profiling (S3WP) program presented here is based on the SCAPIS
study15 and consists of a smaller cohort of 101 individuals
between 50 and 65 years old, enrolled from the large population
and followed longitudinally for 2 years with repeated analyses of
molecular markers in blood and stool samples in combination
with physical measurements. Of the 101 subjects that were first
included, 99 completed the 4 study visits of the first round with
3 months’ intervals, and 94 completed the 2 visits of the second
round sampled at approximately six-months intervals (Fig. 1). A
summary of the subject characteristics is shown in Table S1. All
collected samples were analyzed by a comprehensive set of plat-
forms including plasma proteome analysis based on proximity
extension assay, IgG autoantibody reactivity profiling, immune
cell profiling based on mass cytometry, transcriptomics profiling
of Peripheral Blood Mononuclear Cells (PBMCs) based on RNA-
seq, gut microbiota analyses using 16S rRNA gene profiling and

plasma metabolite and lipids profiling using LC–MS (Fig. 1). In
addition to these molecular profiles and extensive clinical
assessment, each individual was also followed using detailed
questionnaires at every visit and tracking devices that monitor
physical activity levels and sleep patterns. For the clinical
chemistry and the protein profiling, we included data for the
complete two rounds with a total of six analyzed visits, whereas
the other datasets consist of data for four visits sampled during
the first round.

Clinical chemistry and anthropometric measurements. We
investigated a total of 30 clinical chemistry parameters and three
selected examples are shown in Fig. 2a–c to highlight the long-
itudinal variation across the visits. Creatinine is a routinely used
kidney marker and it is known that its levels (Fig. 2a) are notably
higher in males compared to females due to sex differences in
muscle mass16, and this is also observed in our data. The results
show stable creatinine levels in all individuals indicating a stable
renal function during the study period. The results of high-density
lipoprotein (HDL) (Fig. 2b) also show, as expected, clear sex-
specific trends17 with higher levels in females than males, in con-
trast to low-density lipoprotein (LDL) (Fig. 2c), which is more
variable across the six visits. In addition, we analyzed anthropo-
metrics, such as weight, height, diastolic/systolic blood pressure, and
calculated the body mass index (BMI). The average BMI is also
stable overtime with an average BMI of 25.3 for visit one and 25.1
for visit six although there are some deviations at the individual
level (Fig. 2d). Similar plots for another 14 of the assessed variables
are shown in Supplementary Fig. 1 and with animated versions in
Supplementary Movie 1. The mean body weight remained stable
during the observation period, with the exception of one subject
experiencing marked diet-induced weight loss, −15.8 kg (−34.8
pounds) between visits three and four. The clinical chemistry
variables were largely stationary at the group level and the most
noticeable finding at the individual level was a pronounced CRP
elevation (79.0 mg/L) at visit 2 in one subject. A summary of all
longitudinally collected clinical variables including classification and
a list of abbreviations is given in Supplementary Dataset 1.

Principal Component Analysis (PCA)18 is used to assess the
general trends in the data and the resulting score plot shows a
clear separation between males and females based on their clinical
chemistry and anthropometrics data (Fig. 2e). In the loading
plot (Fig. 2f), the interrelationships between all variables are
summarized and the main parameters explaining this difference
include anthropometrics, hemoglobin (Hb), creatinine, red blood
cell (RBC) count, HDL, Apolipoprotein A1(ApoA1) and
hematocrit parameters. Hierarchical clustering was performed
based on the correlation between a selection of clinical variables
and anthropometrics parameters and the pairwise relationship
between all variables is visualized in Fig. 2g, based on mean
values, whereas the correlation based on separate visits are shown
in Supplementary Fig. 2, implying high correlation and long-
itudinal stability for most clinical variables.

Longitudinal molecular profiling. The primary objective of this
study is to analyze the global molecular omics profiles of each of the
individuals and to investigate the stability of such profiles during
the study period. The autoantibody profile of each individual was
analyzed as previously described19 using a bead-based protein array
based on recombinant human proteins generated within the fra-
mework of the Human Protein Atlas20 to analyze the plasma IgG
reactivity toward 318 human protein fragments for 91 individuals.
For the plasma proteome analysis, eleven panels of antibody-based,
multiplex assays21 toward human blood proteins were included.
The result from the proximity extension assay technology allowed
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the quantitative analysis of altogether 794 target proteins for 90
individuals. The PBMC immune cell profiles were characterized by
mass cytometry using a 38-parameter panel covering all major
immune cell populations. Out of these, the 53 most widely abun-
dant and robustly detected cell populations were included in the
analysis of 93 individuals. The metabolites in plasma were also
determined using a LC–MS based metabolomics analysis22

including 413 annotated metabolites for 94 individuals. The plasma
lipidome was determined using a LC–MS based lipidomics analysis
detecting altogether 169 annotated lipids for 48 of the individuals.
The gut microbiota of all the individuals was analyzed based on 16S
rRNA gene sequencing23 and resulted in data for 89 individuals
from 1465 operational taxonomic units (OTUs). Finally, the PBMC
transcriptome was assessed using RNA-seq, resulting in gene
expression data for 19,670 protein-coding genes, out of which
11,976 were detected in the 77 analyzed individuals. The complete
list of all analyzed variables per dataset is available in Supplemen-
tary Dataset 2.

Analyzing the individual longitudinal stability and variability.
In Fig. 3a–g, the integrated molecular profiles of all individuals

across all analyzed visits are visualized using two-dimensional
maps generated by the dimension reduction technique Uniform
Manifold Approximation and Projection (UMAP)24. In the
resulting plots, all visits of a particular individual are connected
by lines, indicating how similar the profile of an individual is
between two visits. The animated versions of the plots are pre-
sented in Supplementary Movie 2, where the movement of each
individual across time can be dynamically tracked.

For the autoantibody data, each of the individuals display a
unique and stable global repertoire of autoantibody reactivity
during the study period with very little changes in the signature of
IgGs binding the selected panel of self-proteins (Fig. 3a).
Similarly, the plasma proteome analysis (Fig. 3b) reveals that
each individual has its own unique protein profile and shows a
remarkable stability with regards to plasma profiles during the
study period. In addition, the results reveal two subclusters
composed of men and women, respectively, suggesting a variation
of the plasma protein profiles between the two sexes, similar to
what we have shown for the clinical variables. The comprehensive
summary of 30 clinical chemistry variables (Fig. 3c) shows that
many individuals have all visits located close to each other,
suggesting that a majority of the global clinical chemistry profiles
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Transcript expression 
levels for 11,976 genes
77 subjects and four visits
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794 proteins 
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Fig. 1 Overview of the S3WP program. The outer part represents all types of data that have been analyzed for this study. The inner part shows the
distribution across the months of a year for all visits for each of the 94 subjects that completed the program, where round one includes visits one to four
with approximately three months intervals and round two includes visits 5 and 6 with ~6 months intervals. PBMC peripheral blood mononuclear cell; PEA
Proximity Extension Assay; OTUs operational taxonomic units; IgG Immunoglobulin G; rRNA Ribosomal Ribonucleic Acid; LC–MS liquid
chromatography–mass spectrometry; GC–MS gas chromatography–mass spectrometry; BP blood pressure; BMI body mass index; MRI Magnetic
resonance imaging; CT computed tomography.
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are unique and stable during the study period, although we see a
larger variation overtime than for the autoantibody and proteome
datasets.

The results from the immune cell profiling (Fig. 3d) show a stable
immune cell composition for some individuals, while others change

significantly between two or more visits. The number of individuals
with variable immune cell profiles is larger than the number of
individuals with variable plasma protein and clinical chemistry
profiles, highlighting the reactive nature of immune cells in blood.
Similarly, the UMAP results for the metabolome (Fig. 3e), lipidome
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(Fig. 3f), and microbiota (Fig. 3g) show that many of the analyzed
individuals have a unique and stable profile, although some show
larger changes between two or more visits, suggesting individual-
related variability of the corresponding profiles between these visits.
Finally, the transcriptomics profiling is the most variable dataset
and shows a significant varying fraction overtime (Fig. 3h). As
contrary to the clinical and plasma proteome data, neither the
transcriptomic, autoantibody, lipidomics, immune cell or micro-
biota data show any major differences between men and women in
the UMAP plots.

Individual intervisit distances. To assess the changes over visits,
we used the molecular profiles of all individuals to calculate the

distances between two visits for each individual and each analysis
method, based on Bray–Curtis dissimilarity measure25 for gut
microbiota data, the Aitchison’s distance26 for immune cell data
and Euclidean distance27 for the remaining datasets. Supple-
mentary Fig. 3 shows the scaled pairwise distances between visits
for each of the different datasets, and with the ten most highly
varying individuals based on mean values for all methods colored
separately. To compare the variability for the individuals across
different omics datasets, the average of the distances for all
individuals are visualized in Fig. 3i, using the same color code.
The results reveal that several of the most variable individuals
show increased variability across many of the analyzed data
types, suggesting simultaneous changes across multiple molecular
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in the study: a autoantibodies (n= 318) analyzed in plasma and based on 91 subjects; b plasma protein expression data for 794 proteins in 90 subjects;
c clinical chemistry and hematology variables (n= 30) based on 94 subjects; d immune cell profiles from PBMC (n= 53) based on 93 subjects;
e metabolites in plasma (n= 413) based on 94 subjects; f lipids in plasma (n= 169) based on 48 subjects; g fecal microbiota based on 16S sequencing and
using 1465 operational taxonomic units (OTUs) for 89 subjects; and h PBMC transcriptome expression values from 11,976 genes based on 77 subjects.
Each plot shows all individuals with complete data from all four visits for the respective datasets, except for the proteome and clinical chemistry data where
six visits were analyzed, colored by sex and with lines connecting the visits for each individual. i The average distance between visits for each individual
calculated per data type. The autoantibody profiling was excluded from this analysis due to the high stability over time. Euclidean distance was used for all
methods except microbiota, which used Bray–Curtis distance, and immune cytome, which used Aitchisons distance. The individuals with the top ten largest
average distances are highlighted in different colors and all others are shown in gray. j Intra-class correlation (ICC) levels in each variable from each
dataset. In j data are represented as violin plots where the middle line is the median.
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profiles. As an example, an individual with a significant increase
in CRP levels at the second visit (79.0 mg/L) has the largest
variation of all in protein plasma levels as well as in clinical
chemistry and transcriptomics and is in the top four for both
metabolomics and microbiota profiling.

Intraindividual variation of molecular profiles. To understand
the variation of each individual, we performed an intra-class cor-
relation (ICC) analysis28 for all variables individually and extracted
the variance related to each subject. The results are shown in Fig. 3j
for all variables across the eight datasets sorted by the median value
and where an ICC level close to one reflects a more stable individual
profile. The results show that the autoantibody dataset has the
highest ICC median value and thus most distinct and stable indi-
vidual profiles, while the microbiota showed the lowest ICC median
with a wider dispersion which means a higher intraindividual
variability. To further track this intraindividual variation, we used
Z-scores of each variable (feature) in each individual at the dataset
level and across all datasets. We used Z-score= 2 as a cutoff to
define a feature as varying. The overall results are shown in Sup-
plementary Figs. S4 and S5, in which the individuals are sorted
according to the total fraction of their varying features by including
all datasets. For example, the abovementioned individual (W0022)
with high CRP is ranked as the second most varying individual
based on aggregated Z-scores for all datasets (Supplementary
Fig. 4A). Another highly varying individual (W0008) exhibits a high
LDL (4.90mmol/L) and low HDL (1.30mmol/L) at the fourth visit
which explain the shifts overtime. Furthermore, Supplementary
Fig. 4B displays the relative variable proportion of each dataset that
is represented in the varying fraction in each individual, as well as a
summary of the assessed datasets per individual in Supplementary
Fig. 4C. This allows for quantification of the driving variation at the
individual level. The data show that the top most variable indivi-
duals have at most 12% of varying features while the most stable
one shows only 1.3% overall variation, confirming the overall sta-
bility of the cohort over the study period. Furthermore, this shows
how metabolic changes overtime could be tracked at a global level
using deferent biological and clinical datasets as biological lenses.

For five of the datasets, the ten top most stable or the top most
varying features based on their interquartile ranges (IQR) are shown
in Supplementary Fig. 6. Some notable examples of variable
proteins include the growth hormone 2 (GH2)29 which shows a
large range of expression values and the alpha subunit of the
glycoprotein hormones (CGA) which shows the expected higher
expression in women than men. In addition, we see that among the
most stable metabolites we find gamma (γ)-tocopherol30, a form of
vitamin E. Evidence of γ-tocopherol effect in preventing endothelial
injury, lipid peroxidation, and oxidative stress have been
reported30,31. Indeed, γ-tocopherol is important in preserving
endothelial function by protecting the degradation of tetrahydro-
biopterin (BH4), a key cofactor in the synthesis of nitric oxide32.
Furthermore, γ-tocopherol exhibits superior anti-inflammatory and
antioxidant pharmacodynamic properties by inhibiting COX-2 and
5-lipoxygenase pathways33.

Correlation-based integrative analysis. With the comprehen-
siveness of the assessed omics and clinical data, this study provides
an interesting opportunity to identify associations between
the different biological and clinical information layers. Thus, we
performed intra- and inter-dataset correlations based on Spear-
man correlation between all analyzed variables included in six of
the datasets (n= 13,435), excluding the autoantibody and
microbiota datasets. Intra-omic correlations is defined as corre-
lations computed between features from the same dataset while
inter-omic correlations is defined as correlations between features

from different datasets. A complete list of all results above 0.2 or
below −0.2 is available at: https://www.proteinatlas.org/download/
scapis_wellness_correlation_network_all_data.txt.gz. To explore
the inter-omics correlation, we visualized the links between all
significant inter-omics correlation above 0.5 or below −0.5
(Fig. 4a). We observed that largest links consist of correlations
between the transcriptome with the proteome followed by the
transcriptome and the immune cytome, which are both based on
analysis of PBMCs. Some of the most highly correlated features
include the CD19 molecule, which is highly correlated with the
Naive B cells (transcriptomics and immune cytome, ⍴= 0.82)
(Fig. 4b), and the LDL receptor that is highly correlated with
Apolipoprotein B (ApoB)34 (proteomics and clinical chemistry,
⍴= 0.72) (Fig. 4c). As expected, we observed high correlation
between analytes that are assessed with different technologies such
as urate (clinical chemistry and metabolomics, ⍴= 0.91) (Fig. 4d)
and N-terminal pro b-type natriuretic peptide (NTproBNP)
(clinical chemistry and proteomics, ⍴= 0.88) (Fig. 4e), which
reflect the consistence of the data across different platforms. A
larger selection of examples is shown in Supplementary Fig. 7 and
the detailed top 20 pairwise correlations for each of the datasets
are visualized in Fig. 4f to gain more insights regarding the most
highly correlated features. We find that most of the top immune
cytome connections are due to Naive B cells and that the lipidome
is mainly correlated with clinical data through the lipid profile
biomarkers (triglycerides (TG), cholesterol, and LDL). Most of the
proteome correlations are due to T-cell leukemia/lymphoma 1A
(TCL1A) which is highly correlated with multiple genes in the
transcriptomics data, for example the Fc receptor like 1 (FCRL1)
and the Fc fragment of IgE receptor II (FCER2) genes. The
metabolome is as expected mainly correlated with the lipidome
but also connects to the clinical chemistry through the kidney
function biomarker creatinine and urate. We also observed a
negative correlation between LILRB2 (Transcriptome) and
LILRB2 (Proteome) with ⍴=−0.70 and it is not clear whether it
is a technical artifact or a biologically relevant finding.

Assessment of the effect of omics datasets on clinical data. To
get a more comprehensive overview of the interrelationships
between the omics profiles, anthropometrics, and the clinical
chemistry parameters, we performed linear mixed-effect model-
ing35, which creates models for each omic feature and all clinical
data while at the same time can take into consideration the effect
of sex and individual. The aim of this analysis is to quantify and
predict the effect of the omics data on the assessed clinical
parameters. Four of the datasets showed significant effects on the
clinical data: proteome, lipidome, metabolome and tran-
scriptome, and the complete table with all significant results is
given in Supplementary Dataset 3. The overall results (Fig. 5a)
reveal that the proteome exhibits most of the effects on the
clinical data. The strong connection between blood cells and the
PBMC transcriptome is also shown here by the large fraction of
transcriptome results in the leukocyte part of the clinical data.
Moreover, the data also confirms the relationship between the
assessed lipidome and the lipid profile as already mentioned. To
have a deeper insight, we present a summary of the two most
significant features across the four omics datasets and for each
clinical parameter (Fig. 5b) as well as a more detailed view for
each dataset in Supplementary Fig. 8. As expected, the lipidome is
mainly connected to the lipid profile through TG, sphingomye-
lines, lysophosphatidylcholines and ceramides. The metabolome
had a broader spectrum, such as the alpha tocopherol (vitamin E)
that exhibits the highest effect on lipid profile, taurocholic acid is
significantly connected to liver biomarker Gamma-glutamyl
transferase (GGT). Acylcarnitines presented the highest effect

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18148-7

6 NATURE COMMUNICATIONS |         (2020) 11:4487 | https://doi.org/10.1038/s41467-020-18148-7 | www.nature.com/naturecommunications

https://www.proteinatlas.org/download/scapis_wellness_correlation_network_all_data.txt.gz
https://www.proteinatlas.org/download/scapis_wellness_correlation_network_all_data.txt.gz
www.nature.com/naturecommunications


a

f

Clinical chemistry (C)
Proteome (P)
Lipidome (L)
Metabolome (M)
Immune cytome (I)
Transcriptome (T)

b c

d e

T
G

(C
)

LD
L

(C
)

Cho
l (

C)
Ura

te
(C

)
GGT

(C
)

NTpr
oB

NP
(C

)

Cys
tC

(C
)

Mono (C
)

ApoB (C
)

ApoB.apoA1 (C
)

Crea (C
)

Naive_B_cells (I)

CD8pos_TEMRA_CD57neg_CD39neg (I)

CD27neg_switched_memory_B_cells_

_CD22neg_CD24neg (I)

CD8pos_TEMRA_CD57pos_CD39neg (I)

PC(28:0) (L)
PC(30:0) (L)

PC(32:2) (L)
TG(53:1) (L)

TG(49:0) (L)
TG(47:1) (L)

TG(51:4) (L)

TG(56:4) (L)

TG(47:2) (L)

TG(51:3) (L)

TG(49:3) (L)

TG(50:1) (L)

TG(52:2) (L)

TG(53:2) (L)

TG(48:1) (L)

TG(54:2) (L)

TG
(50:0) (L)

TG
(52:3) (L)

TG
(52:1) (L)

TG
(51:1) (L)

D
G

(36:2) (L)

D
G

(36:3) (L)

S
M

(d18:0/16:1) (L)

P
C

(34:3) (L)

LP
E

(16:0) (L)

LP
E

(18:2) (L)

LP
C

(14:0)
(L)

LP
C

(16:1)
(L)

LP
C

(18:3)
(L)

LP
C

(20:4)
(L)

LP
C

(22:6)
(L)

C
er(d18:1/22:0)

(L)

C
er(d18:0/22:0)

(L)C
er

(d
18

:1
/2

3:
0)

(L
)

C
er

(d
18

:0
/2

3:
0)

(L
)

C
er

(d
18

:1
/2

4:
1)

(L
)

C
er

(d
18

:1
/2

4:
0)

(L
)

C
er

(d
18

:0
/2

4:
0)

(L
)

C
er

(d
18

:1
/2

5:
0)

(L
)

S
uc

ci
ni

c
ac

id
(M

)

S
al

ic
yl

ic
ac

id
(M

)

Ly
so

P
C

(1
6:

0)
(M

)

Ly
so

P
C

(1
8:

1(
9Z

))
(M

)

Ly
so

P
C

(1
6:

1(
9Z

))
(M

)

Ly
so

P
C

(2
2:

5(
4Z

,7
Z,

10
Z,

13
Z,

16
Z)

) (
M

)

Ly
so

P
C

(1
4:

0)
(M

)

Ly
so

PC
(1

8:
3(

9Z
,1

2Z
,1

5Z
))

(M
)

Ly
so

PC
(2

0:
4(

5Z
,8

Z,
11

Z,
14

Z)
) (

M
)

Ly
so

PC
(2

0:
3(

8Z
,1

1Z
,1

4Z
))

(M
)

Urs
od

eo
xy

ch
ol

ic
ac

id
(M

)

L−
Le

uc
ine

(M
)

Ura
te

(M
)

Hex
ad

ec
en

oy
l−

ca
rn

itin
e (C

16
:1

) (M
)

Oleo
ylc

ar
nit

ine
(C

18
:1

) (M
)

L−
Glut

am
ine

(M
)

Elai
dic

ac
id

(M
)

N−Ace
tyl

−be
ta−

ala
nin

e (M
)

TCL1A (P)

FCER2 (P)

LDL receptor (P)

SERPINA7 (P)
ANGPTL4 (P)

ACE2 (P)
BNP (P)

CST3 (P)
NT−proBNP (P)

PAX5 (T)

PDK4 (T)

OSBPL10 (T)

GLB1L2 (T)

ZNF683 (T)

STAP1 (T)

TCL1A (T)

RUBCNL (T)

TSPAN13 (T)

TREML2 (T)

VPREB3 (T)

SWAP70 (T)

PLPP5 (T)

SNX22 (T)

TNFRSF13C (T)

STRBP (T)

PKIG
(T)

PAWR (T)

PCDH9 (T)

CD22 (T)

IL4R
(T)

COL19A1
(T)

FCER2
(T)

CXCR5
(T)

FC
R

L1
(T)

FAM
129C

(T)
C

D
19

(T)
K

C
N

H
8

(T)
C

LE
C

17A
(T)

C
D

200
(T)

B
LN

K
(T

)
C

D
79A

(T
)

B
C

L7A
(T

)
F

C
R

L2
(T

)
B

LK
(T

)
B

A
N

K
1

(T
)

M
S

4A
1

(T
)

C
D

C
A

7L
(T

)
C

D
8B

(T
)

G
N

G
7

(T
)

F
C

G
R

T
 (T

)

20891230376545666264

T
ra

ns
cr

ip
to

m
e

P
ro

te
om

e

M
et

ab
ol

om
e

Li
pi

do
m

e

Im
m

un
e

C
yt

om
e

C
lin

ic
al

C
he

m
is

tr
y

T
ra

ns
cr

ip
to

m
e

P
ro

te
om

e

M
et

ab
ol

om
e

Li
pi

do
m

e

Im
m

un
e

C
yt

om
e

C
lin

ic
al

C
he

m
is

tr
y

0.4

0.6

0.8

1.0

1.2

6 7 8

A
po

B
 (

cl
in

ic
al

 c
he

m
is

tr
y)

rho = 0.72
adj p = 3.14e−88

3

4

5

6

C
D

19
 (

tr
an

sc
rip

to
m

e)

0.00 0.05 0.10 0.15

Naive_B_cells (immune cytome)

rho = 0.82
adj.p = 2.92e−136

5.00

5.25

5.50

5.75

6.00

U
ra

te
 (

cl
in

ic
al

 c
he

m
is

tr
y)

15.0 15.5 16.0

Urate (metabolome)

rho = 0.91
adj.p = 3.59e−219

LDL receptor (proteome)

2 3 4 5 6

NTproBNP (clinical chemistry)

rho = 0.88
adj.p = 1.95e–176

6

8

10

N
T

-p
ro

B
N

P
 (

pr
ot

eo
m

e)
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on heart biomarkers Troponin T (TNT) and NTproBNP, which is
relevant for such a highly energy consuming organ. Indeed,
carnitine and acylcarnitines are important transporters of fatty
acids into mitochondria for beta-oxidation which is main source
of energy in the heart36. Regarding the proteome, the liver
function markers alanine aminotransferase (ALAT) showed
strong connections with other liver enzymatic proteins Carbonic

anhydrase 5A (CA5A) and Hydroxyacid oxidase 1 (HAO1), but
also with Angiotensin I converting enzyme 2 (ACE2) pre-
dominately expressed in endothelial cells. While CA5A and
HAO1 are intracellular liver enzymes whose presence in plasma
indicate tissue leakage/liver cell damage with no functional role
in plasma, the connection with ACE2, which is expressed
as a transmembrane protein with an enzymatically active
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ectodomain (sACE2) circulating in plasma, may be a functional
consequence in response to liver injury. ACE2 is normally not
expressed in liver, but has been shown to be upregulated in liver
injury37 and in experimental models to have protective effects
against liver fibrosis38. Interestingly, in liver disease/liver fibrosis,
the Ang-(1–7) peptide generated by ACE2, is opposing the
harmful effects of angiotensin II on liver and rat models showed it
to be protective against liver fibrosis39. Our data thus suggest that
in normal healthy individuals, there could be a counter regulatory
effect in response to mild/subclinical liver injury. We also ana-
lyzed the mixed-effect modeling results with regards to the sex-
associated variables and the most significant findings per dataset
is presented in Supplementary Fig. 9.

Tissue specificity of protein variation. Subsequently, given the
metabolic coverage of the assessed blood proteome, we investi-
gated the tissue specificity of the proteins associated with the
various clinical parameters. This tissue enrichment step is based
on the classification scheme described in Uhlén et al.20,40, which
classified ~2845 genes as tissue enriched, defined as at least
fourfold higher transcript expression levels in one tissue type as
compared with any other analyzed tissues, in a total of 37 dif-
ferent cells, tissues, and organs. The list of tissue enriched genes
was mapped to the list of plasma proteins with significant effects
on any clinical parameter and Fig. 6a shows the distribution of
tissue enriched genes from different tissue types across all clinical
parameters. Furthermore, Fig. 6b shows the number of tissue
enriched genes across all clinical parameters, whereas Fig. 6c
visualizes the top five most associated proteins by each of the
clinical parameters. The analysis shows that many of the plasma
proteins that are highly associated with the clinical data are also
expressed by the liver. The proteins encoded by gastrointestinal
tract enriched genes are mainly associated with lipid profile,
HbA1c (Hemoglobin A1c), BMI, and weight, while bone marrow
and lymphoid enriched genes showed high correlation to leuko-
cytes, RBC and related metrics.

At a functional level, we performed an enrichment analysis based
on the mixed-effect modeling results and KEGG pathways41 and
identified 69 significantly enriched metabolic pathways for at least
one clinical parameter (Benjamini–Hochberg-adjusted p < 0.05)
(Supplementary Fig. 10). For example, the result shows that
proteins associated with CRP, white blood cell (WBC) count,
neutrophil particles (Neut) and Cystatin C (CystC) are involved in
the immune system, while some well-known obesity-related
pathways like PI3K/Akt, JAK/STAT, RAP1, and MAPK signaling
pathways were identified in weight, BMI, waist, and fat associated
proteins42. Among them, one interesting significant association was
for weight, waist, CRP, and WBC involved in Relaxin signaling
pathway, which has been reported to have a function in the
treatment of diet-induced insulin resistance and vascular dysfunc-
tion in mice model43.

Discussion
Several projects aiming to perform molecular profiling of various
cohorts have been previously reported with different scopes, sizes
and depths4–8. The primary objective of this study has been to
analyze the global molecular omics profiles of one hundred
individuals and to investigate the longitudinal stability and
interconnections of such profiles, aiming for a deep, and com-
prehensive profiling. The analyses are based on molecular profiles
in blood complemented with gut microbiota profiles to allow
multi-omics data to be integrated and compared with clinical
chemistry and other metadata. The individuals were selected to be
clinically healthy, but all individuals enrolled to the study started
with an in-depth screening using an extended medical imaging

and a battery of clinical chemistry assays. Thus, many of them
were found to have either minor or major disorders, emphasizing
the difficulties to define the healthy state of individuals. We show
that each individual has a unique protein profile and autoanti-
body profile and that in most cases these profiles are stable
overtime in the absence of infectious disease or any other acute
perturbation. It is also noteworthy that the other omics profiles
across the visits for a particular individual also, in many cases,
cluster together and are typically distinct from the profiles of
other individuals.

This study is, as far as we know, one of the most compre-
hensive and deep longitudinal analyses of omics yet published
and this was achieved using different multimodal technologies.
Broadly, the gathered proteomic data offer a tremendous wealth
of information to empower routine laboratory tests with a more
biologically contextualized and clinically relevant insight for a
better data interpretation in both translational and clinical set-
tings. The study shows that the longitudinal shifts between
individuals are higher than the intraindividual variation in all
datasets. This highlights the need for a higher biological granu-
larity in tracking variation at a more individual scale44.

The longitudinal plasma protein profiles show that a large
majority of the proteins were stable in the individuals and only a
few showed significant differences between the individual parti-
cipants. This agrees with the finding that signatures of circulating
proteomes are highly individual specific45. In addition, we
recently reported that the human blood level of many proteins
during adult life is to a large extent affected by genetics, con-
firming the unique and stable individual patterns of the proteome
profiles46. Among the most variable proteins we find human
growth hormone 1 and 2 (GH1 and GH2)29, which may be
depending on the large variation in expression levels between
men and women with growth hormone levels reported to be sex,
age, BMI and exercise dependent47. An interesting finding is the
sex-associated differences underlined by complex metabolic and
endocrine interconnections, which is important for our under-
standing of both health and disease to avoid sex biased inter-
pretations. These differences are clearly reflected in the variation
in clinical laboratory parameters between females and males, and
sex is a key factor in establishing reference intervals48, such as
endocrine specificities and skeletal muscle mass metabolism49,50.
Interestingly, our data show sex-related differences for many of
the parameters related to metabolic syndrome risk factors51.
Moreover, lipoprotein profiles are highly sex-related given the
greater insulin sensitivity of women compared to men52. Thus,
our data emphasize the importance of accounting for metabolism
differences between the sexes as a key individual attribute to
effectively implement personalized, preventive, and therapeutic
strategies.

The analysis of the individual molecular profiles revealed large
effects on several parameters. The liver marker GGT was identified
in relation to inflammatory markers such as IL-6 and this is not
unexpected since the liver plays a pivotal role in inflammation by
draining circulating lipids (TG and free fatty acids), and triggering
cytokines release, which in turn promote CRP hepatocyte produc-
tion53. The strong relationship between CRP and IL-6 has been
recently reported along with other cytokines46, and the integrated
CRP-centric perspective may shed light on CRP roles in
inflammatory-based disorders. This study also involves a very
comprehensive longitudinal profiling of immune cell composition
in healthy individuals54. Here we show that although some indi-
viduals are stable overtime, many subjects show a variable immune
cell composition, even without overt infectious disease.

Beyond the insightful molecular profiling depth of the current
study, the reported observations need to be validated in larger
cohorts given the relatively small size of this study cohort.
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In summary, we present a deep phenotyping study, aiming to
contribute to laying a foundation and reference for future pre-
cision medicine endeavors based on molecular monitoring of
wellness and deviations from an individual trajectory perspective
as an early sign of disease development. The results support an
individual-based definition of health and show a path forward for
precision medicine based on comprehensive molecular profiling
in a longitudinal manner.

Methods
Study subjects. A total of 101 subjects were recruited from the ongoing Swedish
CArdioPulmonary bioImage Study (SCAPIS), which is a prospective observational
study of ~30,000 subjects aged 50–64 years from the general Swedish population,
enrolled to the study based on tax registry personal number to allow a random
sampling of the population and subsequent follow-up via national registries.
Examinations in SCAPIS include imaging to assess coronary and carotid athero-
sclerosis, clinical chemistry, anthropometry, and extensive questionnaires, as pre-
viously described15. Thus, the subjects had been extensively phenotyped before
entering the S3WP program. In SCAPIS, no exclusion criteria are applied except
the inability to understand written and spoken Swedish for informed consent. In
the S3WP program, exclusion criteria include: (1) previously received health care
for myocardial infarction, stroke, peripheral artery disease or diabetes, (2) the
presence of any clinically significant disease which, in the opinion of the investi-
gator, may interfere with the results or the subject´s ability to participate in the
study, (3) any major surgical procedure or trauma within 4 weeks of the first study
visit, or (4) medication for hypertension or hyperlipidemia. The study is approved
by the Ethical Review Board of Göteborg, Sweden. All participants provided written
informed consent. The study protocol conforms to the ethical guidelines of the
1975 Declaration of Helsinki.

Study design. The S3WP program is non-interventional with the aim to collect
longitudinal data in a community-based cohort. A total of four examinations were
performed every third month (±2 weeks) for the first round and an additional two
examinations were performed approximately every 6 months for the second round.
The individuals in this study are part of the larger SCAPIS study and were iden-
tified as clinically healthy based on their results. One hundred one individuals were
recruited to the program, 99 completed the first round and 94 completed the
second round. Clinically healthy was defined as previously not received health care
for myocardial infarction, stroke, peripheral artery disease or diabetes or having
other clinically significant disease, not having had major surgical procedures or
trauma within four weeks of the first study visit and not taking medication for
hypertension or hyperlipidemia. All subjects were fasting overnight (at least 8 h)
before the visits. Subjects underwent the same examinations at each visit, including
anthropometric measurements, body fat using bioimpedance and blood pressure. A
selection of questions from the initial SCAPIS questionnaire was repeated to note
any changes in health and lifestyle factors between each visit. Each visit also
included collection of blood, urine and feces for subsequent clinical chemistry and
omics analyses. From visit two and onward, subjects were wearing accelerometers
(Polar A360) to measure physical activity.

Characteristics based on the SCAPIS data are shown in Supplementary Table 1.
Self-reported health issues during the study period involved mostly mild infections,
with a total of 44 subjects reporting symptoms of a common cold and 13 subjects
reporting bacterial infections. Fourteen subjects underwent some form of surgery,
ten subjects started antihypertensive medication, and five subjects started statin
treatment during the study period. The mean body weight remained stable during
the observation period, with the exception of one subject experiencing marked diet-
induced weight loss, −15.8 kg (−34.8 pounds) between visits 3 and 4, as detailed
below. The clinical chemistry variables were largely stationary at the group level
and the most noticeable finding at the individual level was a pronounced CRP
elevation (79.0 mg/L) at visit 2 in one subject.

Clinical examinations. Height was measured in indoor clothing to the nearest
centimeter without shoes. Weight was measured on a calibrated digital scale, with
subjects dressed in light indoor clothing without shoes. The BMI was calculated by
dividing the weight (kg) by the square of the height (m). Waist circumference was
measured midway between the palpated iliac crest and the palpated lowest rib
margin in the left and right mid-axillary lines. Hip circumference was measured at
the maximum circumference over the buttocks. Bioimpedance was measured using
Tanita MC-780MA according to manufacturer’s instructions. Systolic and diastolic
pressure was registered in supine position and after 5 min of rest, using the
automatic Omron P10. The blood pressure was measured in both arms at visit 1
and thereafter in the arm that showed the highest blood pressure at visit 1.

Clinical chemistry. Clinical chemistry and hematology measurements included
capillary glucose (Hemocue), plasma glucose, HbA1c, TG, total cholesterol, LDL,
HDL, ApoA1, ApoB, ApoA1/B ratio, creatinine, high sensitive C-reactive protein

(hsCRP), ALAT, GGT, urate, cystatin C, vitamin D, TNT, NTproBNP, Hb and a
complete blood count including differential.

Questionnaires. A questionnaire, administered already in the SCAPIS trial,
comprising 140 questions separated in sets relating to factors central to the research
aims, was used to collect detailed information on self-reported health, family
history, medication, occupational and environmental exposure, lifestyle, psycho-
social well-being, socioeconomic status and other social determinants. A food-
frequency questionnaire (Mini-Meal-Q) with 35 questions was also used. At each
visit in the S3WP program, a selection of questions was repeated that will update
the information of the initial SCAPIS questionnaire. Subjects were also asked about
changes in lifestyle factors between each visit such as infections, disease, medica-
tion, perceived health, and exercise level. The Mini-Meal questionnaire was repe-
ated at all visits.

Metabolomics. Metabolites were extracted from plasma after protein precipitation
with methanol55. The metabolite extracts were analyzed by Agilent 1290 Infinity
UHPLC-system (reverse phase chromatography) combined with an Agilent 6550
Q-TOF mass spectrometer equipped with an electrospray Jetstream ion source
operating in positive and negative ion mode. The m/z range was 70–1700, and data
were collected in centroid mode with an acquisition rate of 4 scans/s. The mass
spectrometry files were processed using Profinder B.08.01 (Agilent Technologies
Inc., Santa Clara, CA, USA) using mass feature extraction for peak detection.

Lipidomics. The lipid content were extracted following a modified Folch proto-
col56–58. In detail, 250 µL of extraction buffer (2:1 v/v chloroform:methanol)
including internal standards (tripalmitin TG(16:0/16:0/16:0)-1,1,1-13C3, Ceramide
(d18:1/16:0-d31), phosphatidylcholine PC(18:0/18:0-d70) and distearin DG(18:0/
0:0/18:0)-d5) were added to 20 µl of plasma and 30 µl of 0.15M NaCl. The sample
was shaken at 30 Hz for 2 min in a mixer mill, and then proteins were precipitated
at room temperature for 1 h. The sample was centrifuged at +4 °C, 14,000 rpm, for
3 min. 120 µL of the lower phase were collected and divided into two different
microvials (40+ 80 µL) and stored at −80 °C until LC/MS analysis. In total, 200 µL
of extraction buffer (2:1 v/v chloroform:methanol) including internal standards
(tripalmitin-1,1,1-13C3 and 16:0-d31 ceramide) were added to 150 pancreatic islets.
The sample was shaken with a tungsten bead at 30 Hz for 2 min in a mixer mill, the
beads were removed and 40 µl of 0.1M NaCl was added. After vortex for 2 min, the
samples were let to stand at room temperature for 30min. The sample was cen-
trifuged at +4 °C, 14 000 rpm, for 3 min. 120 µL of the lower phase were collected
and divided into two different microvials (40+ 80 µL) and stored at −80 °C until
analysis. The LC–MS analysis of the lipid extracts were performed as described56.
The chromatographic separation was performed on an Agilent 1290 Infinity
UHPLC-system (Agilent Technologies, Waldbronn, Germany). 0.5 µL of extracted
plasma or 1 µl of extracted tissue sample were injected onto a Acquity UPLC CSH,
2.1 × 50mm, 1.7 µm C18 column in combination with a 2.1 mm× 5mm, 1.7 µm
VanGuard precolumn (Waters Corporation, Milford, MA, USA) held at 60 °C. The
gradient elution buffers were A (60:40 acetonitrile:water, 10 mM ammonium for-
mate, 0.1% formic acid) and B (89.1:10.5:0.4 2-propanol:acetonitrile:water, 10 mM
ammonium formate, 0.1% formic acid), and the flow rate was 0.5 mLmin−1. The
compounds were eluted with a linear gradient using initial condition 15% B, and
increase to 30% B at 1.2 min, 55% at 1.5 min, isocratic to 5.0min, increase to 72% B
at 7 min, 85% at 9.5min and 100% B at 10.0min, and then held at 100% for 2 min.
An additional wash of the injection valve, with 100% B and flow rate 3.0 mLmin−1

for 0.3min, was performed before decreased to initial condition 15% B over 0.3min;
these conditions were held for 1.1min to equilibrate the column before next
injection. The compounds were detected with an Agilent 6540 Q-TOF mass spec-
trometer equipped with a dual jetstream electrospray ion source operating in
positive or negative ion mode. The settings were kept identical between the modes,
with exception of the capillary voltage. A reference interface was connected for
accurate mass measurements; the reference ions purine (2 µM) and HP-0921
(Hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine) (2.5 µM) both purchased
from Agilent Technologies (Santa Clara, CA, USA) were infused directly into the
MS at a flow rate of 0.07 mLmin−1 for internal calibration, and the monitored ions
were purine m/z 121.05087 and m/z 119.03632; HP-0921 m/z 922.00980 and m/z
966.000725 for positive and negative mode respectively. The gas temperature was set
to 300 °C, the drying gas flow to 8 L min−1 and the nebulizer pressure 40 psig. The
sheath gas temp was set to 350 °C and the sheath gas flow 11 Lmin−1. The capillary
voltage was set to 4000 V in positive ion mode, and to 4000 V in negative ion mode.
The nozzle voltage was 0 V. The fragmentor voltage was 100 V, the skimmer 45 V
and the OCT 1 RF Vpp 750 V. The collision energy was set to 0 V. The m/z range
was 70–1700, and data were collected in centroid mode with an acquisition rate of
4 scans s−1 (1973 transients/spectrum). The data were processed using Batch
Targeted Feature Extraction algorithm within MassHunter™ ProFinder version
B.08.00 (Agilent Technologies Inc., Santa Clara, CA, USA). In-house database with
exact mass and experimental retention times of lipids were used for identification.

Plasma protein profiling. Plasma proteins were analyzed using a multiplex
proximity extension assay (Olink Bioscience, Uppsala Sweden). Each kit provides a
microtiter plate for measuring 92 protein biomarkers in 90 samples. Each well
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contains 96 pairs of DNA-labeled antibody probes. Samples were incubated in the
presence of proximity antibody pairs. In short, 1 µL sample (buffer (PBS with 0.1%
BSA), antigen-spiked buffer, or biological sample) was mixed with 0.3 µL of each
proximity probe mix (A and B), 0.3 µL Incubation Stabilizer (Olink Proteomics,
Uppsala, Sweden) and 2.1 µL Incubation Solution (Olink Proteomics) and incu-
bated overnight at 4 °C. A combined extension and preamplification mix (96 µL)
containing 10 µL MUX PEA Solution (Olink Proteomics), 0.5 units Pwo (DNA
Gdansk, Poland), 1 µM forward+ reverse universal preamplification primers, and
1 unit hot-start DNA polymerase was added to each reaction at RT. After mixing
and a total 5-min incubation, the plate was transferred to a thermocycler running
an initial extension step to unite the two oligonucleotides (50 °C, 20 min), imme-
diately followed by a hot-start step (95 °C, 5 min) and 17 cycles of amplification
(95 °C, 30 s; 54 °C, 1 min; 60 °C, 1 min). Amplification was performed with uni-
versal flanking primers to amplify all 96 sequences in parallel. Finally, 2.8 µL of the
preamplification products were mixed with 7.2 µL buffer containing 5 µL MUX
Detection Solution (Olink Proteomics), 0.071 units Uracil-DNA glycosylase (DNA
Gdansk) used to digest the DNA templates and remaining universal primers, and
0.14 units hot-start polymerase. In total, 5 µL from the sample mix above was
transferred to the sample inlet wells of a microfluidic real-time PCR chip (96.96
Dynamic Array IFC, Fluidigm Biomark). In total, 5 µL from respective well of an
Assay Plate (Olink Proteomics) containing 9 µM sequence-specific internal
detection primers, 2.5 µM molecular beacon in 1× DA Assay Loading Reagent
(Fluidigm) were transferred to the assay inlet wells). The chip was run in a Biomark
instrument with the following program: Thermal mix (50 °C, 2 min; 70 °C, 30 min;
25 °C; 10 min), Hot-start (95 °C, 5 min), PCR Cycle 40 cycles (95 °C, 15 s; 60 °C,
1 min) according to the manufacturer’s guidelines (http://www.fluidigm.com/
biomark-hd-system.html).

To minimize inter- and intra-run variation, the data are normalized using both
an internal control (extension control) and an interplate control, and then
transformed using a predetermined correction factor. The pre-processed data were
provided in the arbitrary unit Normalized Protein eXpression (NPX) on a
log2 scale and a high NPX presents high protein concentration. In this study, 11
Olink panels have been used including Cardiometabolic, Cell Regulation,
Cardiovascular II (CVD II), Cardiovascular III (CVD III), Development, Immune
Response, Immuno-Oncology, Oncology II, Inflammation, Metabolism,
Neurology, and Organ Damage. Since samples were analyzed at two different
locations and at different time points, two strategies were used to assess the batch
effect of sampling: (1) the ratio of maximum and minimum IQR of protein
expressions across six visits; (2) three-way ANOVA analysis59 of protein
expressions for factor batch number, factor visit and factor subject. Proteins with
the ratio of maximum and minimum IQR > 1.8 or coefficient of batch from
ANOVA > 10 were considered to have a problematic batch effect and were
removed from the dataset. Thirty-nine replicated proteins from multiple panels
were also removed. The filtering process resulted in a total of 794 unique proteins
that were used in the analysis of this study.

Transcriptomics profiling. Total RNA was extracted using RNeasy Mini Kit
(Qiagen) and quantified using Qubit 2.0 Fluorometer (Invitrogen). RNA was
converted to a sequencing library using the TruSeq Stranded mRNA HT library
preparation method (Illumina) using 500 ng of total RNA as input quantity. The
obtained library was quantified using Qubit Broad Range assay kit or Quant-IT
RiboGreen chemistry (Invitrogen). The obtained libraries were sequenced using
Hiseq 2500 (Illumina) using either pair-end 100 bp or pair-end 125 bp in rapid run
mode or high output mode, respectively. Each sample was sequenced targeting
30M read pairs. Demultiplexing was done without allowing any mismatches in the
index sequences. To obtain quantification scores for all human genes and tran-
scripts across all samples, transcript expression levels were calculated as transcript
per million (TPM) by mapping processed reads to the human reference genome
GRCh37/hg19 and with gene models based on Ensembl (v92)60 using Kallisto
(v.0.43.1)61. Data from multiple visits were integrated using batch correction
implemented as removeBatchEffect in the R package Limma62 using the sampling
date as a batch parameter. This resulted in gene expression data for 19,670 genes
out of which 11,976 were detected in the 77 analyzed individuals based on a cutoff
for detection of average TPM > 1 per gene.

16S rRNA gene profiling of human fecal microbiota. The fecal microbiota was
profiled by sequencing the V4 region of the 16S rRNA gene on an Illumina MiSeq
instrument (Illumina RTA v1.17.28; MCS v2.5) with 515F and 806R primers
designed for dual indexing23 and the V2 Illumina kit (2 × 250 bp paired-end reads).
16S rRNA genes were amplified in duplicate reactions in volumes of 25 μL con-
taining 1× Five Prime Hot Master Mix (5 PRIME GmbH), 200 nM of each primer,
0.4 mg/ml BSA, 5% DMSO, and 20 ng of total fecal genomic DNA. PCR was
carried out under the following conditions: initial denaturation for 3 min at 94 °C,
followed by 25 cycles of denaturation for 45 s at 94 °C, annealing for 60 s at 52 °C,
and elongation for 90 s at 72 °C, and a final elongation step for 10 min at 72 °C.
Duplicates were combined, purified with the NucleoSpin Gel and PCR Clean-up kit
(Macherey-Nagel), and quantified using the Quant-iT PicoGreen dsDNA kit
(Invitrogen). Purified PCR products were diluted to 10 ng/μL and pooled in equal
amounts. The pooled amplicons were purified again using Ampure magnetic
purification beads (Agencourt) to remove short amplification products. Amplicons

were sequenced on a Illumina MiSeq, 150 cycles paied-end using SBS reagents v2.
For MiSeq.

Illumina reads were merged using PEAR and quality filtered by removing all
reads that had at least one base with a q-score lower than 2063. Quality filtered
reads were analyzed with the software package QIIME (version 1.9.1)64. Sequences
were clustered into OTUs at a 97% identity threshold using an open-reference
OTU picking approach with UCLUST65 against the Greengenes reference database,
13_8 release66. Representative sequences for the OTUs were Greengenes reference
was taxonomically assigned using the Greengenes taxonomy and the Ribosomal
Database Project Classifier67. Representative OTUs were aligned using PyNAST68

and used to build a phylogenetic tree with FastTree69, which was used to calculate
α- and β-diversity of samples using Phylogenetic Diversity70 and UniFrac71.
Chimeric sequences were identified with ChimeraSlayer72 and excluded from all
downstream analyses. Similarly, OTUs that could not be aligned with PyNAST,
singletons and low abundant OTUs with a relative abundance < 0.002% were also
excluded. We obtained an average of 61,997 ± 17,134 sequences/sample (mean ±
SD; range 16,663–144,133 sequences/sample); a total of 23,310,906 sequences and
1465 OTUs were included in the analyses. A rarified counts matrix has been used
for this study.

Autoantibody profiling. Autoantibody profiling was conducted by measuring
subject IgG reactivity toward a selected set of 335 protein fragments produced
within the Human Protein Atlas project19,20. In short, the protein fragments were
coupled to color coded magnetic spheres (MagPlex, Luminex Corp), and the
presence of self-reactive IgG in the subjects’ sera was detected by a fluorescent anti-
human IgG. Fluorescent data were transformed in relation to sample specific
baselines into 17 different reactivity scores, which were used to map similarities
between individuals as well as distances between the four visits.

Cell analyses by mass cytometry. Cryopreserved PBMCs obtained by ficoll
density gradient centrifugation from heparinised blood samples of Swedish indi-
viduals aged 50–65 (were thawed using RPMI medium (HyClone®) supplemented
with fetal bovine serum (FBS), penicillin-streptomycin and benzonase (Sigma-
Aldrich, St. Louis, MO, USA) and rested overnight at 37 °C in 5% CO2 for cells to
be revitalized. Cells were then counted and checked for their viability. For live-dead
discrimination, cells were stained with 2.5 μM Cisplatin (Fluidigm, South San
Francisco, CA, USA) in RPMI without FBS for 5 min at room temperature, fol-
lowed by quenching with RPMI containing FBS. Cells were then resuspended in
CyFACS buffer (PBS with 0.1% BSA, 0.05% sodium azide and 2 mM EDTA) and
transferred to a 96-well ‘U’ bottom plate. For surface marker staining using
automation (Agilent Technologies, Santa Clara, CA, USA), cells were incubated for
30 min at 4 °C with a 30ul cocktail of metal conjugated antibodies targeting the
surface antigens, washed with CyFACS buffer and fixed with 4% formaldehyde
overnight, following which cells were stained with DNA intercalator (0.125 μM
MaxPar® Intercalator-Ir, Fluidigm Inc.). Cells were subsequently washed with
CyFACS buffer, PBS and milliQ water, filtered through a 35 µm nylon mesh,
diluted to 500,000 cells/ml and acquired at a rate of 300–500 cells/s using a
CyTOF2 (Fluidigm) mass cytometer, CyTOF software version 6.0.626 with noise
reduction, a lower convolution threshold of 200, event length limits of 10–150
pushes, a sigma value of 3, and flow rate of 0.045 mL/min. A total of 78,891,056
cells were analyzed across all samples and known marker combinations were used
to define 115 canonical immune cell populations across all immune cell lineages
and covering multiple activation and differentiation states within these lineages.
The 53 most widely abundant and robustly detected cell populations were included
in the further analyses.

Mass cytometry antibodies and reagents. Purified antibodies were obtained in
carrier/protein-free buffer and then coupled to lanthanide metals using the MaxPar
X8 antibody conjugation kit (Fluidigm Inc.) as per the manufacturer’s recom-
mendations. Metal conjugated antibodies were also purchased from Fluidigm. The
antibodies used for this study are listed in Lakshmikanth et al.54.

Statistical analysis. Before multivariate modeling, data were log transformed and
scaled. For microbiota data, we used centered log ratio as a log transformation
method that addresses compositionality in microbial data73. PCA has been applied
as an unsupervised multivariate modeling method for dimension reduction and to
get an overview of the clustering trends of samples with similar data profiles. Most
data analysis was performed using the R project for statistical computation74.
Mixed-effect modeling was performed using the lme4 package75 and
Kenward–Roger approximation76 was used to calculate p values which were sub-
sequently adjusted for multiple testing based on false discovery rate using Benja-
mini and Hochberg method. p values were considered significant if <0.05. For
transcriptomic data, X and Y chromosome genes have been removed from the
analysis. To evaluate the dispersion pattern of values per analyte across the whole
cohort and within each subject, we used IQR to describe this variation. Analytes
were first standardized with a standard deviation of 1 centered at 0 before applying
IQR function from the R stats package. To account baseline variability, Z-scores
were calculated for each analyte after log2-transformation. For Z-scores, highly
varying features were defined as Z-score > 2 for each analyte. The highly varying
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proportion across datasets was calculated by normalizing the number of features
with Z-score > 2 from each assay to the total number of analytes profiled with the
corresponding assay. The percentage of varying features across assays in each
participant was then normalized to 100%. The coefficient of variation, defined as
the ratio of the standard deviationto the mean normalized to 100%, was also used
to evaluate the dispersion of the feature levels. Ontology and enrichment analysis of
mixed-effect modeling results was performed using the Enrichr package77. Path-
ways with adjusted p values (Benjamini and Hochberg method) of <0.05 were
considered to be significant. UMAP analysis was performed using the umap
package24. Euclidean distances between visits were calculated using the base R
function dist. Aitchison distances were calculated using the R package robCom-
positions. Bray–Curtis distances were calculated using the R package. ICC was used
as the proportion of total variation explained by subject in the cohort to assess the
stability overtime. The ICC R package28 has been used to compute the ICC. The
correlation analysis was performed using the cor function in R, after sex correction
using the sva R package78. Correlations with adjusted p values (Benjamini and
Hochberg method) of <0.05 were considered to be significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary statistics data are available in the supplementary material and the full inter-
omic correlation network dataset is available at: https://www.proteinatlas.org/download/
scapis_wellness_correlation_network_all_data.txt.gz. The participant-level datasets used
for this report have been deposited with the Swedish National Data Service (https://snd.
gu.se/, a data repository certified by Core Trust Seal) https://doi.org/10.5878/rdys-mz27.
Due to patient consent and confidentiality agreements, the datasets can be made available
for validation purposes by contacting snd@snd.gu.se. Data access will be evaluated
according to Swedish legislation. Data access for research related questions in the S3WP
program can be made available by contacting the corresponding author.

Code availability
The code can be made available upon request from the corresponding author.
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