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Low Dose Coagulant and Local Soil Ballast Effectively Remove
Cyanobacteria (Microcystis) from Tropical Lake Water without
Cell Damage

Somjate Thongdam 1, Anthony C. Kuster 1 , Brian J. Huser 2 and Anootnara T. Kuster 1,*

����������
�������

Citation: Thongdam, S.; Kuster, A.C.;

Huser, B.J.; Kuster, A.T. Low Dose

Coagulant and Local Soil Ballast

Effectively Remove Cyanobacteria

(Microcystis) from Tropical Lake Water

without Cell Damage. Water 2021, 13,

111. https://doi.org/10.3390/

w13020111

Received: 17 December 2020

Accepted: 31 December 2020

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Public Health, Khon Kaen University, Khon Kaen 40002, Thailand; somjate.th@kkumail.com (S.T.);
akuster@kku.ac.th (A.C.K.)

2 Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences,
75007 Uppsala, Sweden; brian.huser@slu.se

* Correspondence: anootta@kku.ac.th

Abstract: The combination of a low dose of coagulant with a ballast, also known as “flock and
sink,” has been proposed as a lake restoration and cyanobacteria bloom management strategy.
The effectiveness of this technique using aluminum sulfate (alum) as a coagulant and a local soil (LS)
from Thailand as a ballast in eutrophic water dominated by positively buoyant Microcystis colonies
collected from a tropical lake was investigated by measuring changes in chlorophyll-a (chl-a), pH,
and zeta potential. Cell integrity was also evaluated using scanning electron microscopy. Results
showed that alum alone could reduce chl-a (up to 60% to 83%) at doses (higher than 3 to 6 mg Al/L)
dependent on the initial pH (7.6 to 8.2) and initial chl-a concentration (138 to 615 µg/L) of the lake
water but resulted in morphological changes to cellular structure and generally required a dose that
reduced pH to <7. LS ballast alone was able to reduce chl-a concentrations (up to 26% at highest dose
of 400 mg/L) and caused no significant changes to pH or zeta potential. Combining a low dose of
alum (2 mg Al/L) with some amount of LS ballast (50 to 400 mg/L) created an interaction effect that
resulted in 81 to 88% reduction in chl-a without changes to zeta potential or morphological changes to
cellular structure. Flock and sink may serve a niche role in lake restoration when positively buoyant
cyanobacteria are present in the water column during time of treatment. This research showed that
an 800% increase in ballast dose resulted in about an 8% reduction in chl-a when combined with 2 mg
Al/L of alum. Therefore, it is recommended that ballast dose should be determined by considering
its phosphorus sorption capacity and the potentially releasable phosphorus in the lake sediment in
order to realize long-term reductions in sediment nutrient release.

Keywords: alum; eutrophication; flock and sink; lake restoration; scanning electron microscope

1. Introduction

Eutrophication is a global threat to the water quality of inland freshwater lakes [1].
Eutrophication is driven by nutrient loading to lakes and is greatly accelerated by an-
thropological activities of intensified agriculture and urban development, which result
in soil erosion, stormwater runoff, and agricultural runoff [2,3]. Climate change is exac-
erbating these effects [4–7]. Cyanobacteria blooms, which are a symptom of enhanced
eutrophication, have also proliferated globally [8].

Cyanobacteria blooms have several detrimental effects on the limnological ecosystem,
local economy, and human health. Cyanobacteria blooms limit light, which inhibits the
growth of macrophytes [9]; they cause anoxia after death and mineralization, which dis-
rupts fisheries and results in fish kills [10]; they decrease property values around the af-
fected lake [11]. Many cyanobacteria species produce intra- and extracellular toxins [12,13],
and cyanobacteria blooms or their toxins have been associated with many human health
disorders [14,15]. Reduction of phosphorus (P) loading is recognized as a key strategy
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to long-term mitigation of eutrophication and resulting cyanobacteria blooms [16–19].
However, delayed response, economic or political infeasibility, or ineffectiveness of exter-
nal P reduction to improve water quality often necessitates in-lake measures [20–22].

Common in-lake measures effective at mitigating cyanobacteria blooms [22] include
P inactivation agents [23,24], algicides [25], and dredging [26]. However, the need to
minimize cost and reduce health risk from cyanobacteria cell lysis or metals has driven
the development of a strategy known as “flock and sink” [10,27,28]. In this strategy, a low
dose of coagulant is applied to flocculate positively-buoyant cyanobacteria to the water
surface, which is then followed by application of a ballast material to sink the flocculated
cyanobacteria [29,30].

Several studies have shown that a low dose of coagulant (typically aluminum sulfate
or polyaluminum chloride) followed by a ballast effectively removed cyanobacteria from
the water column and resulted in long-term improvements to lake water quality [27,31–33].
The ballast can be a P inactivating agent, such as lanthanum modified clay, in which case it is
referred to as “flock and lock,” or a natural soil or modified clay, in which case it is referred
to as “flock and sink” [34]. The nature of the ballast is of little importance relative to its
ability to sink [30]. Thus, readily available ballasts include local soils (LSs). The advantages
of a LS is that it is accessible, has low transport and production costs, and likely does
not induce cell lysis [35,36]. However, these results should be confirmed, because it has
been shown that some compounds may cause cell lysis [29,37] and LSs vary regionally,
requiring testing and confirmation before application [34]. Furthermore, the mechanisms
involved in flock and sink, such as charge neutralization, bridging, enmeshment, sweeping,
and adsorption should be explored and discussed further [34,38,39].

Therefore, the purpose of this study was to provide insight into the mechanisms
involved in the “flock and sink” approach to cyanobacterial bloom management and
provide guidance on how to use LSs as a ballast for the first time in Thailand. To those ends,
the objectives of this study were to determine the removal effectiveness, as measured by
changes in chlorophyll-a, of a LS used as a ballast in conjunction with a low dose coagulant
and to assess morphological changes to the cyanobacteria cellular walls under various
experimental conditions.

2. Materials and Methods
2.1. Study Area and Water Sampling

Beung Nong Khot Lake (16◦25′50” N, 102◦47′55” E) is located in Khon Kaen Province,
Thailand. The lake has an area of 1.05 km2 (105 hectares) and an average depth of 4.9 m
(maximum 10.5 m). The watershed is approximately 10 km2, primarily consisting of
peri-urban and agricultural land within a tropical savanna climate (Köppen climate classi-
fication Aw). Rapid urban development has occurred around the lake from 2005 to 2020,
resulting in increased nutrient loading and substantial disruption of the natural filter-
ing capacity of the watershed. Resultingly, Beung Nong Khot has regularly experienced
cyanobacterial blooms, typically dominated by Microcystis and Cylindrospermopsis genera.
Occasional sampling over the two years prior to this investigation indicated the lake is hy-
pereutrophic with total P concentrations generally greater than 0.1 mg/L and chlorophyll-a
concentrations generally between 100–800 µg/L.

Our study used cyanobacteria collected from lake water already in colonial form,
because laboratory-derived Microcystis can differ morphologically from those found in the
field [40]. For use in the experiments, four water samples (30–50 L) were collected during
bloom events between May and August 2020, immediately before each experimental round.
The littoral zone of Beung Nong Khot Lake was sampled from the shoreline. The lake water
samples were collected by grab sampling the top 50 cm of the water column, then placed
into polyethylene bottles, transported approximately 4 h in coolers to the laboratory,
homogenized, and used immediately in experiments.
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2.2. Coagulant and Ballast

As coagulant, we used aluminum sulfate (Al2(SO4)3·18H2O, alum) obtained from a
water supply retailer, commonly used by the Provincial Waterworks Authority (PWA) for
drinking water treatment. For ballast, a sandy loam LS was obtained from Ubon Ratchatani
province (15◦7′21” N, 104◦55′29” E). Prior to the experiments, the LS was washed with
deionized water, dried at 110 ◦C for 48 h, ground, and sieved through 180 mesh (<90 µm).

2.3. Experimental Procedures

The experiment consisted of four experimental stages (Figure 1). Stage 1 assessed
the effect of coagulant dose on flocculation and cell integrity of cyanobacteria. Stage 2
assessed how the concentration of cyanobacteria biomass modulated this relationship.
Stage 3 assessed the effect of ballast dosage on cyanobacteria removal efficiency from the
water column, as well as cell integrity. Stage 4 assessed the effect of ballast dosage on
cyanobacteria removal following a fixed dosage of coagulant optimized to flocculate the
cyanobacteria. All experiments used methods consistent with previous flock and sink
studies [28,41].
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Figure 1. Diagram of experimental stages. In Stage 1, alum doses ranging from 0 to 16 mg Al/L were applied to eutrophic
lake water; in Stage 2, the chlorophyll-a concentration was modulated by dilution and alum was dosed from 0 to 6 mg Al/L;
in Stage 3, LS ballast was applied at doses from 0 to 400 mg/L; in Stage 4, the combination of low dose of alum (2 mg Al/L)
and LS ballast was compared to ballast alone with doses of LS ballast from 0 to 400 mg/L.

For stage 1, several alum doses were tested on a single chlorophyll-a concentration.
Homogenized aliquots of 250 mL of the lake water were placed into plastic graduated
cylinders (31.5 cm height). The coagulant was prepared by dissolving alum pellets in
deionized water to obtain a solution of 125 mg Al/L solution. The appropriate volume of
coagulant solution was then added to 250 mL aliquots to obtain the desired aluminum (Al)
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concentrations (0, 2, 4, 6, 8, 10, and 16 mg Al/L). The doses were applied to the suspensions,
mixed for 10 seconds using a glass rod, and placed in the laboratory at 25 ◦C under stagnant
conditions. After one hour, water samples (~40 mL) were taken from the top and bottom of
the cylinders. Each test was performed in triplicate.

For Stage 2, several low doses of alum were tested on four different chlorophyll-a
concentrations. Chlorophyll-a concentration was modulated by dilution with filtered
lake water to create dilutions approximating 3/4, 1/2, and 1/4 of the initial concentra-
tion, along with the undiluted lake water. Aliquots (250 mL) of each suspension were
added to 250 mL plastic graduated cylinders (31.5 cm height). Low doses of the coagu-
lant (0, 0.5, 1, 1.5, 2, 3, 4, and 6 mg Al/L) were then applied to the suspensions, mixed for
10 s using a glass rod, and placed in the laboratory at 25 ◦C under stagnant conditions.
After one hour, water samples (~40 mL) were taken from the top of the cylinders. Each test
was performed in duplicate.

For stage 3, we varied the ballast dosage and computed percentage of cyanobacteria
removed (measured as chlorophyll-a) from the top of the water column with a fixed
initial chlorophyll-a concentration. The different concentrations of ballast (0, 50, 100, 200,
and 400 mg/L) were added by making a slurry using the water from the targeted cylinder,
adding it back to the surface of the cylinders, and gently mixing with a glass rod [30].
The cylinders remained in the laboratory at 25 ◦C under stagnant conditions. After one
hour, water samples (~40 mL) were taken from the top and bottom of the cylinders.
Each test was performed in triplicate.

For stage 4, ballast combined with a low dose of coagulant was tested for its effect on
the percentage of cyanobacteria (measured as chlorophyll-a concentration) removed from
the top of the water column. A fixed dose of 2 mg Al/L was chosen based on preliminary
jar tests with the experimental lake water. The different concentrations of ballast (0, 50, 100,
200, and 400 mg/L) were added to the water surface in the tubes and gently mixing with
a glass rod. An untreated control, an Al-only control, and ballast-only controls were also
tested in order to isolate contributions of each factor to the combined effect. In combination
treatments, alum was added immediately after addition of the ballasts and the tubes
were mixed using a glass rod [30]. Following treatment, the cylinders were placed in the
laboratory at 25 ◦C under stagnant conditions. After one hour, water samples (~40 mL)
were taken from the top and bottom of the cylinders. Each series was run in triplicate.

2.4. Sample Processing and Laboratory Analysis

Lake water samples were analyzed for chlorophyll-a using spectrophotometry (Stan-
dard Method 10200-H), and cell counts were conducted using a hemocytometer with
compound microscope to identify predominant species. The processed LS was assessed for
Langmuir specific surface area (SSA), total pore volume, and average pore radius using the
Brunauer-Emmett-Teller (BET) adsorption/desorption method using nitrogen (N2) at 77 K
with a relative pressure range (P/Po) from 0 to 1 (QUADRASORB evo Gas Sorption Surface
Area and Pore Size Analyzer, Anton Paar, Graz, Austria). Particle size distribution was
determined by measuring diameters of particles that were randomly selected from images
generated by scanning electron microscopy (SEM) (JEOL JSM-6010LA, Tokyo, Japan).

From the ~40 mL experimental sample, 5 mL was analyzed for zeta potential (Malvern
Zetasizer nano, Malvern, UK); 5 mL were used to extract cells which were fixed with
osmium tetroxide 1% aqueous solution, sputter-coated with gold, and imaged using
SEM to identify morphological changes indicative of compromised cell integrity or cell
lysis; and the remaining 30 mL were analyzed for chlorophyll-a using spectrophotometry.
pH was measured directly in the sample cylinder after the samples were taken. Zeta po-
tential measures the electrical potential near the particle surface, which is important to
understanding the effect of coagulants on charge neutralization. pH was measured since it
is important to determining the ionic speciation of alum solution.
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2.5. Statistical Analysis

A one-way MANOVA was run to examine whether LS dose (factor) was associated
with any significant changes in pH or overall zeta potential (two dependent variables)
from samples collected in Stage 3. Three two-way ANOVAs were run to examine the effect
of LS dose and its combined application with coagulant (two factors) on three outcomes
(one outcome per ANOVA), namely top chlorophyll-a concentration, overall zeta potential,
and pH, from samples collected during Stage 4. A significance level (α) of 0.01 was chosen
to minimize the probability of Type I error.

3. Results
3.1. Characterization of Lake Water and Ballast

Analysis of the raw lake water showed that the experimental stages (Table 1) used
water that was consistently hypereutrophic (Carlson Trophic State Index = 84–93) [42].
The dominant genus of cyanobacteria was Microcystis, accounting for greater than 99% of
cyanobacterial population based on cell counts. Two species were identified as Microcystis
aeruginosa (Kütz.) Kützing and Cylindrospermopsis raciborskii (Wolosz.) Seenayya & Subba
Raju [43], alternatively named Raphidiopsis raciborskii (Wolosz.) Aguilera et al. [44]. No other
organisms were present in quantities substantial enough to be identified.

Table 1. Initial chlorophyll-a concentrations and cell counts for four experimental stages.

Experimental
Stage

Water Sampling
Date

Mean Chlorophyll-a (Standard
Deviation) in µg/L (n = 3)

Cell Count (Percentage of Total) in Cells/mL
by Genus

Microcystis Cylindrospermopsis
Stage 1 May 2020 403 (26.7) 2.62 × 106 (99.7%) 9.16 × 104 (0.3%)
Stage 2 June 2020 615 (14.2) 4.21 × 106 (99.9%) 8.33 × 102 (0.1%)
Stage 3 July 2020 243 (5.4) 2.66 × 106 (99.9%) 3.33 × 103 (0.1%)
Stage 4 August 2020 485 (21.5) 2.92 × 106 (99.8%) 5.83 × 103 (0.2%)

The LS ballast had a light brown color after processing (Figure 2). Little evidence
of micropores could be observed on the surface of the particles in SEM images. Adsorp-
tion/desorption isotherms (Supplementary Material Figure S1) indicated that adsorp-
tion was occurring at the highest relative pressure, which is associated with macropores,
and that few micropores were present. SEM images and particle size distribution showed
well-graded particles distributed over a narrow band of diameters (7.5 to 35 µm) with a
60th percentile particle size diameter (D60) of 22 µm and coefficient of uniformity (Cu) of
2.9 (Supplementary Material Table S1).
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3.2. Effect of Coagulant Dose on Microcystis Floc Buoyancy and Cell Structure

By dosing the Microcystis dominated lake water with increasingly higher doses of alum,
it was observed that at a relatively low dose of 2 mg Al/L the cyanobacteria flocculated at
the surface, demonstrating their positive buoyancy. With 2 mg Al/L of alum, the mean
concentration of chlorophyll-a in the top of the experimental cylinders increased by 16%,
going from 1488 µg/L in the untreated control to 1720 µg/L (Table 2). At this low dose
of coagulant, pH remained above neutral (7.34) and the weighted average of the zeta
potential was −9.72, which was higher than that of the control (−9.96). However, as the
lake water was treated with higher concentrations of alum, algal flocs formed and settled
to the bottom of the cylinders removing 86% to 99% of cyanobacteria from the top of the
cylinders, increasing according to Al dose. The pH declined below neutral at alum doses
higher than 4 mg Al/L (Table 2).

Table 2. pH, chlorophyll-a (micrograms per liter), and zeta potential (mV) in the samples collected from the top and bottom
of the experimental units following dosing with coagulant (aluminum sulfate, alum, in mg Al/L) only. The mean (n = 3)
and standard deviation (SD) of the initial chlorophyll-a concentration and pH of the lake water were 403 (26) µg/L and
8.32 (0.05), respectively. The mean (n = 3) and SD (in parentheses) for the parameters measured from experimentation are
reported below. The weighted average zeta potential was computed using chlorophyll-a for weighting.

Alum Dose
(mg Al/L)

pH
Chlorophyll-a (µg/L) Zeta Potential (mV)

Top Bottom % Change
in Top 1 Top Bottom Weighted

Average

0 8.32 (0.05) 1488 (81) 117 (5.6) n/a −10.07 (1.3) −8.59 (0.9) −9.96
2 7.34 (0.04) 1720 (88) 140 (18.8) 16% −9.85 (2.1) −8.03 (1.2) −9.72
4 6.97 (0.01) 214 (26) 1186 (21.4) −86% −9.08 (1.4) −8.94 (1.3) −8.96
6 6.72 (0.01) 110 (16) 1950 (42.1) −93% −8.16 (0.5) −7.04 (1.0) −7.10
8 6.49 (0.03) 73 (11) 2023 (52.1) −95% −8.82 (0.9 −5.29 (2.7) −5.41
10 6.30 (0.01) 22 (4) 2143 (84.4) −99% −7.92 (0.9) −4.96 (0.9) −4.99
16 5.23 (0.23) 10 (3) 2214 (86.6) −99% −1.86 (0.8) 0.71 (0.2) 0.70

Note: 1 = percentage change computed relative to control (alum dose = 0).

Increasing the dose of alum resulted in less negative (i.e., increased) zeta potentials and
even resulted in positive values (mean of +0.7 mV) at the highest dose of alum (16 mg Al/L).
The changes in pH and zeta potential corresponded with morphological changes to the
cellular surfaces of cyanobacteria observed in SEM images (Figure 3). The shape of the
cyanobacterial cell surfaces was well rounded in the control, but at a dose of 16 mg Al/L,
the cells were substantially misshapen. These morphological changes are indicative of cell
lysis and release of cyanotoxins [45].

Overall, the positively buoyant Microcystis colonies flocculated and floated at the
surface, increasing concentrations of chlorophyll-a in the top samples, below some Al
concentration threshold. Above that threshold, however, the Microcystis primarily sank to
the bottom. It was hypothesized that the threshold above which algal floc settling occurred
was a function of the cyanobacteria biomass, as indicated by the initial concentration of
chlorophyll-a in the lake water. Therefore, in Stage 2 the initial concentration of cyanobac-
teria was varied and dosed with lower doses of coagulant with finer dose differentiation.

3.3. Effect of Initial Cyanobacteria Concentration on Flocculation

In the undiluted eutrophic lake water (initial mean chlorophyll-a concentration
615 µg/L), adding higher doses of alum caused positively buoyant Microcystis to floc-
culate at the top of the water column, as observed by the increasing concentrations of
chlorophyll-a in the top of the cylinders (Figure 4). This trend continued until a maxi-
mum, which was observed at 4 mg Al/L (pH 7.17) in the undiluted lake water. At doses
higher than that maximum, algae settled to the bottom. The pH was >7 for alum doses
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≤ 4 mg Al/L in the undiluted water, while pH was 6.68 when dosed with 6 mg Al/L
(Supplemental Material Table S2).

When Al doses were applied to cylinders with lower initial concentrations of
chlorophyll-a, the threshold between floating and sinking could be seen to vary with
cyanobacteria concentration (Figure 4). For example, in the half-diluted lake water (initial
chlorophyll-a concentration 291 µg/L), the threshold occurred at 2 mg Al/L (pH 7.31).
Notably, the pH in all experiments in which the cyanobacteria floc remained positively
buoyant (top chlorophyll-a concentration greater than undosed control) was >7, while the
pH in all experiments in which the floc sank was <7 (Supplemental Material Table S2).
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Figure 4. Mean (n = 2) chlorophyll-a concentration (in micrograms per liter) in sample collected
from top of experimental unit following treatment of varying doses of coagulant (aluminum sulfate,
in mg Al/L) at five different initial concentrations of cyanobacteria. Three of the chlorophyll-a
concentrations (451 µg/L, 291 µg/L and 138 µg/L) were created by diluting the raw sample collected
for Stage 2 (615 µg/L), while the fifth concentration (403 µg/L) is the data from the raw sample for
Stage 1.
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3.4. Effect of LS Ballast on Microcystsis

Eutrophic lake water with an initial chlorophyll-a concentration of 243 µg/L (Stage 3)
was dosed with four different concentrations of LS ballast (50 mg/L, 100 mg/L, 200 mg/L,
400 mg/L) and compared to a control. The results of the one-way MANOVA showed that
there were no statistically significant differences in pH and overall weighted zeta potential
among the LS doses (F4,5 = 0.90, p = 0.55) (Table 3). The addition of the LS ballast caused
some of the Microcystis to settle to the bottom, with 50 mg/L reducing the top chlorophyll-a
concentration by 1% and the highest LS dose of 400 mg/L reducing the top chlorophyll-a
concentration by 21%. The addition of LS ballast caused little noticeable morphological
changes to the cyanobacteria cell surface (Figure 5).

Table 3. pH, chlorophyll-a (micrograms per liter), and zeta potential (mV) in the samples collected from the top and bottom
of the experimental units following treatment with LS ballast (in mg/L) only. The mean (n = 3) and standard deviation (SD)
of the initial chlorophyll-a concentration and pH of the lake water were 243 (5.4) µg/L and 8.54 (0.04), respectively. The mean
(n = 3) and SD (in parentheses) of the parameters measured from experimentation are reported below. The weighted average
zeta potential was computed using chlorophyll-a for weighting.

LS Dose (mg/L) pH
Chlorophyll-a (µg/L) Zeta Potential (mV)

Top Bottom % Change
in Top 1 Top Bottom Weighted

Average

0 8.54 (0.04) 769 (30) 114 (0) −10.4 (1.0) −10.6 (1.8) −10.4
50 8.59 (0.01) 765 (30) 139 (21) −1% −11.4 (1.7) −10.3 (1.0) −11.2

100 8.61 (0.00) 748 (17) 173 (10) −3% −12.6 (1.3) −10.5 (0.6) −12.2
200 8.6 (0.02) 654 (10) 222 (21) −15% −11.7 (1.2) −10.2 (1.5) −11.3
400 8.54 (0.06) 611 (51) 279 (2) −21% −12.3 (0.8) −10.4 (1.3) −11.7

Note: 1 = percentage change computed relative to control (alum dose = 0).

3.5. Removal Efficacy of LS Ballast Combined with Low-Dose Coagulant

Eutrophic lake water with an initial chlorophyll-a concentration of 485 µg/L (Stage 4)
was dosed with a combination of a fixed dose of coagulant (2 mg Al/L, based on pre-
liminary jar tests) and four different combinations of LS ballast (50 mg/L, 100 mg/L,
200 mg/L, 400 mg/L), with a comparison arm that did not receive any coagulant. Similar
to Stage 1 and 2 findings, the addition of 2 mg Al/L of alum caused the top chlorophyll-a
to increase 46% (Figure 6, Supplementary Material Table S3). Similar to Stage 3 findings,
the addition of LS ballast alone caused some reduction in top chlorophyll-a compared
to the control (1 to 26%). However, when the low-dose coagulant and LS ballast were
combined, Microcystis flock was formed and sedimented, resulting in effective removal
(81% to 88%), with removal efficacy increasing with higher LS dose. The combination of
alum (2 mg/L) and LS caused the pH to decrease slightly and no changes to zeta potential
(Supplementary Material Table S3), which was also consistent with findings in the previous
stages. No morphological changes were observed in SEM images (Figure 7).

The two-way ANOVA assessing top chlorophyll-a showed highly significant effects
associated with LS dose (F4,18 = 7954; p < 0.0001) and the presence of the low-dose of
coagulant (F1,18 = 18199; p < 0.0001), as well as a significant LS dose x coagulant interaction
effect (F4,18 = 5752; p < 0.0001). The two-way ANOVA assessing pH showed a statistically
significant effect from the presence of the low-dose coagulant only (F1,18 = 421, p < 0.0001)
but non-significant effects from LS dose (F4,18 = 3.8; p = 0.02) and LS dose x coagulant
interaction (F4,18 = 3.1; p = 0.04). However, the two-way ANOVA assessing the overall
zeta potential showed no effect from LS dose (F4,18 = 1.6; p = 0.21), coagulant (F1,18 = 0.36;
p = 0.56), or interaction (F4,18 = 0.91; p = 0.48).

In summary, LS dose was significantly associated with reduction in top chlorophyll-a
but not changes in pH or zeta potential; the presence of a low dose of alum was significantly
associated with reductions in top chlorophyll-a and pH but not changes in zeta potential.
There was a significant interaction effect between LS dose and coagulant on top chlorophyll-
a concentration.
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Figure 6. Mean (n = 3) chlorophyll-a concentrations (in micrograms per liter) in the top 40 mL (light gray bars, positive
scale) and bottom 40 mL (dark gray bars, negative scale) sampled from 250-mL cyanobacteria suspensions (mean initial
chlorophyll-a concentration = 485 µg/L) and left stagnant for 1h following treatment. Treatment indicated in x-axis label as
control (no treatment), Alum (application of 2 mg Al/L of alum), LS (dose of local soil with concentration noted), and Alum
+ LS (2 mg Al/L of alum combined with local soil at concentration noted). Each dose of LS combined with alum (indicated
using diagonal stripe pattern) was compared against equivalent LS dose without alum (indicated using solid pattern).
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4. Discussion

In this study, we observed colonies of positively buoyant cyanobacterium Microcystis
aeruginosa accumulating at the surface of the water column in the presence of a low dose of
coagulant, aluminum sulfate, in which the pH remained above 7. We also observed these
colonies sediment to the bottom at higher coagulant doses with visible deformation in the
cell morphology. The addition of a local soil ballast in isolation removed some cyanobacteria
from the water column; however, the combination of a low dose of coagulant plus a
ballast was effective at removing Microcystis from the water column and demonstrated an
interaction effect from LS dose and presence of alum.

The addition of unbuffered alum to water changed the pH. The addition of LS bal-
last did not cause changes to pH or zeta potential. By combining alum with LS bal-
last, the changes to pH, zeta potential, and cell structure were minimized or prevented,
while chlorophyll-a in the water column was reduced by more than 80%. These results
were consistent with previous studies that showed the combination of a low dose of
coagulant plus ballast could effectively sink positively buoyant Microcystis in fresh wa-
ters [27–30,32,35,36]. This study adds to this body of knowledge by imaging changes in
cell morphology and discussing the underlying mechanisms involved in flock and sink.

4.1. Mechanisms of Flock and Sink Technique for Microcystis

Cyanobacteria have developed a number of adaptations that allow them to dominate
aquatic systems, including the ability to regulate buoyancy using gas vesicles and high
tolerance for light intensity, which has greatly improved their ability to access the near
surface layer of lakes in order to photosynthesize [9,46]. In general, buoyancy can be
regulated by three mechanisms: gas vesicle production [47], collapsing the vesicles under
turgor (intracellular) pressure [48], or increasing cell density through accumulation of
carbohydrates, which act as intracellular ballast [49]. Different genera of cyanobacteria
experience loss in buoyancy by exploiting at least one of these three mechanisms [46,48].
Relative to other cyanobacteria genera, Microcystis has a relatively narrow range of density
(985–1005 g/L) and the ability to form larger colonies up to 120–3200 µm [46].

For the Microcystis genus, colony formation is an important adaptation to facilitate
buoyancy regulation despite the narrow density range, allowing it to propagate across the
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world [50]. Microcystis species are unicellular but excrete a mucilaginous sheath consisting
primarily of polysaccharides [46]. These extracellular polysaccharides, which adhere to
the cellular membranes, bind cells together in colonies [51,52]. Environmental factors,
including predation [53–55], changes in temperature and light [40,56], and metals [57,58]
can trigger colony formation. Without these triggers, it is possible for Microcystis to
remain unicellular, especially in laboratory settings [59,60]. The colonies can even create
microenvironments that alter pH and oversaturate the water with oxygen, which can
promote additional buoyancy [61] and provide some protection [62].

Given these advantages and characteristics that facilitate strong positive buoyancy of
Microcystis colonies, what mechanisms contributed to the sedimentation of the cyanobac-
teria under combined dosage of coagulant and ballast? In conventional flocculation with
colloidal particles, charge neutralization is the key [63]. However, colonial Microcystis
had already formed into large flocks and sedimentation occurred in this study without
substantial changes to the zeta potential, similar to previous studies [30]. A key observation
in this study was that Microcystis sank at pH less than 7 when only coagulant was added.
In the pH range of 5–7, Al speciation generally shifts to cationic forms of Al, which can re-
duce electrostatic repulsion [64]. Thus, charge neutralization becomes a key sedimentation
mechanism in this pH range. In fact, a low dose of Al has been shown to effectively remove
Microcystis as long as the pH is between 5 and 7 [65]. In this study, the high alkalinity
and pH of the water prior to treatment meant that a low dose of Al was not enough to
reduce pH below 7 and amorphous hydroxide precipitates were likely predominantly
formed [64,65]. Tropical lake water with a high pH has been shown to play an important
role in the behavior of coagulants [29,36].

Sweeping has been proposed in previous studies as a possible mechanism contributing
to sedimentation of flocculated cyanobacteria [30]; however, results from this study suggest
that bridging was the dominant mechanism. The addition of a coagulating metal salt to
a colloidal LS solution has been shown to increase the electro-static interaction, bridging,
and enmeshment, which enhanced the effective collision between algal cells and clay
particles [38].

Changes in the inherent buoyancy regulation mechanisms of the cells were unlikely
to contribute to the observed phenomenon, since those changes take place on the order
of hours to days to weeks [46]. Colony formation as a result of exposure to coagulant,
on the other hand, has been shown to occur within 5 min [66]. Cell lysis was also likely
not the cause of sedimentation. When compared to previous studies using SEM to analyze
morphological changes in Microcystis cellular structure associated with cell lysis, the images
from low-dose treatments in this study were consistent with images from cells that did not
undergo lysis [45,67]. Cell lysis has generally been shown not to occur at low coagulant
doses [27,68,69]. At alum doses of 10 or 16 mg Al/L, however, the integrity of cells was
damaged, exhibiting pocks, deformation, and rupturing, consistent with images of cells that
had torn membranes due to alum treatment [70]. In-lake use of aluminum-based coagulants
has also been shown to release toxic microcystins [71]. However, the conclusions inferred
from SEM imagery in this study should be further validated through measurement of
microcystins in the water, PSII efficiency of the cyanobacteria [29], or staining cells to
identify damage.

4.2. Considerations for Flock and Sink Applications in Fresh Waters

The use of flock and sink as a lake restoration technique has several advantages
and limitations that should be carefully considered before use [34]. First, the type of
cyanobacteria present must be considered. In this study, lake water was dominated by
the Microcystis genus, which form large colonies and have relatively neutral buoyancies.
Previous research has shown that flocculation and sedimentation behave differently among
cyanobacteria genera [29]. This study suggested that flock and sink techniques that use
aluminum-based coagulants and ballast may be applicable for colonial cyanobacteria
(e.g., Microcystis) genera, while previous research suggests it may also be applicable to fila-



Water 2021, 13, 111 12 of 16

mentous cyanobacteria (e.g., Cylindrospermopsis) [29,36]. The applicability of the technique
to genera of cyanobacteria that have not yet been studied is unknown.

While controlling non-point sources of nutrients and enhancing natural attenuation
processes in nutrient transport pathways must and be given attention [72], in-lake mea-
sures are becoming inevitable as a way to bide time until proper external nutrient control
measures take effect and to bring about more rapid changes to lake water quality [22,73].
Flock and sink serves as a bloom management technique, similar to algicides. However,
one key advantage of properly administered flock and sink is that cellular damage is not
caused, as demonstrated in this study. On the other hand, algicides can cause the release
of toxins [25,74]. Once sedimented to the lake sediment, cyanotoxin-degrading bacteria
and other mechanisms can break down the cyanotoxins [75,76]. However, the possibil-
ity that intracellular microcystins can be released from sedimented cyanobacteria must
be considered [77]. In addition, bioturbation or wind-driven resuspension needs to be
considered [78,79], since Microcystis cells themselves remain positively buoyant [80].

Flock and sink, as opposed to flock and lock, may only serve as a short-term mitigation
of bloom conditions. The flock and sink approach has been shown to only address P in
the water column [36]. For long-term lake restoration, internal P loading must also be
considered. Inadequately addressing internal P loading is cited as a common cause for
failed lake restoration [81–83]. Therefore, a ballast that has P binding capacity, such as in
flock and lock, is preferable for long-term water quality improvement [31]. Drinking water
treatment residuals (DWTR) have been shown to be excellent P sorbents and have been
used in lake restoration [84,85]. More research is needed to determine whether DWTR can
be effectively applied as a ballast in a flock and lock approach.

This study showed that the amount of ballast added did not substantially change the
amount of Microcystis sedimented. That is, a small dose of 50 mg/L removed 81% while
a high dose of 400 mg/L sedimented 88% of the chlorophyll-a. Therefore, it would be
preferable to base the amount of ballast added on its ability to inactivate P in sediment
and address internal P loading. The benefit of LS ballast is that if one is chosen that
has a relatively high P sorption capacity, it can inactivate P in the lake sediment without
affecting the pH, as demonstrated in this study. However, as variation in soils is substantial,
tests must be performed to verify the effect of the LS on pH and whether the LS has any P
sorption capacity, as determined through P adsorption experiments.

5. Conclusions

This research demonstrated that flock and sink using a local soil as a ballast and
a low dose of aluminum sulfate as a coagulant was an effective technique to remove
Microcystis from eutrophic tropical lake water without observable morphological changes
to the cyanobacteria colonies. The water pH was shown to be an important factor in
determining the flocculation and positive buoyancy of the Microcystis. The local soil was
shown not to affect the zeta potential of the cyanobacteria flock or the pH of the water.
Flock and sink can be an effective tool in lake restoration; however, lake alkalinity, pH,
ionic strength, amount of P inactivation needed for sediment P release control, and species
and population of phytoplankton should all be considered before application.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
441/13/2/111/s1, Figure S1: adsorption isotherms for local soil ballast derived from Brunauer-
Emmett-Teller (BET) adsorption/desorption method, Table S1: physical characteristics of local soil
ballast, Table S2: pH, chlorophyll-a (micrograms per liter), and zeta potential (mV) in the samples
collected from the top and bottom of the experimental units following treatment with only aluminum
sulfate (in mg Al/L) while varying initial concentrations of chlorophyll-a (Stage 2), Table S3: pH,
chlorophyll-a (micrograms per liter), and zeta potential (mV) in the samples collected from the top
and bottom of the experimental units following combined treatment of aluminum sulfate (in mg
Al/L) and local soil ballast (in mg/L) (Stage 4).
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