
Mechanistic understanding of carbon and water fluxes is central for our ability to predict consequences 
and feedbacks of forests to a changing climate. In spite of recent progress, critical unknowns remain. For 
example, although rates of evapotranspiration (ET) are well quantified, the proportion of transpiration as 
part of ET is less well constrained. Likewise, the exchange rate of CO2 uptake to water vapor loss is not well 
quantified although this exchange is the central link between ecosystem carbon and water fluxes. Further-
more, the rate at which photosynthetic production is converted to biomass, the carbon-use efficiency, is a 
subject of heated debate. These unknowns make it difficult to predict and manage ecosystem responses, 
which complicate rational decision-making about the ecosystem services provided by these carbon and 
water flows.

Stable isotopes are frequently used at convergences, where isotopically distinct flows mix, but they are also 
useful at branchpoints, where isotopically distinct flows split (Kirchner & Allen, 2020). In mixing processes, 
the isotopic signatures are conserved, e.g., when water derived from melted snow is mixed with summer 
rainwater as tree roots take up water from the soil. In splitting processes, the isotopic distinction arises 
from physical or biological processes on one leg of the split. For example, when water evaporates from leaf 
surfaces, the evaporated water is depleted (contains less) of the heavy isotope than the water that remains 
behind. Several splitting processes are described by remarkable bodies of theory based on the physics and 
biology of isotopic discrimination (Busch et al., 2020; Farquhar et al., 1982; Hayes, 2001). At the same time, 
a new generation of field-portable instruments has increased precision and flexibility of application (Penna 
et al., 2018; Stangl et al., 2019).

Here, we focus primarily on the exchange of water for carbon at the leaf-atmosphere interface and the 
branchpoints upstream and downstream of that exchange. This exchange, termed the water-use efficiency 
(WUE), is central to processes ranging from leaves to canopies, ecosystems, and catchments. WUE is the 
central link of the water cycle to the carbon cycle. It has been acted on by natural selection, generating a 
complex tapestry of species-specific traits and responses to environmental conditions. But the complexity 
can be simplified by measuring the integrated exchange over a whole forest using stable isotope ratios. Here, 
we propose a new conceptual framework where we connect WUE to several branchpoints in a sequence, 

Abstract Forests pass water and carbon through while converting portions to streamflow, soil organic 
matter, wood production, and other ecosystem services. The efficiencies of these transfers are but poorly 
quantified. New theory and new instruments have made it possible to use stable isotope composition to 
provide this quantification of efficiencies wherever there is a measurable difference between the branches 
of a branchpoint. We present a linked conceptual model that relies on isotopes of hydrogen, carbon, and 
oxygen to describe these branchpoints along the pathway from precipitation to soil and biomass carbon 
sequestration and illustrate how it can be tested and generalized.

Plain Language Summary The way a forest works can be described in terms of carbon and 
water budgets, which describe the ways that carbon and water flow through the forest. The paths of such 
flows are frequently branched and the branches are often different in their stable isotope composition. 
This means that stable isotopes can be used to describe the branching events. We present isotopic methods 
of quantifying several such events, then link them in a chain that begins with the evaporation of water 
and ends with biomass production.
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where the flow from one delivers substrate to the next (Figure 1). The se-
quence begins with water gain as precipitation and, via WUE, ends with 
biomass production. Using novel isotopic measurement techniques, our 
approach aims to quantify the transfers at each branchpoint along the 
way.

1. Branchpoint 1: Evaporation vs. Transpiration
To couple the carbon and water cycles, the evapotranspiration flux must 
be partitioned into its components: surface evaporation and transpiration 
by plants (Figure  1, top right). This is necessary because transpiration 
from leaves is closely tied to photosynthesis, but evaporation from leaf 
and soil surfaces is almost irrelevant to the carbon cycle. This splitting 
can be treated as a branchpoint because the two water flux pathways have 
such distinct isotopic compositions (Williams et al., 2004). Partitioning 
between the two has so far been poorly constrained, where global transpi-
ration estimates range between 20% and 65% of the combined ET losses 
(Jasechko et al., 2013). The isotopic composition of transpiration can be 
mechanistically modeled, but we often assume steady-state conditions to 
simplify the problem. Although steady state may be rare on an hourly 
basis (Dubbert et al., 2014), it is more commonly observed on the daily 
integration. Such simplifications, based on solid theory and empirical ev-
idence, increase the feasibility of the isotopic methods.

These transpiration losses are also related to the “two water-worlds hypothesis,” which proposes that plants 
transpire different water than that passed on to streams (Brooks et al., 2010). Accurate quantification of the 
isotopic compositions of transpired vs. stream water is necessary if one is to state that plants tap a different 
source of water from that in the streams (McDonnell, 2014). Earlier models proposed that the water in 
soil was sampled without isotopic preference, and that stream and transpired water came from a common 
well-mixed pool (Sklash & Farvolden, 1979). These models assumed simple displacement of the pore water 
in soils as new precipitation fell. There is considerable evidence that controverts the simple model, but it 
is only now being replaced by various multiple-pool/multiple-flow path alternatives (Dubbert et al., 2019; 
Penna et al., 2018). Parameterizing these new models will be essential as we improve models of streamflow 
and the carbon-water linkage.

2. Branchpoint 2: Water-Use Efficiency
This is where the hydrologic and carbon cycles meet and where isotopic measurements can be used to con-
vert the transpiration rates from branchpoint 1 to photosynthesis. Plants lose water vapor to the atmosphere 
in exchange for the CO2 they acquire through photosynthesis. This exchange ratio, WUE, can be determined 
from stable carbon isotope ratios (δ13C) of photosynthates (Busch et al., 2020; Farquhar et al., 1989). In 
fact, the parameter derived from δ13C is termed the intrinsic water-use efficiency (iWUE), but the conver-
sion to WUE is straightforward given estimates of leaf temperature and atmospheric humidity (Cernusak 
et al., 2013). WUE depends on environmental conditions and the physiology of the plant. It is well described 
by optimality arguments, which state that the plant should adjust the water “price” it is willing to pay for 
photosynthesis as a function of water availability (Cowan & Farquhar, 1977; Dewar et al., 2018; Mäkelä 
et al., 1996; Medlyn et al., 2011). There is a branchpoint hidden in the process at the point where CO2 mol-
ecules are either taken up via photosynthesis or they diffuse, with a changed isotopic composition, back 
into the atmosphere. We present it as a special case because it is fundamental to the coupling of the carbon 
and water cycles. Although this application of δ13C to parameterize carbon-water exchange has been avail-
able for decades (Farquhar et al., 1989), it has been criticized for requiring an uncertain empirical adjust-
ment (Keenan et al., 2013). Recent developments in theory (Busch et al., 2020) and instrumentation (Stangl 
et al., 2019) have provided mechanistic descriptions of the adjustment, strengthening the case for using 
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Figure 1. Diagram of the coupled fluxes of water and carbon in a forest 
ecosystem. The blue arrows in the blue section describe water fluxes and 
the red arrows in the brown section describe carbon fluxes. The numbers 
refer to the branchpoints below. The exchange of water for carbon is 
shown inside the orange dashed circle. The carbon-water exchange and 
the branchpoints in this diagram leave an isotopic signature, which can be 
used to quantify each step in the conversion of water to biomass.
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isotopic data to describe the exchange. In addition, there is evidence that δ13C can vary as photosynthetic 
sugars move down from the leaves to the stem (Bögelein et al., 2019; Offermann et al., 2011). Such variation 
would interfere with the inference of carbon-water exchange ratios from phloem contents or wood, but it 
can be corrected for empirically (Ubierna & Marshall, 2011; Wei et al., 2013). These corrections allow us to 
use tree-ring δ13C to infer iWUE in the past (Marshall & Monserud, 1996; Voelker et al., 2016).

3. Branchpoint 3: Carbon-Use Efficiency
The efficiency with which photosynthetic carbohydrates are converted into biomass is referred to as the 
carbon-use efficiency (CUE). One definition of CUE is the ratio NPP:GPP, where NPP is the total biomass 
production by photosynthetic organisms and GPP is the total ecosystem photosynthesis. By this definition, 
any carbon lost to respiration reduces the efficiency of biomass conversion. Forest stands may display large 
variations in CUE, ranging from 0.23 to 0.83 (Collalti & Prentice,  2019; DeLucia et al.,  2007; Mäkelä & 
Valentine, 2001), although some still maintain that it is nearly constant (Landsberg et al., 2020; Waring 
et al., 1998, 2016). The disagreement can be attributed in part to differences in methods and scale, especially 
related to uncertainty in estimates of belowground carbon fluxes. If CUE is not homeostatically maintained, 
then mechanisms that would give rise to variation need to be identified.

We propose a branchpoint in ecosystem carbon flow that could help to explain the differences in CUE 
reported in the literature. Plants and microbes display two competing respiratory pathways. The first, the 
cytochrome oxidase (COP) pathway, efficiently stores chemical energy (in the form of ATP) as carbohy-
drates are oxidized to CO2. The resulting chemical energy can be used to power the synthesis of new bonds 
in biomass. The second pathway, the alternative oxidase pathway (AOP), is much less efficient in the storage 
of chemical energy as carbohydrates are oxidized to CO2 (Vanlerberghe, 2013). Thus AOP “wastes” photo-
synthetic carbon and reduces carbon-use efficiency (Sieger et al., 2005), releasing the residual energy as 
heat (Lambers & Ribas-Carbo, 2005). The pathways differ in their isotopic fractionation against 18O, leaving 
a quantitative signal of their proportional rates in the residual pool of molecular oxygen (O2) as respiration 
consumes it. Although oxygen is so well-mixed that these effects cannot be observed in most of the ecosys-
tem, they can be measured where the mixing is restricted, e.g., inside tree stems, in wet soils, and in closed 
cuvettes. A range in the proportional activity of the AOP/COP could well underlie the reported differences 
in CUE (Hansen et al., 2001). Research on the contribution of AOP to ecosystem respiration has been ham-
pered by a lack of field-compatible, efficient methods for assessing its activity. However, a field-compatible 
δ18O method has recently been proposed to assess activity of the AOX pathway (Henriksson et al., 2019), 
providing a new opportunity to quantify this branchpoint over whole ecosystems.

3.1. Model Parameterization and Testing

Ecological models of forest ecosystems predict ecosystem function from processes that regulate the compo-
nent fluxes of carbon and water, but their parameterization to date has relied on very uncertain data sources 
(Franklin et al., 2020). While leaf-level and other fine scale measurements allow for the identification of 
each component flux separately, their scaling up to ecosystem level necessarily introduces considerable 
uncertainty (Campioli et al., 2016; Peichl et al., 2010). On the other hand, ecosystem scale measurements, 
such as net growth, soil carbon accumulation (Lim et al., 2015) net ecosystem exchange (Chi et al., 2019), 
and evapotranspiration (Kozii et al., 2020), can also be derived from the sums of component fluxes. If in-
stead the isotopic signatures are used to split the aggregate fluxes into their process-related components, we 
could decisively improve the ability of our models to make reliable predictions over larger areas and longer 
time spans. In addition, models actually representing the pathways of isotopic fractionation in trees (e.g., 
Ogée et al., 2009; Ulrich et al., 2019; Wei et al., 2013) could allow us to relate observed isotopic signatures 
to process rates inversely. The isotopic parameters could thus be used either as model parameters or to pro-
vide a post hoc test of the model predictions. For example, a recently developed dynamic model of the iso-
topic composition of phloem contents has been tested against measurements from the European summer 
drought of 2018 (Schiestl-Aalto et al., 2020). The model succeeded in predicting the pronounced changes in 
δ13C and WUE that occurred during this unusual event.
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3.2. Comparison to Standard Methods

Isotopic descriptions of linked branchpoints can be compared against traditional measurements of ecosys-
tem fluxes. These might include, e.g., streamflow over weirs (Laudon et al., 2013), eddy covariance meas-
urements of ecosystem carbon and water fluxes (Baldocchi et al., 2001) as well as forest biomass production 
and soil carbon accumulation (Lim et  al.,  2015). Such measurements describe the net accumulation of 
carbon in the system on time scales from half-hourly (EC) to annual or more (forest and soil inventories). 
Although the measurements are not conceptually difficult, it is a practical challenge to ensure that they 
are accurate and precise enough to detect temporal changes against a variable background (Muukkonen 
et al., 2009; Yanai et al., 2003) Likewise, detecting long-term changes in water yields can be surprisingly 
tricky because of weir design, changes in recording devices, and establishment of suitable controls. Howev-
er, these measurements of changing carbon pool sizes and streamflow are as critical as the isotopic meas-
urements in tests of our carbon-balance and water-balance predictions.

The traditional measurements were often developed to measure key ecosystem services. For example, forest 
biomass production is related to commodity production in managed forests. Both biomass production and 
SOM accumulation are major sinks for carbon sequestration from the atmosphere (Luyssaert et al., 2018). 
Eddy covariance has been used as a means of estimating these sequestration rates and their environmental 
controls at high time resolution (Baldocchi, 2008; Campioli et al., 2016). Water yields determine water avail-
ability for human use, but they also predict risks of flooding and the damage it causes. Better descriptions of 
the mechanistic basis of these ecosystem processes improve our ability to predict effects of future changes 
in climate and land management on the provision of these services.

4. Conclusions
One key advantage of the isotopic branchpoint approach is that it complements the eddy covariance and 
traditional biometric methods by providing independent estimates at temporal and spatial scales that the 
others do not. A second advantage is that it can be applied where the requirements of eddy covariance are 
not met, as in complex terrain, on small plots, and in heterogeneous canopies (Vernay et al., 2020). A third 
advantage is that it is relatively easy to “isotopically enable” existing models of carbon and water flux. This 
enabling can often be done with a few lines of code (Ogée et al., 2009; Risi et al., 2016; Wei et al., 2013). 
Quantifying key isotopic branchpoints would complement traditional measurements of ecosystem fluxes, 
leading to improved descriptions and deeper understanding of the efficiencies and the coupling of the car-
bon and water fluxes.
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