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A B S T R A C T   

Leafy vegetables undergo abiotic and biotic stresses, and a series of processing steps that cause mechanical 
injury. Breaching the epidermis alters phyllosphere structural and nutrient conditions, resulting in successional 
shifts in leaf microbiota and entry of human pathogens. This study examined damage during processing of baby 
leaves (Swiss chard, spinach) and concomitant microbial successional events. Machine-harvesting, washing, and 
packaging caused major phyllosphere perturbations, with increasing levels of leaf damage. Older leaves showed 
most damage, but plant species was influential. Diversity estimates of bacterial and fungal communities revealed 
shifts in microbiota post-harvest, particularly after the washing step. Relative abundance of Pseudomonadaceae 
and Enterobacteriaceae increased from field to bag. Bacterial species specific to different harvesting and pro-
cessing steps replaced core microbiota species. While processing is unavoidable, procedures that mitigate leaf 
damage can enhance shelf-life and food safety.   

1. Introduction 

Baby leaf vegetables are usually eaten raw, with no sanitization step 
between field and bag. In Sweden, leafy greens are mainly field-grown, 
machine-harvested, and cooled to 4 ◦C directly post-harvest to maintain 
quality. During processing, the leaves are washed to remove soil and 
debris, dried, and bagged (Fig. 1). Each processing step causes pertur-
bation and possible leaf damage (Kays, 1999; Snowdon, 1990), which 
can significantly alter the leaf micro-environment and associated mi-
crobes. Harvesting and post-harvest injuries also impair the physical 
quality and chemical characteristics (nutrient leakage) of packaged leafy 
vegetables (Ariffin, Gkatzionis, & Bakalis, 2017). Damage to the 
epidermis alters the 3-D landscape, increases surface area, and disrupts 
internal leaf structure, causing water loss (Aruscavage, Miller, Lewis 
Ivey, Lee, & LeJeune, 2008; Tukey & Morgan, 1963), localized cell death 
(Iakimova & Woltering, 2018), and passive leakage of nutrient-rich 
cellular fluids (Leveau & Lindow, 2001). A single damaged leaf can 
affect a whole bag, shortening shelf-life (Ariffin et al., 2017). Therefore, 
leaf tissue damage reduces sensory and nutritional product attributes. 

Catabolism governs post-harvest processes in leaves, so modifying 
the leaf environment (e.g., low temperature, high humidity) can slow 
the deterioration rate (De Frias et al., 2018; Van den Berg, 1981). During 
leaf deterioration, organic and inorganic nutrients are released to the 
nutrient-scarce phyllosphere. Solutes leached from wounds provide 
carbon and nitrogen, prolonging survival of microbial pathogens 
(Aruscavage et al., 2008; Aruscavage, Phelan, Lee, & LeJeune, 2010; 
Brandl, 2008). Spoilage bacteria inhabiting plant surfaces and soil may 
proliferate in wounds and produce cell wall-degrading enzymes 
(Pérombelon, 2002), leading to cell necrosis and tissue maceration 
(Abbott & Boraston, 2008). While most pathogen contamination occurs 
in-field, harvesting and processing provide opportunities for 
cross-contamination (Wells & Butterfield, 1997). Machine-harvesting 
increases leaf exposure to soil or manure (Buchholz, Davidson, Marks, 
Todd, & Ryser, 2012; Fallon, Rios, & Fonseca, 2011). Under Swedish 
legislation only drinking water is used for washing, and use of chlorine 
for surface sanitation of fresh produce is not allowed. According to 
Swedish Food Agency, if chlorine is added to wash water it is considered 
a food additive, however chlorine is not on the list of permitted food 

* Corresponding author. 
E-mail address: Emina.Mulaosmanovic@slu.se (E. Mulaosmanovic).  

Contents lists available at ScienceDirect 

Food Control 

journal homepage: www.elsevier.com/locate/foodcont 

https://doi.org/10.1016/j.foodcont.2021.107894 
Received 26 November 2020; Received in revised form 10 January 2021; Accepted 13 January 2021   

mailto:Emina.Mulaosmanovic@slu.se
www.sciencedirect.com/science/journal/09567135
https://www.elsevier.com/locate/foodcont
https://doi.org/10.1016/j.foodcont.2021.107894
https://doi.org/10.1016/j.foodcont.2021.107894
https://doi.org/10.1016/j.foodcont.2021.107894
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodcont.2021.107894&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Food Control 125 (2021) 107894

2

additives (LIVSFS 2007:15). Wash-water is replaced every 4.5 h during 
processing, and leafy vegetables of different species and origin can be 
washed with the same wash water. Washing lines are cleaned once, at 
the end of the day (Mauritzon, 2020). Although washing reduces overall 
microbial load (Gil, Selma, López-Gálvez, & Allende, 2009), standard 
washing post-harvest is insufficient for complete inactivation of human 
pathogens present on baby leaves (Rosberg, Darlison, Mogren, & Alsa-
nius, 2020). Biotic lesions caused by plant pathogens, e.g., Pseudomonas 
spp., Xanthomonas campestris (Hartmann et al., 2017), Bremia lactucae 
(Simko, Zhou, & Brandl, 2015), and Erwinia spp. (Wells & Butterfield, 
1997), are a possible internalization route for human pathogens such as 
Escherichia coli O157:H7 into plant tissue (Von Holy, Lindsay, & Beu-
chat, 2006). 

The indigenous leaf microbiota comprises multiple phylloepiphytes 
(Lopez-Velasco, Carder, Welbaum, & Ponder, 2013), including bacteria 
(numerically dominant), fungi, and yeasts (Lindow & Brandl, 2003). 
Harvesting and post-harvest processing damage can drive successional 
shifts in microbial community structure by changing the leaf environ-
ment from hydrophobic to hydrophilic and enhancing adherence of 
bacteria. Injuries are preferred habitats (Brandl, 2008) and entry points 
to the leaf interior for microorganisms (Aruscavage et al., 2008; Arus-
cavage et al., 2010; Brandl, 2008). Plant-associated microbial commu-
nities have been studied with respect to pre-harvest factors and events 
(seasonal changes, site characteristics, host genotype) (Dees, Lysøe, 
Nordskog, & Brurberg, 2015; Ding & Melcher, 2016; Williams, Moyne, 
Harris, & Marco, 2013) and fertilization strategy (Ai et al., 2018; Dar-
lison et al., 2019). However, post-harvest events, especially their role in 
leaf matrix modification, have received limited attention. 

Damage morphometry and location at harvest and post-harvest, and 
effects on the microbiota, have not been described/quantified for leafy 
vegetables. Therefore, we quantified damage and characterized size, 
shape, and position of lesions inflicted on Swiss chard and spinach baby 
leaves during harvesting and post-harvest. We also assessed concomitant 

shifts in the phyllosphere microbiota. This paper highlights the impact 
of harvest and processing on leaf tissue integrity and the microbiota and 
therefore contributes to improved handling of leafy vegetables along the 
industrial processing chain, to maintain quality and food safety. 

2. Materials and methods 

2.1. Leaf sampling 

Swiss chard (Beta vulgaris subsp. cicla) and spinach (Spinacia oleracea 
L.) were field-grown for four weeks on a conventional farm in southern 
Sweden (55◦50′24.36′′N, 13◦5′48.552′′E). To determine in-field (base-
line) damage and microbiota, baby leaf samples were collected with 
scissors in field, from a 1 m2 area for each replicate (n = 6). Samples 
from the same field were machine harvested, washed and packaged 
(commercial facility) on the same day. Machine harvest was performed 
using Ortomec harvesting machine, with a band-blade system that cuts 
crops at 1.27 cm (1/2 inch) above the bed top, and leaf samples in 
category “machine harvested” were collected at the end of the band. 
After washing in the processing plant, leaves were drained and dried by 
hot (35 ◦C, 2 min) and cold (2.5 ◦C, 40 s) air stream (Fig. 1), then 
sampled immediately for category “washed”. Samples in category 
“packaged” were prepared in the same manner as for category “washed”, 
then packaged in 200 g bags (OPP film), with high perforation and open 
atmosphere, and one bag was considered a replicate for microbiota 
assessment. At all sampling points, leaf samples were placed in plastic 
boxes to avoid additional damage during transport to the laboratory, 
and used for damage quantification and microbial community assess-
ment. Samples in categories “baseline”, “machine harvested” and 
“washed” were processed the same day, while “packaged” samples were 
processed the next day, after being stored for 24 h at 4 ◦C. 

Fig. 1. (A) Steps in which damage to baby leaves is caused by abiotic and biotic factors and leaf ageing, which increases water activity, releases nutrients, and 
increases surface area, affecting microbial community composition and biomass. (B) Crucial steps from field to bag, environmental conditions, and duration of 
exposure during the steps considered in this study. (Illustration: B. Alsanius; Photos: E. Mulaosmanovic). 
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2.2. Damage detection, quantification, and classification 

Damage was detected and quantified as described in Mulaosmanovic 
et al. (2020). To enhance the contrast between healthy and damaged 
tissue, chlorophyll was removed by soaking whole detached leaves in a 
solution of ethanol (Solveco, 95%) and acetic acid (Acros Organics, 
99.6%) (3:1 (v/v) ratio). To visualize leaf tissue damage, whole leaves 
were stained with trypan blue (0.01% TB; Sigma Aldrich), which only 
stains cells with damaged membranes (Tran, Puhar, Ngo-Camus, & 
Ramarao, 2011). Stained leaves were photographed on a LED-light table 
(Canon EOS 5D Mark IV camera with Canon EF 50 mm 1:1.4 lens, 
manual exposure mode, shutter speed 1/125, aperture 6.3, ISO 160). 

Leaf and lesion morphometric parameters were automatically 
quantified using LiMu image analysis program (Mulaosmanovic et al., 
2020), with data exported as text files. Results comprised information 
from the barcode, and leaf and lesion morphometric and location pa-
rameters (leaf area, number of lesions per leaf, lesion area, distance of 
lesions from midrib and leaf edge, and eccentricity). 

Leaf area and “leaf age”: Based on area (pixels) and known area of 

objects included in leaf images (1 cm2), measured areas were converted 
to cm2 (1 cm2 ≈ 55000 px). For “age” classification, leaves were clas-
sified as first true leaves (≥23 cm2) or second true leaves (<23 cm2). 

Number of lesions, absolute and relative damage: Lesions were 
enumerated on leaf scale (total number of lesions per leaf). Absolute 
damage was expressed in pixels (px), as sum of individual lesion areas 
per leaf. Relative damage per leaf area was calculated as: 

Damage=
(

lesion area
leaf area

)

× 100 [%] (I) 

Size-based classification of lesions: All individual lesions (stained 
areas) were classified based on size into: microlesions (1 px; single cell 
lesions), mesolesions (2–200 px), or macrolesions (>200 px). 

Shape-based classification of lesions: Shape was characterized based on 
the eccentricity value of individual lesions, calculated as: 

Eccentricity, e=
c
a

(II)  

where c is distance from center to the focus and a is distance from the 

Fig. 2. (A, B) Detection and (C, D) quantification of leaf damage on Swiss chard (A, C) and spinach (B, D) leaves in-field (‘baseline’) and after machine-harvesting, 
washing, and packaging. (E) Leaf area and (F) number of lesions, quantified by trypan blue-staining of whole leaves and digital image analysis. Dashed horizontal line 
in violin plots (E, F) represents overall mean across steps for both species. Black dots within violins indicate within-step mean ± SD (n = 300). Different letters above 
violin plots indicate significant differences (p ≤ 0.05) between processing steps (non-parametric Kruskal-Wallis test, followed by Dunn’s post-hoc test). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. Scatter marginal density plots showing leaf area distribution and associated lesion area on (A) Swiss chard and (B) spinach leaves (n = 300). Leaf and lesion 
areas are measured in pixels (px), and grouped by processing steps (in-field (baseline), machine-harvesting, washing, packaging). 
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center to the vertex. 
Eccentricity value ranges from 0 (perfect circle) to 1. Lesions with 

eccentricity 0–0.9 were classified as round (dots) and lesions with ec-
centricity >0.9 as cuts. 

Position-based classification of lesions: To depict lesion spatial patterns 
at leaf scale, the relative position of individual lesions was determined as 
distance from the midrib and the leaf edge: 

Position=
(distance to central line − distance to edge)
(distance to central line + distance to edge)

(III) 

Position values ranged from − 1 to 1 and lesions were classified as: 
edge lesions (0.5–1), leaf blade lesions (− 0.5 to 0.5; area between 
midrib and edge on both sides of leaf), or midrib lesions (− 1 to − 0.5). 

Combined size- and shape-based classification of lesions: Eccentricity 
and lesion area (px) values were combined into two size-based cate-
gories, small (<200 px; microlesions and mesolesions) and large (≥200 
px; macrolesions). All lesions were then grouped into four categories: 
small round, large round, small cut, and large cut lesions. 

Combined position- and shape-based classification of lesions: Position 
and shape parameter (eccentricity) were combined and all lesions were 
divided into six categories: leaf blade round, edge round, midrib round, 
leaf blade cut, edge cut, and midrib cut lesions. 

2.3. Effect of processing on Swiss chard and spinach microbiota 

The phyllosphere microbial community of (i) manually-harvested 
unwashed (baseline) and (ii) machine-harvested, commercially (iii) 
washed, and (iv) packaged (24h post-packaging) Swiss chard and 
spinach leaves was assessed as described previously (Darlison et al., 
2019). Leaves (10 g; n = 6) were aseptically transferred to sterile plastic 
bags with filter (Grade Products Ltd., Coalville, UK) containing 50 mL 
0.01M phosphate-buffered saline solution (PBS), and massaged for 2 
min at standard speed in a Smasher® (Biomérieux Industry, Durham NC, 
USA). Bacterial and fungal cells were collected from the suspension by 
centrifugation of 20 mL at 5000×g for 10 min (Centrifuge 5804, 
Eppendorf AG, Hamburg, Germany), and the pellet obtained was 
re-suspended in 2 mL 0.01M PBS and centrifuged for 10 min at 13400×g 
(Minispin Centrifuge, Eppendorf AG, Hamburg, Germany). The pellet 
obtained was stored at − 80 ◦C until DNA extraction with the Zymo-
BIOMICS™ DNA Miniprep kit (Cat. No: D4300, Zymo Research, USA). 

To evaluate phyllosphere bacterial and fungal communities, samples 
were analyzed with 300 bp paired-end read (llumina MiSeq V3) at LGC 
Genomics GmbH (Berlin, Germany). To assess bacterial communities, 
the 16S ribosomal gene was targeted using forward primer 799F (Che-
lius & Triplett, 2001) and reverse primer 1115R (Reysenbach & Pace, 
1995). The ITS region was targeted using forward primer fITS7 (Ihrmark 

Fig. 4. (A) Absolute and (B) relative lesion area on 
Swiss chard and spinach leaves in the processing steps 
in-field (baseline), machine-harvesting, washing, and 
packaging. Absolute lesion area, measured in pixels 
(px), represents the sum of all lesions on leaf scale, 
relative lesion area is the percentage of leaf area 
covered with lesions. Dashed horizontal line in violin 
plots is overall mean across all steps for both species. 
Black dots within violins indicate within-step mean ±
SD (n = 300) Different letters above violin plots 
indicate significant differences (p ≤ 0.05) between 
processing steps (non-parametric Kruskal-Wallis test, 
followed by Dunn’s post-hoc test).   
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et al., 2012), while reverse primer ITS4R (White, Bruns, Lee, & Taylor, 
1990) was used for fungal communities. The sequencing data were 
pre-processed and quality-assessed by the bioinformatics service at LGC 
Genomics GmbH, using Mothur software version 1.35.1 (Schloss et al., 
2009). Demultiplexing of sequence reads was performed with Illumina 
bcl2fastq 2.17.1.14 software. A detailed description of data generation 
can be found in Supplement File S1. 

2.4. Statistical analysis 

All analyses except generation of Venn diagrams were performed in 
R Studio (version 3.6.1) (RStudioTeam). Differences in mean values of 
morphometric variables between the plant species were tested by 
nonparametric Kruskal-Wallis test. Pairwise multiple-comparison was 
carried out using Dunn’s post-hoc test, with Holm correction to adjust 

significance for multiple comparisons. Package ggplot2 was used for 
plotting and ggpubr for customization in ggplot2 plots. Coefficient of 
determination (R2) was calculated using stat_cor() function. A linear 
regression model was created using the lm() function. Microbiome data 
analysis followed the R script modified after Shetty Sudarshan, Lahti 
Leo, Hermes Gerben, & Hauke Smidt (2020) (Version v3.0). Samples 
with <3000 reads were excluded from the BIOM file used to analyze 
microbial community composition, as were sequences identified as 
mitochondrial. The alpha-diversity of microbial communities between 
processing steps was estimated by the Shannon and Chao1 indices, using 
the function estimate_richness() from the phyloseq package (McMurdie & 
Holmes, 2013). Beta-diversity was calculated using weighted UniFrac in 
the distance function and the ordinate function in the phyloseq package, 
with data filtered based on prevalence and total count. To identify the 
taxa most influenced by species and treatment, Anova followed by 

Fig. 5. Regression analysis. Regression line (red) for the model: yLesion area (px) = β0 + β1xLeaf area. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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Tukey test (p < 0.05) was performed. Membership-based Venn dia-
grams, showing treatment-unique and shared OTUs, were created using 
Metagenomics Core Microbiome Exploration Tool (MetaCoMET) (Wang, 
Xu, Gu, & Coleman-Derr, 2016), with OTUs relative abundance 
threshold 0.01%, sample absolute read-count threshold 100, and cut-off 
value 0.3. 

3. Results and discussion 

3.1. Baseline leaf damage and microbiota 

For both Swiss chard (hereafter referred to as "chard") and spinach 
(except bagged spinach), baseline leaves had fewest lesions, with chard 
having fewer lesions than spinach (Fig. 2, Supplement Tables S1 and S2). 
Absolute and relative lesion area were also smallest on baseline leaves 
for both species, with similar relative lesion area for chard and spinach 
(0.4% and 0.7%, respectively), but greater absolute lesion area on 
spinach (Figs. 3 and 4). The latter may partly be due to leaf size, which 
was positively correlated with total lesion area for both species at 
baseline (Fig. 5). Baseline spinach leaves were larger than chard leaves 

(Fig. 2), so relative damage provided a better comparison than absolute 
damage. Another reason for skewness in damage estimates was the 
distribution of first and second true leaves, as first true leaves had 
greater lesion area (Fig. 6). At baseline, first true leaves represented 
31.7% and 46.8% of chard and spinach leaves, respectively (Fig. 6). For 
both crops, most lesions (>95%) at baseline were mesolesions (Fig. 7B), 
and most were round (Fig. 8B). Most lesions (round or cuts), were 
located on leaf edges for both chard and spinach (Fig. 9B, Fig. S3). Chard 
had more midrib damage than spinach, for both cuts (1.8 vs. 0.7%) and 
round lesions (11.2 vs. 5.2%). As the midrib is the main vein, midrib 
damage could release more nutrients than leaf edge or leaf blade dam-
age. While the baseline damage was relatively minor compared with 
that during processing, completely intact leaves were rare, which should 
be considered in studies on phyllosphere microbiology to avoid 
confounding. 

Baseline spinach had lower bacterial species richness (Chao1) than 
subsequent processing steps, but higher species relative abundance 
(Fig. 12B) and evenness (Shannon index) than all samples except 
washed and packaged spinach (Fig. 10A–B). Baseline chard leaves had 
similar overall bacterial diversity to processed leaves (Fig. 10A–B). 
Tenzin, Ogunniyi, Ferro, Deo, and Trott (2020) found lower Chao1 and 
Shannon values for unwashed spinach samples immediately 
post-harvest than in different washing/disinfection treatments. Baseline 
bacterial Chao1 diversity values for spinach, but not chard, were lower 
than reported by Darlison et al. (2019) and Rosberg et al. (2020). 
Baseline bacterial Shannon diversity values were similar to those re-
ported previously (Darlison et al., 2019; Rosberg et al., 2020). Baseline 
fungal diversity on both spinach and chard was similar to that in sub-
sequent processing steps (Fig. 10C–D), although baseline chard had the 
second highest species richness (Fig. 10D). Fungal Chao1 diversity 
values for spinach leaves were similar to those described previously 
(Darlison et al., 2019), while fungal Shannon diversity values were 
slightly higher. For bacterial beta-diversity, baseline chard co-clustered 
with machine-harvested leaves, but not post-harvest steps, while base-
line spinach clustered weakly with leaves from all subsequent steps 
(Fig. 11A–B). Rosberg et al. (2020) found that washing caused a bac-
terial diversity shift in spring-grown, but not autumn-grown, spinach 
and rocket. For fungal beta-diversity, baseline chard co-clustered with 
all other leaves, whereas baseline spinach co-clustered only with 
machine-harvested leaves (Fig. 11C–D). Baseline chard was dominated 
by the bacterial phyla Proteobacteria and Deinococcus-Thermus, 
particularly Pseudomonadaceae, Moraxellaceae, and Deinococcaceae. 
Baseline spinach was dominated by Proteobacteria, Firmicutes, and 
Actinobacteria (Fig. 12A–B), as reported previously for 
manually-harvested spinach leaves (Darlison et al., 2019; Leff & Fierer, 
2013; Lopez-Velasco et al., 2013; Lopez-Velasco, Welbaum, Boyer, 
Mane, & Ponder, 2011; Rosberg et al., 2020; Tenzin et al., 2020). The 
three families occurring in highest relative abundance on baseline 
spinach were Burkholderiaceae, Bacillaceae, and Enterobacteriaceae 
(Fig. 12B). Ascomycetes was the dominant fungal phylum in baseline 
chard and spinach, and in subsequent processing steps (Fig. 12C). 
Basidiomycota was the second most prevalent phylum on chard, while 
Basidiomycota and Chytridiomycota were equally abundant on spinach 
(Fig. 12C), partly confirming previous findings (Darlison et al., 2019). 
The bacterial core microbiota of chard and spinach was similar on 
phylum level, and comprised Proteobacteria (62%–82%), Firmicutes 
(7%–13%), and Actinobacteria (3–7%). Deinococcus-Thermus 
comprised 23% of the chard core microbiota, but only 0.8% of the 
spinach core biota. The core biota of both was dominated by Pseudo-
monadaceae (29–41%), Enterbacteriaceae (8–18%), and Burholderiaceae 
(7–22%), with Pseudomonas the most abundant genus on both chard and 
spinach (29–41%), as previously reported for baby leaves (Rosberg 
et al., 2020). Baseline and machine-harvested chard shared the highest 
numbers of OTUs (bacteria 1.6%, fungi 5.3% OTUs). The largest group 
of treatment-specific OTUs was found on baseline leaves in all cases 
except for the bacterial community on spinach, where most specific 

Fig. 6. (A) Size-based ‘age’ classification of leaves (n = 300) into first true 
leaves (≥23 cm2) and second true leaves (<23 cm2). (B) Lesion area in pixels 
(px) measured separately on first and second true leaves in different processing 
steps (field (baseline), machine-harvesting, washing, packaging). 
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OTUs were found on machine-harvested leaves. Baseline-specific bac-
terial OTUs predominantly comprised Pseudomonas (15–28%) on both 
plant species, Acinetobacter (44%) on chard, and unclassified Entero-
bacteriaceae (38%) on spinach. In both plant species, genera with <3% 
relative abundance comprised a high proportion of baseline-specific 
bacterial OTUs. Fungal microbiota were stable from field to bag, with 
less dominance of step-specific fungal OTUs (core: chard 22.8%, spinach 
34%), than for the bacterial core biota. The fungal core microbiota of 
chard and spinach were similar on phylum level and dominated by 
Ascomycota (67–78%) and Basidiomycota (20–32%), but contained 
plant pathogens such as Botrytis caroliniana, Fusarium oxysporum, Gib-
berella intricans, and Blumeria graminis. These fungal species can cause 
lesion formation and plant tissue rot (Ezrari, Lahlali, Radouane, Tahiri, 
& Lazraq, 2020; Fernández-Ortuño, Li, Wang, & Schnabel, 2012). 

3.2. Machine-harvested leaf damage and microbiota 

Harvesting represents a major transition for the plant matrix from 
autotrophic to heterotrophic, i.e., from anabolic to catabolic processes, 
with influences of leaf matrix, temperature, leaf damage, decay, and 
microbial pools (Ariffin et al., 2017; Mogren et al., 2018; Rosberg et al., 
2020). 

Machine-harvesting significantly increased relative damage to both 
crops (Figs. 2 and 4A), partly due to the higher proportion of first true 
leaves (Fig. 6A). Mesolesions and small round lesions dominated the size 
and shape classes for both species, but the proportion of macrolesions on 
both was reduced compared with baseline (Figs. 7 and 8). Midrib lesions 
(round and cuts) (Fig. S3) increased for both chard and spinach (Fig. 9). 
Therefore, machine-harvesting damages leaves and the midrib area, 
resulting in nutrient leaching and driving shifts in the resident micro-
biota (Leveau & Lindow, 2001). This was observed especially for the 
bacterial community on spinach. 

Compared with baseline, machine-harvesting did not significantly 
change alpha- or beta-diversity of bacteria or fungi on chard, but 
increased bacterial species richness (Chao1) and decreased species 

abundance and evenness on spinach (Figs. 10 and 11). On spinach, the 
bacterial community showed increasing representation of Proteobac-
teria, while other phyla decreased (Fig. 12). Machine-harvesting also 
seemed to introduce/favor Enterobacteriaceae on spinach leaves. Bacte-
rial OTUs specific to machine-harvesting were dominated by Acineto-
bacter (43–74%) and Pseudomonas (10–14%) (Fig. 13). 

3.3. Washing damage and microbiota 

Washing to remove impurities was performed in a commercial pro-
cessing facility using tapwater without sanitizing agents. Studies have 
found impaired wash-water quality in commercial facilities due to reuse 
in processing leaves from different batches (Grudén, Mogren, & Alsa-
nius, 2016). Washing alters conditions on the leaf surface due to (i) 
cooling of plant biomass, (ii) centrifugation or exposure to combined air 
jets and short-time, high-temperature drying (Grudén et al., 2016), and 
(iii) aging of detached plant biomass (Medina, Tudela, Marín, Allende, & 
Gil, 2012). 

Washing did not damage chard, but increased relative damage to 
spinach leaves (Fig. 4B). The significant relationship between leaf size 
and lesion area enabled comparison using relative damage (Fig. 5). 
Spinach leaves are convex, with the leaf tip folding towards the abaxial 
side. Forces applied during washing and drying (Fig. 1) may enhance 
breakage of the slightly folded spinach leaf tips, while smaller chard 
leaves can avoid such damage. This could partly explain the increase in 
cuts (Fig. 8, Fig. S2), and overall lesion area (Fig. 4) on washed spinach, 
but not chard leaves (Fig. 6, Fig. S1). The proportion of first true leaves 
in washed leaves decreased for chard (41%) and increased for spinach 
(74%) (Fig. 6). Mesolesions continued to dominate lesion size but 
macrolesions began to appear, comprising 3.6% and 5.4% of all lesions 
on chard and spinach, respectively (Fig. 7). Midrib cuts also increased 
(Fig. S3), to comprise 2.9% and 1.5% for chard and spinach, respec-
tively, while for spinach, round midrib lesions increased to 8.8% 
(Fig. 9). 

In terms of bacterial and fungal alpha-diversity, washing only 

Fig. 7. (A) Absolute (and (B) relative distribution of each lesion size-based class on leaves, grouped by processing steps (in-field (baseline), machine-harvesting, 
washing, packaging). All individual lesions (stained areas) were classified into microlesions (1px), mesolesions (2–200 px), and macrolesions (>200 px). 
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affected (decreased) fungal species richness on chard (Fig. 10). Tenzin 
et al. (2020) made similar findings when using tapwater for washing. 
However, Rosberg et al. (2020) found that commercial washing signif-
icantly reduced Chao1 and Shannon diversity on spring-grown, but not 
autumn-grown, spinach. Thus differences between studies could be a 
result of seasonal differences (Ding & Melcher, 2016). In terms of 
beta-diversity, bacterial communities on washed chard and fungal 
communities on washed spinach leaves co-clustered with communities 
in the leaf packaging step (Fig. 11). Spinach bacterial communities 
formed a single cluster, with some overlap with baseline and packaged 
leaves, while chard fungal communities co-clustered with communities 
from packaged leaves, with some overlap with baseline leaves (Fig. 11). 
Similarly, Rosberg et al. (2020) observed differences in beta-diversity 
from field sampling through processing (including washing). Washing 
caused significant shifts in relative abundance of Proteobacteria, which 
increased on both chard and spinach (Fig. 12), as observed in previous 
studies (Rosberg et al., 2020). However, Tenzin et al. (2020) observed 
increased relative abundance of Actinobacteria and Firmicutes, but 
decreased Proteobacteria, on tap-water washed leaves compared with 
unwashed. At family level, relative abundance of Moraxellaceae 
decreased and Pseudomonadaceae increased on both chard and spinach 
(Fig. 12). On chard, relative abundance of Comamonadaceae also 
decreased and Burkholderiaceae and Enterobacteriaceae increased. 
Although Pseudomonas was abundant on baseline leaves, its absolute 
abundance on washed samples increased 4.5-fold on chard and 5.4-fold 
on spinach compared with previous processing steps. Rosberg et al. 
(2020), also observed significant increases in relative abundances of 
Enterobacteriaceae and Pseudomonas spp. post-washing, together with no 
significant reduction in viable counts during washing without sanitizer 

or even substantially increased total aerobic counts and Enterobacteri-
aceae counts compared with non-washed leaves. Our results indicate 
that washing can allow cross-contamination by Pseudomonadaceae 
(spinach and chard) and Enterobacteriaceae (chard), as their proportions 
and absolute values increased substantially immediately post-washing. 
Slight (0.5%) relative damage on leaves can still support increases in 
E. coli O157:H7 populations, with pathogen numbers being saturated at 
9.8% relative damage (Mulaosmanovic, Windstam, Vågsholm, & Alsa-
nius, 2021). For fungal phyla, both chard and spinach showed an in-
crease in Basidiomycota, with a decrease in Ascomycota on chard and 
Zygomycota on spinach. Bacterial OTUs specific to washing were Pseu-
domonas (80–83%) and Acinetobacter (2–13%) on both plant species 
(Fig. 13). 

3.4. Packaging leaf damage and microbiota 

Overall, packaged spinach leaves showed more damage than chard 
leaves (Figs. 3 and 4). Packaged leaves had around 3.7-fold more 
damage compared with baseline (Fig. 4A), but not compared with 
washed leaves (Fig. 4). Relative abundance of macrolesions increased 
significantly on packaged spinach, but not chard, with spinach having 
almost twice as many macrolesions as chard (Fig. 7B). Packaged 
spinach, but not chard, showed a substantial increase in relative abun-
dance of cuts (Fig. S2). Relative abundance of large (chard and spinach) 
and small (spinach) cuts increased markedly post-packaging compared 
with washed samples (Fig. 8B). 

Packaging did not affect alpha-diversity of bacterial and fungal 
communities (Fig. 10). For beta-diversity, packaged chard and spinach 
samples closely co-clustered with washed samples, and differed only 

Fig. 8. (A) Absolute and (B) relative distribution of each lesion size and shape-based class on leaves, grouped by processing steps (in-field (baseline), machine- 
harvesting, washing, packaging). All individual lesions (stained areas) were classified into: small and large round lesions, and small and large cut-shaped lesions. 
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from baseline samples (except for fungal communities on chard), and 
bacterial communities on machine-harvested spinach (Fig. 11). Phylum 
level diversity (relative abundance >2%) of bacteria and fungi 
decreased from field to bag. Packaged leaves were dominated by the 
bacterial phyla Proteobacteria and Firmicutes (chard and spinach) and 
Deinococcus-Thermus (chard). However, the proportions of Firmicutes, 
Deinococcus-Thermus, and Actinobacteria increased on packaged chard 
leaves, whereas the relative abundance of Actinobacteria decreased on 
spinach leaves (Fig. 12). Packaged chard leaves were dominated by 
Pseudomonadaceae, Enterobacteriaceae, and Deinococcaceae, and spinach 
leaves by Pseudomonadaceae, Moraxellaceae, and Enterobacteriaceae 
(Fig. 12A–B). On chard leaves, increased relative abundance of Dein-
ococcaceae was observed post-packaging. Pseudomonadaceae and 
Enterobacteriaceae are reported to dominate bacterial populations in cold 
storage (Lund, 1992; Rosberg et al., 2020; Vankerschaver, Willocx, 
Smout, Hendrickx, & Tobback, 1996). Interestingly, relative abundance 
of Enterobacteriaceae and Moraxellaceae increased post-packaging on 
both crops, partly supporting recent findings by Rosberg et al. (2020). 
Increased relative abundance of Pseudomonadaceae and Moraxellaceae 
has been observed previously (Tenzin et al., 2020), and has been 
correlated with spoilage of baby leaves at cold-storage temperatures 
(Tatsika, Karamanoli, Karayanni, & Genitsaris, 2019). Changes in 
environmental (cold-chain) and nutritional conditions on the leaf sur-
face caused by leaf damage might cause this shift in relative abundance 
of bacterial phyla after packaging. The most prominent representative of 
Moraxellaceae was Acinetobacter, a food-spoilage bacterial genus (Battey 
& Schaffner, 2001; Zhu et al., 2018) previously found on fresh produce 
(Rosberg et al., 2020). Acinetobacter (6–20%) and Pseudomonas 

(74–83%) accounted for high proportions of all packaging-specific 
OTUs, but their proportion in the core microbiota (always present) 
was substantially lower (Acinetobacter 0–1%; Pseudomonas 21–41%). 
Cold storage favors growth of Acinetobacter and Pseudomonas spp., 
including the pectinolytic pseudomonads (Nguyen-the & Carlin, 1994), 
due to their psychrotrophic lifestyle. They can outcompete mesophilic 
species for the nutrients released by wounding and accelerate spoilage of 
packaged produce (Andreani & Fasolato, 2017). Ascomycota and Basi-
diomycota were the dominant fungal phyla on packaged chard and 
spinach (Fig. 12C). Family-level relative abundance of fungi on pack-
aged chard and spinach was similar to that on washed leaves (Fig. 12D). 
Unlike the bacterial core biota, the fungal core biota was not substan-
tially impacted by packaging (Fig. 13). 

3.5. Implications of processing steps 

Chard and spinach baby leaves accumulated damage during pro-
cessing (Figs. 1B, Fig. 2A–B). Leaf damage causes a temporary flush of 
carbon- and nitrogen-containing compounds in the nutrient-poor phyl-
losphere (Aruscavage et al., 2010; Mercier & Lindow, 2000; Tukey, 
1970). Damage alone may be insufficient in explaining nutrient leakage, 
as not all lesions were equal (Figs. 2, 4, 7–9). The relationship between 
accumulated damage and nutrient concentration may not be linear. We 
suspect that midrib damage gives more prominent nutrient pulses than 
equivalent leaf damage, since midribs are the main conduit for photo-
synthates and minerals. 

Conditions change from hydrophobic to hydrophilic in damaged 
areas, altering leaf physicochemistry and allowing microorganisms to 

Fig. 9. (A) Absolute and (B) relative distribution of each lesion position- and shape-based class on leaves, grouped by processing steps (in-field (baseline), machine- 
harvesting, washing, packaging). All individual lesions were classified into: round-shaped and cut-shaped lesions on leaf blade, edge, and midrib, respectively. 
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Fig. 10. Alpha-diversity of (A, B) bacterial, and (C, D) fungal communities. Chao1 (A, C) and Shannon (B, D) diversity indices, grouped by processing step (in-field (baseline), machine-harvesting, washing, packaging). 
Different letters above boxes indicate significant differences (p ≤ 0.05) between processing steps and plant species. 
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adhere. Damage also alters the 3-D landscape of the phyllosphere 
(Mulaosmanovic, Windstam, Vågsholm, & Alsanius, 2021), exposing 
surface areas previously unavailable for colonization by resident mi-
crobes and potential pathogens. A recent study found that artificially 
induced damage enabled ample E. coli O157:H7 colonization at damage 
sites (Mulaosmanovic, Windstam, Vågsholm, & Alsanius, 2021). 

Spinach has extremely high respiration rate (Kader, 2002), thus 
mechanical damage stimulates additional respiration, and accelerates 
water loss (Escalona, Aguayo, Martínez-Hernández, & Artés, 2010; 
Kader, 2002). Although not investigated here, because of damage 
induced from field to bag, it is expected that respiration rate increases 
given the increased surface area, thus more sugar becomes available 
with wounding. In damaged plants defense mechanism activates, 
requiring more energy, thus increasing respiration (Fonseca, Oliveira, & 
Brecht, 2002). Oxidation of phenolic compounds (tissue browning) oc-
curs as a result of damage, and this process requires increased oxygen 
consumption. This effect perseveres in the tissue adjacent to the 
damaged area, modifying the metabolism and quicker decay (Kader, 
2002). Increased respiration and leached nutrients may support multi-
plication of spoilage microorganisms (Artés & Allende, 2005; Mogren 
et al., 2018). Harvesting and post-harvest processing has indirect con-
sequences for microbes, through damage releasing more nutrients and 
increasing surface area, and direct consequences, e.g., during washing, 
which removes microbes or potentially introduces pathogen through 

cross-contamination (Gil et al., 2009; Grudén et al., 2016; Rosberg et al., 
2020). Different processing steps have different direct/indirect effects, 
so measured damage does not directly reflect the microbiota. 

The bacterial (2.3-fold) and fungal (2.9-fold) core microbiota on 
chard was larger than that on spinach, and each processing step caused 
shifts. The core microbiota was small (chard 1.2%; spinach 0.3% OTUs) 
(Fig. 13), and most OTUs were specific to processing steps. Enterobac-
teriaceae (unclassified 4–10%; Pantoea 4–8%) and Burkholderiaceae 
(Burkholderia 7–20%), families containing plant and human pathogens, 
comprised a significant fraction of the core biota. High abundance of 
Enterobacteriaceae on spinach, lettuce, and sprouts has been reported 
previously (Leff & Fierer, 2013). Enterobacteriaceae are recognized plant 
colonizers and plant microhabitats are known reservoirs, including for 
potentially human pathogenic bacteria (Brandl, 2006; Erlacher, Cardi-
nale, Grosch, Grube, & Berg, 2014). Since baby leaves are consumed 
raw, these families in the core biota (always present), could pose health 
concerns. The greatest shift, at family- and OTU-level, was seen for 
washing (Figs. 11–13), which had both indirect and direct effects on the 
microbiota. 

For resident microbes, processing causes perturbations that result in 
successional shifts, as shown for the chard and spinach microbiota 
(Figs. 11–13). Abundance of 38 bacterial families and one group of 
unclassified bacteria found on baseline chard and spinach leaves was not 
maintained, as three and six families increased in abundance for chard 

Fig. 11. Beta-diversity based on weighed UniFrac distances (PCoA plots) for 16S rRNA bacterial communities (A, B) and ITS2 fungal communities (C, D), of Swiss 
chard and spinach, grouped by processing steps (in-field (baseline), machine-harvesting, washing, packaging). 
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and spinach, respectively, while 26 and 27 families declined. Similarly, 
more than half of 25 fungal families and one group of unclassified fungi 
detected on baseline chard and spinach increased (3 and 7 families, 
respectively) or declined (14 and 7 families, respectively) in abundance 
during processing (Fig. S4). 

Damaged leaf areas provide nutrients for microbial growth (Zagory, 
1999). For Pseudomonas fluorescens, sugars are limiting for colonization, 
with microbial density being directly correlated with leaf sugar content 
(Mercier & Lindow, 2000). Microbiota shifts due to leaf damage and 
other direct effects during processing may affect the shelf-life and sen-
sory quality of baby leaves, with one damaged leaf spoiling the whole 
bag (Ariffin et al., 2017). This may be because damage stimulates food 
spoilage microbes, or because cooling and washing remove other com-
petitors, making niches available. For example, Pseudomonadaceae 
(mainly genus Pseudomonas) were present on both baseline and 
machine-harvested chard and spinach leaves, but their abundance was 
increased by washing and maintained by bagging (Fig. 12B and Fig. S4). 
Pseudomonas spp. are causal agents in food spoilage (Andreani & Faso-
lato, 2017; Federico et al., 2015). In beets (including chard), bacterial 
infections caused by Pseudomonas syringae pv. aptata can result in 
spot-like leaf lesions (Koike, Henderson, Bull, Goldman, & Lewellen, 
2003). Pseudomonadaceae includes plant pathogens and soft-rot patho-
gens, which may be directly involved in decreasing shelf-life. 

Damage appears to be unavoidable in the baby leaf processing. To 
enhance shelf-life and food safety, treatments that mitigate damage or 
impede deterioration are needed. 

4. Conclusions 

Lesion area increases from field to bag, at rates depending on plant 
species and leaf age. Most lesions are round and medium-sized, but se-
vere cuts to leaf edge and midrib are inflicted during harvesting and 
post-harvest processing. Bacterial diversity and abundance decrease 
from harvesting to bag. Bacterial, but not fungal, species specific to 
different harvesting and processing steps substantially exceed core 
microbiota species. Abundance of Pseudomonadaceae, especially the 
genus Pseudomonas comprising diverse spoilage microorganisms and 
plant pathogens, increases during washing. Enterobacteriaceae shows a 
similar trend. Moraxellaceae abundance is reduced by washing, but it 
quickly recolonizes processed leaves due to its psychrotrophic lifestyle, 
cold-chain exclusion of mesophilic competitors, and nutrient release 
from damaged sites on leaves. 
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