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Abstract
Aim: Tree crowns determine light interception, carbon and water exchange. Thus, 
understanding the factors causing tree crown allometry to vary at the tree and stand 
level matters greatly for the development of future vegetation modelling and for the 
calibration of remote sensing products. Nevertheless, we know little about large-scale 
variation and determinants in tropical tree crown allometry. In this study, we explored 
the continental variation in scaling exponents of site-specific crown allometry and as-
sessed their relationships with environmental and stand-level variables in the tropics.

mailto:loubotagrace@gmail.com
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1  | INTRODUC TION

Tree crowns form the interface between the terrestrial biosphere and 
the atmosphere and determine light interception and gas exchange 
of carbon and water through photosynthesis and evapotranspiration 
(Santiago et al., 2004; Strigul et al., 2008). As a result, tree crowns 
not only influence the growth, mortality and fecundity of individual 
trees (Pacala et al., 1996), but they also shape the local light envi-
ronment, microclimate and biogeochemical fluxes of ecosystems 
(Montgomery & Chazdon, 2001). Characterizing tree crowns is of 
increasing importance for remote sensing methods, a crucial suite 
of tools to improve the monitoring of terrestrial ecosystems (Jucker 
et al., 2017). Nowhere is this more urgent than in tropical forests 
and savannas, which store 40–50% of the global vegetation carbon 
(Pan et al., 2011). For instance, taking into account crown dimen-
sions in tropical forests can substantially improve estimation of tree 
biomass at the tree scale (Goodman et al., 2014; Ploton et al., 2016) 
and explain plot-scale spatial variation in biomass and carbon stocks 
(Loubota Panzou et al., 2018; Meyer et al., 2018). However, ground 

measurements of tree crowns are challenging and time consuming; 
therefore, they are available for only few sites and trees within in-
ventory plots.

Tree crown allometry, which describes scaling relationships be-
tween the crown dimensions (crown area, crown depth and crown 
volume) and more easily measurable variables, such as stem diam-
eter, is widely used in plant ecology to quantify ecosystem func-
tions. For a wide range of plants, the power-law model has been 
used to describe plant allometry between two tree dimensions 
(Niklas, 1994), and there has been much debate about the meaning 
of the power-law scaling exponents for tropical trees (Sileshi, 2014). 
For example, the scaling exponent from tree height–stem diameter 
and crown dimensions–stem diameter allometric relationships re-
veals mechanical constraints that prevent trees from buckling under 
their own weight (Greenhill, 1881; McMahon, 1971) and/or hydrau-
lic constraints (Ryan et al., 2006). In the tropics, scaling exponents 
from crown allometric relationships have been shown to vary be-
tween forests and savannas, with savanna tree crowns tending to 
be larger for a given stem diameter than those of forest trees at the 

Location: Global tropics.
Time period: Early 21st century.
Major taxa studied: Woody plants.
Methods: Using a dataset of 87,737 trees distributed among 245 forest and savanna 
sites across the tropics, we fitted site-specific allometric relationships between crown 
dimensions (crown depth, diameter and volume) and stem diameter using power-law 
models. Stand-level and environmental drivers of crown allometric relationships 
were assessed at pantropical and continental scales.
Results: The scaling exponents of allometric relationships between stem diameter 
and crown dimensions were higher in savannas than in forests. We identified that 
continental crown models were better than pantropical crown models and that con-
tinental differences in crown allometric relationships were driven by both stand-level 
(wood density) and environmental (precipitation, cation exchange capacity and soil 
texture) variables for both tropical biomes. For a given diameter, forest trees from 
Asia and savanna trees from Australia had smaller crown dimensions than trees in 
Africa and America, with crown volumes for some Asian forest trees being smaller 
than those of trees in African forests.
Main conclusions: Our results provide new insight into geographical variability, with 
large continental differences in tropical tree crown allometry that were driven by 
stand-level and environmental variables. They have implications for the assessment 
of ecosystem function and for the monitoring of woody biomass by remote sensing 
techniques in the global tropics.

K E Y W O R D S

crown allometry, environment, forest, precipitation, savanna, soil, stand-level variable, 
tropical biomes
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species scale (Archibald & Bond, 2003) and the site scale (Shenkin 
et al., 2020). However, the scaling exponents of crown allometric 
relationships do not change when comparing three neighbouring 
forest typologies (mixed forests, edge forests and regrowth forests) 
that have different light availability (Sellan et al., 2017).

Previous studies showed variation in crown allometry among 
tropical sites or regions (Blanchard et al., 2016; Loubota Panzou 
et al., 2018; Moncrieff et al., 2014; Shenkin et al., 2020). At a large 
scale, environmental variables are important in explaining differ-
ences in crown allometry among sites or regions in tropical biomes. 
For a given stem diameter, longer dry seasons appear to induce 
narrower crowns in the forest biome (Barbier et al., 2010) and in 
the savanna biome (Moncrieff et al., 2014). Likewise, mean annual 
temperatures were negatively related to crown diameters of trees 
at 20 cm stem diameter in savannas (Moncrieff et al., 2014) but 
no consistent pattern in species crown diameters was reported in 
Mediterranean forests for a range of mean annual temperatures 
varying from c. 6 to 17°C (Lines et al., 2012) at a given stem diameter. 
Soil physical and/or chemical properties might also affect variation 
in crown dimensions. For example, high rainfall regimens combined 
with poor drainage have been found to favour small crown dimen-
sions in certain regions of the Amazon Basin (Barbier et al., 2010). 
Likewise, trees in sites with high sand content tended to have small 
crown diameters at 20 cm stem diameter in African and Australian 
savannas (Moncrieff et al., 2014).

Interspecific relationships with wood density in crown allometric 
relationships can also reflect environmental filtering, because spe-
cies with high wood density are more likely to be found in highly 
shaded environments (Wright et al., 2010) and on soils with lower 
fertility (Muller-Landau, 2004; Quesada et al., 2012). At a given 
tree height, species with high wood density show wider and deeper 
crowns than species with low wood density (Forrester et al., 2017; 
Iida et al., 2012). However, increased competition between individual 
trees has a negative influence on crown width (Forrester et al., 2017; 
Lines et al., 2012) and a positive influence on crown depth (Forrester 
et al., 2017). All else being equal, narrower crowns in savannas have 
been associated with higher tree densities (Moncrieff et al., 2014).

In the tropics, there have been only three studies in the whole 
tropics to assess tree crown allometric relationships and their driv-
ers at a large scale (Blanchard et al., 2016; Moncrieff et al., 2014; 
Shenkin et al., 2020), and none has yet evaluated such relation-
ships at the pantropical scale. Nevertheless, understanding the 
exact nature of crown allometry and the factors causing tree crown  
allometry to vary at the tree or stand level matters greatly for the 
development of future vegetation modelling and for the calibration 
of remote sensing products.

The aim of this study was to identify the determinants of crown 
allometry in tropical biomes by fitting site-specific crown allometric 
relationships between crown dimensions and stem diameter using 
power-law models and assessing their statistical associations with 
stand-level and environmental variables and their fit to theoretical 
predictions. We addressed two research questions. First, do scaling 
exponents derived from crown allometric relationships differ among 

tropical forests and savannas? We expect that scaling exponents 
from crown allometric relationships are smaller for trees in forest 
than in savanna at continental scale. Second, how do stand-level 
and environmental variables influence crown allometric relation-
ships at pantropical and continental scales? We expect that there 
are continental differences in crown allometry after accounting for 
stand-level and environmental variables, as reported by Feldpausch 
et al. (2011) and Banin et al. (2012) for tree height allometries. We 
tested these hypotheses by assembling the largest pantropical data-
set compiled to date of ground-acquired, geographically dispersed 
information on tree crown dimensions (crown depth, diameter and 
volume) from 205 forest and 40 savanna sites, totalling 87,737 trees 
in Africa, America, Asia and Australia (Figure 1).

2  | MATERIAL S AND METHODS

2.1 | Data collection

We assembled information on tree crown dimensions available 
from published and unpublished sources for the two major tropi-
cal biomes: forest and savanna (for data sources, see the Appendix 
Table A1). We considered the limit between open-canopy (savanna) 
and closed-canopy (forest) systems as 50% of tree cover (Torello-
Raventos et al., 2013; Veenendaal et al., 2015). For this pantropi-
cal analysis, we included sites that were unlogged areas and where 
≥30 trees over a large range of stem diameter had crown dimensions 
measured for each site. A total of 245 sites, including 205 forest 
sites and 40 savanna sites, were compiled across the tropics (within 
23° north and south of the Equator) from Africa, America, Asia and 
Australia (Figure 1). Within each site, most trees were identified to 
species, but unidentified trees were also kept in the database.

For each tree, we considered three crown dimensions, namely 
crown depth (Cdep, in metres), crown diameter (Cdia, in metres) and 
crown volume (Cvol, in cubic metres), which were associated with stem 
diameter (D, in centimetres) measured at breast height (1.3 m) for reg-
ular stems or above the top of the buttresses for irregular stems. The 
Cdep was defined as the depth of the crown, calculated as the differ-
ence between total tree height (H, in metres) and the bole height, de-
fined as the height from the ground to the first living branch or to the 
lowest foliage (Hf, in metres). Heights were measured for most trees 
using a trigonometric approach with either a manual clinometer or 
an electronic hypsometer. The Cdia was the crown width or diameter 
for regular crowns, most often obtained from ground measurements 
of several crown radii (corresponding to the cardinal and inter-car-
dinal directions) that were averaged and multiplied by two. In a few 
sites, values of Cdia were derived from manually delimited crowns 
on high-resolution aerial photographs. The Cvol was calculated from 
crown depth and crown diameter, assuming an ellipsoid shape. For 
most crown data, the crown measurement protocols were standard-
ized (Loubota Panzou & Feldpausch, 2020) with quality-controlled 
tropical crown data uploaded to ForestPlots.net (Lopez-Gonzalez 
et al., 2009, 2011), which includes major tropical plot networks, such 
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as RAINFOR in Amazonia (Malhi et al., 2002; Quesada et al., 2012), 
AfriTRON in Africa (Lewis et al., 2009), T-FORCES in South-East Asia 
(Qie et al., 2017) and TROBIT at the global interface of savanna and 
forest (Lloyd et al., 2015). The criteria for including individual crown 
measurements were as follows: (a) tree stems were not broken; and 
(b) height measurements for determining crown depth were mea-
sured using clinometers, laser rangefinders, laser hypsometers or 
directly by climbing. After screening for quality control, our data-
set consisted of 87,737 trees, including 59,162 trees for Cdep, 72,998 
trees for Cdia and 44,422 trees for Cvol (Figure 1) over a large range of 
D, 0.22–293 cm in forests and 1–200 cm in savannas.

2.2 | Stand-level and environmental variables

For each site, the stand-level variables included stand structural vari-
ables, such as maximum height (Hmax, in metres) and wood density (⍴, 
in grams per cubic centimetre), also known as wood specific gravity 
(Supporting Information Table S1). These two stand-level variables 
depend on the subset of trees/species selected for allometry meas-
urements and reflect the successional stage of the studied sites, 

where young regenerating stands in the wet tropics will have low 
Hmax and ⍴ relative to old-growth stands. The Hmax was calculated 
for each site as the 95th percentile total height of the sampled trees. 
The ⍴ was estimated using species names that allow assignment of ⍴ 
corresponding to the species or genus average from the global wood 
density database (Chave et al., 2009; Zanne et al., 2009). Site-level ⍴ 
means were weighted by the number of stems of each taxon.

Using the geographical coordinates of each site, interpolated 
values of 16 environmental variables, including 11 climatic and 
five soil variables, were obtained from online global databases. 
Mean annual precipitation (A, in millimetres), the precipitation 
coefficient of variation (S), mean annual temperature (T, in de-
grees Celsius), mean annual solar radiation (Q, in watts per square 
metre), mean annual wind speed (U, in metres per second), mean 
water vapour pressure (V ) and elevation (Al, in metres) were ob-
tained from WorldClim global coverage at c. 1 km2 spatial resolu-
tion based on meteorological station data from 1970–2000 (Fick 
& Hijmans, 2017). The aridity index (Ar) and potential evapotrans-
piration (P) were extracted at c. 1 km2 spatial resolution from the 
Consortium of Spatial Information (CGIAR-CSI) website (www.
cgiar -csi.org) for data from 1970–2000 (Trabucco & Zomer, 2019). 

F I G U R E  1   (a) Overview of the pantropical tree crown dataset for the four continents (Africa, America, Asia and Australia) including 
87,737 trees from 205 forest and 40 savanna sites on a global map, with one point corresponding to a study site. (b–d) Number of samples 
(n) and the violin plots of the distribution of crown depth (b), crown diameter (c) and crown volume (d) [Colour figure can be viewed at 
wileyonlinelibrary.com]

http://www.cgiar-csi.org
http://www.cgiar-csi.org
www.wileyonlinelibrary.com
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The climate water deficit (C) and environmental stress factor (E) 
were obtained from the global gridded layer at 2.5 arc s resolu-
tion (http://chave.ups-tlse.fr/pantr opical_allom etry.htm). Two soil 
chemical properties [pH in water (pH) and cation exchange capac-
ity (CEC)] and three soil physical properties [sand content (50–
2,000 µm), silt content (2–50 µm) and clay content (0–2 µm) mass 
fraction] were extracted from the SOILGRIDS project (https://soilg 
rids.org/, licensed by ISRIC, World Soil Information), downloaded 
at 250 m resolution. We generated predictions at seven standard 
depths for all numerical soil properties: 0, 5, 15, 30, 60, 100 and 
200 cm. Averages over (standard) depth intervals, 0–30 cm, were 
derived by taking a weighted average of the predictions within the 
depth interval using the method developed by Hengl et al. (2017).

To avoid collinearity and reduce the number of environmental 
variables to test in our models, we retained only weakly correlated 
variables (|r| < .6) for modelling purposes. For the analyses, we re-
tained four climate variables (A, S, Q and U), four soil variables (CEC, 
pH, clay and silt) and the two stand-level variables (Hmax and ⍴). The 
median and range of key site-level environmental and stand variables 
by continent are shown in the Supporting Information (Table S1).

2.3 | Data analysis

As a preliminary analysis, we ignored site-level differences and 
aggregated data for all sites within each continent according to 
three stem diameter (D) classes: the lower stratum with small trees 
(D ≤ 20 cm), the middle stratum with large trees, most of which reach 
the canopy (20 cm < D ≤ 40 cm), and the upper stratum correspond-
ing to the largest trees, which are either in the canopy or emergent, 
with D > 40 cm. This distribution of three stem diameter classes 
has been used to take into account the variability in crown dimen-
sions that can exist between different strata of the ecosystem, as 
shown by several studies on forest structure in the tropics (Bastin 
et al., 2018; Slik et al., 2013). Given the non-normality and skewed 
distributions of the data, we used the nonparametric Kruskal–Wallis 
rank sum test to evaluate differences in crown dimensions by con-
tinent according to stem diameter classes. For the nonparametric 
Kruskal–Wallis test (Hollander & Wolfe, 1973), the null hypothesis 
was “no difference between medians for each variable”. When the 
null hypothesis was rejected, we conducted post hoc Kruskal–Wallis 
multiple comparisons between medians (Siegel & Castellan, 1988).

Crown allometric relationships were fitted between crown di-
mensions and stem diameter using power model (Y ∼ βD

�

+ ei) which 
is linearized via the log10-transformation:

where α and β are the scaling exponent (slope) and intercept, re-
spectively, e is the error term, D is stem diameter, and y represents 
crown depth, crown diameter or crown volume of tree i.

To investigate variation in the scaling exponent among crown di-
mensions–stem diameter allometric relationships, we first estimated 

the model coefficients (intercept and slope) from crown allometric 
relationships for each site and the means across sites for each con-
tinent. Next, we used Student's unpaired t tests to compare the 
means of scaling exponents for crown allometric relationships at the 
continental level between the forest and savanna.

To examine how crown–stem diameter allometric relationships 
at the tree level were influenced by stand-level (Hmax and ⍴) and en-
vironmental variables (A, S, Q, U, CEC, pH, clay and silt), log–log re-
gressions were used. In these regressions, log10-transformed crown 
dimensions (depth, diameter and volume) were the response variable 
and log10-transformed stem diameter was an independent variable. 
These regressions were performed as mixed-effects linear models, 
where site (nested in geographical location) was incorporated as a 
random effect factor. The incorporation of appropriate random 
effects ensured that the model parameters were accurate and ap-
propriate to generalize the conclusions (Bolker et al., 2009). Four 
alternative log–log mixed-effect regressions were tested: (1) a null 
crown dimensions–stem diameter allometric model without stand-
level or environmental predictors; (2) a crown dimensions–stem 
diameter allometric model with stand-level variables; (3) a crown di-
mensions–stem diameter allometric model with environmental vari-
ables; and (4) a crown dimensions–stem diameter allometric model 
including stand-level and environmental variables. Stand-level and 
environmental attributes were incorporated as fixed-effect factors 
affecting the intercept and the slope (interaction between each 
stand-level and environmental variable with stem diameter) in mod-
els 2, 3 and 4 as appropriate. These four alternative models were 
performed at the pantropical and the continental scales, with the 
continent as a fixed-effect factor affecting the intercept and the 
slope between crown dimensions and stem diameter. A total of eight 
alternative log–log mixed-effect regressions were tested for each 
response variable at both pantropical and continental scales. These 
eight crown dimensions–stem diameter allometric models were fit-
ted for forest and savanna biomes separately, with model selection 
based on the lowest Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) values (Burnham & Anderson, 2002). A 
pseudo-R-squared (R2) for log–log mixed regressions was used to as-
sess the quality of model fit. We report both the marginal R2 (R2

m), 
which includes the variance of fixed factors, and the conditional R2 
(R2

c), which includes the variance of both the fixed and random fac-
tors and is, as a result, always higher (Nakagawa & Schielzeth, 2013).

All statistical analyses were computed using the open-source 
R environment (R Core Team, 2018), using the following pack-
ages: “lme4” for linear mixed regression (Bates et al., 2015); 
“MuMIn” for calculating pseudo-R-squared (R2) values for linear 
mixed regression (Barton, 2019); PGIRMESS package for post 
hoc test (Giraudoux, 2013); and “ggplot2” for graphical outputs 
(Wickham, 2016). The conditions of normality and homoscedastic-
ity of residuals were checked graphically and with Shapiro–Wilk and 
Breusch–Pagan tests, respectively. When these conditions were 
invalidated, a nonparametric test (Kruskal–Wallis rank sum test) 
was used to test the differences in crown dimensions. We chose 
nonparametric tests because most of the variables had skewed 

(1)log
(

yi
)

= β + α × log
(

Di

)

+ ei

http://chave.ups-tlse.fr/pantropical_allometry.htm
https://soilgrids.org/
https://soilgrids.org/
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distributions that would have required data transformations to meet 
the assumptions of parametric tests.

3  | RESULTS

3.1 | Overview of the pantropical crown dimensions

Intercontinental differences in crown dimensions were visible 
through all three stem diameter classes (Figure 2). Following the 
stem diameter classes, the rank order of crown size for each con-
tinent was from largest to smallest for forest trees. The patterns 
were less clear for savanna trees. The differences of tree crowns 
between Africa and America were substantial but differed by biome. 
African trees had larger median crown dimensions for forests, and 
American trees had the larger median crown dimensions for savan-
nas. Interestingly, the differences between Africa and Australia in 
all crown dimensions could be observed solely in the smallest stem 

diameter class for forest trees, and for crown diameter in the highest 
stem diameter class for the savanna trees.

3.2 | Scaling exponent of crown allometry

Our pantropical analysis provided strong support for the hypothesis 
that the scaling of crown dimensions–stem diameter allometric rela-
tionships differed between trees in savanna compared with trees in 
forest at the continental scale (Figure 3). For all trees together in each 
biome, the mean scaling exponent of crown allometric relationships 
tended to be significantly higher in savanna than in forest (Table 1).

3.3 | Continental–stand–environment model

Crown dimensions–stem diameter allometric relationships includ-
ing a continent effect had a slightly better fit to the data, based on 

F I G U R E  2   Distribution of crown depth, crown diameter and crown volume according to three stem diameter (D) classes: the lower 
stratum with small trees (D ≤ 20 cm), the middle stratum with large trees, most of which reach the canopy (20 cm < D ≤ 40 cm), and the 
upper stratum corresponding to the largest trees, which were either in the canopy or emergent, with D> 40 cm. Lines with median (filled 
circle) indicate upper and lower .05 quantiles for crown depth and crown diameter or .5 quantiles for crown volume. Different letters and 
numbers within each panel indicate significant differences (p < .05 with Kruskal–Wallis test) among continents for the forest and savanna 
biome, respectively
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AIC and BIC values, than the general pantropical models for four 
alternative log–log mixed regressions in both biomes (Table 2). At the 
continental scale, the goodness-of-fit (R2

m and R2
c) of both biomes 

was high for four alternative log–log mixed regressions, with an av-
erage of R2

m = .52 (range = .45–.59) and R2
c = .61 (range = .56–.65) 

for crown depth–stem diameter allometric relationships, R2
m = .55 

(range = .38–.72) and R2
c = .80 (range = .62–.99) for crown diameter–

stem diameter allometric relationships, and R2
m = .55 (range = .31–

.77) and R2
c = .77 (range = .73–.80) for crown volume–stem diameter 

allometric relationships (Table 2). Among the four alternative log–log 
mixed regressions, we identified that continental models including 
both stand-level and environmental variables were the best models 
(Table 2), indicating that continental crown allometric relationships 
were influenced by both stand-level and environmental variables 
rather than by only one set of variables in both biomes.

The precipitation influenced the slope and the intercept of crown 
allometric relationships in both biomes (Supporting Information 
Table S2). A higher scaling exponent from crown allometric relation-
ships was related negatively to precipitation. The wind speed and 
solar radiation were also significant in crown allometric relation-
ships in the forest biome. For the same stem diameter, trees with 
deeper and wider crowns were associated with higher wind speed 
and lower solar radiation in the forest biome. In addition, the soil 
chemical properties (CEC) and soil texture (silt and clay) showed con-
trasting influence on the slopes and intercepts of crown allometric 
relationships in both biomes (Supporting Information Table S2). For a 
given stem diameter, high CEC was associated with deeper and nar-
rower crowns than low CEC. Crown depth was associated positively 

with clay and negatively with silt content, whereas the crown diam-
eter and crown volume were associated negatively with clay and silt 
contents for the same stem diameter. Finally, the wood density was 
the main stand-level variable that influenced the crown depth–stem 
diameter allometry positively and the crown volume–stem diameter 
allometry negatively (Supporting Information Table S2).

When the same best crown dimensions–stem diameter allome-
tric model, which includes environmental variables and stand-level 
variables, was applied to all continents (Table 3), trees from Asian 
forest and from Australian savanna had lower crown dimensions 
than trees in Africa and America (Figure 4). The one exception was 
that crown diameters for Australian savanna trees were similarly 
small to the crown diameters of Asian forest trees. This indicates 
that Asian forest trees and Australian savanna trees had different 
crown allometric relationships compared with all the other regions, 
even taking into account the environmental and stand variables used 
in this study.

4  | DISCUSSION

In this study, we found that stand-level (wood density) and environ-
mental (precipitation, CEC and soil texture) variables explained the 
variation of crown dimensions–stem diameter allometric relation-
ships within both tropical biomes. Crown allometric relationships 
differed between trees in savanna compared with trees in forest. 
Scaling exponents for savanna trees tended to be much higher com-
pared with that of forest trees. The comparison of models among 
continents highlighted that forest trees from Asia and savanna trees 
from Australia have smaller crown dimensions than trees in Africa 
and America. Our results provide new important insights into the 
geographical variability of tropical tree crown allometry, which will 
improve the assessment of woody biomass by remote sensing tech-
niques in the tropics.

4.1 | Contrasting crown allometry between 
forest and savanna trees

The hypothesis of contrasting crown dimensions–stem diameter 
allometric relationships between the two major tropical biomes 
has been confirmed by this study, in agreement with the results of 

F I G U R E  3   Crown allometric 
relationships between stem diameter and: 
(a) crown depth; (b) crown diameter; and 
(c) crown volume, for each continent in the 
forest and savanna. Mean values of the 
model coefficients with 95% confidence 
intervals of the scaling exponent [Colour 
figure can be viewed at wileyonlinelibrary.
com]

TA B L E  1   Mean and 95% confidence interval [lower–upper] of 
scaling exponent with Student's unpaired t test (p-value) for the 
significant differences between forest and savanna for crown 
depth–stem diameter (Cdep–D allometry), crown diameter–stem 
diameter (Cdia–D allometry) and crown volume–stem diameter 
(Cvol–D allometry) allometries

Cdep–D 
allometry

Cdia–D 
allometry

Cvol–D 
allometry

Forest 0.60 [0.47–0.72] 0.63 
[0.57–0.69]

1.88 [1.64–2.12]

Savanna 0.69 [0.67–0.72] 0.75 
[0.67–0.82]

2.15 [2.10–2.21]

p-value .015 .003 .036

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Shenkin et al. (2020). Our results indicated that the scaling expo-
nent derived from crown allometric relationships tended to be much 
higher in savanna than in forest (Figure 3). Small-sized trees in sa-
vanna had smaller crowns, but large-sized trees had larger crowns 
than in forest. The allocation to vertical and lateral crown growth 
increases at larger stem diameters in savannas, but is less marked 
for large individuals in forests (Muller-Landau et al., 2006). The dif-
ferences in scaling exponent between forest (closed canopy) trees 
and savanna (open canopy) trees are probably also related to light 
availability, which is central to metabolic scaling theory (MST) pre-
dictions (Muller-Landau et al., 2006). Crown scaling exponents from 
MST varied across environmental gradients and biogeographical 
regions (Shenkin et al., 2020). For all trees together, the scaling ex-
ponent of the open canopy tended to be close to the MST predic-
tions. Savannas are open systems that do not form closed canopies 
(Ratnam et al., 2011); therefore, the consistency of savanna trees 
with MST predictions might be attributable to the development of 
the height and width of tree crowns being unconstrained by competi-
tion for light. In this way, trees could achieve the optimal relationship 

among crown dimensions and stem diameter predicted by the MST 
model. In contrast, previous studies showed the lack of correspond-
ence of observed crown scaling allometry of the closed canopy to 
MST predictions (Blanchard et al., 2016; Muller-Landau et al., 2006).

Specific environmental conditions within each tropical biome 
could also explain the difference in scaling exponents between the 
savanna and the forest. The higher scaling exponent values in savanna 
trees might be related to two important factors: fire and herbivory. 
Savanna trees develop specific ecological strategies to reduce the risk 
of being killed by fire, a key element of mortality for savanna trees. 
Individuals with smaller stem diameter have a higher vulnerability to 
vascular cambium and xylem damage from fire (Lawes et al., 2011; 
Ryan & Williams, 2011). Likewise, browsing pressure by large mam-
mals that roam in savanna areas should be important, and might 
alter crowns of small trees. For instance, wider canopies in savanna 
might protect inner canopy leaves from herbivory by non-arboreal 
mammals (Archibald & Bond, 2003). In this study, we found smaller 
scaling exponent values for crown allometric relationships for forest 
trees. The scaling relationships between crown dimensions and stem 

TA B L E  2   Summary of statistical tests using mixed-effects models to determine the effects of structural and environmental (climate and 
soil) variables for crown depth–stem diameter (Cdep–D allometry), crown diameter–stem diameter (Cdia–D allometry) and crown volume–stem 
diameter (Cvol–D allometry) allometries in the forest and savanna biomes

Cdep–D allometry Cdia–D allometry Cvol–D allometry

AIC BIC R2
m R2

c AIC BIC R2
m R2

c AIC BIC R2
m R2

c

Forest

Pantropical model

Simple 90,067 90,103 .48 .56 90,112 90,148 .43 .68 141,963 141,997 .37 .78

Stand-level only 73,786 73,857 .51 .57 70,583 70,652 .41 .61 114,225 114,292 .34 .72

Environment only 66,862 67,036 .45 .57 82,202 82,382 .32 .99 127,575 127,575 .31 .78

Stand + environment 51,930 52,134 .55 .62 63,003 63,210 .31 .99 102,587 102,587 .30 .73

Continental model

Simple 89,748 89,838 .49 .56 89,730 89,820 .42 .68 141,653 141,739 .40 .78

Stand-level only 73,701 73,824 .51 .57 70,263 70,385 .42 .62 114,016 114,135 .36 .73

Environment only 66,684 66,910 .45 .57 82,159 82,392 .38 .99 127,388 127,610 .34 .78

Stand + environment 51,768 52,023 .55 .62 62,882 63,140 .40 .99 102,394 102,644 .31 .74

Savanna

Pantropical model

Simple 1,225 1,246 .52 .64 10,093 10,122 .64 .74 2,488 2,508 .73 .77

Stand-level only 1,245 1,277 .52 .64 10,000 10,044 .68 .75 2,492 2,522 .74 .78

Environment only 1,083 1,114 .53 .66 6,512 6,554 .67 .77 2,143 2,172 .73 .78

Stand + environment 1,103 1,144 .53 .66 6,335 6,391 .71 .79 2,148 2,187 .76 .79

Continental model

Simple 1,234 1,265 .52 .64 9,359 9,418 .69 .76 2,490 2,520 .72 .77

Stand-level only 1,253 1,295 .52 .64 9,372 9,445 .72 .77 2,494 2,534 .74 .78

Environment only 1,089 1,130 .52 .65 6,242 6,312 .66 .79 2,135 2,174 .77 .80

Stand + environment 1,101 1,152 .59 .62 6,251 6,335 .70 .80 2,132 2,180 .77 .80

Note: Significant relationships are shown in bold. Common indices [Akaike information criterion (AIC) and Bayesian information criterion (BIC) values] 
with marginal R2 (R2

m) and conditional R2 (R2
c) for four alternative log–log mixed regressions: a null model without fixed effects (simple); a model with 

stand-level variables (stand); a model with environmental variables (environment); and a model including stand-level and environmental variables (all), 
at pantropical and continental scales.
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diameter govern how forest trees utilize canopy space and compete 
for light (Farrior et al., 2016; Muller-Landau et al., 2006). Once trees 
are freed from competition for light in the understorey, the dramatic 
increase in light availability elicits a change in the pattern of resource 

allocation towards more investment in lateral crown expansion in the 
canopy and less investment in height growth (Alves & Santos, 2002; 
Barthélémy & Caraglio, 2007).

TA B L E  3   The fitted model has be written in terms of its fixed effects only, including (Hmax = maximum height; ⍴ = wood density,) and 
environmental (A = precipitation; CEC = cation exchange capacity; pH, silt and clay content; Q = solar radiation; S = precipitation seasonality; 
U = wind speed) variables for crown depth–stem diameter (Cdep–D allometry), crown diameter–stem diameter (Cdia–D allometry) and crown 
volume–stem diameter (Cvol–D allometry) allometries in the forest and savanna biomes

Cdep–D allometry Cdia–D allometry Cvol–D allometry

Forest biome

Pantropical log(Cdep) = 0.052 + 0.648 × log(D) + 0.141 × Hmax 
+ 0.339 × 0.085 × ρ × log(D) + 0.049 × U × log(D) 
+ 0.190 × 0.057 × S × log(D) + 0.234 × A − 0.066 
× A × log(D) − 0.153 × CEC + 0.047 × CEC × 
log(D) + 0.294 × pH −0.135 × pH × log(D) − 0.106 
× silt + 0.022 × silt × log(D) − 0.101 × clay − 
0.032 × clay × log(D)

log(Cdia) = 0.526 + 0.718 × log(D) 
− 0.060 × Hmax × log(D) + 
0.053 × ρ × log(D) − 13.160 × U + 
0.033 × U × log(D) − 3.671 × Q + 
0.042 × Q × log(D) − 7.052 × S + 
0.104 × S × log(D) + 0.297 × A − 
0.104 × A × log(D) + 0.091 × CEC 
− 0.028 × CEC × log(D) + 
0.282 × pH − 0.064 × pH × log(D) + 
0.227 × silt − 0.062 × silt × log(D) − 
0.423 × clay + 0.102 × clay × log(D)

log(Cvol) = 0.815 + 1.561 × log(D) − 
0.152 × Hmax × log(D) − 0.615 × ρ 
+ 0.131 × ρ × log(D) − 0.425 × S + 
0.160 × S × log(D) + 1.108 × A − 
0.349 × A × log(D) + 0.579 × CEC 
− 0.152 × CEC × log(D) − 2.811 × pH 
+ 0.783 × pH × log(D) + 0.221 × silt 
− 0.075 × silt × log(D) − 1.937 × clay 
+ 0.413 × clay × log(D)

Continental log(Cdep) = βc + αc × log(D) + 0.029 × Hmax 
× log(D) + 0.331 × ρ − 0.083 × ρ × 
log(D) − 0.171 × U + 0.092 × U × log(D) 
+ 0.088 × Q − 0.027 × Q × log(D) − 
0.070 × S + 0.024 × S × log(D) + 0.159 × A 
− 0.040 × A × log(D) − 0.162 × CEC 
+ 0.049 × CEC × log(D) + 0.202 × pH 
− 0.094 × pH × log(D) − 0.076 × silt 
+ 0.012 × silt × log(D) − 0.066 × clay 
− 0.044 × clay × log(D)

log(Cdia) = βc + αc × log(D) − 
0.092 × Hmax × log(D) + 0.058 × ρ 
× log(D) + 13.190 × U + 
0.033 × U × log(D) − 3.719 × Q + 
0.057 × Q × log(D) − 7.002 × S + 
0.092 × S × log(D) + 0.256 × A − 
0.088 × A × log(D) + 0.082 × CEC 
− 0.025 × CEC × log(D) + 
0.270 × pH − 0.069 × pH × log(D) + 
0.225 × silt − 0.060 × silt × log(D) − 
0.449 × clay + 0.115 × clay × log(D)

log(Cvol) = βc + αc × log(D) 
− 0.146 × Hmax × log(D) − 
0.611 × ρ + 0.114 × ρ × log(D) + 
0.095 × S × log(D) + 1.213 × A − 
0.386 × A × log(D) + 0.468 × CEC 
− 0.119 × CEC × log(D) − 2.680 × pH 
+ 0.755 × pH × log(D) + 0.303 × silt 
− 0.096 × silt × log(D) − 1.947 × clay 
+ 0.414 × clay × log(D)

Africa βc = 0.187 and αc = 0.607 βc = 6.150 and αc = 0.820 βc = 0.648 and αc = 1.528

America βc = −0.186 and αc = 0.012 βc = −4.830 and αc = −0.087 βc = −0.063 and αc = 0.102

Asia βc = −0.727 and αc = 0.221 βc = −3.148 and αc = −0.160 βc = −0.179 and αc = −0.014

Australia βc = 0.838 and αc = −0.314 βc = −21.820 and αc = −0.414 βc = 1.666 and αc = −0.259

Savanna biome

Pantropical log(Cdep) = −11.466 + 3.498 × log(D) + 
1.668 × Hmax + 0.1700 × ρ + 6.219 × Q − 
2.458 × S − 7.578 × CEC + 18.890 × pH 
− 4.600 × clay

log(Cdia) = −0.134 + 0.529 × log(D) 
+ 0.127 × ρ − 0.022 × ρ × 
log(D) − 0.075 × U × log(D) − 
0.111 × Q × log(D) − 0.177 × S + 
0.134 × S × log(D) + 0.352 × A − 
0.139 × A × log(D) + 0.462 × pH + 
0.622 × silt − 0.191 × silt × log(D) − 
0.383 × clay + 0.166 × clay × log(D)

log(Cvol) = 4.016 + 1.455 × log(D) 
− 0.897 × Hmax × log(D)

Continental log(Cdep) = βc + αc × log(D) +1.376 × Hmax 
+ 1.945 × ρ +6.859 × Q − 5.149 × CEC + 
17.889 × pH

log(Cdia) = βc + αc × log(D) + 
0.107 × ρ − 0.067 × U × log(D) − 
0.122 × Q × log(D) − 0.163 × S 
+ 0.122 × S × log(D) − 
0.128 × A × log(D) + 0.603 × silt − 
0.181 × silt × log(D) − 0.404 × clay 
+ 0.153 × clay × log(D)

log(Cvol) = βc + αc × log(D) 
− 0.861 × Hmax × log(D)

Africa βc = −10.156 and αc = 3.222 βc = −0.240 and αc = 0.571 βc = 4.684 and αc = 1.248

America βc = 2.565 and αc = −0.541 βc = 0.442 and αc = −0.125 βc = 2.497 and αc = −0.775

Australia Not assessed βc = 0.150 and αc = −0.024 Not assessed
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4.2 | Determinants of the tropical crown allometry

Allometric relationships indicate how trees modify and react to 
their growing patterns and provide clues about the physiological, 
mechanical and environmental factors that constrain their develop-
ment. Taking into account stand-level and environmental variables 
in crown dimensions–stem diameter allometry improved continental 
crown allometric models. The best continental–stand–environment 
models in tree crown allometries included climate (precipitation and 
wind speed), soil texture and stand-level variables.

Annual precipitation and precipitation seasonality significantly 
influenced crown dimensions–stem diameter allometric relationships 
across continents for the two tropical biomes. Crown dimensions at 
a given stem diameter were negatively related to precipitation for 
forest trees, indicating that water impacts tree allocation to crown 
development. At the lower end of the rainfall gradient, forest trees 
developed deeper and larger crowns compared with savanna trees. 
The positive correlation of crown dimensions with precipitation sea-
sonality might indicate that lack of soil water availability for trees in 
both biomes, especially during the dry season, can promote crown 
lateral development. Likewise, wind speed had positive effects in 
crown allometric relationships for forest trees. In sites with high av-
erage wind speeds, trees developed deeper and wider crowns com-
pared with forests having low average wind speeds. Tropical forest 
trees develop larger crowns at smaller stem sizes in response to wind 
dynamic loading. In contrast, tropical savanna regions have mark-
edly higher average annual wind velocities (Supporting Information 
Table S1), with negative effects on crown allometric relationships 
(Supporting Information Table S2). These high average wind speeds 
are likely to perturb the display of individual leaves, branches and 
tree crowns, resulting in increased light availability. In addition, low 
solar radiation was associated with deeper and narrower crowns in 
the forest and wider crowns in the savanna (Supporting Information 
Table S2). This could be explained by there being less lateral light 
availability owing to neighbouring canopies in forest compared with 
the more widely spaced canopies in savanna (Forrester et al., 2018).

Soil variables were also environmental determinants of crown 
allometry and explained continental differences in crown allometric 
relationships in tropical forests. In general, crown width and volume, 

but not crown depth, were negatively related to silt and clay content 
for forest trees. Forest sites on clay-rich soils had shallower and nar-
rower crowns than trees growing on sandy soils. This indicates that 
water availability is a key factor, with drier, well-drained, coarse-tex-
tured soils supporting higher crown dimensions, as shown in the 
Amazon (Barbier et al., 2010).

Lastly, wood density had a significant influence in the forest 
crown allometric models. Forest trees with low wood density were 
able to increase crown depth substantially with stem diameter in tall 
canopy forest trees. Tall, mature forests usually consist of species 
with high wood density, with branches that persist for a longer time 
in deeper crowns because the leaves can be stacked in more layers 
(Slik, 2005).

4.3 | Continental differences in tropical 
crown allometry

Crown dimensions–stem diameter allometric relationships differed 
substantially across continents for the two tropical biomes, but 
these differences were better explained by the differing stand-level 
and environmental variables found on each continent than by bio-
geography. This indicates that crown dimensions could be predicted 
with some certainty for tropical areas, even those with access limi-
tations, based solely on environmental data that are available from 
global databases, rather than stand-level variables.

However, there were still some differences among continents 
that could not be accounted for by the model that included environ-
ment and structural variables. Comparing models in each continent, 
forest trees from Asia and savanna trees from Australia have smaller 
crown dimensions than trees in Africa and America. Differences in 
savanna allometry among continents might relate to the different 
evolutionary histories of African and Australian savannas, which 
share no woody species (Moncrieff et al., 2014). Likewise, evolu-
tionary history that affects crown allometric relationships might also 
explain the differences between Asian versus African and American 
tropical forest allometries. Asian forest trees are dominated by 
the Dipterocarpaceae, which have higher height–stem diameter 
allometry and lower wood density (Banin et al., 2012; Feldpausch 

F I G U R E  4   Between-continents differences using fixed-effects of mixed linear models with significant determinants (stand-level and 
environmental variables) from crown allometric relationships between ln(stem diameter) and: (a) ln(crown depth); (b) ln(crown diameter); and 
(c) ln(crown volume), in the forest (continuous lines) and savanna (dashed lines) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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et al., 2011) and tended to have significantly smaller crowns than 
trees in African and American forests. Moreover, for the tall, 
wind-dispersed trees that dominate Asian forests, a narrower crown 
would increase wind exposure of seeds within the crown, aid-
ing transport from the mother tree. In contrast, animal or ballistic 
dispersal dominate African and American forests, and the broad, 
stretching crown and massive branches are well suited for dropping 
these heavy fruits from a great height and helping spread away from 
the tree (Malhi et al., 2018). The understorey of Asian forests is dom-
inated by juveniles of canopy species with smaller crowns, whereas 
the understorey of American forests is reported to have a greater 
proportion of sub-canopy species with larger crowns (LaFrankie 
et al., 2006). In contrast, there is a unique phytogeographical affinity 
between African and American forests that is likely to be attribut-
able to the dominance of a particular lineage, the Fabaceae, the most 
basal members of the legume family, and with similar dominances of 
the same or closely related genera (LaFrankie, 2005). This might ex-
plain the similarity in crown allometric relationships between Africa 
and America. These intercontinental differences in composition and 
traits of the different forest strata remain to be explored further.

4.4 | Conclusions

Based on a large dataset of tree crown dimensions available from 
published and unpublished sources of tropical plot data, this study 
advances the understanding of large-scale variation and deter-
minants in tropical tree crown allometry. By analysing variation in 
crown dimensions–stem diameter allometric relationships across the 
global tropics and by accounting for their drivers, we found a general 
pattern for significantly smaller scaling exponents in crown allomet-
ric relationships in forests than in savannas. Our results highlight 
a significant role of environmental factors, including precipitation, 
wind speed and soil texture, in explaining intercontinental differ-
ences in the crown allometric relationships of tropical trees. These 
findings provide important insights, both for the development of fu-
ture vegetation modelling (e.g., to understand competition for light 
and its impacts on tree and forest structure) and for the calibration 
of remote sensing products (e.g., estimating crown attributes and 
the biomass of trees observed from air or from space). This world-
wide analysis of tropical tree crowns should therefore contribute to 
improving both the modelling and the assessment of tropical canopy 
and ecosystem function.
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APPENDIX 

DATA SOURCES
TA B L E  A 1 .  L i s t  o f  d a t a  s o u r c e s  u s e d  i n  t h i s  s t u d y

Scale Country Tropical biome Data source

Global Multiple countries Forest/savanna Unpublished, ForestPlot.net

Global Multiple countries Forest/savanna Jucker et al. (2017)

Global Multiple countries Forest Ploton et al. (2016)

Africa Angola Savanna Unpublished

Africa Burkina Faso Savanna Unpublished

Africa Cameroon Forest Unpublished

Africa Cameroon Forest/savanna Mitchard et al. (2009)

Africa Congo Forest Unpublished

Africa Congo Forest (Loubota Panzou et al., 2018; Loubota Panzou, Ligot, et al., 2018)

Africa DRC Forest Unpublished

Africa DRC Forest Sellan et al. (2017)

Africa Gabon Forest Unpublished

Africa Mozambique Savanna Unpublished

Africa Mozambique Savanna Ryan and Williams (2011)

Africa South Africa Savanna Unpublished

Africa Tanzania Savanna Unpublished

Africa Two countries Savanna Kuyah et al. (2012); Kuyah et al. (2014)

America BCI Forest Cano et al. (2019)

America Brazil Forest https://www.paisa gensl idar.cnptia.embra pa.br/webgi s/

America Brazil Forest Dias et al. (2017)

America Mexico Forest Vovides et al. (2018)

Asia China Forest Xu et al. (2019)

Asia Indonesia Forest Falster et al. (2015)

Asia Malaysia Forest Sellan (2019)

Asia Malaysia Forest Iida et al. (2012)
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