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1 |  INTRODUCTION

A systematic map is a summary of a research area based on 
systematic searches, screening and coding of scientific lit-
erature (James et al., 2016). It aims to give an overview of a 
subject area and identify trends, knowledge gaps and knowl-
edge clusters in scientific reporting. In contrast to a system-
atic review, the aim is not to answer specific close-framed 

questions, but rather to describe the state of knowledge in the 
subject, in order to guide future research. Periodic review-
ing of research areas can be a healthy exercise in order to 
discover trends in practices—good or bad—and guide future 
research, so that good trends can be continued, bad habits 
can be broken, and practice gaps can be filled. It also enables 
discussion on the implications of current practices for stake-
holders such as policymakers and practitioners.
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Abstract
We performed a systematic mapping of validation methods used in digital soil map-
ping (DSM), in order to gain an overview of current practices and make recommen-
dations for future publications on DSM studies. A systematic search and screening 
procedure, largely following the RepOrting standards for Systematic Evidence 
Syntheses (ROSES) protocol, was carried out. It yielded a database of 188 peer-
reviewed DSM studies from the past two decades, all written in English and all pre-
senting a raster map of a continuous soil property. Review of the full-texts showed 
that most publications (97%) included some type of map validation, while just over 
one-third (35%) estimated map uncertainty. Most commonly, a combination of mul-
tiple (existing) soil sampe datasets was used and the resulting maps were validated 
by single data-splitting or cross-validation. It was common for essential information 
to be lacking in method descriptions. This is unfortunate, as lack of information on 
sampling design (missing in 25% of 188 studies) and sample support (missing in 45% 
of 188 studies) makes it difficult to interpret what derived validation metrics repre-
sent, compromising their usefulness. Therefore, we present a list of method details 
that should be provided in DSM studies. We also provide a detailed summary of the 
28 validation metrics used in published DSM studies, how to interpret the values ob-
tained and whether the metrics can be compared between datasets or soil attributes.
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Spatial soil information is essential for research and de-
cision-making in several disciplines and at various scales, 
for example, as support for individual farmers’ decisions 
on how to vary the rate of lime across fields, as input for 
biophysical modelling of the global carbon cycle and as 
support for high-level policy decisions. A digital soil map 
can also be the starting point for formulating hypotheses in 
soil science (Wadoux & McBratney, 2021). By the end of 
the 20th century, methods were becoming available to cre-
ate digital maps of soil properties by empirical modelling 
using spatial covariate data. Early examples of digital soil 
property maps were created by McKenzie & Austin (1993) 
and Moore et al. (1993). Later, Scull et al. (2003) defined 
the term predictive soil mapping1 and McBratney et al. (2003) 
defined the concept digital soil mapping2 (DSM) and pre-
sented a systematic approach to the task. Since then, many 
DSM studies have been published. Typically, stacks of en-
vironmental raster data are combined with soil property 
data from laboratory analyses of samples. Empirical mod-
els are used to translate the raster datasets into a digital soil 
map of the target soil property and, if applicable, prediction 
residuals may be spatially interpolated and used to correct 
the prediction map. DSM has become a rapidly growing 
and evolving research field at the intersection of soil sci-
ence and mathematics (Arrouays et al., 2017; Minasny & 
McBratney, 2016). Several technical handbooks on produc-
tion of digital soil property maps have been published 
(Malone et al., 2017; Hengl et al., 2019; Yigini et al., 2017).

A digital soil property map is a spatial representation of 
the actual variation in soil properties but, like other represen-
tations in the form of maps or models, it is always a general-
ization of reality. Map validation is therefore necessary to 
determine whether a digital soil property map is good enough 
for a certain practical application, or to enable comparison of 
information accuracy between maps. Validation is generally 
done by comparing map values (e.g. soil properties) against 
observed values at known positions. To summarize various 
aspects of map accuracy, different evaluation measures (here-
after validation metrics) are computed. Some are sensitive to 
random, unpredictable, errors, some are sensitive to system-
atic errors, like offsets and scale-shifts, and some are sensi-
tive to both. Some are normalized to enable comparisons 
between map attributes or between map areas (i.e., datasets 
with different ranges of variation). The sampling design used 

for collecting validation data against which to compare the 
map values is important, as it has implications for the conclu-
sions that can be drawn. For example, if mean absolute error 
(MAE) is computed based on comparisons with data from a 
probability sampling,3 the MAE is (or can be made) an unbi-
ased measure of how accurate the map is across its area (Brus 
et al., 2011, 2019). Spatial support for observed values is also 
fundamental for interpretation of validation metrics. If, for 
example, the validation data consist of laboratory analyses of 
soil samples with point support, the validation measure will 
show how well the map represents reality at point locations. 
If the validation samples represent one-hectare averages, the 
map accuracy for one-hectare areas is evaluated.

There have been a number of general overviews of 
the scientific field of DSM, by, for example, Arrouays 
et  al.  (2020), Grunwald (2009), Minasny & McBratney 
(2016), and Zhang et  al.  (2017). In other studies, vari-
ous specific aspects of DSM have been reviewed or dis-
cussed in detail. These include environmental covariates 
(Dewitte et  al.,  2012; Mulder et  al.,  2011), algorithms 
(Lamichhane et al., 2019; Padarian et al., 2020), sampling 
designs (Biswas & Zhang,  2018; Brus et  al.,  2011), the 
scale concept (Malone et al., 2013a, 2017), DSM of spe-
cific attributes (e.g. Minasny et  al.,  2013) and DSM in 
specific geographical regions (e.g. Paterson et  al.,  2015; 
Zeraatpisheh et  al.,  2020). The reviews by Lamichhane 
et al. (2019) and Zeraatpisheh et al. (2020) are systematic  1Definition by Scull et al. (2003): “Predictive soil mapping (PSM) can be 

defined as the development of a numerical or statistical model of the 
relationship among environmental variables and soil properties, which is 
then applied to a geographic data base to create a predictive map”.

 2Definition by McBratney et al. (2003): “Digital soil mapping is defined as 
the creation of geographically referenced soil databases based on 
quantitative relationships between spatially explicit environmental data and 
measurements made in the field and laboratory”.

 3Definition by OECD (2007): “Any method of selection of a sample based 
on the theory of probability; at any stage of the operation of selection the 
probability of any set of units being selected must be known. It is the only 
general method known which can provide a measure of precision of the 
estimate. Sometimes the term random sampling is used in the sense of 
probability sampling”.

Highlights

• A systematic map of validation practices in digital 
soil mapping (DSM) was performed.

• Most studies (97%) validated maps using soil ob-
servations, and 35% estimated map uncertainty.

• It was most common to use one or more existing 
sample datasets and validate by cross-validation.

• Essential method information such as sam-
pling design and sample support was frequently 
missing.

• Based on current practices, we present recommen-
dations that could improve future DSM studies.
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mappings, the study by Grunwald et  al.  (2009) is a sys-
tematic review, and the study by Padarian et al. (2020) is 
a systematic review based on machine learning. The other 
reviews and overviews are narrative or semi-systematic, 
that is, systematic but not following a predefined search 
and screening protocol. Brus et al.  (2011) and Biswas & 
Zhang (2018) assessed soil sampling for digital soil map-
ping, but none of the publications cited above is a system-
atic map of validation procedures in digital soil mapping 
literature.

The overall aim of the present study was to conduct a sys-
tematic mapping of how validation in DSM is performed and 
reported in peer-reviewed scientific studies, following the 
procedure of RepOrting standards for Systematic Evidence 
Syntheses (ROSES) (Haddaway et al., 2018). Specific objec-
tives were to:

1. Make a detailed summary of the validation strategies 
and validation measures used in studies producing con-
tinuous soil property maps.

2. Identify trends, practice gaps and practice clusters in vali-
dation procedures.

3. Formulate recommendations for future publications in the 
subject area regarding good practices for validation and 
its reporting; identify hitherto often neglected aspects that 
may be important to consider; and establish a minimum 
set of method descriptors to be used in DSM studies.

2 |  MATERIALS AND METHODS

The ROSES framework for systematic reviews and system-
atic mapping was designed for the field of conservation and 
environmental management and consists of a pro forma and 
a flow diagram (Haddaway et al., 2018). The pro forma is a 
form for metadata recording, while the flow diagram is a log of 
the numbers of articles found and discarded in the consecutive 
search and screening steps. In the present study, we based our 
search and screening workflow on the ROSES flow diagram, 
in order to ensure a transparent and systematic procedure.

2.1 | Literature search

We searched the following databases: ProQuest (Natural 
Science Collection), Scopus and Web of Science (Core col-
lection). The search date was 15 October 2018, and the exact 
search strings used are those presented in Table 1. Essentially, 
we searched for "Digital soil map" OR "Digital soil maps" OR 
"Digital soil mapping" in the title or abstract and limited the re-
sults to original studies written in English. We set no limitation 
on year of publication. The search results were imported to the 
open reference management software Zotero (version 5.0.85).

2.2 | Screening criteria and procedure

First, duplicate hits were removed. The remaining studies were 
then randomly split between four senior researchers in pedo-
metrics, who conducted screening and coding of their share of 
studies. Studies were excluded if they met any of the following 
exclusion criteria: not a DSM study (to qualify as a DSM study, 
at least one covariable was required; that is, digital soil maps 
created by spatial interpolation of point location soil property 
data were not included); full text not in English; no continu-
ous maps produced (i.e., all soil classification studies resulting 
in polygon maps or raster map with attributes expressed on an 
ordinal or nominal value scale were excluded); not peer-re-
viewed; and not an original research article (i.e., review studies, 
book chapters and publications of other types were excluded). 
The screening was conducted in three phases:

1. Title screening: Studies were removed if it was obvious 
from the title that any one of the exclusion criteria was 
fulfilled.

2. Abstract screening: Studies were removed if it was obvi-
ous from the abstract that any one of the exclusion criteria 
was fulfilled.

3. Full-text screening: Studies were removed if it was obvi-
ous from the full text that any one of the exclusion criteria 
was fulfilled. In this step, an additional exclusion criterion 
was added: the mapped soil property is not a laboratory-
analysed soil property, such as clay content, pH, or soil or-
ganic carbon content (i.e., DSM studies focusing on, e.g., 
soil depth or crop suitability were excluded).

The exclusion criteria for map data model (raster or feature), 
value scales and soil properties were applied to delimit a homo-
geneous set of literature that allowed a more detailed summary.

2.3 | Coding

A Microsoft Excel Table was populated with method details, 
which included: Purpose of the study and of the map, general 
information on the mapping area and soil properties, exten-
sive information on sampling and sampling strategy, general 
information on mapping method, extensive information on 
validation strategy, and uncertainty estimation including 
validation and uncertainty measures. Details (columns and 
values in the coding sheet) are presented in Appendix S1 and 
definitions of terms in Appendix S2. Since the studies were 
split among different researchers, five studies were coded 
jointly in order to co-calibrate judgements. In addition, the 
four researchers met regularly over the coding period to dis-
cuss judgment calls. All coding sheets were then merged and 
carefully checked for consistency. If any values seemed in-
correct, the information was checked in the full-text article.
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3 |  RESULTS AND DISCUSSION

3.1 | Search and screening

The numbers of publications found (+) or discarded (−) in 
the consecutive steps of the search and screening process are 
presented in Table 1. In total, 188 publications remained for 
coding after the three screening steps.

3.1.1 | Spatial distribution of coded studies

The number of coded studies per country is presented in 
Figure  1. As can be seen, some countries dominated this 
field of research, assuming that countries that are frequently 
mapped also host active research groups. Studies mapping 
areas in Australia and China were most common, followed by 
Brazil, the United States, France, Germany and Iran. However, 
when interpreting the map, it  should be borne in mind that 
only studies with the full text in English were included. It can 
be noted that most of the world is now covered by some kind 

of continuous digital soil map, either a local map product or a 
continental or global map product (Figure 1).

3.1.2 | Number of studies per journal and year

As observed also by, for example, Lamichhane et al. (2019), 
the number of peer-reviewed studies on DSM has increased 
rapidly in recent decades (Figure 2). The first published arti-
cle coded in our systematic mapping was not published until 
2005. The reason for the first article located being relatively 
late was probably the strict screening process applied, with 
high specificity (i.e., high likelihood that search hits will be 
retained) but rather low sensitivity (i.e., a risk of missing 
publications that should be included). This may be because 
‘digital soil map’ was used as a search term or because the 
analysis was restricted to maps of continuous soil properties 
and excluded soil class maps. However, this was not consid-
ered a problem, as the aim was not to include all DSM stud-
ies, but to describe the field of science based on a systematic 
sample of the existing DSM literature.

T A B L E  1  Number of publications added or removed in the search and screening steps

Step Action

Number of publications

DetailsChange Remaining after

1 Database searches

1a: ProQuest +701 701 Search: noft(“Digital soil map”) OR noft(“Digital soil maps”) OR 
noft(“Digital soil mapping”). Additional limits - Source type: 
Scholarly Journals; Document type: Article; Language: English

1b: Scopus +708 1,409 Search: TITLE-ABS-KEY (“Digital soil map” OR “Digital soil 
maps” OR “Digital soil mapping”) AND DOCTYPE “ar”

1c: Web of Science +807 2,216 Search: TOPIC: (“Digital soil map” OR “Digital soil maps” 
OR “Digital soil mapping”) OR TITLE: (“Digital soil map” 
OR “Digital soil maps” OR “Digital soil mapping”) Refined 
by: DOCUMENT TYPES: (ARTICLE) AND RESEARCH 
DOMAINS: (SCIENCE TECHNOLOGY) Timespan: All years. 
Databases: WOS, BCI, CABI, CCC, DRCI, DIIDW, KJD, 
MEDLINE, RSCI, SCIELO, ZOOREC. Search language = Auto

2 Duplicate removal −1,338 878 Duplicates were removed

3 Title screening −353 525 Title revealed that the study did not produce a digital soil map or a 
method for digital soil mapping.

4 Abstract screening −204 321 Abstract revealed that the study did not produce a digital soil map 
or a method for digital soil mapping.

5 Full-text retrieval −0 321 All full texts were available

6 Full-text screening −133 188 Full text reveals that this study did not produce a digital soil map or 
a method for digital soil mapping.

7 Full texts from 
other sources

+0 188 No texts from other sources were added

Summary 188 Remaining studies
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The DSM studies located were published in a large num-
ber of journals (Figure 2b; Table 2). The journal Geoderma 
dominated, with 32% of coded studies, followed by seven 
other journals with at least five coded studies: Geoderma 
Regional; Science of the Total Environment; Catena, Soil 
Research; Ecological Indicators; European Journal of Soil 
Science; Remote Sensing; and PlosONE. In addition, 44 
other journals with fewer than five DSM studies each were 
retrieved in the systematic mapping. It can be noted that the 
number of journals increased exponentially, in the same man-
ner as the number of coded studies (Figure 2).

3.2 | Study aim and map use

The aims and uses of maps produced in the coded studies are 
summarized in Table 3. More than 60% of the 188 studies 

focused on method only, and 52% provided no information 
on intended map use. This indicates that the methodology 
for deriving digital soil maps is a science in itself, and not 
just a means to produce maps for other purposes. There were 
no clear trends in study aim or map use over time (data not 
shown).

3.3 | Map cell size, horizontal extent and 
soil depths

Summaries of map cell size, map extent and map soil depth 
layers revealed that relatively high resolution (≤100  m) 
was common up to subcontinent level and that the most 
common type of area mapped was watersheds (Tables  4 
and 5). Almost one-third of the studies included one or 
more subsoil depth layers, which was possibly an effect 

F I G U R E  1  Number of coded studies per country. Administrative boundaries from GADM version 3.6. Retrieved from www.gadm.org 
[Colour figure can be viewed at wileyonlinelibrary.com]
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of GlobalSoilMap specifications with six standard depths 
(GlobalSoilMap, 2015). Mapping soil properties in six depth 
layers across the globe is a very ambitious task, and the re-
sources required for developing a high-quality map should be 
considered. Depending on data availability (covariates and 
reference soil samples), in some cases a less ambitious map 
may be a better choice. There were no clear trends in map ex-
tent, map cell size or maximum soil depth over time (data not 
shown). However, 23% of the studies provided no informa-
tion on the cell size in the final map. These included studies 
where the covariates had different cell sizes and there was no 
information on how the differently specified raster datasets 
were resampled and fused. In cases where all covariate data 
were resampled to a common grid, this was assumed to be the 

cell size of the final map. Thus, these studies are not included 
in the 23% providing no information, even if the cell size 
was not explicitly stated. Malone, McBratney, et al. (2013) 
point out that there is often a mismatch between the scale 
(extent, resolution and support) required for practical appli-
cations of digital soil maps and the scale of digital soil maps 
available. This is illustrated by, for example, Li et al. (2019) 
and Söderström et  al.  (2017), who demonstrated that local 
adaptation of large-scale maps might be needed before prac-
tical application. As the DSM method itself, rather than the 
application of the map, was the focus of many studies, it is 
perhaps understandable that covariate resolution and/or com-
putational considerations is the main guide for choosing the 
map resolution suitable for practical applications.

3.4 | Sampling design

The sampling designs used in the coded studies are listed in 
Table 6. In 13% of the studies, various types of probability 
sampling were used (grid,4 random and random stratified). 
This means that unbiased estimations of map accuracy and 
precision metrics can be made if evaluation is done by ran-
dom data-splitting, which preserves the properties of the 
probability sampling. It may be noted that preservation of the 
properties of probability sampling may prove difficult in case 
of random splitting of a grid sample (i.e., the design-based 
statistical inference that goes which such sample may not be 
easy to derive). If non-probability sampling is used, the vali-
dation subset will not be a probability sample (Brus 
et al., 2011).

Brus et al. (2011) found use of existing soil sample data 
to be very common, a finding confirmed in the present 
study. The most common practice was to use a mix of differ-
ent sampling campaigns (Table 6). The samples were often 
collected for different purposes and with different sam-
pling designs. A mixed sampling design made it difficult 
to interpret the validation metrics reported. Around 25% of 
the studies provided no information on sampling design or 
only made reference to another publication describing the 
design (not always easily accessible or in English). This 
is surprising, because with an unknown sampling design, 
evaluation measures cannot be interpreted and the value of 
presenting them may be questionable. We highly recom-
mend that the soil sampling design is always described, at 
least briefly, even if the samples were collected in a previ-
ous study or survey, and even in cases where references to 
other publications are given.

In addition to the spatial distribution of soil samples, 
sample support is important for interpretation of validation 

 4Grid sampling is a type of probability sampling provided that the starting 
point of the grid is chosen randomly.

T A B L E  2  Number of coded studies per journal, expressed as a 
percentage of the 188 coded studies included in the analysis

Journal Prevalence

Geoderma 32%

Geoderma Regional 6%

Science of the Total Environment 5%

Catena 5%

Soil Research 5%

Ecological Indicators 4%

European Journal of Soil Science 3%

Remote Sensing 3%

PLOS ONE 3%

Forty-four different journals with <5 coded studies 
each

34%

Total 100%

T A B L E  3  Study aims and map uses, expressed as a percentage of 
the 188 coded studies included in the analysis

Map use

Study aim

TotalMap Method
Map and 
method

Soil assessment 
and monitoring

9% 10% 3% 22%

Decision support 5% 10% 2% 17%

Model input 3% 2% 1% 6%

Research 1% 1% 1% 3%

No info 9% 36% 7% 52%

Total 27% 59% 14% 100%

Note: Method: The aim was to propose, demonstrate, test and/or compare 
methods. Map: the aim was to produce, interpret and/or use the map. Soil 
assessment and monitoring: the map was used or intended for spatially explicit 
assessment and/or monitoring of one or more soil properties. Decision support: 
the map was used or intended to guide legislation, policy and/or management. 
Model: the map was used or intended as input data to a specific model. 
Research: the map was used or intended to answer a specific research question.
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metrics. In 46% of the coded studies, information on sample 
support was lacking (Table 7). Of the 87% of studies that re-
ported sample support, relatively small-scale spatial sample 
support (≤100 m2) was provided. This included studies with 
point support (i.e., sample collected by a single auguring) 
and samples taken in dug pits. When deciding on sample 
support, the intended map use should be borne in mind, for 
example, small spatial sample support may not be relevant 
for maps used to guide large-scale decision-making. When 
describing a digital soil map, providing information on 

sample support is important, as it has implications for: (i) the 
distribution of observed property data, for example, larger 
support means that local extreme conditions are smoothed 
(De Gruijter et al., 2006); (ii) the coupling between the en-
vironmental raster datasets used as covariates and the soil 
property data, as different procedures to link spatial support 
data can lead, for example to different inferences (Young & 
Gotway, 2007); and (iii) what the raster values in the created 
map or the validation metrics represent. The soil samples 
used for model calibration (if no smoothing is done) deter-
mine the support for the raster cell values in the digital soil 
map produced. Additionally, the support for the validation 
statistics is the same as that for the soil samples used for 
validation. Malone et al. (2013) provide a comprehensive 
review of spatial scaling operations for digital soil maps 
in raster format, including changes in extent, cell size and 

T A B L E  4  Raster cell sizes for different map extents, expressed as percentage of the 188 coded studies included in the analysis

Extent
Type/IQR (km2)

Cell size

Total≤10 m ≤30 m ≤100 m ≤500 m ≤5,000 m Multiple No. info

Subcontinent
[10,000,000, 30,000,000]

--- --- 1% 1% 1% --- 1% 4%

Country
[72,000, 920,000]

--- 1% 4% 2% 2% 1% --- 10%

Region/province
[820, 120,000]

--- 7% 12% 1% 4% --- 8% 32%

Watershed etc.
[31, 1,200]

8% 12% 7% 1% 1% 2% 8% 39%

Field/farm
[0.1, 1]

6% 2% --- --- --- 1% 6% 15%

Total 14% 22% 24% 5% 8% 4% 23% 100%

Note: Multiple: several maps with different cell sizes were produced. Subcontinent: subcontinent or larger area (including global maps).
---: 0%.
Abbreviation: IQR, Interquartile range.

T A B L E  5  Number of mapped soil depth layers or horizons for 
different map extents, expressed as a percentage of the 188 coded 
studies included in the analysis

Extent
Type/ IQR (km2)

Number or depth layers or 
horizons

Total1 2
3 to 
10

No 
info

Subcontinent
[10,000,000, 30,000,000]

2% --- --- 1% 3%

Country
[72,000, 920,000]

5% 1% 4% 1% 11%

Region/province
[820, 120,000]

18% 2% 10% 2% 32%

Watershed etc.
[31, 1,200]

30% 3% 6% 2% 41%

Field/farm
[0.1, 1]

8% 1% 2% 2% 13%

Total 63% 7% 22% 8% 100%

Note: --- 0%. Subcontinent: subcontinent or larger area (including global maps).
Abbreviation: IQR, Interquartile range.

T A B L E  6  Prevalence of sampling designs, expressed as a 
percentage of the 188 coded studies included in the analysis

Sampling design Prevalence

Grid 8%

Random 3%

Random stratified (geometric strata) 3%

Random stratified (targeted strata) 13%

Targeted 13%

Convenience 2%

Mixed 33%

No information 25%

Total 100%

Note: Definitions of the sampling designs are given in Appendix S2.
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support. Bishop et al. (2015) compared the accuracy of dig-
ital soil maps with different validation support and found 
the highest accuracy for maps with the largest support. In 
a later study, Piikki & Söderström (2019) compared map 
accuracy for different validation supports and map extents. 
Validation at point support, a common practice, may un-
derestimate map accuracy at the support of relevance for 
intended map use.

3.5 | Mapped attributes

It is very common for DSM studies to focus on more than 
one soil attribute. A total of 314 attributes were mapped in 
the 188 coded studies, which is on average 1.7 attributes per 
study. Soil organic carbon (SOC) dominated, with 68% of the 
coded studies producing maps of SOC concentration or SOC 
stock, followed by soil texture (40%), soil pH (19%) and plant 
macronutrient concentrations in the soil (15%) (Table  8). 
Plant micronutrient concentrations in the soil were not com-
monly mapped in the 188 studies, despite their importance for 

crop growth and human nutrition (e.g. Kihara et al., 2020). 
Only 4% of the studies mapped at least one micronutrient or 
other trace element. One possible explanation for the low fre-
quency of trace element mapping could be that it may be dif-
ficult to map certain element concentrations from available 
covariates.

3.6 | Validation strategies

Most of the 188 coded studies included validation of the 
maps produced. Only five studies (~3%) did not present any 
validation and another six studies (also ~3%) presented val-
idation statistics only for the calibration dataset (Table 9). 
Different types of data-splitting and cross-validation were 
the most common procedures and, of these, leave-one-out 
cross-validation was the most common (Table 10). It was 
not unusual for more than one type of validation to be car-
ried out, for example, with an independent sample and by 
cross-validation.

As already summarized by Biswas & Zhang (2018), tests 
and discussions by Brus et al. (2011), Mueller et al. (2004) 
and Schmidt et al. (2014) have shown that:

1. independent probability sampling is preferable for val-
idation of digital soil maps.

T A B L E  7  Sample support (area represented and number of subsamples) given as a percentage of the 188 coded studies included in the 
analysis

No. of subsamples

Represented area

Pit ≤1 m2 ≤100 m2 ≤1 ha >1 ha Multiple No info Total

1 8% 3% --- --- --- --- --- 11%

2–10 --- 5% 8% 4% --- 1% --- 18%

>10 --- --- --- 1% --- --- --- 1%

Multiple --- --- 1% 1% --- --- --- 2%

No information 19% 1% 2% 1% --- --- 45% 68%

Total 27% 9% 11% 7% --- 1% 45% 100%

Note: ---: 0%. Multiple: different numbers of subsamples taken for different samples (in different areas).

T A B L E  8  Prevalence of mapped attributes, expressed as a 
percentage of the 188 coded studies included in the analysis

Map attribute Prevalence

Soil organic carbon/organic matter 68%

Soil inorganic carbon 2%

Total carbon 1%

Soil texture 40%

pH 19%

Bulk density 10%

CEC/sum of base cations/base saturation 9%

Plant macronutrients (N, P, K, Ca, Mg, S) 15%

Trace elements (B, Ni, Cu, Zn, Fe, Cr, As, Pb) 4%

Total 100%

CEC: cation exchange capacity.

T A B L E  9  Prevalence of different validation strategies, expressed 
as a percentage of the 188 coded studies included in the analysis

Validation strategy Prevalence

Independent 7%

Cross-validation 43%

Data-splitting 31%

Calibration samples only 3%

Multiple 13%

No validation 3%

Total 100%
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2. if time and money do not permit this, leave-one-out cross-
validation or bootstrapping is the next best choice.

3. one-time data-splitting is less good, if it is not random, as 
the two subsets may become biased and

4. using calibration samples for validation seriously overes-
timates map accuracy.

Data-splitting is also a problem in studies with relatively 
few samples, because models created by a smaller number 
of observations can be less accurate, and validation in that 
case can underestimate the accuracy of the mapping (when 
all data are used). Cross-validation produces much more sta-
ble results because it uses all data for validation and should 
be preferred over data-splitting.

In the cross-validation studies, number of folds (k) ranged 
from two to 10, with 10 being the most common, and the 
number of repetitions in repeated k-fold cross-validation 
ranged from five to 5,000, with 100 being the most common 
(data not shown). If samples included in the final map-mak-
ing are left out from the evaluation, it is not the final map 
per se that is evaluated but rather the digital soil mapping 
framework (the combination of algorithms, geometric spec-
ifications, reference data and covariate data). How well this 
estimated accuracy represents the accuracy of the final map 
depends on the impact of the left-out sample(s) on the final 
map. The final map is validated only when an independent 
sampling is carried out, and possibly also when the data are 
split once.

In the data-splitting studies, random selection of vali-
dation samples was most common (Table 11). This is good 
because, provided that the original sampling design is a prob-
ability sampling, the subsets can be used for unbiased estima-
tion accuracy and precision. The fraction of samples used for 
calibration ranged from 33% to 95%. Using a relatively large 
fraction for calibration of samples may be preferred because 
there will be more representative observations in the calibra-
tion set.

3.6.1 | Prevalence of less appropriate methods

Unfortunately, problematic validation procedures were rela-
tively common. In 28% of the coded studies, there were pos-
sible flaws with the validation (Table 12). In an additional 
9% of the studies, not enough information was presented to 
judge whether any of these problems occurred. We interpret 
this as an indication that there is some degree of un-reflected 
routine in DSM validation. Validation should be designed 
with thought and care, bearing in mind that methods are not 
justified simply by the fact that they are commonly used in 
practice.

When spatially clustered soil sample datasets are split, with-
out keeping the clusters together, the validation dataset may 
not be independent from the calibration dataset. The validation 
metrics are then not representative of the entire area. It has 
previously been demonstrated that this can be a problem when 
validation is used for identification of robust models (Piikki 
et al., 2016). A robust model can be identified through the man-
ner in which the model was validated. The validation design 
shall be challenging, so that it mimics a real-world application, 
and not just test how the model performs within the calibration 
dataset. In some circumstances, leave-one-out cross-validation 
and k-fold cross-validation with random splitting of data into 
the k folds tend to overestimate map accuracy, as demonstrated 
by e.g. Piikki et al. (2016) and Meyer et al. (2018). Whether 
this is the case or not depends on the sampling design. In a grid 
sampling or random sampling, overestimation should not be a 
problem, but if samples are spatially clustered or if the dataset 
contains multiple samples from the same soil profile, this is a 
real risk. In these cases, leave-one-out cross-validation is not 
recommended, instead a k-fold cross-validation with suitable 
data-splitting method (e.g. leaving one cluster or one profile 
out at a time) would be recommended. In Table 11, summary 
statistics of the prevalence of different methods to split data 
into k folds is reported.

Targeted sampling designs or semi-targeted sampling 
designs (i.e., sampling designs that are stratified in covari-
ate space) were commonly used in the coded studies. This 
is suitable for collecting data for calibration of models, but 
when data from a targeted or semi-targeted sampling are split 

T A B L E  1 0  Prevalence of types of cross-validation, expressed 
as a percentage of the 95 studies using cross-validation (cross-
validation + part of the multiple category in Table 8)

Cross-validation type Prevalence

Leave-one-out 43%

k-fold 33%

Repeated k-fold 13%

Bootstrapping 5%

Multiple 4%

Other 2%

Total 100%

Note: k: number of folds. Multiple: more than one type of cross-validation used.
The different types of cross-validation are described in Appendix S2.

T A B L E  1 1  Prevalence of types of data-splitting, expressed as a 
percentage of the 74 studies using data-splitting

Data-split Prevalence

Systematic 1%

Random 74%

Random stratified or targeted in covariate space 11%

Random stratified in geography 4%

No information 10%

Total 100%
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between a calibration and a validation dataset, the following 
happens: (i) the calibration data no longer capture all the vari-
ation they were designed to capture, and (ii) the validation 
statistics can be misleading.

3.7 | Validation measures

Almost 30 different validation metrics were used in the coded 
studies (Table 13; Appendix S3), with on average 2–3 metrics 
per study. However, several reported validation metrics pro-
vide almost the same information about model performance/
map quality. For example, MAE and root-mean-square error 
(RMSE) are both absolute measures of the average magni-
tude of error, although RMSE is more sensitive to outliers 
than MAE (Janssen & Heuberger, 1995). Yet 15% of the 188 
coded studies reported both MAE and RMSE. We recom-
mend choosing a faceted set of validation metrics to charac-
terize multiple aspects of the validation performance, rather 
than using several similar metrics.

There were some sources of confusion in the reporting 
of validation metrics. The abbreviation R2 was used both for 
coefficient of determination and for amount of variance ex-
plained. To prevent confusion among readers, it is therefore 
good practice to be very specific when describing validation 
metrics. Several of the evaluation measures were also re-
ported under different names; for example, RMSE was also 
denominated RMSD, RMSEP and RMS (Appendix S3).

The possibility to compare model performance and map 
accuracy between attributes or datasets depends on whether 
the error (or accuracy) is expressed in the units of the attri-
bute or in relation to the level or spread of observed values. 
When for example comparing prediction results, absolute er-
rors given in the units of the attribute in question (such as 
the RMSE and MAE) can be compared between datasets of 
different sizes (e.g. representing different map areas), while 
measures of covariation between observed and predicted val-
ues (such as the coefficient of determination (R2), the adjusted 
R2, or amount of variance explained (e.g. Nash-Sutcliffe 

modelling efficiency (E), mean absolute percentage error 
(MAPE) and the ratio of performance to deviation (RPD)) 
cannot be directly compared between datasets with different 
spreads in observed values (see Appendix S3 for a summary 
of possible comparisons). However, when comparing models 
for different attributes, or models developed and validated on 
data with different ranges in the attribute variable, measures 

T A B L E  1 2  Prevalence of observed problems in validation design, 
expressed as a percentage of the 188 coded studies included in the 
analysis

Possible flaw Prevalence

Calibration and validation data are the same 3%

Splitting of targeted or semi-targeted sample sets 22%

Splitting of spatially clustered data 20%

Splitting of profiles 1%

Poor areal coverage of the validation set 1%

No validation 3%

Other 1%

T A B L E  1 3  Prevalence of validation measures, expressed as 
percentage of the 188 coded studies included in the analysis

Validation measure used Prevalence

Total error (proportion of variance explained)

LCCC 22%

Nash-Sutcliffe E 3%

Other measure used in < 5 studies 1%

SUM 26%

Total error (absolute)

RMSE 79%

MAE 20%

MSE 7%

MAD 3%

Other measure used in < 5 studies 4%

SUM 113%

Total error (relative to average* in observed data)

NRMSE 10%

Other measure used in < 5 studies 3%

SUM 12%

Total error (relative to spread in observed data)

RPD 7%

RPIQ 3%

Other measure used in < 5 studies 2%

SUM 10%

Total error (relative to spread in predicted data)

MSDR 4%

Random error only**

R2 56%

R2-adj 4%

r 3%

Other measure used in < 5 studies* 2%

SUM 65%

Systematic error only

ME 38%

Other measure used in < 5 studies 3%

SUM 41%

Note: For abbreviations, see Appendix S3. For definition of terms, see Appendix 
S2.
*Average is the mean or the median. 
**Covariation of predicted and observed values (or lack thereof caused by 
random error). 
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taking variation into account will help in the comparison. A 
good strategy is therefore to include at least one evaluation 
measurefrom each category.

3.8 | Uncertainty estimation strategy

The term accuracy is often used for quantitative (or qualita-
tive) measures of how close a predicted value is to the true 
(or in practice the observed) value. To compute accuracy 
means to compute an error. The term uncertainty is, in digi-
tal soil mapping, often defined as the expected, or observed, 
variation in predictions or prediction means for a given tar-
get variable at each prediction location. Uncertainty is often 
quantified by statistical parameters of a distribution, in this 
case a distribution of soil property predictions for a specific 
location. The distribution of predictions is not always uni-
form. It is commonly a normal distribution, but the shape of 
the distribution can vary depending on the data. Accuracy 
metrics are computed, while uncertainty metrics are esti-
mated. The accuracy of a digital soil map can be determined 
at soil sample locations, while the uncertainty of the same 
map commonly is estimated for every raster cell. In this con-
text, it can be noted that variability between multiple model 
predictions will in almost all cases produce a gross underes-
timation of how accurate the digital soil map is (in terms of 
lack of error of any kind).

In digital soil mapping literature we found that, to assess 
prediction uncertainty of a digital soil map, prediction dis-
tributions are derived in different ways, often by repeated 
reparameterization of models, using different subsets of 
data for calibration (e.g. by bootstrapping that is built into 
the algorithm or by repeated parameterization of new mod-
els from random subsets of the calibration data). In 35% of 
the 188 coded studies, prediction uncertainty was estimated 
(Table 14), and in 85% of these, the spatial variation in pre-
diction uncertainty was presented in the form of a map.

The most common uncertainty measures were different 
measures of spread in predictions, such as standard devia-
tion, variance and different interpercentile ranges, but also 
prediction intervals (PI) and confidence intervals (CI) were 
used (Table  15). An l% PI gives information on the range 
within which l% of future predictions can be expected, while 
an l% CI gives information on the range within which the 
true mean of prediction can be expected with a confidence 
of l%. The l% PI is always wider than the l% CI and, when 
the number of calibration samples increases, the CI becomes 
narrower while the PI remains unaffected. It is as important 
to assess the quality of the uncertainty assessment as it is 
to assess the quality of the predictions (Malone et al., 2011). 
For this, the prediction interval coverage probability (PICP) 
(Solomatine & Shrestha, 2009) can be used; in eight of the 18 
studies where the PI of predictions was presented, the quality 
of the PI estimation was quantified by PICP (Table 15).

3.9 | Reported method information

The prevalence of missing important method information 
has already been mentioned at various stages in this paper. 

Uncertainty estimation strategy Prevalence

Multiple realizations (variation induced by internal random sampling of 
calibration data in the algorithm model fitting procedure)

10%

Multiple realizations (variation induced by repeated random sampling of 
calibration data)

8%

Multiple realizations (variation induced using cross-validation subsets of 
calibration data)

5%

Geostatistics (e.g. kriging standard deviation) 6%

Other strategy 5%

Unclear method description* 1%

No uncertainty estimation 65%

Total 100%

*Unclear method: uncertainty estimation not described well enough to be coded. 

T A B L E  1 4  Prevalence of uncertainty 
estimation strategies, expressed as a 
percentage of the 188 coded studies 
included in the analysis

T A B L E  1 5  Prevalence of uncertainty measures, expressed as a 
percentage of the 65 studies in which uncertainty was assessed

Uncertainty measure Prevalence

Measures of prediction spread* 52%

Prediction intervals** 28%

Confidence intervals 17%

Other 3%

Total 100%

*Standard deviation, variance and different interpercentile ranges. 
**In eight of these 18 studies, the quality of the prediction interval estimation 
was quantified by prediction interval coverage probability (PICP). 
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Table 16 provides a summary to give a better overview and 
a more complete picture. We suggest that the method details 
listed in Table 16 and Box 2 be taken as a minimum informa-
tion requirement in scientific studies on DSM. These pieces 
of information are essential for the reader to understand and 
assess the presented research.

In a previous review by Biswas and Zhang (2018), 15% 
of the 95 DSM studies assessed provided no information on 
sampling design. This is a high incidence considering the im-
portance of this information. Our review confirmed that this 
is common and revealed an even higher incidence: in 25% of 
the 188 coded studies, information on sampling design was 
missing.

4 |  SUMMARY

Digital soil mapping has evolved into a well-established 
method framework and a mature scientific subject, and 
validation of models and maps is a central part of the work. 
The primary purpose of the present systematic mapping 
was to obtain an overview of validation practices used in 
the DSM research, based on a systematic selection of lit-
erature. Digital soil property maps of areas in Australia and 
China were most common, followed by maps of areas in 
Brazil, the United States, France, Germany, and Iran. The 
number of peer-reviewed DSM studies has increased ex-
ponentially over in recent decades and they are published 
in a large number of different journals, but particularly in 
Geoderma.

The methodology for deriving digital soil property maps 
is a science in itself. It is common for DSM studies to focus 
solely on method development, and not even mention in-
tended or possible map use. Even when the focus is method 
development, it is important to put the method into context.

BOX 1 Recommended practices and good 
examples
Design! Evaluate what you want to know. Beware 
of un-reflected routine in map validation. Consider 
what you want to know about the map and evalu-
ate accordingly; do not routinely present average 
level of absolute errors at point support if that does 
not suit your specific application. Larger support or 
the prevalence of error under a certain limit may be 
more interesting.
• Malone et al. (2011) evaluated map area that is 

accurate enough for practical use.

• Bishop et al. (2015) compared map validations 
for multiple support.

• Angelini et al., (2017) and many others used 
multiple well-chosen and well-defined valida-
tion measures to assess different aspects of map 
accuracy.

Inform! Provide the required information and give 
a summary. To allow readers to understand and as-
sess the results presented, it is important to provide 
some fundamental details of methods used (Box 2). 
In addition to providing the details, an overview is 
helpful. DSM studies often have complex workflows 
and many data management steps. Our overall expe-
rience from the coding process was that graphical 
abstracts and schematic study overviews were very 
useful.
• A good comprehensible method overview is pro-

vided by e.g. Wang et al. (2018).
Interpret! Compare with a reference. In a study 
evaluating a map for practical use, it is important 
to put the accuracy into perspective and to compare 
the evaluation measures with that required for the 
practical use in question. It may also be important to 
know whether the map is better than the mean of the 
observational data used to derive it. This also applies 
when comparing several DSM methods. All maps 
may be good enough and the difference compared 
with a reference may be negligible, or the error may 
be close to the laboratory error of the reference soil 
samples and further improvements may be difficult 
to assess.

T A B L E  1 6  Prevalence of missing information, expressed as a 
percentage of the 188 coded studies included in the analysis

Missing information Prevalence

General

Intended map use 52%

Sampling

Sampling design 25%

No. of sample locations 2%

Soil depth(s) 18%

No of subsamples 68%

Sample support 45%

Validation

Data-splitting method 10%

Uncertainty estimation

Uncertainty estimation method (includes unclear 
descriptions)

1%

Final map

Resolution 23%

Soil depth(s) 8%
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As regards the geometry and attributes of the maps pro-
duced, watersheds were the most common type of study area 
and relatively high resolution (≤100 m) was common, even 
for large-extent maps. The spatial support was often small, 
most often ≤100 m2. Most studies focused on topsoil only, 
but almost one-third of the coded studies mapped one or 
more subsoil depth layers or horizons. Soil organic carbon 
was by far the most common map attribute in the 188 studies 
reviewed, followed by soil texture.

The cost, both in time and money, for complete, optimized 
soil sampling is often high, and the use of existing soil infor-
mation from earlier sampling campaigns is common. In one-
third of the coded studies, data from multiple samplings were 
combined. Only 13% of the studies used some type of prob-
ability sampling, allowing for unbiased estimations of map 

accuracy and precision. Single data-splitting and different types 
of cross-validation were the most common validation strategies. 
When designing a DSM study, it is important to be aware of 
possible limitations in interpretation of the validation results.

A large number of validation measures were used, with 
RMSE and R2 being most common. Several similar metrics 
had different names, and some metric names referred to sev-
eral different metrics, which may be a source of confusion. 
Therefore, it is important to be specific in reporting the met-
rics used. However, a much larger source of confusion was 
that it was often impossible to know what the metrics rep-
resented, because of mixed or targeted sampling designs or 
lack of information on sampling design. Overall, information 
crucial for the reader to understand and assess the research 
conducted and maps produced was frequently missing.

In this systematic mapping of validation strategies and 
validation measures used in published studies producing 
continuous soil property maps, we identified trends, practice 
gaps and practice clusters in DSM validation. We used these 
to formulate recommendations for future publications in the 
subject area. We hope that this summary is useful as guidance 
for coming DSM studies.
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