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Abstract 

Biogas process has great potential for reducing the current dependence on fossil 

fuels and for climate mitigation and sustainable development. In this process organic 

matter is decomposed under anerobic conditions by microorganisms to form biogas 

and a nutrient rich biofertiliser. For adequate use of the resources invested in 

commercial biogas production, constant monitoring and optimisation are extremely 

important. The biogas microbiome has been thoroughly studied, but remains a black 

box in terms of the microbe identity/diversity and functions/interactions in biogas 

production. Among known bacterial communities, acetogenic bacteria play a critical 

imperative role in the biogas process, so close monitoring or surveillance of the 

acetogenic community is important to ensure process stability and productivity. 

This thesis presents a new microbiological surveillance strategy targeting the 

acetogenic community in biogas reactors and describes the underlying theory, tools 

and application. In the strategy, a database (AcetoBase) and a bioinformatics 

analysis pipeline (AcetoScan), developed within this thesis, are employed for 

surveillance of acetogenic communities in laboratory- and industrial-scale biogas 

facilities. Meticulous comparison of the surveillance strategy with conventional 

methods demonstrated its superiority in envisioning acetogenic community structure 

and dynamics. Acetogenic community surveillance using the strategy showed that 

acetogenic communities in biogas reactors are substrate-specific, diverse and 

dynamic. The dynamic response of acetogenic communities imparts strength in 

resisting disturbance and potential to recover post-disturbance. Future use of the 

acetogenic community surveillance strategy can greatly improve understanding of 

the acetogenic communities and their utilization for biogas process stability. 
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Biogas, FTHFS, Monitoring, Surveillance, Wood-Ljungdahl pathway 
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Abstract 

Biogasprocessen har stor potential att minska beroendet av fossila bränslen och 

att bidra till en hållbar utveckling. I denna process sönderdelas organiskt material i 

en syrefri miljö av mikroorganismer till biogas och biogödsel. För tillräcklig 

användning av de resurser som investeras i kommersiell biogasproduktion är 

processoptimering och konstant processövervakning extremt viktigt. 

Biogasmikrobiomet har studerats noggrant, men förblir en svart låda när det gäller 

både identitet/mångfald och funktioner/interaktioner. Bland kända 

bakteriesamhällen spelar acetogena bakterier en viktig roll i biogasprocessen, och 

noggrann övervakning av denna bakteriegrupp är viktig för att säkerställa processens 

stabilitet och produktivitet. 

Denna avhandling presenterar en ny mikrobiologisk övervakningsmetod inriktad 

på acetogena bakterier i biogasreaktorer och beskriver den underliggande teorin, 

verktygen och tillämpningen. Metoden, som inkluderar en databas (AcetoBase) och 

en pipeline för bioinformatikanalys (AcetoScan), utvecklades inom denna 

avhandling och användes för analys av biogasanläggningar i laboratorie- eller 

industriell-skala. En noggrann jämförelse av den utvecklade övervakningsstrategin 

med konventionella metoder visade att den är överlägsen när det gäller att beskriva 

acetogen samhällsstruktur och dynamik. Analysen visade också att acetogena 

samhällen i biogasreaktorer är substratspecifika och olika och att ett dynamiskt svar 

ger styrka i att motstå störningar, och potential för återhämtning efter störningar. 

Framtida användning av den utvecklade övervakningsstrategin kan avsevärt 

förbättra förståelsen för acetogena bakterier och deras betydelse för 

biogasprocessstabilitet. 
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The purpose of this thesis is to introduce and demonstrate a new 

microbiological surveillance strategy for the acetogenic bacterial 

communities in biogas environments. The new strategy is based on the 

modern DNA sequencing approach and computer-assisted unsupervised 

analysis.  

 

This thesis should be of interest to operators in decision making for the 

stable operation of biogas plants. It should also be of interest to 

environmental microbiologists in decoding the acetogenic community 

structure in different natural or artificial environments and to researchers in 

understanding the role of acetogenic community in human gut-brain 

physiology. 
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The 21st century is the century of technology and innovations. Standing 

tall on the shoulders of the 20th century, development is now proceeding at 

an unprecedented pace. Technological progress to date has brought humanity 

within one step away from being an interplanetary species. The ambition of 

becoming a species with a presence on multiple planetary objects is fuelled 

by the innate curiosity of human beings and the uncertainty of human 

existence on Planet Earth. For the first time in the history of existence, 

humans have changed the climate of an entire planet, which has created the 

risk of extinguishing life on Earth. Increases in the levels of greenhouse gases 

(e.g. carbon dioxide (CO2), methane (CH4)), mainly due to anthropogenic 

activities, have resulted in an increase in the average temperature on Earth, 

i.e., global warming (Flannery, 2010). At the end of 2020, the United Nations 

vigorously appealed to all nations to declare ‘climate emergency’ (Deutsche 

Welle, 2020; The Guardian, 2020). To mitigate this drastic climate situation, 

global net carbon dioxide emissions must be curbed. Renewable and low-

carbon energy is needed to alleviate the devastating climate situation, 

without impeding overall development of human society, especially in 

developing and under-developed countries. 

 

Modern society is extremely technology-driven and energy demanding. 

Renewable energy types such as solar, wind, tidal energy etc. are ever-

present and infinite sources of power. However, they are very expensive, 

require high technological infrastructure, have specific geographical 

prerequisites and also have some disadvantages (Capareda, 2013; Nelson & 

Starcher, 2015). This hampers wide-scale installation and use of renewable 

sources of energy. Bioenergy is an alternative source of power that can be 

1. Introduction 
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produced and used without a radical change in the current technological 

framework and is thus comparatively very economical (Robles et al., 2018). 

Biofuels are the source of bioenergy and they have great potential to 

minimise dependency on fossil fuels, increase fuel security, mitigate climate 

change, enables sustainable development etc. There are different types of 

biofuels, e.g. biogas, biodiesel, biohydrogen, ethanol etc. (Mousdale, 2010). 

Biogas, or biologically produced methane is a unique fuel because it can 

easily be used in gaseous or liquid state and it is generated together with a 

co-product, biodigestate, which can be used as nutrient rich fertiliser 

(Koonaphapdeelert et al., 2020; Ma et al., 2017). Methane can also be 

extracted from methane hydrates, methane clathrates or methane ice, but is 

then considered an unconventional low-carbon fossil fuel which is not 

sustainable and will contribute to net carbon emissions (Reijnders, 2009; 

Stephenson, 2018). Therefore, this thesis focuses only on biomethane, the 

biologically produced and renewable form of methane. Biomethane is the 

upgraded/pure/refined product of biogas (Koonaphapdeelert et al., 2020). It 

is considered to be the fuel of the future not only for Planet Earth but also for 

space missions, and is a perfect fuel for next-generation rocket and aviation 

engines (Dhoble & Pullammanappallil, 2014; Hiroyuki, 2018; 

Koonaphapdeelert et al., 2020; Leucht, 2018; Newton, 2015; O’Callaghan, 

2019; Ramesh, 2019; Reijnders, 2009)  

 

Scientifically and commercially, the process of biogas production is 

called anaerobic digestion (AD) or the ‘biogas process’. In the biogas 

process, almost any biodegradable material can be used as substrate for 

microbial decomposition to produce biogas and biofertiliser. This 

microbiological disintegration is performed by the cumulative action of 

complex anaerobic microbial communities. Anaerobic digestion is an ancient 

method, but throughout history has been used mainly for the purpose of 

sanitisation (Bond et al., 2013; Lofrano & Brown, 2010). In the late 17th and 

early 18th century, it was realised that anaerobic digestion can be used for 

producing biogas as a renewable fuel source (Marchaim, 1992). Anaerobic 

digestion is a multipurpose process for the treatment of organic waste, 

sanitisation, production of renewable low-carbon energy, production of 

quality biofertiliser and reduction of methane emissions from biowaste 

(Marchaim, 1992; WBA, 2018) (Figure 1). The anaerobic digestion process 
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has potential to reduce global greenhouse gas emissions by ~20% to meet the 

commitments of UNFCCC Paris Agreement and contributes to at least nine 

of the 17 goals Sustainable Development Goals formulated by the United 

Nations (WBA, 2018). 

 

 
 

Figure 1. The ecological biogas process for recycling biodegradable organic 

waste to produce biogas as a fuel source and biogas digestate as a high quality 

organic biofertiliser. 

Anaerobic digestion is a very versatile process serving multiple 

environmental goals, but the microbiological steps associated with the 

process (Figure 2) set limits on the extensive biogas production and efficient 

use of biogas reactor volume (Madsen et al., 2011; Ward et al., 2008; Wolf 

et al., 2009). For adequate use of the resources invested in commercial biogas 

production, process optimisation and constant monitoring of the process are 

extremely important (Drosg, 2013; Madsen et al., 2011; Schnürer et al., 
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2016). The biogas process is a complex microbiological process involving 

interactions of thousands of known and unknown microbial species 

(Campanaro et al., 2020; Ferguson et al., 2014; Maus et al., 2016; Treu et 

al., 2016). It is thus very different from other industrial fermentation 

processes and it is difficult to automate, optimise and control, so it requires 

constant monitoring (Drosg, 2013; Madsen et al., 2011; Wolf et al., 2009; 

Yoshida & Shimizu, 2020). Several physical and chemical analysis 

technologies are currently available for monitoring the biogas process, but 

they are not completely reliable in assessing and predicting disturbances in 

the microbial communities (Ferguson et al., 2018, 2014; Ni et al., 2011; 

Ward et al., 2008; Yoshida & Shimizu, 2020). Therefore, new methods are 

needed for constant monitoring of microbiological community structure and 

dynamics in biogas reactors (Drosg, 2013; Ferguson et al., 2014; Fernández 

et al., 1999). 

 

An entire composite of diverse microbes in synergistic cooperation is 

required in the biogas process (Kleinsteuber, 2019; Schnürer, 2016) (Figure 

3). Among these microbiomes, acetogenic bacteria are involved in 

synchronising and balancing the process and act as a link between the 

hydrolysing/fermenting microbial community and methanogenic archaea, so 

they play a crucial role in process stability (Kovács et al., 2004) (Figure 2, 

Figure 3). However, acetogenic bacteria are not very well studied and 

understanding of their functional role and community structure in biogas 

process is largely lacking (Theuerl, Klang, et al., 2019). Therefore, microbial 

surveillance or close monitoring of these paramount sub-community can be 

used as a marker of the biogas process stability. 

 

1.1 Aims of the thesis 

 

The main aim of this thesis was to develop a microbiological surveillance 

strategy for acetogenic communities in biogas reactors, in order to enable 

acetogens to be used as a marker population of the biogas microbiome. In 

particular, the work in this thesis focused on assessment of acetogenic 

community structure in industrial biogas plants running on different feed 
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substrates and on identifying relationships between community dynamics 

and physico-chemical changes within biogas reactors. Specific objectives of 

the work described in Paper I-IV were: 

 

1. Development of a public repository and database of the marker 

sequences of bacteria with potential for acetogenesis (Paper I). 

2. Creation of a reliable bioinformatics analysis pipeline for high-

throughput sequencing data and automated result visualisation 

(Paper II). 

3. Comparative evaluation of the new high-throughput screening 

method with established conventional methods (Paper III). 

4. Assessment of acetogenic community structure and its temporal 

dynamics in full-scale biogas reactors running on different 

substrates (Paper IV). 
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Biogas is a biologically produced mixture of gases mainly consisting of 

methane (60-70%) and carbon dioxide (30-40%) with small or trace amounts 

of hydrogen sulphide (0-4000 ppm), ammonia (0-100 ppm), nitrogen (0-

10%), oxygen (0-2%), hydrogen (0-1%) and water vapour (0-10%) 

(Petersson & Wellinger, 2009; Ruan et al., 2019; SGC, 2012). Biogas is 

produced during decomposition of organic matter by the cumulative 

interactions of complex anaerobic microbial communities (Borja & Rincón, 

2017; Theuerl, Klang, et al., 2019). These communities consist of bacteria, 

fungi and methanogenic archaea, which are involved in four main 

microbiological processes i.e., hydrolysis, acidogenesis, anaerobic oxidation 

(including acetogenesis and syntrophic acid oxidation) and methanogenesis 

(Figure 2) (Angelidaki et al., 2011; Dollhofer et al., 2015; Hattori, 2008; 

Schnürer, 2016; Sun et al., 2014; Thauer et al., 2008; Vinzelj et al., 2020; 

Westerholm, Müller, et al., 2011; Westerholm et al., 2016; Zhou et al., 

2002). 

 

2. The microbiology of the biogas process 



24 

 

Figure 2. Simplified diagrammatic representation of the anaerobic digestion 

process, where complex biomolecules are degraded into simpler biomolecules in 

four complex interconnected microbiological events, hydrolysis, acidogenesis, 

anaerobic oxidation (including acetogenesis) and methanogenesis, which are 

carried out by bacteria together with fungi and methanogenic archaea. 

2.1 Hydrolysis and acidogenesis 

Hydrolysis and acidogenesis are the first two steps in the biogas process 

in which anaerobic bacteria and fungi degrade complex organic matter 

(Figure 2). Very diverse bacterial communities (phyla Firmicutes, 

Proteobacteria, Bacteriodetes, Chloroflexi, Actinobacteria, Spirochaetes, 

Synergistetes, Fibrobacteria, Thermotogae, Tenericutes etc.) and fungal 

communities (phylum Neocallimastigomycota including 18 genera) are 

responsible for hydrolysis and acidogenesis (Schnürer, 2016; Theuerl, 

Klang, et al., 2019; Vinzelj et al., 2020). These microbial groups secrete 

various extra-cellular hydrolysing enzymes which digest carbohydrates, 

proteins and fats into their soluble polymers, monomers, alcohols and carbon 
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dioxide, hydrogen (H2), long- and medium-chain fatty acids etc. (Figure 3). 

The rate of hydrolysis is dependent on the structural and chemical 

complexity of organic material and hydrolysis can be a rate-limiting step if 

substrate is not easily digestible, for example plant-based materials (Borja, 

2011; Borja & Rincón, 2017). 

2.2 Anaerobic oxidation 

 

The third microbial step in the biogas process is anaerobic oxidation, 

where polymeric and monomers molecules are further digested into short-

chain fatty acids (C1-C6) or volatile fatty acids (VFA), carbon dioxide, 

ammonia (NH3), hydrogen and alcohols (Figure 3). Anaerobic oxidation, 

including acetogenesis and syntrophic acid oxidation, is carried out by the 

bacterial phyla involved in previous steps, along with a special group of 

acetogenic bacteria (phylum Acidobacteria, Firmicutes Spirochaetes etc.) 

(Drake et al., 2013; Küsel & Drake, 2011; Müller & Frerichs, 2013) (Paper 

I) and syntrophic acetate oxidising bacteria (SAOB) (genera Schnuerera, 

Thermotoga, Thermoacetogenium, Tepidanaerobacter, Syntrophaceticus 

etc.) (Balk, 2002; Hattori, 2008; Schnürer et al., 1996; Westerholm et al., 

2010; Westerholm, Roos, et al., 2011). 

 

Acetogenesis is the process whereby acetogens produce acetic acid by 

reduction of carbon dioxide with hydrogen (Figure 3). However, due to the 

abundance of organic nutrients and VFA (Zakem et al., 2021), acetogenesis 

is not the dominant pathway to produce acetate in biogas environment. 

Moreover, acetogenic bacteria do not always perform acetogenesis and grow 

as hydrogen producing anaerobic oxidative bacteria which utilize the 

products of hydrolysis/fermentation step to produce acetate, ammonia, 

carbon dioxide and hydrogen  (Drake et al., 2008). As acetogenic bacteria 

are metabolically very versatile they also represent a special group of 

bacteria i.e., syntrophs/syntrophic bacteria, which can subsequently oxidise 

VFA to acetate and acetate to carbon dioxide and hydrogen (Zinder, 1994; 

Zinder & Koch, 1984). This oxidation has thermodynamics limitations and 

only feasible if hydrogen produced during oxidation is continuously removed 

(Hattori, 2008; Schink, 1997, 2002; Schink & Stams, 2006; Schnürer et al., 
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1997; Stams, 1994). Some methanogens (hydrogenotrophs) can readily 

consume hydrogen being in the vicinity of these bacteria (Kovács et al., 

2004; Lettinga & Haandel, 1993; Thiele et al., 1988; Thiele & Zeikus, 1988) 

(Figure 3). Thus, they establish a syntrophic relationship and are known as 

SAOB. Some acetogenic bacteria possess a special pathway which impart 

them the capability of intracellular hydrogen cycling. As they do not require 

a methanogen for syntrophic relationship, these acetogens are called 

intracellular syntrophs (Wiechmann et al., 2020). 

2.3 Methanogenesis 

 

In the last step in the biogas process methane is produced mainly by 

cleavage of acetate (acetotrophic or methylotrophic) and reduction of carbon 

dioxide with hydrogen (hydrogenotrophic) by methanogenic archaea 

(Figure 2, Figure 3). Acetotrophic methanogens only belong to order 

Methanosarcinales (genera Methanosarcina and Methanosaeta), while 

hydrogenotrophic methanogenesis is carried out by member of order 

Methanobacteriales, Methanocellales, Methanococcales, 

Methanomicrobiales, Methanopyrales and Methanosarcinales (Garcia et al., 

2000; Liu & Whitman, 2008; Schnürer, 2016; Schnürer & Jarvis, 2017; 

Thauer et al., 2008). In a normal/stable (mesophilic, low ammonia) biogas 

process approximately 50-75% of methane is produced by the acetotrophic 

methanogens which cleave acetate to produce methane and carbon dioxide 

(Jiang et al., 2018). The remaining 50-25% of the methane production is 

carried out by hydrogenotrophic methanogens in syntrophy with syntrophic 

acetate oxidising bacteria (SAOB) and other syntrophic bacteria (Bryant et 

al., 1967; Jiang et al., 2018; McInerney et al., 1979) (Figure 3). Process 

temperature, concentration of ammonia and concentration of VFA primarily 

are the decisive factors for the dominance of methanogenic pathways. 

Acetotrophic methanogenic pathway is the main pathway of methane 

production for manure or plant-based biogas reactors whereas in the case of 

protein rich substrate or under thermophilic conditions hydrogenotrophic 

methanogenic pathways dominates (Hattori, 2008; Karakashev et al., 2006; 

Moestedt et al., 2016; Schnürer & Nordberg, 2008; Sun et al., 2014; 

Westerholm, Dolfing, et al., 2011). 
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Figure 3. Descriptive graphical representation of the biogas process 

microbiological steps hydrolysis, acidogenesis, anaerobic oxidation and 

methanogenesis in the biogas process. 
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Acetogens, or acetogenic bacteria are chemolithoautotrophic bacteria 

performing reductive carbon fixation, i.e. acetogenesis, under anaerobic 

conditions (Fuchs, 1986; Zeikus, 1983). Acetogenesis is one of the most 

ancient and primitive biological processes responsible for the generation of 

one of the first organic molecules on Planet Earth (Peretó et al., 1999; Russell 

& Martin, 2004). Acetogenesis involves the formation of acetate by 

biological fusion of carbon dioxide and hydrogen by the acetyl-coenzyme A 

(acetyl-CoA) pathway, also referred to as the Wood-Ljungdahl pathway 

(WLP), a characteristic of acetogens. Acetogenic bacteria were critical in the 

origination of life on early Earth, where reductive acetogenesis provided 

enough thermodynamic potential to sustain the first biological and 

reproducing (binary fission) life forms (Peretó et al., 1999; Russell & Martin, 

2004). In the present world, acetogens are essential for environmental carbon 

cycling, with production of at least 1013 kg of acetate in different anaerobic 

environments globally (Drake, 1994b; Drake et al., 2013; Lovell & Leaphart, 

2005; Müller, 2003; Ragsdale, 2007; Ragsdale & Pierce, 2008). They also 

produce industrial compounds such as ethanol, butyrate, lactate etc. (Das & 

Ljungdahl, 2003; Hügler & Sievert, 2011; Lovell & Leaphart, 2005; Wu et 

al., 2019). Acetogenic bacteria are highly versatile in their metabolic 

potential and diverse in phylogeny, representing over 23 genera in bacterial 

classification (without any acetogen formyltetrahydrofolate synthetase 

(FTHFS) sequence specific clustering) (Drake et al., 2013; Müller & 

Frerichs, 2013) (Figure 3, Figure 9). Acetogens include SAOB, which use 

a reverse acetyl-CoA pathway for oxidation of acetate to carbon dioxide and 

hydrogen (Lee & Zinder, 1988a, 1988b; Schnürer et al., 1997). Acetogenesis 

is a physiological attribute of acetogenic bacteria and there is no scientific 

3. Acetogens 
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consensus on the genome construction which can define their phylogeny. 

Therefore, taxonomic markers like 16S rRNA gene are not very helpful in 

the identification and classification of acetogens (Drake, 1994b; Lovell, 

1994) (Paper III). Thus, for the purposes of identification and classification 

of acetogens, presence of WLP is a prerequisite (Papers I and II). 

 

3.1 Wood-Ljungdahl pathway 

 

The Wood-Ljungdahl pathway is named after Harland G. Wood and Lars 

G. Ljungdahl who first proposed the complete biochemical pathway of 

autotrophic growth of acetogenic bacteria using carbon dioxide and 

hydrogen (Drake, 1994b; Schuchmann & Müller, 2014; Wood & Ljungdahl, 

1991) (Figure 4). Biochemically, WLP is called the acetyl-CoA pathway of 

energy conservation for acetogenic growth, where hydrogen as an electron 

donor and two moles of carbon dioxide as an electron acceptor are converted 

to one mole of a precursor molecule acetyl-coenzyme A (CoA) (Fuchs, 1986; 

Ljungdahl, 1986; Wood, 1986, 1991). Thus, bacteria which: i) use WLP for 

energy conservation ii) generate acetyl-CoA by reduction of carbon dioxide, 

iii) may or may not produce acetate as the main end-product and iv) are 

obligate anaerobes, with tolerance to periods of aerobiosis, are defined as 

acetogenic bacteria or acetogens (Drake et al., 2013; Schuchmann & Müller, 

2016; Seifritz et al., 2003; Singh et al., 2020; Wagner et al., 1996). 
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Figure 4. Diagrammatic representation of the Wood-Ljungdahl pathway/acetyl-

CoA pathway of acetogenic bacteria. 

Acetogenesis is a conglomerate physiological process which occurs under 

particular favourable conditions and thus cannot be restricted to a special 

genomic or phylogenetic construction (Drake, 1994a; Drake et al., 2002; 

Küsel et al., 2001; Schink, 1994; Schuchmann & Müller, 2016; Tanner & 

Woese, 1994) (Paper I) (Figure 5). Although presence and utilisation of 

WLP is a primary requirement for acetogenesis, many of the known 

acetogens lack a complete acetyl-CoA pathway or its genes in their genome 

or these genes cannot be detected due to unavailability of complete genome 

sequences (Paper I) (Figure 5). Nevertheless, the main enzymes in WLP, i.e. 
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formyltetrahydrofolate synthetase (FTHFS), acetyl-CoA synthase/carbon 

monoxide dehydrogenase complex (acsA/CODH complex) and acetate 

kinase (ackA), are the most critical and necessary enzymes for acetogenesis 

(Drake, 1994b; Hattori et al., 2005; Zinder, 1994). Therefore, for decades 

FTHFS and acsA/CODH complex genes have been used as a marker for the 

identification of acetogenic bacteria (Gagen et al., 2010; Lovell & Leaphart, 

2005; Matsui et al., 2011, 2008; Moestedt et al., 2016; Müller et al., 2016; 

Westerholm et al., 2018; Westerholm, Müller, et al., 2011; Yang, 2018) 

(Papers I, II, III and IV). 

 

Figure 5 presents the WLP of two known acetogens Caloramator 

fervidus and Thermoacetogenium phaeum (Drake et al., 2013) and their 

count of WLP genes. Complete genome/genome assembly of C. fervidus 

strain DSM 5463 (NZ_FNUK01000046.1) and T. phaeum strain DSM 12270 

(NC_018870.1) was obtained from NCBI (Sayers et al., 2012) and automatic 

pathway reconstruction was done using software AcetoPath developed 

within this thesis (Abhijeet Singh, unpublished). AcetoPath uses whole 

genome/assembly sequence, searches WLP genes based on homology and 

produces a WLP diagram with counts of respective genes. If multiple 

genome sequences are used, a heatmap of genomes used and constituent 

WLP gene is also generated. Use of AcetoPath in future analyses will allow 

exploration of organisms which harbour WLP or its major genes for 

acetogenic potential. 
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B) 

 

 

Figure 5. Diagrammatic representation of the Wood-Ljungdahl pathway (WLP) 

showing absence and presence of acetyl-CoA pathway genes in the known 

acetogens A) Caloramator fervidus (DSM 5463; NZ_FNUK01000046.1) and B) 

Thermoacetogenium phaeum (DSM 12270; NC_018870.1). Pathway 

reconstructions were made with the software AcetoPath (Abhijeet Singh, 

unpublished). The numbers above gene names represent number of gene copies 

detected within the genome sequence. 
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3.2 Formyltetrahydrofolate synthetase 

 

Formyltetrahydrofolate synthetase, also known as formate--

tetrahydrofolate ligase, is a characteristic and one of the main enzymes for 

acetogenesis in WLP (Drake, 1994b; Zinder, 1994). It is structurally and 

functionally very conserved and, due to high thermo-oxidative stability, 

relative ease of isolation and reliability, it has been preferred over 

acsA/CODH in earlier  enzymological studies (Drake et al., 2013; Ragsdale, 

1991). FTHFS is a marker enzyme of WLP and is present in all acetogenic 

bacteria. It can also be present in SAOB, sulphate-reducing bacteria and 

some archaea/methanogens (Drake, 1994b; Drake et al., 1997; Poehlein et 

al., 2012; Ragsdale & Pierce, 2008; Sakimoto et al., 2016). It can even be 

found in yeasts, plants, mammals and humans (Christensen & MacKenzie, 

2006; MacFarlane et al., 2009; Meiser & Vazquez, 2016). However, to meet 

the essential conditions for acetogenesis, only acetogenic bacteria can utilise 

the FTHFS gene as part of WLP for autotrophic growth. For this reason, 

FTHFS is widely used to identify acetogenic bacteria in different 

environments, like anaerobic digesters, human/animal and insect gut, paddy 

fields, lake and marine sediments, oilfields etc. (Fu et al., 2018; Henderson 

et al., 2010; Hori et al., 2011; Leaphart et al., 2003; Leaphart & Lovell, 2001; 

Lovell & Hui, 1991; Matsui et al., 2008; Moestedt et al., 2016; Müller et al., 

2016; Westerholm et al., 2018) (Papers I; II, III and IV). There has been an 

overall increase in the study of acetogens/acetogenesis in the past two 

decades, particularly within the field of biogas/AD environments (Figure 6). 

Metagenomics studies have contributed to identification of WLP in 

metagenomics data, but studies focusing on the FTHFS gene have not 

gathered pace due to the lack of a suitable analytical strategy (Gagen et al., 

2010; Henderson et al., 2010; Hori et al., 2011; Leaphart & Lovell, 2001; 

Lovell & Hui, 1991; Xu et al., 2009) (Papers I, II and III) (Figure 6). 
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Figure 6. Line graph representing the increase in number of PubMed indexed 

studies published related to the respective topic published 1980-2019. The graph 

is based on a keyword (acetogen, acetogenesis, FTHFS and Wood-Ljungdahl 

pathway, anaerobic digestion and biogas) search in the PubMed database, 

accessed December 2020. The secondary y-axis in the graph is marked with 

asterisk and the values on the secondary y-axis are shown as squares. 
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The amount and composition of the biogas, and the efficiency and 

stability of the process, are dependent on several parameters such as 

feedstock composition, reactor technology, operating parameters and the 

structure and activity of the microbiological community engaged in the 

process (Angelidaki et al., 2011; Herrmann et al., 2012; Horváth et al., 2016; 

Lebuhn et al., 2015; Pöschl et al., 2010; Schnürer, 2016; Schnürer et al., 

2016; Schnürer & Jarvis, 2017; Wellinger et al., 2013). Each biogas 

installation has its own specific operating strategy and parameters (Drosg, 

2013; Schnürer, 2016; Schnürer & Jarvis, 2017). Thus the microbiome 

associated with every biogas reactor is unique and specific to its physical and 

chemical properties (Calusinska et al., 2018; Theuerl et al., 2018; Theuerl, 

Klang, et al., 2019) (Paper IV). As a generalisation, the process parameters 

can be classified into two categories 1) direct and 2) derived parameters. 

Direct parameters are under the direct control of the biogas plant operator 

and can be modulated. These parameters include substrate characteristics, 

carbon/nitrogen (C/N) ratio, temperature, organic loading rate (OLR), 

hydraulic retention time (HRT), stirring, additives etc. Derived parameters 

are parameters are important for the process which originate from the 

interaction between direct parameters and microbial communities. They 

include pH, alkalinity, ammonia/ammonium nitrogen (NH4
+-N), VFA 

concentration, methane content, carbon dioxide content etc. 

 

The substrate is the direct source of nutrition for the biogas microbiome. 

For efficient biological functioning of microbes, balanced availability of 

nutrients is necessary and an imbalance in the nutrient ratio could result in 

disruption of the microbial synergy and biogas yield (Chan, 2003; Theuerl, 

4. Factors affecting the biogas process 
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Klang, et al., 2019). Typically, hydrolysis is a slow process if substrate 

contains complex organic compounds which are not readily digested, such 

as lignocellulosic materials (Azman et al., 2015; Lynd et al., 2002; 

Taherzadeh & Karimi, 2008). In the case of substrates rich in easily 

digestible compounds, hydrolysis and acidogenesis can promptly produce 

intermediate products like alcohols, hydrogen, ammonia, VFA etc. 

(Bouallagui et al., 2005; Schnürer, 2016; Schnürer & Jarvis, 2017). If the 

rate of production of intermediate products exceeds the rate of their uptake 

for anaerobic oxidation, this can cause accumulation of VFA, a drop in pH 

and consequently inhibition of methanogenesis (Yang et al., 2015) (see 

Figure 3). Since hydrolysis is primarily carried out by extra-cellular 

enzymes and fermentation is performed by very diverse bacterial and fungal 

groups, these steps are less susceptible to inhibition caused by excess VFA 

(formate, acetate, propionate, butyrate, iso-butyrate, valerate, iso-valerate 

etc.) as compared to methanogenesis. The optimum range of C/N ratio in 

substrate is reported to be 15:1 to 25:1 (Esposito et al., 2012). A ratio higher 

than this range (in the case of easily accessible carbon) can cause excess VFA 

production, a decrease in pH and slow cellular growth, due to scarcity of 

nitrogen for microbial growth/protein synthesis (Resch et al., 2011). A ratio 

lower than this range can result in excess availability of nitrogen and thus 

production of excess ammonia (Rajagopal et al., 2013; Schnürer, 2016; 

Theuerl, Klang, et al., 2019). Most of the studies conducted in biogas 

reactors with different substrates have identified organic loading rate and 

ammonia as major causes of disturbance or inhibition of microbial processes 

(Wu et al., 2019) (Paper III). High levels of free ammonia often result in 

significant inhibition of methanogenesis, and sometimes also hydrolysis and 

fermentation (Czatzkowska et al., 2020; Franke-Whittle et al., 2014; 

Gerardi, 2003; Schnürer, 2016; Schnürer & Jarvis, 2017; Siegert & Banks, 

2005; Wang et al., 2009; Westerholm et al., 2016) (Figure 3). Consequently, 

accumulation of VFA occurs, especially of acetate and propionate, followed 

by a drop in pH, which can enhance inhibition or even cause complete 

process failure (Frank et al., 2016; Moestedt et al., 2016; Rajagopal et al., 

2013; Schnürer, 2016; Schnürer & Nordberg, 2008). 

 

Another important parameter which affects the biogas process is 

temperature. Fluctuations in temperature can result in instability of 
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enzymatic processes, especially methanogenesis, whereas 

hydrolysis/fermentation and acidogenesis are relative less sensitive to 

temperature fluctuations (Robles et al., 2018). Furthermore, if the substrate 

is rich in nitrogen, an increase in temperature can result in higher ammonia 

production, which is the most common cause of methanogenesis inhibition 

(Fotidis et al., 2013; Khalid et al., 2011; Schnürer, 2016; Schnürer & Jarvis, 

2017; Schnürer & Nordberg, 2008; Wu et al., 2019). For a stable biogas 

process, mesophilic temperature (30-40 °C) is preferred, as the microbial 

communities at this temperature are more diverse and relatively less 

susceptible to disturbance. However, bio-conversation rate is higher at 

thermophilic temperature (50-60 °C), which can permit higher organic 

loading rate or shorter hydraulic retention time and higher biogas yield (Ge 

et al., 2016; Li et al., 2011). Nevertheless, thermophilic systems are 

relatively more susceptible to disturbance due to their lower microbial 

diversity and higher chances of ammonia inhibition (Levén et al., 2007; Zhao 

& Kugel, 1996). 

 

The ‘inhibition triangle’ illustrates the relationship of 

hydrolysis/acidogenesis, anaerobic oxidation (including acetogenesis and 

syntrophic acid oxidation) and methanogenesis to the main internal process 

parameters temperature, ammonia/ammonium and pH, and to external 

influencing parameters like organic loading rate and process speed (Figure 

7). The inhibition triangle can be interpreted as follows: In general, a normal 

biogas process is in equilibrium (represented by green broken line) with the 

interconnected microbiological process (red smooth line). An increase in the 

temperature or organic loading rate (brown dotted line) can cause a higher 

risk of elevated ammonia levels eventually resulting in VFA accumulation 

and a drop in pH (blue broken line). Methanogens are susceptible to changes 

in these parameters and variations outside the optimum cause stress in the 

biogas process, reduced activity or inhibition of methanogenesis (brown 

broken line). During these events, the acetogenic community plays an 

important role in VFA production/oxidation, balancing the pH and overall 

functioning of the biogas process (Kovács et al., 2004; Zeeman & Lettinga, 

1999) (Figure 3, Figure 7). Due to this special characteristic of acetogenic 

bacteria, they can act as a marker for the process stability and health of biogas 

reactors (Papers II, III and IV). 
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Figure 7. “Inhibition triangle” of the biogas stress system, showing the 

interrelationships between microbiological processes and internal and external 

parameters in the biogas system. 

By continuous monitoring of direct and derived parameters, any 

imbalance/disturbance in the process can be detected in time, which provides 

an opportunity to take corrective action and ensure maximum efficiency 

(Drosg, 2013). Biogas process involves various parameters and disturbance 

can be caused by unknown parameters, therefore, biogas plants uses 

consequential parameters such as produced total gas volume (cu.m./day), 

content of methane and carbon dioxide (%) , hydrogen sulphide (ppm), pH 

(A.U.), volatile fatty acids (VFA) (g/L), NH4
+-N (g/L), volatile solids (VS) 

(g L-1 day-1), temperature (°C), alkalinity (mg/L) etc. to monitor the process 

(Drosg, 2013; Schnürer et al., 2016). 
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In the past few decades, there was a rapid increase in the research for the 

development of reliable monitoring strategy for biogas reactors. Studies to 

date have proposed monitoring based on early warning indicators for 

physico-chemical parameters, such as alkalinity ratios (Martín-González et 

al., 2013), CH4/CO2 ratio, VFA/alkalinity ratio (D., Li et al., 2017; Li et al., 

2014, 2018), stability and auxiliary index (Dong et al., 2011), VFA/calcium 

concentration (Kleyböcker et al., 2012), stable isotope signature (Lv et al., 

2014; Polag et al., 2015), isotope fractionation (De Vrieze, De Waele, et al., 

2018), total volatile acids/total inorganic carbon ratio (Voß et al., 2009) etc. 

Other studies have used advanced technologies like near-infrared (NIR) 

spectroscopy (Bruni et al., 2013), fluorescence spectroscopy (Palacio-Barco 

et al., 2010), electronic nose/tongue (Peris & Escuder-Gilabert, 2013), 

proportional-integral-derivative (PID) controller (Marsili-Libelli & Beni, 

1996) and artificial neural networks (Holubar, 2002; Holubar et al., 2000, 

2003) etc. for identification and rapid detection of process disturbances. 

Advanced technologies and instruments are therefore available for 

monitoring and analysis of these parameters in real time or within few hours. 

However, they have some methodological/technical limitations, are not 

highly reliable and they need to be interpreted in combination with other 

parameters (Drosg, 2013; Ferguson et al., 2014; Guebitz et al., 2015; Lebuhn 

et al., 2014; Ward et al., 2008; Wu et al., 2019). 

 

Application of modern molecular and microbiological techniques to 

monitor the anaerobic digestion process has the advantage that these 

techniques can detect changes significantly earlier than is possible by 

conventional chemical and physical parameters (Lebuhn et al., 2014, 2015). 

5. Monitoring the biogas process 
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They involve the monitoring of microbiological composition, dynamics and 

health (Lebuhn et al., 2015; Schnürer et al., 2016). Microbiological 

communities involved in the biogas process are highly diverse (Calusinska 

et al., 2018; Campanaro et al., 2020; Maus et al., 2016) and dynamic, with 

changes over time even without any disturbances (Fernandez et al., 2000; 

Fernández et al., 1999; Theuerl et al., 2015, 2018). However, microbiome 

and microbiological processes in biogas reactors continues to be a black box 

(Kleinsteuber, 2019; Rivière et al., 2009; Theuerl, Klang, et al., 2019; Treu 

et al., 2016) as there is incomplete understanding of their functional potency 

and redundancy (Langer et al., 2015; Moya & Ferrer, 2016). Therefore, 

research into microbiological processes is currently the focus as regards 

anaerobic digestion processes (Lebuhn et al., 2014, 2015; Theuerl, 

Herrmann, et al., 2019). 

5.1 Microbiological monitoring and surveillance 

 

Microbiological monitoring and surveillance, although similar, have 

some fundamental differences that mainly relate to the aims and principle of 

the underlying strategy employed in the respective method (Artois et al., 

2009; Doherr & Audige, 2001; Salman, 2003). The same set of techniques 

can be applied with different aims and objectives, and thus surveillance can 

include monitoring but not vice versa. With relation to the anaerobic 

digestion process, the definitions used within this thesis for microbiological 

monitoring and surveillance are as follows: 

 

Microbiological monitoring: Systematic, continuous or periodical, 

active or passive collection of data to detect any changes and their influence 

on microbiological community. 

 

Microbiological surveillance: Active, systematic, dynamic and intensive 

investigation of a specific microbial group to detect any changes in its 

composition or abundance within certain threshold limits, which can 

indicate a further course of action. 
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Etymologically, microbiological means a defined microbial group in its 

natural environment, while surveillance means quantitative analysis of 

temporal dynamics. A microbiological surveillance strategy for detection or 

prediction of changes in the dynamic profile of acetogenic bacterial 

communities present in biogas reactors was developed in this thesis (Figure 

8). The prerequisites for microbiological surveillance formulated in this 

thesis were: 

 

1. Target microbial group: acetogenic bacterial community. 

2. Reliable analysis method: high-throughput sequencing and 

bioinformatics data analysis pipeline. 

3. Threshold limit: increase or decrease in relative abundance of respective 

members of acetogenic community. 

4. Reclamation proceedings: depending on type of biogas system and 

nature of variation in acetogenic community. 

 

5.1.1 The theory of microbiological surveillance in biogas plants  

 

The theory, hypothesis, empirical consequences and auxiliary 

assumptions applied in development of the microbiological surveillance 

strategy for biogas plants in this thesis were as follows: 

 

Theory: Acetogens/acetogenic bacteria are very important members of 

the anaerobic microbial community, imperative for balance and synergy in 

biogas process and can be used for microbiological surveillance in biogas 

reactors. 

 

Hypothesis (H): The community dynamics and abundance of acetogenic 

bacteria influence the stability of the methanogenic process, so 

microbiological surveillance of the acetogenic population can help in 

assessment and prediction of process stability. 
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Empirical consequence (E): 

 

i. A reduction in abundance and/or activity of a certain population (P1) 

of the acetogenic community under the influence of an external 

stress factor. 

ii. An increase in abundance and/or activity of a fraction (P2) of 

acetogenic community under the influence of external stress factor. 

iii. The activity of P2 can also be responsible for increasing the degree 

of stress caused by the external factor. 

iv. The remaining population (P3) of the acetogenic community may or 

may not change in its abundance or activity under the influence of 

the external stress factor. 

 

Auxiliary assumptions (A): 

 

i. Acetogens produce volatile fatty acids (mainly acetate) in the biogas 

process. 

ii. Acetogens include organic acid-oxidising bacteria which degrade 

volatile fatty acids in the biogas process. 

iii. Acetogens may not always perform acetogenesis. 

 

 

If H and A, then E 

E false 

-------------------------- 

Either H or A is false 
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Figure 8. Diagrammatic representation of acetogens targeted in microbiological 

surveillance of biogas plants, as envisioned in this thesis. 
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Advances in microbiological techniques have led to extensive and 

elaborate investigations on biogas reactors to identify the microbiological 

processes, community structure and interactions within the unknown world 

of environmental microbiomes. Metagenomics techniques have 

demonstrated that the biogas microbiome is highly diverse and that each 

process develops its own unique microbial community based on its substrate 

and operating parameters (Campanaro et al., 2016, 2020; Güllert et al., 2016; 

Luo et al., 2016; Maus et al., 2016; Ortseifen et al., 2016; Schlüter et al., 

2008; Treu et al., 2016). Detailed metaproteomics/metatranscriptomics have 

also been applied in some studies, in attempt to get in-depth knowledge of 

the active microbiome and pathways for the biogas microbiome (Hanreich et 

al., 2012; Heyer et al., 2013, 2016; Kohrs et al., 2014). Although very 

extensive and detailed, such studies have some major limitations. For 

example, they are exploratory and based on few samples which are restricted 

in number, replicates and time series of samples, and thus only give snapshot 

information. They produce big data that are often dependent on diversity and 

accuracy of reference databases, analysis duration, analytical software, 

computational resources, skillset of the user etc. (Fan et al., 2014; Heyer et 

al., 2015, 2017; Kleinsteuber, 2019; Najafabadi et al., 2015; Prosser, 2015; 

Stephens et al., 2015). In addition, the results must be interpreted in 

correlation with findings obtained using other omics techniques to fully 

understand the diversity, interaction and functions of microbiomes (Heyer et 

al., 2015, 2017). Unfortunately, none of the large omics-centred studies 

performed previously in biogas reactors focuses on or describes acetogens or 

6. Microbial community analysis in 
anaerobic digesters 
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the acetogenic community, which was thus main focus of this thesis (Papers 

II, III and IV). 

6.1 Analysis of the acetogenic community 

 

Acetogenic bacteria are one of the most versatile groups of anaerobic 

bacteria studied to date (Müller, 2003; Schink, 1994; Schuchmann & Müller, 

2014). Acetogens have been studied for past few decades and are now 

attracting increasing attention because of their importance in modern 

sustainable biomanufacturing and electrochemical processes (Liew et al., 

2016; Müller, 2019; Nevin et al., 2011; Saheb-Alam et al., 2017; 

Wiechmann & Müller, 2019) (see Figure 6). Most previous studies on 

acetogenic bacteria have been conducted using conventional methods, i.e. 

isolation and physiological characterization. Isolation, pure culturing and 

physiological analysis will always be the best method for characterisation of 

particular acetogenic bacteria. Metagenomics/metaproteomics applications 

have also contributed and have revealed new acetogenic/syntrophic 

candidates, e.g. acetogenic bacteria in the phylum Cloacimonodota, genus 

Candidatus Syntrophopropionicum or phylotype unFirm_1 etc. (Frank et al., 

2016; Lucas et al., 2015; Pelletier et al., 2008; Singh et al., 2021). However, 

these candidate organisms have not yet been isolated and physiologically 

characterised because of limitations in culturing techniques and lack of 

knowledge about the correct method and growth characteristics. Moreover, 

in an ecological monitoring/surveillance perspective, isolation and pure 

culturing is not feasible, practical and applicable. Therefore, ecological 

studies targeting acetogens are mostly performed with molecular biological 

techniques, such as quantitative polymerase chain reaction (qPCR), clone 

library, terminal restriction fragment length polymorphism (T-RFLP) etc. 

6.2 Acetogenic community analysis with qPCR and clone 
libraries 

 

For quantitative analysis of microbial communities in environmental 

samples, qPCR is a very powerful and accurate method and that has been 
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used in multiple studies (Aydin et al., 2015; Delgado et al., 2012; Ouwerkerk 

et al., 2009; Parameswaran et al., 2011; Sagheddu et al., 2017; Westerholm, 

Müller, et al., 2011; Xu et al., 2009; Yang, 2018). However, this method has 

the limitations that it requires high specificity of primers, is likely not 

efficient in targeting FTHFS sequences from a diverse bacterial population 

(Xu et al., 2009), and the amplicon size for the target gene should be around 

200-300 base pairs (bp) for efficient quantitative assay (Sharma et al., 2007).

Thus, it is surprising that several studies (Aydin et al., 2015; Ouwerkerk et

al., 2009; Sagheddu et al., 2017) have used FTHFS primers from Leaphart

and Lovell (2001) or Lovell and Leaphart (2005) which generate amplicons

of ~1100 bp and are not suitable for qPCR. In addition, many acetogens have

multiple copies of FTHFS genes (see examples in Figure 5), and hence,

quantitative assumptions that FTHFS gene copies correspond to the bacterial

cell in soil (Xu et al., 2009) do not seem to be reliable. Further, in the study

by Xu et al. (2009), the amplicon size generated by FTHFS was over the

reliable limits for a quantitative assay. An added complication is, that non-

acetogenic bacteria and some archaea also harbour FTHFS genes (Borrel et

al., 2016; Lovell & Leaphart, 2005; Whitman, 1994). This is not desirable in

a qPCR assay and unavailability of taxonomic information will hamper

filtering and removal of quantitative data of non-acetogenic bacteria and

archaea. Due to these technical complications, qPCR assay is not the best

method for the study of acetogenic communities. Due to lack of an acetogen-

specific database (Küsel et al., 2001; Xu et al., 2009), FTHFS sequences

from many acetogenic groups have not been available for the design of new

primers which can target broader diversity than the primers from Leaphart

and Lovell (2001), Lovell and Leaphart (2005) and Xu (2009) (Paper I).

Therefore, within this thesis, a new FTHFS gene repository and database

called AcetoBase, which can assist in designing new primers to target a

diverse population of FTHFS gene-harbouring bacteria, was developed

(Paper I). Figure 9 shows the diversity of bacterial FTHFS protein sequences

present in AcetoBase. Furthermore, qPCR quantification of the FTHFS gene

harbouring community lacks taxonomic information and for quantitative of

specific acetogenic bacteria, species-specific primers are required (Müller et

al., 2016).
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Figure 9. Phylogenetic tree showing formyltetrahydrofolate synthetase (FTHFS) 

amino acid sequence diversity in AcetoBase (Paper I). Phlya with less than 10 

sequences were merged in the group Minor_phyla during tree annotation and 

visualisation. 

Due to the limitations in acetogen-targeted qPCR analysis clone library 

construction/sequencing is widely used for environmental samples. Cloning 

of the FTHFS gene and sequencing is a frequently used method for 

identification of acetogenic bacteria in environmental samples (Gagen et al., 

2010, 2014; Henderson et al., 2010; Leaphart & Lovell, 2001; Moestedt et 

al., 2016; Müller et al., 2016; Westerholm et al., 2018). Sequencing of clones 

generally yields long sequence reads with good quality, which is very useful 

in sequence analysis and establishing phylogenetic relationships. However, 
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this method has a technical shortcoming deriving from the process of clone 

library generation, which can be biased in ligation, transformation and 

colony selection and may not represent the whole microbial diversity present 

in any sample. The analysis in Paper I supported this notion of selective 

targeting of FTHFS primers in clone library construction. It also showed that 

the clone library is limited to few hundreds of clones (maximum) which are 

redundant. The phylogenetic tree constructed for all published and publicly 

available FTHFS clone sequences indicated dominance of certain taxa (Paper 

I) (Figure 10). 

 

 

Figure 10. Phylogenetic tree representing formyltetrahydrofolate synthetase 

(FTHFS) clone sequence diversity in AcetoBase (Paper I). Predicted phlya with 

less than 10 sequences were merged in the group Minor_phyla during tree 

annotation and visualisation. 
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Before the work presented in Paper I, researchers tended to use the 

homoacetogen similarity (HS) score proposed by Henderson et al. (2010) to 

predict the phylogeny and physiological characteristics of clone sequences 

(Akuzawa et al., 2011; Gagen et al., 2010, 2014, 2015; Z., Li et al., 2017; 

Matsui et al., 2019; Mitsumori et al., 2014). The HS score is based on the 

hypothesis of positional conservation of FTHFS sequences of acetogenic 

bacteria. However, diligent and elaborate analysis has shown that FTHFS 

sequences may have positional conservation in acetogens, but that this it is 

not universal (Lovell, 1994) (Paper I). With this hypothesis HS score cannot 

help in identification of acetogens or their physiological characteristics 

(Paper I). The limitations of HS score were pointed out by developers 

themselves (Henderson et al., 2010). Besides, the term ‘homoacetogen’ is a 

misnomer and its use is discouraged by several experts in the field (Drake, 

1994b; Drake et al., 2013; Müller & Frerichs, 2013). 

6.3 Acetogenic community profiling with T-RFLP 

Typically, phylogenetic analysis is performed with clone sequences to 

visualise clustering of FTHFS sequences from acetogens among non-

acetogenic bacterial sequences (Ohashi et al., 2007; Pester & Brune, 2006). 

However, the phylogenetic and cluster analyses performed in Paper I 

indicated that this assumption is not entirely true, due to the fact that there is 

no positional conservation in the FTHFS sequences of acetogenic and non-

acetogenic bacteria (Lovell, 1994) (Paper I). Thus, although clone library 

construction is a very useful method, it needs detailed analysis to be 

connected to taxonomy and be useful. Additionally, the method is low-

throughput, time- and resource-intensive, requires laboratory/technical skills 

and data analysis is difficult to automate. Therefore, for cost-/resource-

efficient analysis of large numbers of samples and effortless data analysis for 

microbiological surveillance, clone library sequencing cannot be a method 

of choice (Dunbar et al., 2000; Talbot et al., 2008) (Paper II). 

For fast screening of environmental samples, T-RFLP is a very popular 

and established method (Lebuhn et al., 2015; Robles et al., 2018). In T-

RFLP, microbial community analysis is based on the restriction digestion of 

marker gene amplicons, where length heterogeneity of the terminally 
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labelled restriction fragment (T-RF) represents the diversity of the microbial 

population in a sample (Liu et al., 1997). T-RFLP has been widely used for 

analysis of microbial community structure and diversity in environmental 

samples (Blackwood et al., 2003; Brugger et al., 2012; Dickie & FitzJohn, 

2007; Klang et al., 2019; Osborn et al., 2000). It has also been used for 

analysis of acetogenic populations in environmental and biogas samples 

(Akuzawa et al., 2011; Hori et al., 2011; Moestedt et al., 2016; Müller et al., 

2016; Saheb-Alam et al., 2017; Westerholm et al., 2018; Westerholm, 

Müller, et al., 2011) (Paper III). However, this method has some technical 

and methodological limitations which reduce its overall efficiency (Dunbar 

et al., 2000; Prakash et al., 2014). Furthermore, one T-RF can be represented 

by many different microorganisms, and hence relating T-RF to exact 

bacterial taxonomy is not possible (Paper III). Although the T-RFLP method 

can effectively show microbial community dynamics in environmental 

samples, this method alone is not able to associate T-RF to any bacterial 

lineage (Dunbar et al., 2000; Nikolausz et al., 2005; Osborn et al., 2000). 

Thus, a prior exploratory study with a combination of T-RFLP and cloning 

is necessary to assign T-RF and probable taxonomy (Nikolausz et al., 2005; 

Osborn et al., 2000). However, with the help of AcetoBase and the REDigest 

software, in silico analysis can be performed to estimate the probable 

taxonomy of a particular T-RF (Singh, 2020) (Papers I and III). 

6.4 16S ribosomal RNA gene sequencing 

The 16S rRNA gene has been used in countless studies focusing on 

decoding the taxonomy of microbial dark matter in environmental samples 

(Janda & Abbott, 2007; Johnson et al., 2019; Nobu et al., 2015; De Vrieze, 

Ijaz, et al., 2018). However, since acetogenesis is a physiological property 

and cannot be revealed by the taxonomy of the respective bacteria, 16S 

rRNA gene sequencing cannot serve the purpose of identifying acetogenic 

bacteria in an environmental perspective (Lovell, 1994; Tanner & Woese, 

1994) (Paper III). However, during isolation of bacteria and their 

characterisation, 16S rRNA gene sequencing will always be a necessity in 

phylogenetic placement of the bacteria. 16S rRNA gene sequencing can be 

used for the microbiological surveillance of acetogenic bacteria, if species-
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specific primers are used. Species-specific 16S rRNA primers have been 

used e.g. by Westerholm et al. (2011a) for the detection of some acetogens 

in qPCR analysis. To date, no 16S rRNA-based, high-throughput sequencing 

or data analysis for acetogenic bacteria has been performed and published. 

In Paper III, an alternative approach was proposed, where a 16S rRNA gene 

sequence database (RibocetoBase) was developed for the FTHFS harbouring 

bacteria present in AcetoBase. Thus, an indirect assessment of the FTHFS-

possessing bacterial population can be performed with 16S rRNA gene 

amplicon sequencing (AmpSeq) data (Papers III and IV). However, this 

indirect method has some limitations and cannot be used as a replacement 

for FTHFS gene AmpSeq (Papers III and IV). 

6.5 High-throughput FTHFS gene-based analysis of 
acetogenic bacteria 

Since the 16S rRNA gene cannot be used for high-throughput 

identification and quantification of acetogenic communities, this created a 

need for a FTHFS gene database and high-throughput analysis method 

(Gagen et al., 2010; Henderson et al., 2010; Hori et al., 2011; Leaphart & 

Lovell, 2001; Xu et al., 2009). Therefore, in this thesis the database 

AcetoBase (Paper I) (Figure 11) and a new method AcetoScan (Paper II) 

were developed and successfully used for the high-throughput analysis of 

acetogenic bacteria (Papers III and IV). In most sequencing-based scientific 

studies, complex analysis of big sequence data and visualisation procedures 

are the most common limitations to wider application of high-throughput 

sequencing methods (Kulkarni & Frommolt, 2017; De Vrieze, Ijaz, et al., 

2018). 
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Figure 11. Comparative visualisation of the pre-existing scenario and benefits 

from establishment of a database and repository for formyltetrahydrofolate 

synthetase (FTHFS) sequences, i.e. AcetoBase (Paper I). 

AcetoScan is a bioinformatics pipeline developed for rapid and accurate 

analysis of FTHFS AmpSeq data with minimum user input (Paper II). It does 

not require a high-performance computing cluster and can even work on any 

modern desktop computer/laptop (Paper II) (Figure 12). Unsupervised 

analysis of FTHFS AmpSeq data and automated result visualisation make 

AcetoScan a fast and reliable method (Paper III) (Figure 13). These qualities 

mean that the tools and strategy developed in this thesis are suitable for 

acetogenic community-focused microbiological surveillance of biogas plants 

(Paper IV) (Figure 14). 
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Figure 12. Comparative visualisation of the advantages of the new AcetoScan 

method for high-throughput sequencing and data analysis conventional methods 

used for formyltetrahydrofolate synthetase (FTHFS) gene based acetogenic 

community profiling (Paper II). 

To determine the accuracy, reliability and utility of high-throughput 

FTHFS AmpSeq and AcetoScan analysis method, comparative analyses 

were conducted with the FTHFS amplicon-based T-RFLP and 16S rRNA 

AmpSeq methods (Paper III). The results showed that FTHFS Ampseq and 

AcetoScan analysis is a reliable method for detection of community 

disturbance and taxonomy identities. It is more sensitive in targeting the low 

abundance members of communities which are otherwise not covered in 16S 

rRNA gene survey/monitoring (Papers III and IV). 
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Figure 13. Comparison of different methodological approaches for analysis of 

the acetogenic community using the established methods (FTHFS T-RFLP and 

16S rRNA gene) and the new high-throughput FTHFS gene sequencing and 

unsupervised AcetoScan analysis method (Paper III). The shape of objects 

represents the target community, where T-RFLP and AcetoScan target the 

acetogenic community with FTHFS sequences and 16S rRNA gene analysis 

targets the whole microbial community. Object colour indicates the desirability 

of the method in acetogenic community analysis, where pink means less desirable, 

green is intermediate and blue is most desirable. Object size indicates overall 

usability of the method in acetogenic community analysis. 
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Acetogenic communities are important ecological entities and play a 

paramount role in the biogas microbiome, but are still a neglected bacterial 

group in most omics studies (Lebuhn et al., 2015; Robles et al., 2018; 

Theuerl, Klang, et al., 2019). Additionally, without a proper understanding 

of acetogenic community structure and dynamics, a microbiology oriented 

predictive mathematical model for biogas process cannot be developed 

(Fernandez et al., 2000; Ni et al., 2011). In this chapter, the overall 

practicality, usability and reliability of acetogenic community surveillance 

are discussed in relation to its practical application in commercial biogas 

installations. Physical and chemical analyses are not sufficiently reliable for 

use in optimizing and monitoring a biogas reactor, and therefore microbial 

community analysis is necessary (Ferguson et al., 2014; Wu et al., 2019). 

Several methods based on different principles have been proposed for 

assessment of microbial dynamics and health. However, there is still no 

single method that can be used independently and reliably for this purpose 

(Ferguson et al., 2014; McMahon et al., 2007). This is due to the inbuilt 

complexity and diversity of the biogas microbiome and to the absence of a 

core community which can represent all the variability in anaerobic digestion 

processes (Ferguson et al., 2014; Fernandez et al., 2000; Sundberg et al., 

2013) (Paper IV). 

Different monitoring parameters have been proposed for monitoring of 

the bacterial community in biogas reactors. for example, the ratio of 

Firmicutes to Bacteroidetes (F/B) has been suggested as a performance 

7. Surveillance of acetogenic communities: 
Opportunities and obstacles
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indicator in biogas reactors (Chen et al., 2016). However, conflicting results 

have also been reported, with unexpected stability observed between these 

two phyla in reactors with different substrates (Kampmann et al., 2012). 

Therefore, F/B ratio can work as an indicator in certain situations, but it 

cannot be used as a universal ratio affecting biogas reactor health. Moreover, 

Firmicutes and Bacteroidetes are among most dominant phyla in biogas 

reactors running on different substrates (Regueiro et al., 2012; Schlüter et 

al., 2008; Sundberg et al., 2013), and the range of F/B ratio (16S rRNA gene 

3:1-10:1, metagenomic 4:1-10:1) as an indicator is not reliable (Ferguson et 

al., 2014; Güllert et al., 2016). Further, a phylum-level comparison might 

have a risk of missing the community dynamics and variations at the lower 

taxonomic levels (family-genus) (Paper III). 

Advanced microscopic methods have also been developed and employed 

in bacterial and archaeal visual quantification, e.g. fluorescence in situ 

hybridisation (FISH), confocal/electron microscopy and flow cytometry 

(Dhoble et al., 2016; Karakashev et al., 2005; Kinet et al., 2016; Krakat et 

al., 2010; Lebuhn et al., 2015). However, these methods have limitations in 

biogas environments. In particular, they are too sophisticated and sensitive 

for dirty biogas samples, employ expensive instruments or require specific 

probes (mostly 16S rRNA gene) for targeting the bacterial community. Since 

methanogenic archaea harbour a methanogenic redox cofactor F420 in their 

cell membrane, visual detection is relatively easy under ultra-violet light 

(Schnürer & Jarvis, 2017). However, this cofactor is also present in bacterial 

phylum Actinobacteria (Ney et al., 2017), which might interfere with visual 

quantification of methanogens. Thus, reliable and viable visual monitoring 

or surveillance is not a practical option. Further, no scientific studies 

specifically employing these microscopy/spectroscopy methods for 

monitoring the acetogenic community have been reported. In fact, there has 

been a complete lack of acetogen-specific studies employing FISH and 

microscopic/spectroscopic techniques. 

A rapid cytometric histogram image comparison (CHIC) method has 

been developed and used by Koch and co-workers for rapid monitoring of 

microbial community dynamics (Koch, Fetzer, Harms, et al., 2013; Koch, 

Fetzer, Schmidt, et al., 2013). This method involves whole microbial 
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community profiling based on fluorescent staining with DAPI (4',6-

diamidino-2-phenylindole), a stain which binds to the A-T rich region of 

DNA (Gomes et al., 2013). This is the fastest method for microbial profiling 

in biogas environments presented (claimed) to date, with high resolution. 

However, this method has several drawbacks for the anaerobic digester 

samples. The major drawbacks are i) the type of samples which can be used 

and ii) DAPI as fluorescent stain. Koch and co-workers demonstrated the 

method with samples from an enrichment reactor using distillers’ dried grain 

with solubles as substrate. In practice, flow cytometry is very sensitive to the 

quality of samples and any impurity can interfere with the assay or can even 

damage the instrument. The methodology cannot not be used for dirty biogas 

samples, which contain all sorts of impurities and inhibitory substances. 

Further, DAPI stains all living (less efficiently) or dead cells, prokaryotic or 

eukaryotic cells (Gomes et al., 2013), and therefore the resulting profile is 

based on all living or dead bacterial, archaeal and fungal cells. Fluorescence 

staining and microscopy/cytometry of cells (eukaryotic or prokaryotic) is a 

sensitive process and any unknown parameter (impurities, inhibitors, 

inefficient staining etc.) can negatively affect the assay. Koch and co-

workers claim that the method can be performed within few hours, but failed 

to mention the overnight incubation step in sample preparation. Thus, 

although the CHIC method could be very potent in quantifying community 

dynamics in biogas reactors, the complex environment of anaerobic digester 

is highly incompatible for cytometric analysis. 

Quantitative analysis by qPCR is very powerful, sensitive and reliable 

methodology for analysis of whole bacterial or methanogenic communities. 

Since methanogens are very sensitive to changes in organic loading rate, 

hydraulic retention time, temperature changes, ammonia concentration, pH, 

VFA concentration etc., change in their abundance and activity can be very 

helpful in assessing the health of biogas reactors (Lebuhn et al., 2015). 

However, methanogens are less diverse than whole bacterial communities 

(Sundberg et al., 2013), respond less dynamically to changes in the reactor, 

and changes in methanogenic pathways without significant changes in 

process performance have been reported (Dearman et al., 2006; Ferguson et 

al., 2014; Fernandez et al., 2000; Lebuhn et al., 2015; Lv et al., 2019). 

Therefore, use of cDNA/DNA ratio to analyse methanogen activity might 
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not provide very conclusive results (Lebuhn et al., 2015). Moreover, qPCR 

can be used for quantification of gene copy numbers. This method has been 

widely used for bacterial and methanogens based on 16S rRNA or 

methanogen-specific mcrA genes (Bartell et al., 2015; Bergmann et al., 

2010; Lebuhn et al., 2015; Steinberg & Regan, 2009; Traversi et al., 2011). 

However, there have been only a few attempts to target the acetogenic 

community in qPCR assays. This is due to the requirement for acetogen-

specific qPCR primers. As discussed previously in this thesis, currently 

published FTHFS primers are not suitable for quantitative analysis of whole 

acetogenic communities (Paper III) and species-specific (16S rRNA or 

FTHFS gene) primers need to be designed, as demonstrated by Westerholm 

et. al. (2011a; 2012) and Müller et al. (2016). Although qPCR assay can be 

very powerful tool in accurate quantification of acetogenic bacteria, the 

limitations discussed hamper its widespread use in microbiological 

surveillance of acetogenic communities. 

A new approach for calculating the metabolic quotient of methanogens 

was developed by Munk et al. (2012), based on relating methane production 

to the expression and count of mcrA/mrtA genes. It has been proposed as an 

important eco-physiological parameter to assess the health of biogas 

reactors, but the method still needs to be refined and calibrated, followed by 

continuous evaluation in a production-scale biogas reactor (Lebuhn et al., 

2015). Wider application of this method has not yet been achieved, but if it 

could be integrated with FTHFS gene-based acetogenic community 

dynamics and structure, it could be of extreme importance for biogas process 

optimisation. 

The strategy in this thesis for surveillance of the acetogenic community 

based on the FTHFS gene in biogas reactors was developed, meticulously 

tested and compared with conventional methods and applied to samples from 

different laboratory-scale and commercial biogas reactors (Papers III and 

IV) (Figure 13, Figure 14). In-depth analyses of acetogenic communities in

samples from laboratory-scale or commercial biogas reactors revealed that

the acetogenic communities (potential) in biogas reactors are very diverse,

but have not previously been visualised and described (Papers III and IV).

There is only one published article on high-throughput sequencing of FTHFS
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amplicons, by Planý et al. (2019), but the approach they used is highly 

questionable. They do not describe the analysis method and have not 

submitted sequencing data to any public repository, and thus their results 

cannot be reproduced or verified.  

Furthermore, the acetogenic communities are very dynamic regarding the 

relative abundance of different groups within these communities (Paper IV). 

It has been reported in countless studies that microbial community structure 

is very specific to the substrate and parameters used. The study reported in 

Paper IV described the acetogenic community structure and its temporal 

dynamics in full-scale biogas reactors running on different substrates, which 

had not been attempted before. The strategy employed in the surveillance 

described in Paper IV is visually depicted in Figure 14. The surveillance 

results in Paper IV revealed that the acetogenic community is also dependent 

on the substrate and reactor operating conditions. Time series sample 

analysis of full-scale commercial plants indicated that changes in acetogenic 

community structure can occur with apparently no or minimum changes in 

VFA profiles (Paper IV). Some indicator genera and species that can be used 

as a marker or indicator of disturbance prior to any disturbance in VFA 

profile were identified in the thesis (Papers III and IV). However, detailed 

and descriptive FTHFS surveillance data are needed to validate these 

findings. Further, multiple biogas reactors running on different feed 

substrates need to be analysed to understand feed-specific acetogenic 

community structure and its temporal dynamics. 
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Figure 14. Diagrammatic visualisation of the microbiological surveillance carried 

out in Paper IV, where time-series samples from different biogas reactors were 

subjected to DNA isolation, library preparation and Illumina sequencing. The 

unsupervised data analysis and visualisation were done by AcetoScan. 
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A new microbiological surveillance method targeting the acetogenic 

community in biogas reactors was developed. Thorough evaluation of the 

method indicated good potential for use in assessing the dynamics of 

acetogenic community in biogas reactors. However, the microbiological 

knowledge obtained must be integrated with technical advances for 

optimisation of the biogas process. Methanogens and 

hydrolysing/fermentative bacteria are very important in the biogas process 

and have been extensively studied. A good understanding of the community 

structure and dynamics of the acetogenic community is also needed so that a 

predictive mathematical model can be developed.  

Swot analysis of the FTHFS gene-based microbiological surveillance 

method for biogas plants showed that accuracy, relative ease of application 

to a large number of samples, fast data analysis and visualisation are the main 

strengths of the surveillance method (Figure 15). Some technical and 

practical limitations of the method were also identified in this thesis. Overall, 

the method is good enough to expand the knowledge base on acetogenic 

communities in biogas reactors and can be also applied to other environments 

where acetogenic communities are involved. The method enables the most 

descriptive study to date of FTHFS gene-harbouring and potential acetogenic 

bacteria. The methodology for acetogen-focused studies in biogas reactors 

could be further improved in future by incorporating a functional activity-

based approach. 

8. Conclusions and perspectives
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Figure 15. A swot analysis diagram describing the strengths, opportunities, 

weaknesses and threats of the FTHFS gene based microbiological surveillance of 

biogas plants. 

8.1 Future perspectives 

The tools and strategies presented in this thesis can help in achieving a 

greater understanding of acetogenic bacteria in ecosystem. Acetogenic 

bacteria are not only important in biogas systems, but are also present in 

abundance in human and animal/insect gut, where they play a critical role in 

gut physiology and gut-brain interactions (Breznak, 1994; Gibson et al., 

1990; Laverde Gomez et al., 2019; Leclerc et al., 1997; Mackie & Bryant, 

1994; Ohashi et al., 2007; Rey et al., 2010). Acetogens have also been found 

to have an intricate relationship with plants (Küsel, Pinkart, et al., 1999; 

Ohkuma et al., 2015; Pester & Brune, 2006) and to play an important role in 

ecological carbon cycling in marine and sub-surface environments 

(soil/lake/marine sediments, hypersaline water bodies, rice fields, oilfields, 

deep subsurface sediments) (Conrad, 1986; Kotsyurbenko et al., 1996, 2001; 

Küsel, Wagner, et al., 1999; Liu & Conrad, 2011; Liu & Suflita, 1993; 
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Marcelis et al., 2003; Nozhevnikova et al., 1994; Ollivier et al., 1994; 

Rosencrantz et al., 1999; Sokolova et al., 2020). Acetogens are highly 

diverse organisms, are very versatility metabolically and can grow 

heterotrophically at the thermodynamic borderlines in different 

environments (Lever, 2012; Schuchmann & Müller, 2014; Seifritz et al., 

2003). Modern circular bio-economy trends to mitigate climate change and 

sustainable industrial processes are now using acetogenic bacterial 

communities for production of biochemicals, modern biofuels/syngas and 

biohydrogen (Liew et al., 2016; Müller, 2019; Nevin et al., 2011; Oren, 

2012; Parameswaran et al., 2011; Saheb-Alam et al., 2017; Scott & Yu, 

2015; Wiechmann & Müller, 2019). Acetogens are ubiquitously found in 

almost all anaerobic environments and thus elaborate acetogenic community 

studies are needed to decode their role in environmental ecology (Ni et al., 

2011). 
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For any subject or scientific study, it is important to formulate definitions 

in relation to the theme of the main topic, since definitions can differ in 

different perspectives. The following definitions were used in this thesis. 

16S rRNA gene - a highly conserved gene encoding 16S ribosomal RNA, 

which is widely used as a taxonomic marker for prokaryotes. 

AcetoBase - a repository and database for FTHFS sequences. 

Acetogens - anaerobic bacteria which use the acetyl-CoA pathway and 

reduce two moles of carbon dioxide to one mole of acetyl-CoA, while 

conserving energy in an autotrophic mode of growth.  

AcetoScan - an automated and unsupervised data analysis pipeline for next-

generation sequence data analysis for FTHFS amplicon sequencing. 

Anaerobic digestion - an anaerobic microbiological process where a 

complex consortium of interdependent bacteria, fungi and methanogenic 

archaea degrade organic substrate to biogas and biofertiliser. 

Biogas - a mixture of gases, comprising mostly of methane and carbon 

dioxide, produced by microorganism during the anaerobic digestion of 

biodegradable substrates. 

Carbon dioxide - an inorganic molecule composed of one carbon and two 

oxygen atoms which acts as an electron acceptor in the process of 

9. Glossary of definitions
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acetogenesis. A gaseous metabolic by-product of microbiological processes 

in anaerobic digesters. 

ELR - economic loss risk, a risk factor of economic losses on a scale from 1 

to 10 predicted for all biogas installations together for a Swedish county. It 

is a non-standard parameter formulated in this thesis for the aim of 

visualising county-wise Swedish biogas installations (see Appendix). 

FTHFS - formyltetrahydrofolate synthetase, an important enzyme of the 

acetyl-CoA pathway which is structurally and functionally conserved and its 

coding gene is a marker for acetogenic bacteria. 

Methane - a gaseous metabolic product of methanogenic archaea in the 

anaerobic digestion process which is flammable and used as a fuel. 

Methanogens - a member of the domain archaea, which use the 

methanogenic biochemical pathway to generate methane. 

Microbial - a property of a microorganism related to its physical 

construction, genome and phylogeny. 

Microbiological - a property of a microorganism related to its physiology 

and interaction with its environment. 

Microbiological monitoring - systematic, continuous or periodical, active 

or passive collection of data to detect any changes and their impacts within 

a microbiological community. 

Microbiological surveillance - active, systematic, dynamic and intensive 

investigation of a specific microbial group to detect any changes in its 

composition or abundance within a certain threshold limit, which can 

indicate a further course of action. 

Renewable energy - energy generated from renewable resources, which 

may or may not be entirely carbon neutral or aesthetically pleasing. 
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SAOB - syntrophic acetate-oxidising bacteria, which produce carbon dioxide 

and hydrogen by oxidation of acetate and have a hydrogen-based 

interdependent relationship with hydrogen-consuming methanogenic 

archaea. 

Syntrophy - a mutualistic and interdependent relationship between organic 

acid-oxidising bacteria and methanogenic archaea where bacteria and 

methanogens act as producer and consumer of metabolic products. 

T-RFLP - terminal restriction fragment length polymorphism, a method for

analysing microbial identity and diversity by the restriction enzyme digestion

of marker gene amplicons from an environmental sample followed by size

detection of terminally labelled restriction fragments.

VFA - volatile fatty acids, are short-chain derivatives of fatty acids, mainly 

contains acetate and propionate, produced during anaerobic digestion 

process. 

Wood-Ljungdahl pathway - also known as acetyl-CoA pathway, of 

autotrophic growth used by acetogenic bacteria to conserve energy during 

the reduction of two moles of carbon dioxide to one mole of acetyl-CoA. 
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Increases in atmospheric levels of greenhouse gases (carbon dioxide, 

methane), mainly due to human activities, have resulted in an increase in the 

average temperature of the Earth, i.e. global warming. To mitigate the drastic 

climate situation, net carbon dioxide emissions world-wide must be reduced. 

Production of renewable, low-carbon energy can alleviate the devastating 

climatic impacts of global warming without impeding the development of 

human societies world-wide. Biogas has great potential to minimise the 

current dependence on fossil fuels, increase fuel security, climate mitigation 

impacts and enable sustainable development. Biogas is produced in a 

microbiological process called anaerobic digestion, where biodegradable 

material undergoes microbial decomposition, yielding biogas and 

biofertiliser. Anaerobic digestion is a very versatile process and can serve 

multiple environmental goals, but the microbiological steps involved in the 

process can restrict large-scale biogas production and efficient use of biogas 

reactor volume. For adequate use of the resources invested in commercial 

biogas production, process optimisation and continuous monitoring of the 

process are essential. 

Biogas microbiology is not fully understood, in particular regarding the 

microbes present and their specific roles in the biogas process. Current 

scientific information indicates that acetogenic bacterial communities play a 

very important role in the process. Acetogenic bacteria are a special group 

which are functionally versatile and act as an important link between two key 

microbiological steps. Acetogenic group of bacteria also help in equilibration 

of compounds, which is important for methane-producing microorganisms 

in the biogas process. Therefore, microbiological surveillance or close 
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monitoring of the acetogenic community can be used to assess biogas process 

stability. In this thesis, the new methods for assessment of acetogenic 

community structure in biogas processes were developed and a surveillance 

strategy based on bacterial DNA sequencing and computer-assisted methods 

was devised. 

 

The surveillance strategy was carefully tested and compared against 

existing methods. The results showed that the method developed in this 

thesis was more helpful in analysis and interpretation of the acetogenic 

communities than existing methods. In further testing, the surveillance 

method was used to study acetogenic bacterial community structure and 

dynamics in full-scale commercial biogas reactor operated with different 

feed substrates, such as household food waste, sludge, manure, green waste 

etc. This revealed that the structure of the acetogenic community was 

specific for the feed substrate used in the reactor for biogas production. 

 

Thus the tools and acetogenic community surveillance strategy developed 

within this thesis can be used reliably in microbiological surveillance of 

commercial biogas plants. Furthermore, the overall approach used in this 

thesis can be of great help in uncovering the role of the acetogenic 

community in other environments, such as the gut of insects, animals and 

humans, marine sediments, soil etc. 
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Ökningar i atmosfäriska nivåer av växthusgaser (koldioxid, metan), 

främst på grund av mänskliga aktiviteter, har resulterat i en ökning av jordens 

medeltemperatur, dvs. global uppvärmning. För att mildra den drastiska 

klimatsituationen måste nettokoldioxidutsläppen över hela världen minskas. 

Produktion av förnybar energi med låga koldioxidutsläpp kan lindra den 

globala uppvärmningen utan att hindra utvecklingen av mänskliga samhällen 

över hela världen. Biogas har stor potential att minimera det nuvarande 

beroendet av fossila bränslen, försäkra bränsletillförsel, ge 

klimatreducerande effekter och möjliggöra en hållbar utveckling. Biogas 

produceras i en mikrobiologisk process som kallas anaerob rötning, där 

biologiskt nedbrytbart material genomgår mikrobiell nedbrytning i en syrefri 

miljö. Processen ger utöver biogas också ett biogödsel. Anaerob rötning är 

en mycket mångsidig process som kan uppfylla flera miljömål, men de 

mikrobiologiska stegen som är involverade i processen kan begränsa 

storskalig biogasproduktion och effektiv användning av 

biogasreaktorvolym. För adekvat användning av de resurser som investeras 

i kommersiell biogasproduktion är processoptimering och kontinuerlig 

övervakning av processen avgörande. 

 

Mikrobiologi i en biogasprocess är ännu inte helt förstådd. Särskilt fattas 

kunskap med avseende på de närvarande mikroberna och deras specifika 

roller i processen. Aktuell vetenskaplig information tyder på att acetogena 

bakteriesamhällen spelar en mycket viktig roll i processen. Acetogena 

bakterier är en speciell grupp som är funktionellt mångsidiga och fungerar 

som en viktig länk mellan två viktiga mikrobiologiska steg. Den acetogena 

gruppen av bakterier bidrar också till att skapa jämvikt mellan olika kemiska 

Populärvetenskaplig sammanfattning 
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föreningar i biogasprocessen, vilket är viktigt för de metanproducerande 

mikroorganismer. Därför kan mikrobiologisk övervakning eller noggrann 

övervakning av de acetogena bakterierna användas för att bedöma 

biogasprocessens stabilitet. I denna avhandling utvecklades en ny metod för 

analys av den acetogena samhällsstrukturen i biogasprocesser och en 

övervakningsstrategi baserad på bakteriell DNA-sekvensering och 

datorassisterade metoder utformades. 

 

Övervakningsstrategin testades noggrant och jämfördes med befintliga 

analysmetoder. Resultaten visade att metoden som utvecklats i denna 

avhandling var mer användbar vid analys och tolkning av de acetogena 

samfunden än befintliga metoder. Vid ytterligare tester användes 

övervakningsmetoden för att studera samhällsstruktur och dynamik av 

acetogener i flera fullskaliga kommersiella biogasreaktorer som drevs med 

olika material, såsom hushållsavfall, slam, gödsel, grönt avfall etc. Analysen 

visade att strukturen hos det acetogena samhället var specifikt för det 

material som användes i reaktorn för produktion av biogas. 

 

Sammantaget visade studierna att verktyg och analysmetoder som 

utvecklats inom denna avhandling kan användas på ett tillförlitligt sätt för 

mikrobiologisk övervakning av kommersiella biogasanläggningar. I 

förlängningen kan också det övergripande tillvägagångssättet som används i 

denna avhandling vara till stor hjälp för att analysera acetogena bakterier i 

andra miljöer, såsom tarmen av insekter, djur och människor, marina 

sediment, jord etc. 
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To mitigate climate change and reduce the greenhouse gas emissions, 

global partnership and cooperation is needed. Sweden is an environmental 

pioneer and leads the world in the area of climate change and its prevention 

(Naturvårdsverket, 2004; SI, 2020). Sweden has become the first Nordic 

country to enter the climate emergency movement (CED, 2020) and is the 

fourth-ranked country (first three places unassigned) on the climate change 

performance index (Germanwatch e.V., 2020). The Swedish government has 

set the sustainability goal of being a 100% fossil-free, renewable energy-

driven country by the year 2045 (SI, 2020). This is a very ambitious goal. 

Sweden excels as a global leader in sustainable biogas production and use 

(up to 78% of biogas for transport fuel) (Koonaphapdeelert et al., 2020; 

Price, 2011). Biogas production in Sweden is mainly based on animal and 

agricultural waste, sewage sludge and municipal solid waste, with some use 

of energy crops, which makes Swedish biogas very sustainable. However, in 

2019, Sweden imported almost half of its total biogas demand (Klackenberg, 

2020). A Swedish government  report clearly state that more biogas is needed 

and recommends policies to boost production of more biogas and 

biofertiliser (co-product) (SOU, 2019). 

 

Due to the high demand and support from government, the biogas market 

in Sweden is growing and several national and multinational companies are 

focusing on establishing biogas plants. Commercial biogas production is a 

lucrative business, but a constant and stable supply of biogas is needed for it 

to be profitable. Although anaerobic digestion is a simple process, in 

commercial applications it is complex and sensitive. This complexity and 

sensitivity are associated with the large volumes of substrates used as a 

feedstock. As anaerobic digestion is a microbiological process where 

different microorganisms work together, biological homeostasis inside the 

digester is important. Any disturbance in the microbial community can result 

in unstable biogas production or sometimes even failure of the biogas 
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reactor. Thus microbiological associations with reactor disturbance were 

investigated in this thesis.  

 

With Sweden’s ambitious aim of fossil-free transport by 2030, its biogas 

market is growing at a fast pace. In 2019, there were 280 biogas plants with 

a cumulative volume of 741,655 m3 and producing about 1970 GWh of 

biogas (Klackenberg, 2020). However, they will not be enough to meet the 

growing demand for biogas in future unless they can achieve stable high-

level operation. To ensure balanced and steady production of biogas, 

constant monitoring of process operations is required (Drosg, 2013). This is 

done using physical and chemical analysis of different parameters. In 

commercial biogas plants, huge capital is invested in reactors and stable 

operation of the process and there is always a risk of economic losses. The 

theoretical economic loss risk (ELR) describes the risk of economic losses 

on a scale from 1 to 10. Different companies own the biogas plants in 

Swedish counties, but for the ELR calculation in this thesis a county was 

considered the owner of the biogas plant and would bear the economic losses 

in the case of biogas process failure. 

 

 

𝐸𝐿𝑅 = 𝑟𝑜𝑢𝑛𝑑 (
(

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑐𝑢.𝑚.)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑜𝑟
)

1000 (𝑐𝑢.𝑚.)
)……… (equation 1) 

 

 

To calculate the ELR for the individual county, equation 1 was used. The 

resulting ELR of 21 Swedish counties is presented in Figure A1. The results 

indicated that Gotland and Stockholm county (2 and 17 reactors, 

respectively) have a high risk of economic losses, while Västra Götaland 

county (44 reactors) has a low risk of economic losses. This theoretical ELR 

of county-wise biogas reactor indicates the probability of economic losses, 

but all biogas reactors, irrespective of high or low ELR, need constant and 

careful monitoring. Due to the fear of process failure, most biogas plants do 

not operate their biogas reactors to full capacity. This reduces the overall 

biogas production and profitability of the whole facility. 
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Figure A1. - Map (©Abhijeet Singh) of Sweden showing the county-wise 

number of biogas reactors in Sweden with their cumulative reactor volume 

and economic loss risk (ELR), calculated using equation 1. The raw data for 

the calculations was taken from Klackenberg (2020). 
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