
LETTER • OPEN ACCESS

Soil carbon insures arable crop production against increasing adverse
weather due to climate change
To cite this article: Nils Droste et al 2020 Environ. Res. Lett. 15 124034

 

View the article online for updates and enhancements.

This content was downloaded from IP address 193.10.103.187 on 05/03/2021 at 12:24

https://doi.org/10.1088/1748-9326/abc5e3


Environ. Res. Lett. 15 (2020) 124034 https://doi.org/10.1088/1748-9326/abc5e3

Environmental Research Letters

OPEN ACCESS

RECEIVED

29 July 2020

REVISED

25 September 2020

ACCEPTED FOR PUBLICATION

29 October 2020

PUBLISHED

24 December 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Soil carbon insures arable crop production against increasing
adverse weather due to climate change
Nils Droste1,2, WilhelmMay2, Yann Clough2, Gunnar Börjesson3, Mark Brady2,4 and Katarina Hedlund2,5

1 Department of Political Science, Lund University, Allhelgona kyrkogata 14, Lund 223 62, Sweden
2 Centre for Environmental and Climate Research, Lund University, Sölvegatan 37, Lund 223 62, Sweden
3 Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
4 Department of Economics, Swedish University of Agricultural Sciences, Scheelevägen 15 D, Lund 220 07, Sweden
5 Department of Biology, Lund University, Naturvetarvägen 6A, Lund 223 62, Sweden

E-mail: nils.droste@svet.lu.se

Keywords: soil organic carbon, soil biodiversity, arable crop production, climate change, agricultural long-term experiments

Supplementary material for this article is available online

Abstract
Intensification of arable crop production degrades soil health and production potential through
loss of soil organic carbon. This, potentially, reduces agriculture’s resilience to climate change and
thus food security. Furthermore, the expected increase in frequency of adverse and extreme
weather events due to climate change are likely to affect crop yields differently, depending on when
in the growing season they occur. We show that soil carbon provides farmers with a natural
insurance against climate change through a gain in yield stability and more resilient production. To
do this, we combined yield observations from 12 sites and 54 years of Swedish long-term
agricultural experiments with historical weather data. To account for heterogenous climate effects,
we partitioned the growing season into four representative phases for two major cereal crops.
Thereby, we provide evidence that higher soil carbon increases yield gains from favourable
conditions and reduces yield losses due to adverse weather events and how this occurs over
different stages of the growing season. However, agricultural management practices that restore the
soil carbon stock, thus contributing to climate change mitigation and adaptation, usually come at
the cost of foregone yield for the farmer in the short term. To halt soil degradation and make arable
crop production more resilient to climate change, we need agricultural policies that address the
public benefits of soil conservation and restoration.

1. Introduction

Climate change is expected to bring more adverse
weather conditions for agricultural production such
as greater intra-annual climate variability and an
increased likelihoodof extremeweather events (Trnka
et al 2014, Ray et al 2015, Moore and Lobell 2015).
Adapting agriculture to climate change and improv-
ing farming’s resilience is thus crucial for food secur-
ity (Challinor et al 2014, Altieri and Nicholls 2017,
IPCC 2019). The timing of adverse weather events
can effect crop yields differently depending on when
in the growing season they occur (Peltonen-Sainio
et al 2011, Chenu et al 2013, Bourgault et al 2020).
Thus, while there is a need to improve our under-
standing of the interplay between (intra-seasonal)
weather variability and yields (Lobell and Burke 2008,

Peltonen-Sainio et al 2011), we also need to include
soil health in the analysis (Luo et al 2017).

Soil organic carbon (SOC) content is a funda-
mental indicator of soil health (Lal 2016). SOC correl-
ates with different soil biodiversity dimensions such
as microbial biomass, community structure, and its
activities (Börjesson et al 2012, Mau et al 2015).
Such soil-ecosystem structures are the base of soil-
ecosystem functions and the production of a suite
of ecosystem services that underpin yields (De Vries
et al 2013, Bardgett and Van Der Putten 2014, Brady
et al 2015, Oldfield et al 2019). Management prac-
tices that increase SOC tend to generate soils that
hold more biodiversity, have better water holding
capacity, provide more plant nutrients, and are less
prone to erosion (Lal 2016,Minasny et al 2017,Manns
and Martin 2018). However, common agricultural
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practices, such as intensive tillage can reduce SOC
stocks and biodiversity (Tsiafouli et al 2015, Had-
daway et al 2017). Intensification of arable crop pro-
duction thereby degrades soil health and reduces pro-
duction potential through loss of SOC (Lal 2016).
Consequently, there is a trade-off between current
intensification of arable crop production and soil
health, and thus the resilience of future production.
Soils can furthermore function as a carbon sink or
contribute to emissions of greenhouse gases, depend-
ing on management systems (Griscom et al 2017,
Schlesinger and Amundson 2019).

Implementing management practices that
strengthen soil-ecosystem resilience could there-
fore be a prudent farming strategy for mitigating
climate change, as well as simultaneously adapting
to climate change (Locatelli et al 2015, Hamilton
et al 2016, Paustian et al 2016). Soil health—unlike
the weather—can be controlled by farmers; through
appropriate management practices farmers can influ-
ence SOC content (Haddaway et al 2015, 2017, Sun
et al 2020). How farmers manage their soils is not
only instrumental for producing good yields under
normal weather conditions, but also for produ-
cing stable yields despite the natural vagaries of the
weather (Cong et al 2014, 2017, Manns and Martin
2018, Macholdt et al 2020). A resilience to adverse
weather can generate what economists call an insur-
ance value for arable farmers, if it reduces the uncer-
tainty of future outcomes such as future yields for
risk adverse beneficiaries (Baumgärtner and Strunz
2014, Bartkowski 2017, Quaas et al 2019).

Accordingly, climate change, crop growth, and
soil management all matter simultaneously. Yet, the
combined effects of temperature and precipitation
variability during the different stages of crop growth
remain underexplored. In order to identify climate
change adaptation actions, we investigate the soil’s
ability to buffer the impacts of adverse weather events
at different stages of the growing season on crop yields
and the influence of crop management on SOC. To
this end we pursue two research question: I) How
does arable crop production respond to soil carbon levels
under adverse weather across growing degree quartiles?
II) Can crop rotations that promote soil carbon sequest-
ration help farmers to adapt their management to an
increasing likelihood of adverse weather events?

In this paper we combined historic weather data
with yield data for two major cereal crops from
long-term agricultural experiments from 12 sites and
across 54 years in Sweden. The long-term experi-
ments were originally set up to study soil fertility
and provide fertilization recommendations to farm-
ers (Carlgren and Mattsson 2001). They are based
on a replicated set of fertilizer application rates for a
set of crops and crop rotations with or without live-
stock manure application and grass leys. The crop
rotations and the management have generated vari-
ations in SOC content within the sites. This enabled a

production-function approach to estimate direct and
interaction effects of soil carbon and weather vari-
ables on crop yields. To assess the effects of adverse
weather at different stages of the growing period, we
partitioned the growing season into four representat-
ive phases. Subsequently, we estimated the effects that
management practices have on soil carbon by quanti-
fying the effects of ley andmanure application in crop
rotations over time.

2. Materials andmethods

We combined a data set from the long-term field
experiments of the Swedish University of Agricultural
Sciences providing data on yields, fertilizer rates and
SOC levels (Carlgren and Mattsson 2001, SLU 2020,
see section 2.1), with the European high-resolution
gridded dataset, E-OBS version 17, providing weather
data (ECAD2018, Haylock et al 2008, see section 2.2).
The final data set spans across the years 1962–2015
and includes yield, crop, crop rotation, crop variety,
N- and PK fertilizer applications, topsoil carbon, top-
soil pH, growing degree days (GDDs), andmean tem-
perature and total precipitation data. The combined
data set was analysed with a multilevel production-
function approach (see section 2.3).

2.1. Long-term field experiment data
The data originates from six sites in southern Sweden
(M-Series) and six sites in central Sweden (C, E, and
R series, see figure 1(a)). The series differ in crops
and rotations to represent a regionally typical type
of crop rotation, but other than that follow the same
experimental setup. At each site, two different types
of crop rotations, four different rates of PK fertilizer,
and four different rates ofN fertilizationwere applied.
All field experiments have two replicated blocks at
each of the sites (figure A1) and there are 32 rep-
licated plots for each of the sites per year (Carlgren
and Mattsson 2001). The sites differ in soil types but
have been selected so that for each of the agricul-
tural regions in Sweden there is one productive and
one less productive soil site (Kirchmann 1991, Kirch-
mann and Eriksson 1993, Kirchmann et al 1996, 1999,
2005). The crop rotations introduce ley and manure
management. At the southern sites (M), one out of
four crops in one crop rotation was substituted with
a grass and clover ley, and manure applied every 4th
year in winter to simulate livestock farming (Carl-
gren and Mattsson 2001). At the northern sites (C,
E, R), two out of six crops were ley, and manure was
applied every 6 years for one of the rotations (ibid.).
The topsoil carbon was only measured every 4 years,
we completed the data set by imputing the missing
soil carbon observations through a non-parametric,
random-forest method (Stekhoven and Bühlmann
2012), based on site, year, topsoil pH, and NPK fer-
tilizer combinations (see tables A1 and A2).
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Figure 1. The experimental data. Panel (a) a map of the location of the experimental sites, with the regional series indicated in
bold letters; panel (b) shows the yields for both barley and wheat over time, and their linear trends.

2.2. Historical weather data
Daily mean, minimum, and maximum temperat-
ure, and precipitation data was collected from the
E-OBS observations (0.25 degree regular grid) for
corresponding filed sites (ECAD 2018). There was
a substantial warming effect in all seasons; mean
annual temperature increased by ~2.6 ◦C from 1962
to 2015 across all 12 sites, while overall variation
did not increase (figure 2 upper panels). The range
betweenminimumandmaximumdaily temperatures
was largest in summer with a mean range of 9.5 ◦C,
compared to a mean winter range of ~5 ◦C. Regional
temperature differentials between the southernmost
M sites at around 56◦N and the more northern C,
E, and R sites (58–61◦N) were most pronounced in
autumn and winter. These and further temperature
details such as site-specific patterns and the multi-
annual variations in winter can be found in the sup-
plementary information (figure s1 available online
at https://stacks.iop.org/ERL/15/124034/mmedia).
Precipitation patterns have remained relatively
stable over spring and autumn but increase over
summer and winter (figure 2 lower panels). Fur-
thermore, the standard deviation of daily pre-
cipitation for each year increases, particularly
in summer and to some extent in winter and
spring (see also figure S2 in the supplementary
information).

We calculated GDDs for each cultivar with the
following baseline temperatures (Miller et al 2001).
Starting at the beginning of the year, we chose the
following values: winter wheat 0 ◦C (Ruiz Castillo
and Gaitán Ospina 2016), and spring barley 0 ◦C
(Juskiw et al 2001). To analyse climate change
effects along growth stages, we divided GDD into
quartiles to approximate different growth stages of
the plants (Peltonen-Sainio et al 2011). The GDD

quartiles roughly correspond to the following plant
development stages for cereals: i) tillering, ii) stem
extension, iii) heading, and iv) ripening (Miller et al
2001). For each of the GDD quartiles, we computed
an average of daily mean temperatures, and summed
total daily precipitation. The data shows an over-
all warming, and corresponding increases in growing
season length and GDD, indicating that the climatic
conditions for agricultural production have become
more favourable for cereal production.

2.3. Response functions
We estimated yield response functions for winter
wheat and spring barley through a multilevel model
with site-specific random effects (intercepts) and
site-specific means to account for all time-invariant,
unobserved site-specific heterogeneity (Blanc and
Schlenker 2017, Bell et al 2019). We controlled for
standard quadratic fertilization yield functions, cul-
tivation of new varieties, soil pH, and unobserved
trends such as for example technological change and
changing atmospheric carbon concentrations. We
modelled the interaction between soil carbon and
weather variables, to infer how the average effect of
soil carbon plays out for various climatic conditions
in terms of temperature and precipitation.

The general structure of the yield response func-
tions is given by equation (1):

Yit = α0 +β1NFertit +β2NFert
2
it +β3PKFertit

+ γ log(SCit)+ δ1tempit + δ2precit + δ3tempit

× precit +µ1 log(SCit)×NFertit +µ2 log(SCit)

×NFert2it +σ1 log(SCit)× tempit +σ2 log(SCit)

× precit + θControlsit + εit, (1)

where α0 is the population level intercept, NFertit
is a vector of N fertilizer applications rates for site
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i and year t, PKFertit is a categorical PK fertilizer
variable that allows to capture a non-linear relation-
ship across four levels, SCit is soil carbon, tempit is
a vector of mean temperature, and precit represents
total precipitation for each of the GDD quartiles. The
temperature-precipitation interaction effect is only
modelled within each GDD quartile. Controlsit cap-
ture topsoil pH, crop rotation, crop variety and the
site-specific soil carbonmean, and a linear time trend.
The random effects, that is site-specific intercepts, are
sampled from a normal distribution varying around
the population level mean (Bates et al 2015, Bell et al
2019). For the numerical estimates see table A3 in the
appendix.

The computations are conducted in the lme4
package (Bates et al 2015) in R (R Core Team 2019)
through restricted maximum likelihood estimations.
The analytical code and the data can be found in
both the supplementary material and/or in a public
repository [link to be inserted]. Based on the general
estimates, we predicted the interaction effects for each
GDDquartile for 5th, 50th, and 95th percentile values
of both mean temperature total precipitation, using
the ggeffects (Lüdecke 2018) package in R, and plot-
ted results using ggplot2 (Wickham 2016) and sjPlot
(Lüdecke 2019). All other variables were held con-
stant at specific values for each of the interaction plots
in figures 4 and 5.

For the effect of ley (crop.rotation= II) on soil
carbon (SC) we estimated a log-linear model to
account for non-linear depletion rates over time,
with the following specifications: a quadratic N-
fertilization (NFert) function, categorical PK fertilizer
(PKFert) application rates, topsoil pH (topsoil_pH),
mean temperature (temp) and total precipitation
(prec) per GDD quartile, the interaction between
precipitation and temperature per GDD quartile, a
year trend (year), and ley crop rotation dummy and
the interaction between crop rotation, accounting for
site-specific intercepts and year trends through amul-
tilevel random effects estimation, see equation (2).
For the numerical regression results for soil carbon
see table A4.

log(SCit) = α0 +β1crop.rotationit +β1NFert
2
it

+β2PKFertit + γ topsoilpH

+ δ1tempit + δ2precipit + δ3tempit

× precit + τ1yeart + τ2year
2

+φ1 crop.rotationit × yeart + εit. (2)

3. Results

3.1. Wheat yields
Generally, winter wheat yield benefits from higher
temperatures but the response to precipitation varies
over GDD (Q1–Q4) quartiles and with temperature

(figure 3(a)). A typical condition for crop produc-
tion is represented by the median value of temper-
ature (centre column figure 3(a)) and precipitation
(response function in blue figure 3(a)). The highest
yields can be reached with comparatively humid and
warm 1st and 4th GDD quartiles. Higher soil carbon
provides generally better yield potentials for weather
extremes in the final quartile, except for extremely low
precipitation and high temperature where the effect
is slightly negative. The uncertainty ranges are relat-
ively large due to the interaction effects in the mul-
tilevel model, but the marginal-effect estimates are
within the range of observed values (see t kernel dens-
ity estimate plot figure 3(b)).

During the first GDD quartile, when the wheat
tiller after winter, higher soil carbon levels are associ-
ated with higher final wheat yield predictions. There
is a multiplicative pattern: the higher the precipit-
ation, the higher the marginal effect of additional
soil carbon, as the steeper high-precipitation response
function (green) indicates for the first GDD quart-
ile. Temperature in the first GDD quartile influences
wheat yield slightly positively, as indicated by steeper
response functions for higher temperatures. Rising
temperaturemay thus further enhance the yield effect
of soil carbon and precipitation.

During the second GDD quartile wheat yield var-
ies with soil carbon, temperature, and precipitation.
At temperatures lower than 11 ◦C higher soil carbon
corresponds to higher final wheat yields for all pre-
cipitation levels. At the median temperature of 13 ◦C
the response change and higher carbon is only asso-
ciated with higher yields for the lower precipitation
ranges (red and blue); showing that soil carbon buf-
fers effects of drought events. Under higher precipita-
tion rates (>76 mmGDD−1 quartile) combined with
higher temperatures (>13 ◦C, see panel right hand
panel forQ3), higher soil carbon content corresponds
to lower yields. Lower temperatures during the 2nd
GDDquartile are generally better for final yieldswhen
the plant is developing biomass and tillers.

During the third GDD quartile higher soil carbon
content is always associated with higher yields, espe-
cially for higher precipitation. Extremely high precip-
itation lowers yield considerably at low soil carbon
content but less so at the highest soil carbon con-
tent, which implies that soil carbon can also buffer the
negative effect of excessive precipitation. Temperature
does not influence yield in the third GDD quartile as
response functions do not change over the temper-
ature distribution. Thus, higher soil carbon insures
final yields against increasing rainfall variability inQ3
(summer) when wheat is heading and filling grains.

In the fourth GDD quartile, when the wheat
is ripening, soil carbon is positively correlated with
the final wheat yields. The effect of precipitation
changes with temperatures, as at lower temperat-
ures (<15 ◦C, see left hand panel for Q4) high
precipitation (>69mmGDD−1 quartile) corresponds
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Figure 2. Long-term development of mean daily temperature and mean daily precipitation per season across all long-term field
experiment sites. Long-term trends are displayed with a linear time trend (red) and a spline smoothing function (blue).

Figure 3. Yield response functions for winter wheat with regard to soil carbon, temperature and precipitation interactions. The
figure displays predictions for final yields across quartiles of growing degree days (panels Q1–4) and temperature (in rows). The
yield response functions with regard to soil carbon are displayed with lines of different colours for the values of the total
precipitation per GDD quartile (5th percentile response functions in red, median in blue, 95th percentile in green). The
confidence intervals are displayed as transparent colour shades. Furthermore, the yield response functions are predicted for 5th
percentile, median, 95th percentile values of observed temperature per GDD quartile (panels left to right with degrees ◦C
indicated above plots). The graphs at the right show the distribution of yields in kg ha−1. They show that predictions are within
sample, but the uncertainty range is considerable—mainly due to multiple interaction effects.

to lower yields for lower soil carbon, while for high
soil carbon the negative impact of higher precipita-
tion is eliminated. This buffering effect by soil carbon
on yield increases at higher temperatures. In a warm
fourth GDD quartile (>15 ◦C, see centre panel in Q4)
more precipitation becomes increasingly positive for
yields the warmer it gets, and with higher soil carbon.
At high temperatures (~19 ◦C, see right hand panel
in Q4) extremely low precipitation is detrimental for

yields even at higher soil carbon levels. Themaximum
final yields are obtained at maximum precipitation,
temperature and soil carbon in the last GDD quartile.

3.2. Spring barley yields
Generally, spring barley responds well to higher soil
carbon at median values (blue response function at
centre column figure 4(a)). It is, however, slightly
more productive in the lower temperature range
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Figure 4. Yield response functions for spring barley with regard to soil carbon, temperature and precipitation interactions. The
figure displays predictions for final yields across quartiles of growing degree days (panels Q1–4) and temperature (in rows). The
yield response functions with regard to soil carbon are displayed with lines of different colours for the values of the total
precipitation per GDD quartile (5th percentile response functions in red, median in blue, 95th percentile in green). The
confidence intervals are displayed as transparent colour shades. Furthermore, the yield response functions are predicted for 5th
percentile, median, 95th percentile values of observed temperature per GDD quartile (panels left to right with degrees ◦C
indicated above plots). The graphs at the right show the distribution of yields in kg ha−1.

Figure 5. The effect of crop rotations with and without leys on topsoil carbon. The figure depicts the log-linear model time trends
for different management options where ley and livestock are (not) integrated into a 4-year crop rotation in red (blue). Panel (a)
shows the average effects across all sites, and panel (b) specifies the site-specific random effects and year trends for ley in the
rotation (red) and without (blue).

(left column figure 4(a)). At low precipitation (red
response functions figure 4(a)), fields with high SOC
generally produce higher yields, but barley is not resi-
lient to high precipitation (green response functions
figure 4(a)). Soil carbon seems to enhance a negat-
ive response of barley to extreme precipitation for
2nd and 3rd GDD quartiles at 95th percentile values
(green response functions figure 4(a) Q2–3).

In the first GDD quartile, spring barley yields
are positively correlated with soil carbon at higher

temperatures, but not at lower temperatures (~7 ◦C)
(figure 4(a) Q1). Higher precipitation is associ-
ated with lower yields over the entire temper-
ature range. At higher temperatures a low soil
carbon level will have particularly low yields. At
higher soil carbon yield varies less with temperat-
ure. For early growth stages of spring barley, above
median temperatures and below median precipit-
ation show the strongest marginal effects on final
yields.
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In the secondGDDquartile, when barley develops
tillers, low precipitation is important for high final
yields. Higher soil carbon levels produce higher yields
for median to low precipitation while at high precip-
itation yields are lower (green response functions).
The variation in yield increases with higher temper-
atures and with higher soil carbon as indicated by the
growing divergence of response functions from left to
right.

For the third GDD quartile, when barley devel-
ops stems and biomass, lower temperatures and lower
precipitation are associated with higher final bar-
ley yields. Soil carbon is positively associated with
yields, except for the highest precipitation level. Yet,
for both the second and the third GDD quart-
iles the response function of the 95th percent-
ile precipitation cannot be considered plausible, in
particular for above median temperatures, as they
predict negative yields. This shows the limits to
the robustness of the modelled results at extreme
values.

For the fourth GDD quartile, when spring
barley ripens, higher temperatures produce lower
yields. High precipitation is generally associated
with lower yields as shown by the lower blue and
green response functions in figure 4. Soil carbon
is generally associated with higher yields, except
under the maximum precipitation (188 mm GDD−1

quartile).
For combined 95th percentile values of precipit-

ation and temperature in panel Q2 and Q3 we pre-
dict out of sample (that is into negative yield values
for high carbon values and thus unreasonable ranges).
This shows that barley yield predictions are only reli-
able for values closer to median as not all conditions
of interacted variables are simultaneously observed at
their extremes.

3.3. Soil carbon andmanagement
Our analysis shows that soil carbon is generally
depleted by the management practices used in the
long-term experiments. Soil carbon declines on aver-
age across all sites (figure 5(a), see also tables A4
and A5) but at a lower rate under the ley-livestock
management than under rotations with only annual
crops (see the red ley-livestock crop rotation com-
pared to the blue annual crop rotation in figure 5(a)).
In some of the northern sites (E-9, C7, C8), we
estimated slight soil carbon increases in the ley rota-
tions. Partly this may be due to a 2 year ley in a 6
year rotation compared to 1 year of ley in a 4 year
rotation in the southern sites. However, not all sites
with a 2 year ley show increased soil carbon levels
over time (R94, R95, E-10). For those that show an
increase, the yearly gain of soil carbon is rather slow,
increasing by a maximum of 0.25% over a period of
50+ years, at the costs of two foregone yields every
6 years.

4. Discussion

We show that relatively higher soil carbon levels
(all other things equal) are generally associated with
higher yields for favourable climatic conditions. Fur-
thermore, higher soil carbon reduces yield losses
arising from adverse weather events at different stages
of the growing season. These mechanisms can be
explained by soil carbon increasing a set of eco-
system services that changes soil structure allowing
infiltration and also water retention through lar-
ger soil aggregates integrating the soil organic mat-
ter with the mineral particles (Lal 2016). Soil car-
bon thereby provides farmers with insurance against
adverse weather events. Soil carbon has differing
effects on yield, depending on the growing degree
quartile in which rainfall or temperature deviate
from averages. Here we show the complex relations
between soil carbon, and the timing of weather events
over the growing season. We can confirm that yields
are less variable and even increasewith higher soil car-
bon content within sites (Manns and Martin 2018,
Oldfield et al 2019). As our experiment was set up to
derive fertilization recommendations, we can include
N-fertilizer application rates (Macholdt et al 2020)
and N–C interactions (Zhang et al 2018) such that
we do not bias yield-effects estimates through omit-
ted fertilization variables or their interaction see table
A3. More importantly, however, our results contrib-
ute evidence that the interaction effects of soil carbon
and weather variables on yield need to be differen-
tiated by the timing of weather variations over the
growing season. The results have clear implications
for both science and society as they specify how to bet-
ter estimate climate change effects on crop yields and
suggest soil management practices for improving the
potentials of soils to insure against climatic change.

Regarding our first research question: How does
arable crop production respond to soil carbon levels
under climatic variations across growing degree quart-
iles?, we need to interpret our results against the back-
ground of observable climate trends to understand
the implications of our results for farmers and soci-
ety. Climate change and production conditions vary
regionally (Trnka et al 2011, Moore and Lobell 2015)
and effects of soilmanagement practices varywith cli-
matic conditions (Sun et al 2020). For the Swedish
long-term experiments, the precipitation primarily
increases in winter and summer, and this is likely
to continue (Rowell 2005, Trnka et al 2014). We
can confirm that for northern latitudes, temperature
increases can be beneficial for winter wheat but neg-
ative for barley (Peltonen-Sainio et al 2011). Yet, our
predictions for values that accordingly resemble likely
future conditions in Southern Sweden, namely high
temperatures and high precipitation in winter and
summer, soil carbon maximizes potential gains from
favourable conditions for both crops (i.e. for first
and fourth GDD quartiles). For wheat, soil carbon
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minimizes yield losses from unfavourable precipita-
tion conditions, such as low temperature and precip-
itation in GDD quartile three. This exemplifies how
soil carbon can reduce financial, down-side risks of
yield losses for farming due to adverse weather (Cong
et al 2017). For spring barley, however, we predict
substantial yield losses at extremely high precipit-
ation over second and third quartiles in the range
of the 95th percentile and this effect is not out-
weighed by soil carbon (with considerable uncer-
tainty). Potentially, this raises important implications
for the adaptation potential of temperate climate bar-
ley production given predicted climatic change (see
Dawson et al 2015). Yet, at less extreme temperature
soil carbon enhances barley yield according to our
results. Thus, we show the importance of account-
ing for the timing of weather conditions on yield
in interaction with soil carbon. These results clearly
indicate benefits from having higher soil carbon, for
both barley and wheat. Soil carbon enhances yields
in the event of favourable conditions while moderat-
ing potential yield losses due to adverse weather, and
therefore insures agriculture against increasing tem-
perature and precipitation variability.

Regarding our second question: Can crop rota-
tions that promote soil carbon help farmers to adapt
to an increasing likelihood of adverse weather events?,
there exists a multitude of possible measures to
increase soil carbon content in arable production sys-
tems (West et al 2004, Haddaway et al 2015, Keel et al
2019), such as no-tillage (Haddaway et al 2017, Ogle
et al 2019), cover crops (Poeplau and Don 2015) and
ley years (Prade et al 2017, Zhou et al 2019). The
more and longer soils are covered, and root biomass
is accumulated, e.g. through fertilization, the more
organic carbon will be stored below ground (for a
recent overview see Sykes et al 2020). We observe
both a generally positive trend for crop yields at
the experimental sites over time, but also increasing
yield variation. Moreover, current agricultural prac-
tices, such as those used in the Swedish long-term
experiments, on average loose soil carbon. We show
that declining soil carbon levels are associated with
lower yields. Yet, effects in terms of declining yields
are not directly observable by farmers as yields still
increase over time. This may be explained because
losses in soil carbon have so far been offset by techno-
logical development such as improved varieties (Fisc-
her and Edmeades 2010). Such a hidden deterioration
is problematic given the broader potential societal
benefits frommaintaining healthy soils (Lal 2016). In
particular arable soils could even function as a car-
bon sink; and the 1.5 ◦C climate goals can only be
achieved by including agricultural land use into emis-
sions reductions (IPCC 2019). Given the long-time
scales needed for SOC to recover, there is a mismatch
between short- and long-term benefits (Brady et al
2015). As has been shown for the same experiments,
ley-manure management can provide carbon storage

(Carlgren andMattsson 2001, Albizua et al 2015). Yet,
as we show, this is not enough to stop the depletion
of soil carbon stocks (for soil carbon balance calcula-
tions in the Swedish long-term experiments, see Kät-
terer et al 2014, Börjesson et al 2018, Keel et al 2019).

Overall, enhancing soil carbon can contribute to
making agriculture more resilient to climate change
by reducing the production risks that come with
increasing frequency of adverse and extreme weather
over the growing season, while enhancing the effects
of favourable climatic conditions in higher latitudes.
Our results furthermore imply that predictions of the
impacts of climate change based on scenarios of aver-
age annual temperature and precipitation changes,
general variability increases, or general GDD increase,
are omitting the effects from weather variations over
the growing season. Yet, it is important to note that,
the societal benefits such as food security and car-
bon storage (Vermeulen et al 2019, Bossio et al 2020)
provided by management options that promote soil
carbon such as inclusion of ley or other measures
(Albizua et al 2015, Poeplau and Don 2015, Bradford
et al 2019) come at a cost for the farmer in terms
of foregone yield (Bartkowski et al 2018). Our res-
ults indicate that a substantial increase from 0.5%–
2.5% soil carbon comes with a maximum increased
yield of 2.5 tonnes for both wheat (in a warm year
with high precipitation) and barley (in a median year
with low precipitation). In our case, to restore such
a carbon stock would require foregoing yield every
6 years to grow ley for more than 200 years. As this
is hardly a reasonable scenario, but there are public
benefits of soil restoration in terms of food secur-
ity, land degradation neutrality, and climate change
mitigation, measures enhancing soil carbon could be
supported by corresponding reforms of land-use and
agricultural policies to compensate farmers for the
provision of such public goods that comes at their
expense in terms of current yield (Paustian et al 2016,
Pe’er et al 2017, 2020, Cowie et al 2018, Hristov et al
2020). To halt soil degradation, improved soil man-
agement may thereby require agronomic and policy
solutions to optimize SOC storage while minimizing
short-term trade-offs with farmer incomes.
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Appendix

Experimental design

Figure A1. The experimental set up of the Swedish Soil Fertility Experiments. Block I and II are replicates of each other.
With each block, and for each crop rotation (I or II), four different PK fertilizer rates (A–D) and four different N fertilizer
rates (1–4) are applied. Source: Authors’ translation based on the Swedish long-term experiment series R3-9001 plan (SLU
2020).

Descriptive statistics
Tables A1 and A2 provide summary statistics for both the winter wheat and the spring barley subsets. The
observations used for this analysis can be found in the supplementary material and in a public github
repository.

Table A1. Summary statistics of the combined long-term experiment climate data for the winter wheat subset.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

N-Fertilization (NFert) 4278 69.1 52.0 0 40 120 150
Yield 4115 4495.0 1690.7 0.0 3272.3 5675.0 9380.7
Observed soil carbon (SC_obs) 1185 1.9 0.5 0.5 1.4 2.2 3.0
Imputed soil carbon (SC_imp) 4278 1.9 0.5 0.5 1.5 2.2 3.4
Topsoil_pH (topsoil_pH) 3513 6.5 0.6 4.5 6.0 6.9 8.0
Growing Degree Day (GDD) 4096 2128.5 216.0 1697.0 1991.0 2222.0 2821.0
Mean temperature per GDD Quartile 1 (gdd_meantemp_Q1) 4096 2.0 1.4 −2.0 1.0 3.0 5.0
Mean temperature per GDD Quartile 2 (gdd_meantemp_Q2) 4096 13.3 1.5 11.0 12.0 14.0 17.0
Mean temperature per GDD Quartile 3 (gdd_meantemp_Q3) 4096 16.2 1.4 13.0 16.0 17.0 20.0
Mean temperature per GDD Quartile 4 (gdd_meantemp_Q4) 4096 15.7 1.9 10.0 15.0 17.0 20.0
Mean precipitation per GDD Quartile 1 (gdd_prec_Q1) 4096 182.5 58.2 68.4 139.1 218.0 355.0
Mean precipitation per GDD Quartile 2 (gdd_prec_Q2) 4096 75.3 32.5 12.7 52.9 95.1 156.9
Mean precipitation per GDD Quartile 3 (gdd_prec_Q3) 4096 72.0 61.0 2.8 33.4 91.8 320.3
Mean precipitation per GDD Quartile 4 (gdd_prec_Q4) 4096 74.7 41.8 2.3 43.9 102.4 214.3
Per site mean of imputed soil carbon (SC_imp_site_mean) 4278 1.9 0.4 1.1 1.4 2.2 2.6

Source: Authors’ elaboration.
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Table A2. Summary statistics of the combined long-term experiment climate data for the spring barley subset.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

N-Fertilization (NFert) 3676 42.5 31.8 0 25 75 90
Yield 3652 3544.7 1323.6 0.0 2560.0 4447.5 7695.8
Observed soil carbon (SC_obs) 161 2.2 0.2 1.9 2.1 2.3 2.8
Imputed soil carbon (SC_imp) 3676 1.9 0.5 0.8 1.4 2.2 3.2
Topsoil_pH (topsoil_pH) 1636 6.6 0.6 4.5 6.1 7.1 8.4
Growing Degree Day (GDD) 3634 1762.2 180.1 1317.0 1643.0 1853.0 2606.0
Mean temperature per GDD Quartile 1 (gdd_meantemp_Q1) 3634 10.0 1.9 3.0 9.0 11.0 14.0
Mean temperature per GDD Quartile 2 (gdd_meantemp_Q2) 3634 14.4 1.2 12.0 14.0 15.0 18.0
Mean temperature per GDD Quartile 3 (gdd_meantemp_Q3) 3634 16.5 1.6 13.0 15.0 18.0 20.0
Mean temperature per GDD Quartile 4 (gdd_meantemp_Q4) 3634 15.8 1.7 11.0 15.0 17.0 20.0
Mean precipitation per GDD Quartile 1 (gdd_prec_Q1) 3634 51.5 33.9 2.1 28.0 73.9 215.3
Mean precipitation per GDD Quartile 2 (gdd_prec_Q2) 3634 57.5 29.2 17.8 32.4 76.6 144.8
Mean precipitation per GDD Quartile 3 (gdd_prec_Q3) 3634 51.8 28.3 4.9 27.1 73.2 115.2
Mean precipitation per GDD Quartile 4 (gdd_prec_Q4) 3634 68.2 42.5 2.9 41.8 88.9 240.4
Per site mean of imputed soil carbon (SC_imp_site_mean) 3676 1.9 0.5 1.1 1.4 2.2 2.6

Source: Authors’ elaboration.

Table A3. Results for multilevel random effects crop response functions.

Dependent variable:

Wheat yield Barley yield

log(SC_imp) 9673.5∗∗∗ (1685.0) 9540.9∗∗∗ (3627.9)
Nfert 40.4∗∗∗ (2.1) 48.3∗∗∗ (3.1)
NFert2 −0.1∗∗∗ (0.01) −0.3∗∗∗ (0.03)
PKFertB 248.3∗∗∗ (42.6) 165.9∗∗∗ (35.3)
PKFertC 399.9∗∗∗ (42.7) 368.1∗∗∗ (35.4)
PKFertD 476.1∗∗∗ (44.7) 433.5∗∗∗ (37.7)
topsoil_pH 90.8 (80.2) 327.2∗∗∗ (91.6)
gdd_meantemp_Q1 −256.1∗∗∗ (98.7) −486.1∗∗∗ (63.6)
gdd_meantemp_Q2 214.8∗∗∗ (49.4) 480.1∗∗∗ (88.8)
gdd_meantemp_Q3 105.1∗∗ (53.1) −94.4 (64.9)
gdd_meantemp_Q4 30.7 (46.2) −322.8∗∗∗ (80.1)
gdd_prec_Q1 −2.6∗ (1.5) −9.6∗∗∗ (2.8)
gdd_prec_Q2 23.2∗∗∗ (5.5) 147.9∗∗∗ (17.6)
gdd_prec_Q3 −7.5 (5.9) 49.1∗∗∗ (12.7)
gdd_prec_Q4 −37.5∗∗∗ (6.4) 26.0∗∗∗ (9.5)
Year 36.1∗∗∗ (7.0) −65.5∗∗∗ (12.2)
log(site_mean_SC_imputed) −1654.5 (1315.9) −1282.3 (2109.2)
log(SC_imputed)× Nfert −10.1∗∗∗ (3.3) −5.6 (4.7)
log(SC_imputed)× NFert2 −0.001 (0.02) 0.1 (0.1)
log(SC_imputed)× gdd_meantemp_Q1 190.4∗ (98.4) 649.5∗∗∗ (84.0)
log(SC_imputed)× gdd_meantemp_Q2 −457.9∗∗∗ (62.2) −381.3∗∗∗ (139.7)
log(SC_imputed)× gdd_meantemp_Q3 −10.4 (71.4) −310.8∗∗∗ (99.8)
log(SC_imputed)× gdd_meantemp_Q4 −171.3∗∗∗ (64.8) 43.9 (92.5)
log(SC_imputed)× gdd_prec_Q1 3.8∗∗ (1.7) −7.2 (5.0)
log(SC_imputed)× gdd_prec_Q2 −18.5∗∗∗ (2.7) −40.5∗∗∗ (5.4)
log(SC_imputed)× gdd_prec_Q3 7.7∗∗∗ (1.4) −24.5∗∗∗ (7.3)
log(SC_imputed)× gdd_prec_Q4 12.2∗∗∗ (1.8) −8.9∗∗ (4.0)
gdd_meantemp_Q1× gdd_prec_Q1 0.8∗∗ (0.4) 0.9∗∗∗ (0.3)
gdd_meantemp_Q2× gdd_prec_Q2 −1.3∗∗∗ (0.4) −10.3∗∗∗ (1.1)
gdd_meantemp_Q3× gdd_prec_Q3 −0.1 (0.4) −3.6∗∗∗ (0.8)
gdd_meantemp_Q4× gdd_prec_Q4 2.0∗∗∗ (0.4) −1.6∗∗∗ (0.6)
Constant −73 518.0∗∗∗ (13 862.3) 133 336.0∗∗∗ (24 163.1)
Crop rotation dummy Yes Yes
Crop variety dummies Yes Yes
Observations 3375 1476
Log Likelihood −27 546.2 −11 124.9
Akaike Inf. Crit. 55 182.0 22 331.7
Bayesian Inf. Crit. 55 463.8 22 548.9

Notes: Significance levels: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Standard errors in parenthesis.
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Table A4. Results for multilevel random effects soil carbon response functions.

Dependent variable:

log(SC_imp)

PKFertB 0.015∗∗∗ (0.002)
PKFertC 0.015∗∗∗ (0.002)
PKFertD 0.030∗∗∗ (0.002)
NFert 0.0005∗∗∗ (0.00003)
Fert2 −0.00000∗∗∗ (0.00000)
topsoil_pH −0.008∗∗ (0.003)
gdd_meantemp_Q1 −0.0001 (0.0004)
gdd_meantemp_Q2 −0.006∗∗∗ (0.001)
gdd_meantemp_Q3 −0.005∗∗∗ (0.001)
gdd_meantemp_Q4 −0.004∗∗∗ (0.001)
gdd_prec_Q1 −0.00003 (0.00002)
gdd_prec_Q2 −0.001∗∗∗ (0.0002)
gdd_prec_Q3 −0.001∗∗∗ (0.0002)
gdd_prec_Q4 −0.001∗∗∗ (0.0001)
year −0.002∗∗∗ (0.0004)
crop.rotation= II 3.131∗∗∗ (0.223)
gdd_meantemp_Q1× gdd_prec_Q1 0.00002∗∗∗ (0.00000)
gdd_meantemp_Q2× gdd_prec_Q2 0.0001∗∗∗ (0.00001)
gdd_meantemp_Q3× gdd_prec_Q3 0.0001∗∗∗ (0.00001)
gdd_meantemp_Q4× gdd_prec_Q4 0.0001∗∗∗ (0.00001)
year× crop.rotation= II −0.002∗∗∗ (0.0001)
Constant 4.915∗∗∗ (0.735)
Observations 8505
Log Likelihood 11 110.7
Akaike Inf. Crit. −22 169.4
Bayesian Inf. Crit. −21 986.1

Notes: Significance levels: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Standard errors in parenthesis.

Table A5. Site specific random effects for the soil carbon response
function model reported in table A4.

site Intercept Year

M-1 0.65867 −0.00047
M-2 3.27786 −0.00158
M-3 0.84645 −0.00042
M-4 1.24870 −0.00091
M-5 7.83231 −0.00411
M-6 3.64158 −0.00166
R-94 −1.30607 0.00069
R-95 0.08398 −0.00002
E-10 3.01203 −0.00146
E-9 −6.06158 0.00309
C-7 −6.34618 0.00330
C-8 −6.88776 0.00354

Regression analysis
In tables A3 and A4 we provide the multilevel regres-
sion estimates derived by the methods described
in ‘Data and Methods’ equations (1) and (2). The
reported estimates are the foundation for the graph-
ical display in the ‘Results’ section we map out
the interaction effects along various dimensions.
Table A3 provides the results of the restricted max-
imum likelihood estimates for both wheat and
barley.

Table A4 provides the results of the restricted
maximum likelihood estimates for estimating the

effect of having ley in the crop rotation on soil
carbon.

Table A5 indicates the estimated random effects
with conditional variances for ‘site’.
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