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Abstract: Opportunities exist for adoption of precision agriculture technologies in all parts of the
world. The form of precision agriculture may vary from region to region depending on technologies
available, knowledge levels and mindsets. The current review examined research articles in the
English language on precision agriculture practices for increased productivity among smallholder
farmers in Sub-Saharan Africa. A total of 7715 articles were retrieved and after screening 128
were reviewed. The results indicate that a number of precision agriculture technologies have been
tested under SSA conditions and show promising results. The most promising precision agriculture
technologies identified were the use of soil and plant sensors for nutrient and water management, as
well as use of satellite imagery, GIS and crop-soil simulation models for site-specific management.
These technologies have been shown to be crucial in attainment of appropriate management strategies
in terms of efficiency and effectiveness of resource use in SSA. These technologies are important in
supporting sustainable agricultural development. Most of these technologies are, however, at the
experimental stage, with only South Africa having applied them mainly in large-scale commercial
farms. It is concluded that increased precision in input and management practices among SSA
smallholder farmers can significantly improve productivity even without extra use of inputs.

Keywords: precision agriculture; small-scale farmers; resource use efficiency; Sub-Saharan Africa

1. Introduction

Designing soil and crop management practices in relation to variations in the field
environment in terms of soil type, moisture and nutrient contents is not new to farmers.
This was especially so to small-scale farmers in Sub-Saharan Africa (SSA) before the
agrarian revolution when they planned their management practices based on site conditions
to optimize the use of soil resources and external inputs. However, after the introduction
of inorganic fertilizer use, the practice has been largely abandoned and replaced by blanket
recommendations [1]. However, large variation in conditions across locations, farmers,
and markets means that “One size fits all” recommendations are inappropriate. The goal
of precision agriculture (PA) is to remedy that and the official definition of PA by the
International Society for Precision Agriculture is “A management strategy that gathers,
processes and analyzes temporal, spatial and individual data and combines them with
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other information to support management decisions according to estimated variability for
improved resource use efficiency, productivity, quality, profitability and sustainability of
agricultural production”.

Precision agriculture has been indicated to involve an increased number of ‘correct’
decisions per unit area of land per unit time with increases in quantity and/or quality of
production and/or the environment along with more efficient use of inputs [2]. This moves
the attention from simply spatial resolution to superiority of decisions in both space and
time. It also means that it does not imply a particular technology or set of technologies,
but that decisions can be made by a range of technologies including soil and crop sensors,
global navigation satellite systems (GNSS), such as the global positioning system (GPS),
and geographic information systems (GIS), variable rate application (VRA) technologies,
etc., as well as being made by humans.

The circumstances under which small-scale farmers in Sub-Saharan Africa are operat-
ing are typified by poor access to inputs, suboptimal management practices and market
constraints. Standards and precision in input use are often lacking and advanced ways of
improving them are not affordable. In addition, government recommendations in most of
the SSA countries have not helped much in recognizing the variability that exists between
different farms or regions. In most cases, blanket recommendations are made for produc-
tion regions leading to low efficiencies of the applied inputs [1]. It is however important to
note that increased precision in input rates and management practices among these farmers
can significantly improve productivity. Like in many parts of the world, PA adoption
in SSA has been targeted at addressing the farmers’ needs and existing constraints, all
aimed at improving productivity of their farms. Such constraints are many and varied,
and thus so have the PA technologies that have been used. There exists potential for PA
in SSA given that information on agricultural production constraints is available, and
technologies to address the constraints have been developed. However, adoption of PA
has been quite low in SSA compared to North American and Western Europe [3]. While
it is clear that there has been some level of PA uptake in this region, it is not quite clear
to what extent it has been taken up. This complicates planning and implementation of
other food production programs that may depend on PA technologies in SSA. A study
by Nyaga [4] that mapped precision agriculture research in Sub-Saharan Africa countries
found that research had been conducted in 25 SSA countries and most of the studies were
concentrated in countries with socioeconomic and technological advancement, mainly
South Africa followed by Nigeria and Kenya. This review, based on the same body of
literature, therefore sought to examine the practicality of PA practices for increased produc-
tivity among small scale farmers in SSA. The main focus is on crop and animal protection,
growth monitoring, soil mapping (soil type and soil nutrients variations), irrigation/water
supply and environmental impact assessment.

The research question is: to what extent are PA technologies practically applicable in
SSA smallholder farming systems? Most farming systems in SSA are organized as either
farms (mainly small-holder farms) or fields (village fields or home fields) [5].

The objective of this study was therefore to provide a first assessment in English
language of the PA technologies that have been tested or are in use in SSA context in order
to inform subsequent programs.

The subsequent sections outline the methodology used to gather the information
followed by the results obtained, discussion of the results, the conclusions drawn and
suggested recommendations.

2. Materials and Methods

The method used in this systematic review was adopted from the guidelines for
systematic review in environmental management [6]. The study question that needed to be
answered was divided up into searchable concepts using the PICO framework:

P—Population;
I—Intervention;
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C—Comparison;
O—Outcome.
In this case, the Population—Smallholder farmers in Sub-Saharan Africa; Intervention—

Use of precision agriculture technologies (PAT)/concepts; Comparison—No use of PAT
technologies/concepts; Outcome—Productivity. A systematic search was conducted for
relevant literature published up to July 2018 using the PICO.

2.1. Literature Searches

Broad searches of numerous sources were conducted to ensure an unbiased sample of
both published and grey literature in March–April 2018 and June–July 2018 [4]. Searches
were conducted through: (1) Specialist peer-reviewed publication databases—in order to
best capture a broad spectrum of agronomic, environmental or economic literature base
(Web of Science: (CABI: CAB abstracts®, Core Collection, BIOSIS citation index, Current
content connect, Data citation index, MEDLINE®), SCOPUS, PubMEd, Science4Life, Science
direct and Springerlink); (2) Individual journals or repositories—to offer a platform to
capture regionally specific or further freely accessible literature (African Journals Online
(AJOL), CGSpace-CGIAR and International Society of Precision Agriculture (ISPA). Only
articles on precision agriculture technologies or concepts were included.

Database and repository searches were conducted in English language and an asterisk
(*) was used to pick up multiple word endings such as Afric* to pick up Africa and African,
etcetera. The following terms (search string) were used in combination to search the online
databases; “sub-Saharan Afric*” OR Afric* OR “Afric* countries” AND “precision agricul-
ture” OR “precision farming” OR “site specific farming” OR “climate smart agric*” OR
“variable application” OR “Crop sensors” OR “Soil sensors” OR “proximal soil sensors”.

However, for African online journals and the repositories (CGSpace-CGIAR and ISPA),
the search string was changed due to differences in database functionality to: “precision
agriculture” AND “sub-Saharan Africa countries”. Use of the search string “smart farming”
OR “Site specific farming” OR “Climate smart agriculture” AND “sub-Saharan Africa
countries” did not yield any hits.

The results of the searches were imported into the Zotero reference manager software
(Corporation for Digital Scholarship, Vienna, VA, USA) and separate folders were created
in the main library for each of the databases/website search made. The main library
captured the total number of references stored in the various folders and this number was
recorded. Using the duplicate function in the Zotero software, duplicates of similar format
were removed while duplicates of different file formats were retained (book, book chapter,
book review and article). The library was then searched for references with relevant topic
according to the following inclusion and exclusion criteria.

2.2. Inclusion Criteria

The inclusion criteria were applied by two reviewers to all studies at title and abstract
level. Whenever it was not clear whether a study met the criteria, the two reviewers
consulted a third reviewer and the matter was resolved. The reviewers discussed the
procedures to ensure a consistent understanding of the criteria at both the screening and
coding stages.

Relevant studies included all studies that have used precision agriculture (PA) con-
cepts fully or partially in SSA. Besides, for each study to be included, it had to pass the
following specific criteria.

1. Relevant intervention: Soil mapping, crop mapping, crop growth monitoring, water
and nutrient management, pest control and monitoring, yield predictions, and any
other intervention that is intended at improving crop and animal productivity.

2. Relevant subject: PA used in the general areas of agriculture, environment and/or
economics, environmental and/or economic outcomes.

3. Relevant outcome: Productivity, income levels, environmental conditions.
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4. Relevant type of study: Any original research study investigating, testing or im-
plementing a PA concept or concepts closely related to PA like precision farming,
site-specific farming, conservation farming or climate smart agriculture/farming.

5. Language: Full text written in English.

2.3. Exclusion Criteria

The exclusion criteria were applied at both title and abstract level. The studies were
excluded at the title level if the title was outside the geographic scope of SSA, the doc-
uments did not have a title or the title was not within the general topics of agriculture,
environment and economics. At the abstract level, studies were excluded if the abstract
was not in English, abstract not available, abstracts outside the general topics of agriculture,
environment and economics, abstracts that mention precision agriculture concepts without
any supporting data on their application in SSA, abstracts outside the geographical scope
of SSA, abstracts with no geographical identity, abstracts within agriculture, environment
and economics without precision agriculture data/information, abstract on climate smart,
conservation agriculture with no precision agriculture concepts, reviews on precision
agriculture in SSA and reviews on precision agriculture outside SSA.

2.4. Content of the Document

Types of intervention targeted were those that aimed to improve land, crop and
animal productivity through improved resource use. The types of outcomes sought were
increased efficiency of input use, improved land productivity, improved yields and accurate
prediction of output.

For the types of study: Studies that investigated precision agriculture concepts were
considered and only those with data were used in the review.

Language: Studies published in English were used.
Date: All the studies done before July 2018.
Full text in English for the identified articles were then retrieved and used for the

review. The resulting references were used to formulate a database.

3. Results
3.1. Tested Technologies and Bottlenecks for Implementation

A total of 7715 articles were retrieved and after screening for relevance 128 were
reviewed in detail. Figure 1 shows a flow diagram of the review detailing the number
of studies during the subsequent screening and selection procedures. The results of the
review show that a number of PA technologies have been tested and some used for efficient
resource use under SSA conditions. They include the use of soil, plant and animal sensors,
GIS, remote sensing and application of models [7–18]. For example, the use of sensor
technologies for precision crop production by farmers was evaluated in Nigeria where the
crops include maize, cassava, cowpea and yams among others, and it was realized that most
farmers lack the necessary knowhow for effective use of the technology in crop farming.
Furthermore, the extension agents are not equipped with the distinct stages involved in
the utilization of the technology [19]. Overall, there seems to be a gap between the actual
technical skills of the users and the required technical skills for several PA technologies
in SSA. This is likely to be a bottleneck for broad adoption. Potential remedies may be
(1) more user-friendly solutions not demanding too much time, effort and knowledge from
the user and (2) training of intended users (the farmers and extension workers).

This review has grouped the various studies based on the area of application as
outlined below. The references reported in the tables were a select few to demonstrate that
precision agriculture is possible under SSA conditions.
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Figure 1. Flow diagram of review of studies on precision agriculture use in Sub-Saharan Africa.

3.1.1. Plant and Animal Protection

The articles that have studied precision agriculture technologies in plant and animal
protection are shown in Table 1. For crop protection, the tools used include geostatistical
techniques in determining spatial distribution of Cassava mosaic disease [20], the use of
hyperspectral data in detecting the early stage of Phaeosphaeria leaf spot (PLS) and the
severity of maize streak virus infestations in tropical maize [21,22].

Invasive species such as Prosopis juliflora (Sw.) DC are threatening to replace indige-
nous vegetation with negative impacts on biodiversity and livelihoods in Kenya. Although
a few remote sensing studies have been carried out, the accuracy of detection of the species
has been poor. Sentinel-2 and Pléiades data were tested for the detection of P. juliflora
(invasive spp) and Vachellia spp. (local vegetation) in Kenya [23]. The use of higher spa-
tial resolution Pléiades data gave higher detection accuracies of (out-of-bag (OOB) 0.83
and independent reference of 0.87–0.91) compared to the Sentinel-2 data (OOB of 0.79
and independent reference of 0.80–0.96) in separating Prosopis and Vachellia vegetations.
However, given the cost of Pléiades, the use of Sentinel-2 data is a viable alternative given
that it is freely available and has been recognized that it can be improved by increasing
spectral resolution that compensates for the lack of spatial resolution [23]. In addition,
remote sensing has been tested for the monitoring of alien species such as Water Hyacinth
(Eichhornia crassipes Mart.) [24].

The use of integrated decision support system for intercropping, a common practice
among small-scale farmers in Africa, has been found to provide diagnostic information
for 90% of the common Africa crop diseases [10] while remote sensing has been used
successfully in genetic mapping of stripe rust (Puccinia striiformis Westend. f.sp. tritici
Erikss.) resistance in wheat [25]. The use of violet diode laser-induced chlorophyll fluores-
cence has been used to assess mosaic disease severity in cassava (Manihot esculenta Crantz)
cultivars [26].

The use of precision agriculture in SSA for animal production is still at the experimen-
tal stages. Four studies involving use of sensors [27,28], mapping [29] and site-specific pest



Sustainability 2021, 13, 1158 6 of 17

control [30] were found (Table 1). The sensor technology has been tested on the animal
behavior classification and cattle movement in South Africa with results indicating the
location and activity of the animals which is useful in fighting stock theft and poaching
that are major problems facing South Africa and Kenya.

Table 1. Precision agriculture technologies that have been used for plant and animal protection and disease control.

PA Technology Application Performance References

Geostatistical techniques

Crop pest and disease
monitoring and detection and
breeding for disease resistance

The models explained 54%, 44%
and 22% of the variation in Cassava

mosaic disease
[20]

Remote sensing (Hyperspectral data)

88% accuracy in discriminating
healthy maize and early stage of

disease infestation
[21,22]

Can be utilized to undertake
multitemporal monitoring of
variable infestation levels of

biological control for
invasive species

[24]

Integrated Decision Support System
for Intercropping

provided 95% diagnosis
information for 90% common

Africa crop diseases
[10]

Spectral crop sensors
Detected the same QTL regions as

described using visual ratings stripe
rust resistance in wheat

[25]

Violet diode laser-induced
chlorophyll fluorescence

Fluorescence data correlated with
cassava mosaic disease severity

levels and with the average yield
per plant

[26]

Animal borne sensors

Monitoring of animal
behavior and position

82% accuracy achieved [27]

A wireless sensor network,
Continuous Time Markov Processes

and unmanned aerial vehicles

Identified the typical behavior of a
cow and determined anomalies

in behavior
[28]

Accurate monitoring of
cattle movement [8]

Geostatistical techniques
Mapping and control of

livestock pests

Identification and monitoring
tsetse hotspots [31]

Site-specific application of pesticides
The site-specific efficacy of control

was between 80–100% in a period of
3–5 weeks

[30]

Cattle raiding and cattle rustling are the main challenges faced by farmers and pastoral-
ists in the SSA region due to lack of real time and efficient tracking system. A framework
for monitoring cattle movement based on wireless sensor networks (WSN), mobile com-
munication, and unmanned aerial vehicles (UAVs) has been tested [8] (Table 1). Provision
of timely information about the location of stolen animals could help quick recovery of the
animals and defeat the purpose of cattle rustling as there will be no sufficient time for the
rustlers to use the animals for their anticipated intention.

For the control of tsetse (Glossina spp.) and ticks (Rhipicephalus microplus C.), two
technologies have been tested, that is, the use of kriging and mapping for the control and
monitoring of tsetse in Ethiopia and site-specific treatment for the control of ticks in sheep
in South Africa [30,31]. The efficacy of site-specific control of ticks in Merino sheep was
100% while in Dorper it was >80%.
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3.1.2. Crop Growth Monitoring

Remote sensing has been used to assess plant and ecosystem health. The use of remote
sensing indicators to determine site quality has been conducted in monitoring Eucalyptus
grandis W. Hill. growth [32] while multi-temporal Landsat 8 normalized difference veg-
etation index (NDVI) anomalies have been used to detect and map inconsistent patches
in coffee (Coffea arabica L.) plantations [33] as well as long term evaluation of the green
vegetation cover dynamics [34] (Table 2). In addition, it has been used to detect subtle
deforestation due to logging in wet and dry savanna woodlands of South Africa [35] as
well as predict Pinus patula Schiede ex Schltdl. & Cham age [36].

Table 2. Precision agriculture technologies that have been used in monitoring crop canopy status.

PA Technology Application Performance References

Normalized difference
vegetation index (NDVI)

To discriminate between Eucalyptus
grandis growing on sites with

different qualities

Identified leaf water and
chlorophyll indices as sufficient

indicators of site quality
[32]

Remote sensing Canopy copy and age of the plants
Successfully used to detect subtle

deforestation due to logging as well
as predict Pinus patula age

[35,36]

Multi-temporal Landsat 8
NDVI anomalies

To detect and map inconsistent
patches in coffee (Coffee arabica) 80% accuracy achieved [33,34]

Vegetation cover change

3.1.3. Irrigation/Water Management

Table 3 provides a summary of the precision agriculture technologies that have been
used in crop water management. Investigations on spatiotemporal variation of moisture
indices and their annual trends in Nigeria were investigated [37] and found to be important
in the development of appropriate coping and mitigation strategies for areas that do not
receive sufficient amounts of rainfall to support high crop yields. Climatic variations
and crop water stress based on insufficient soil water and reduced humidity have been
studied in tea farms in Kenya [38] and used to predict long term yield of tea in the growing
area. A study on the adequacy of irrigation systems found that a system that supplies
adequate water to crops had a higher water use efficiency and more yields compared
to one that supplied the water uniformly [39]. The use of drones has been tested on
irrigation infrastructure planning, which, if adopted could accelerate the planning, design
and construction of SSA’s irrigation infrastructure [40]. Most of the times, these are poorly
designed, build and maintained leading to low irrigation water use efficiency and poor
crop yields given that in these regions water is a major limiting factor in improving
crop production.

Another technology that has been developed and tested for the management of water
stress in crops is wireless sensors for real time plant stress detection [41]. Water stress that
occurs due to too much or too little water goes unnoticed by resource poor small-scale
farmers in SSA resulting in low crop yield. Due to this situation, a low-cost, real-time
wireless sensor technology was developed and tested as an option to reduce water stress
and increase yields among these type of farmers [41]. This is a small-scale precision farming
approach that is suitable mainly to resource constrained environments with no power and
network connectivity that characterize most of SSA farming communities. Besides, WSN
technology has been used to optimize drip irrigation in semi-arid environments [42] in
Burkina Faso and in the development of a more robust and sustainable irrigation system in
Malawi [43].

Additionally, a study involving designing of a GIS for spatial and temporal distribu-
tion of irrigation water using drip irrigation system among large scale farms in Tanzania
has been conducted [44]. The system was designed to ensure the delivery of the right
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amounts of water based on crop requirements and to monitor the water distribution for
uniformity in order to ensure optimum crop yields. This is mainly for precision farming in
relation to irrigation water use. The monitoring system generated information on water dis-
tribution in the field identifying deficits or excess application spots within the field. Apart
from the high technology precision farming practices, farmer practices such as the use of
infiltration pits have been shown to improve water management especially in semi-arid
environments [45].

Table 3. Precision agriculture technologies that have been used in crop water management.

PA Technology Area of Application Performance References

Simulation models

Detection of water stress

Reported drying tendencies with
40–50% of the land area shifting

towards aridity
[37]

Thermal time and indices of
water stress

Accurate prediction of soil water
deficits over 10 years

[38,41–43]
Wireless sensor technology Real-time plant moisture

stress detection

Precision irrigation Adequacy of sprinkler
irrigation performance

Wider nozzle sprinklers lead to
excess irrigation water above the

crop water requirement and uneven
soil moisture distribution

[39]

Use of UAV-drones Planning and building
irrigation infrastructure

1000 ha of land was mapped in a
single day in a region with harsh

terrain and high temperatures
[40]

Geographical information
system (GIS)

To monitor spatial and temporal
distribution of irrigation water

using drip irrigation system

Identified deficits or excess
application spots within the field [44]

Use of infiltration and planting pits To improve water Management
in semi-arid areas

Not useful in improving soil
moisture content in semi-arid areas

but can be used for
erosion management

[45]

3.1.4. Mapping Cropping Systems

Table 4 provides the studies that have been undertaken to map cropping systems.
Recognition of different cropping systems has been tested using a machine vision scheme
recognition in satellite images in different times, varying illuminations and growing
stages [17] of coffee. The results showed that this method can provide correct segmentation
of the coffee crop for targeted management. Predictive modeling tool ‘Cubist’ has also
been used to estimate field tree cover used as an integral part of farmed land in tempo-
ral scale [46] and provided information on changes that have occurred over time. This
information is important in giving direction to interventions geared towards promoting
the inclusion of field trees in agricultural systems. For crop mapping, the use of remotely
sensed data has been evaluated in West Africa and been found useful in areas with data
limitations that frequently hamper accurate crop discrimination [47] while very high-
resolution (VHR) satellite data have been used to map cropland area among smallholder
farmers [48]. In addition, high spatial and temporal resolution RapidEye bio-temporal
data have been used to map cropping systems in complex and highly fragmented agro-
ecological landscapes [49]. Simulation models have been used to determine the tree cover
within crops and correlation coefficients of 0.88 and 0.77 with absolute mean errors of 1.07%
and 1.03% tree cover were obtained [46]. While remote sensing was used to distinguish
different crops within a field and this improved overall classification accuracies [47].

Besides, link reliability of the WSN as a tool for precision agriculture in SSA has been
evaluated using different crops and found that distance between nodes depends on the type
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of vegetation [50]. High resolution (HR) satellite time series with spatial logistic regression
modeling have also been used to distinguish land management systems in rangelands [51].
These technologies are useful in supporting precision agriculture in subdivided and dis-
turbed environments such as those found in farming systems in semi-arid SSA.

Table 4. Precision agriculture technologies that have been used to map cropping systems.

PA Technology Area of Application Performance References

Machine vision scheme
recognition in satellite images

To distinguish the crops field from
surrounding green vegetation areas

Provided correct segmentation of
vegetation types [17,47]

Simulation models To determine the tree cover
within crops

Correlation coefficients of 0.88 and
0.77 with absolute mean errors of

1.07% and 1.03% tree cover
were obtained

[46]

Remote sensing To distinguish different crops Improved overall
classification accuracies [47]

Wall-to-wall sub-meter
WorldView and moderate

resolution Landsat 8 imagery

To map cropland among
small-scale farmers

Estimated cropped area with a
commission error of 5% ± 10% and

omission error of 15% ± 12%
[48]

Wireless sensor nodes
To test the wireless signal in terms

of link reliability, and signal
strength for precision agriculture

Radio propagation foliage loss
models are not optimized for use in

precision agriculture
[50]

RapidEye To map maize cropping systems

An accuracy of 93% was attained for
the land use land cover classification
while >85% accuracy was obtained

for the cropping systems

[49]

RapidEye combined with spatial
logistic regression modeling

To discriminate land management
systems in rangelands

Different tenure and management
systems were differentiated within a

2-year HR image time series
[51]

3.1.5. Soil Fertility Mapping

The use of PA techniques to map soil type as well as soil nutrient status has been
conducted in SSA, as shown in Table 5. The use of empirical approach combining non-
parametric techniques and spatial methods of parametric model estimation have shown
that blanket fertilizer applications commonly used in SSA are inefficient due to site dif-
ferences [9]. The site differences are not only due to the macronutrient contents but also
due to parent material that results in soil property variations [52]. A study on soil nutrient
contents in a sandy loam soil have shown that the quantities of both macro- and micro-
nutrients vary depending on the site of the field under study [53] as well as soil types
within the farms [54]. In addition, while using geospatial approach, soil nutrients were
found to vary among smallholder farms in Ghana [13]. In Nigeria, geo-statistical mapping
tools have been used to measure nutrient variability in yam based cropping system among
smallholder farms [55] for site-specific fertilizer recommendations. Some farmers in the
Sahelian Zone of West Africa use local knowledge to identify fertility variations within the
farms [56] while those in Niger define soil types based on location, perceived quality and
its relationship with the ecological structure [57], which is a low cost technique to allocate
scarce resources amongst smallholder farmers. A study by Barrios [58] on the integration
of local and technical knowledge on the identification and classification of soil quality
indicators conducted in Kenya, Uganda and Tanzania provides a useful methodology for
soil fertility monitoring among smallholder farmers to guide soil fertility management.

Use of a digital soil map taking into account soil fertility constraint has been developed
to determine crop suitability for common beans (Phaseolus vulgaris L.) in Tanzania [59]
while geoinformatics was used to examine land suitability for different crops as prospects
for precision farming in the Savanna River basin in Nigeria for improved yields [60]. The
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study identified areas that were most suitable for maize, cassava, yam or oil palm production.
Consequently, RapidEye remote sensing data have been used to map Soil organic carbon
(SOC) to enable farm-scale targeting of management interventions [61]. In a study conducted
in Cameroon on assessing soil functional properties, Kriged maps were used to identify areas
deficient of nutrients [62] and that can be targeted to improve efficient use of fertilizers. Micro-
dosing fertilizer application in millet production systems in Niger has resulted in greater
nutrient use efficiency [63]. While in Ghana, a soil diagnostic model was combined with GIS
to develop site-specific fertilizer recommendations in cocoa production [64].

Besides, the origin of soil variability have been investigated at regional, local and farm
level in agricultural systems of Cameroon [65] to determine appropriate management prac-
tices. In addition, spatial distribution and variability of soil properties at catchment-scale
has been conducted in Ethiopia and used to produce kriged soil properties maps for sustain-
able production [66]. Integration of indigenous knowledge, gamma ray spectrometry and
high resolution satellite images [67] have been used to capture major soil difference within
the territory of a village and used to create village soil maps. This approach allows capture
of the major soil differences within a village territory necessary for extension support.

Table 5. Precision agriculture technologies that have been used to map soil fertility and soil types.

PA Technology Application Performance References

Non-parametric kernel
density regression

Spatial variations in soil fertility

confirmed the significance of
within-field soil variability and its

effects on crop yield
[9,52]

Geostatistical techniques

The ranges and amounts of the soil
nutrients had a strong

spatial dependence
[53]

Identified within field variations in
nutrient contents [13,55,66]

Transect walks for soil mapping
Identified differences in fertilizer

requirements on different patches of
the field

[54]

Indigenous knowledge combined
with gamma ray spectrometry and

high resolution satellite images

Development of knowledge-based
extension support [56–58,67]

EcoCrop model-Digital soil maps
Land suitability for specific crops

Able to identify areas suitable for
specific crops such as common beans

(Phaseolus vulgaris)

[59,60]
Geoinformatics

RapidEye remote sensing To develop prediction models
mapping of soil organic carbon

Good model performance and a SOC
map generated [61]

Kriged maps
To assess soil

functional properties

Able to identify critical areas for
targeted land management

interventions to improve land quality
[62]

Kriging and inverse distance
weighting interpolation

Able to characterize spatial patterns
soil compaction [68]

Soil diagnostic and geographic
information systems (GIS)

To develop site-specific
fertilizer recommendations

Identified soil groups and sub-groups
and developed site-specific
fertilizer recommendations

[64,65]

Near infrared reflectance (NIR) For soil sampling and, chemical
and physical analysis

Various soil properties were
adequately estimated, however,

reliability decreased in the order of
clay, organic matter, total N and

N-mineralization rating

[69,70]

Unequal probability proportional to
size sampling

Reducing variability within a
farm management zone

Made proportional sampling
more accurate [71]
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Kriging and inverse distance weighting interpolation have been tested in SSA [68] and
have been found to be able to characterize spatial patterns soil compaction that is useful
information for site-specific soil management practices in precision agriculture. Spatial
variability provided by kriged contour maps of individual soil nutrients together with cone
index is useful in decision making to ensure appropriate management practices that are
specific to crop fields [53]. Cone index which is an indicator of soil compaction is the most
common type of soil degradation in SSA. However, it is not easy to notice/pick out as its
signs are in form of deficiency symptoms that manifest as stunted plant growth, poor plant
stands and low crop yields [53]. To predict soil properties, near infrared reflectance has
been applied [69,70] while to delineate precision farming management zones, probability
and statistical error methods have been used [71].

3.1.6. Yield Enhancing Studies

Table 6 outlines technologies that have been tested on enhancing crop yields. An
economic analysis to determine the profitability of variable rate application of fertilizer due
to site differences as opposed to blanket applications was conducted [72]. The results indi-
cated that higher profits were obtained in variable rate compared to blanket applications.
The fact that many smallholder farmers in developing countries own very small sizes of
land, it is possible for these farmers to apply site-specific concepts in resource management
even without physical maps or diagrams. This can be done through mental maps of for
example soil variability and can vary the management or level of input required to improve
input efficiency. Besides, variable rate application of N fertilizer has been shown to result
in a yield advantage when compared to uniform rate application in maize production [72].
Besides reducing the area under crop production and using nutrients within the farmers’
means has been shown to increase maize production among resource-poor farmers [73].

Table 6. Precision agriculture technologies that have been used to enhance crop yield.

PA Technology Area of Application Performance References

Variable rate application

Soil fertility site differences
Higher profits were obtained in

variable rate compared to
blanket applications

[72]

Reducing the area under crop
production and using nutrients

within the farmers’ means

Increased maize production among
resource-poor farmers [73]

Conservation agriculture Sub-Saharan Africa smallholder
production systems Increased yields [74,75]

Conservation agriculture, one of the forms of precision agriculture used in Sub-
Saharan Africa smallholder production systems has been shown to increase yields and
hence improve food security only when farmers correctly follow the set criteria [74–76].
However, conservation agriculture does not work in increasing yield when practiced by
farmers especially women facing other constraints such as labor [74].

3.1.7. Yield Prediction/Mapping

Various technologies have been used to predict or map crop yields in SSA (Table 7)
To identify limitations in crop production and soil fertility at multiple spatial scales, a
monitoring system that combines satellite observations, ecological and socio-economic
constraints has been developed for SSA [77]. Provision of timely climate information
and improved technical inputs before harvest could help increase crop productivity. The
assessment of spatial variability of yield and yield response to fertilizer was conducted
on five major crops (cotton, maize, sorghum, millet and peanuts) grown in Mali using
high-resolution satellite and unmanned aerial vehicle (UAV) images [78]. The combination
of these technologies resulted in identification of spatial variability and accurately assessed
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yield in heterogeneous smallholder conditions. In another study [79], in the Sahel region, a
combination of vegetation and thermal indices for cereal yield estimation was investigated
and was found to be similar to the official agricultural statistics of the region for 11 years.
These technologies are very useful in areas that are inaccessible to ground measurements
and can be applied in regions with similar agronomic and climatic characteristics as those
used in this study.

Table 7. Precision agriculture technologies that have been used to predict or map crop yield.

PA Technology Area of Application Performance References

Remote sensing To identify limitations in crop
production and soil fertility at

multiple spatial scales

Identified spatial variability and accurately
assessed yield in heterogeneous smallholder
conditions for cotton, maize, sorghum, millet

and peanuts

[77,78]

UAV-drones

Vegetation and thermal indices Cereal yield estimation
Accurate estimation of yield similar to

official agricultural statistics in the Sahel
region for 11 years

[79]

Random forest classifier Yield variations in
smallholder farming systems

Resulted in the production of a crop type
map with an overall accuracy of 85% [80]

Yield variations in smallholder farming systems in SSA have been successfully as-
sessed using a random forest classifier [80] that resulted in the production of a crop type
map with an overall accuracy of 85% followed by yield estimation based on linear regres-
sions with vegetation indices (VI) or Leaf Area Index. This is important as it could help to
better target agricultural interventions at the farm or village scale for improved productivity.

4. Discussion

In SSA countries, PA is a traditional phenomenon that can be improved to achieve
high productivity under low technology situation. The small-scale farmers in this region
use hand tools and low rates of external input applications. Under these circumstances, PA
is equally relevant in the use of scarce resources and external inputs. It is important for
example for the farmers to understand the type of fertilizer, the specific site and amounts
required to achieve the best possible fertilizer efficiency and returns to cash investment [81].
The transfer of advice and recommendations are also crucial, and new digital solutions
are expected to become more important in the near future [82]. Therefore, applications of
technologies that are efficient and effective in resource use are vital. Spatial dimensions
of agricultural production are mostly applicable to farmers in SSA because large yield
differences occur within short distances between and within farms. These have been
demonstrated by Florax [81].

Although in most parts of SSA smallholder farmers lack access to the more sophisti-
cated tools for site-specific crop management, some of them use indigenous knowledge to
identify variations within their farms. Although this is a rudimentary way to identify soil
fertility variations within the farms, it is useful in efficient use of the limited resources to im-
prove crop production [56]. Unfortunately, government nutrient recommendations in most
of these SSA countries have also not helped much in recognizing the spatial distribution of
soil nutrients. In most cases, blanket fertilizer recommendations are made for production
regions leading to low efficiencies of the applied nutrients [13]. The maps obtained by for
example [13,52,55,64,65,83] on nutrient variations within field and landscape level forms
a basis for fertilizer recommendations in SSA that are site specific. Recent developments
in openly available agricultural decision support systems for precision agriculture, have
enabled direct access to near-real-time satellite data at the farm level (e.g., CropSAT.com;
Ref. [84] is at least relevant for larger fields (depending on the spatial resolution of the
images) and for farmers with Internet access).
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The second limiting resource amongst smallholder farming systems in SSA is water.
Due to this, smallholder farmers require appropriate coping and mitigation strategies for
areas that do not receive sufficient amounts of rainfall to support high crop yields [37].
Climatic variations and crop water stress based on insufficient soil water and reduced
humidity have been studied [38] and predictions made on crop yield. It has been doc-
umented that adequate water supply is more important than uniform water supply by
irrigation systems for improved water use efficiency [39]. Hence, emphasis should be
placed on ensuring adequate water supply for optimum growth and yield. Integration
of technologies such as the use of drones and real-time wireless sensor technology will
be advantageous in accelerating planning, design and construction of SSA’s irrigation
systems [40]. This will improve irrigation water use efficiency and increase crop yields in
SSA where water is a major limiting factor in improving crop production.

Besides, the use of GIS for spatial and temporal distribution of irrigation water to
ensure adequate supply of water based on crop requirements will support efficient use
of water and ensure optimum crop yields [44]. This is mainly for precision farming in
relation to irrigation water use. This type of system generates information on water
distribution in the field identifying deficits or excess application spots within the field. As
the high technology precision farming practices are being introduced to support PA in SSA
smallholder farms, indigenous knowledge should not be ignored especially in semiarid
environments [45].

The use of PA technologies in SSA for animal production is still at the experimental
stages mainly involving the use of sensors and geostatistical techniques. The sensor
technology has been tested on the animal behavior classification and cattle movement
while geostatistical techniques have been used for the control and monitoring of animal
pests [30,31]. Much still needs to be done on PA in smallholder animal production systems
in SSA for resource use efficiency.

In smallholder farming systems in SSA, standards and precision in input use are often
lacking and advanced ways of improving them are not affordable. Besides, government
recommendations do not recognize the variability that exists between different farms or
regions [1]. Increased precision in input rates and management practices among these
farmers can significantly improve productivity even without extra use of inputs. This
information is important to inform planning and implementation of subsequent programs
in SSA aimed at improving resource use efficiency.

5. Conclusions

A number of precision agriculture (PA) technologies have been tested in SSA with
promising results. The most promising PA technologies for SSA include the use of soil
and plant sensors for soil nutrient and water status mapping, and satellite imagery for
crop mapping. The use of GIS and crop-soil simulation models has been tested to derive
decision support for site-specific management of crops. Most of these technologies are
however at experimental stage with only South Africa having applied them mainly in large-
scale commercial farms. For smallholder animal production systems, limited information
exists on the use of PA technologies in SSA. The documented evidence indicated that
these practices are still at the experimental stages mainly involving the use of sensors
and geostatistical techniques. Much still needs to be done on PA in smallholder animal
production systems in SSA for resource use efficiency.

It was obvious that some tested technologies were not provided in a user-friendly way
but required advanced technical knowledge from the users. This and other bottlenecks
need to be remedied before any broad implementation of PA technologies in small-scale
agriculture in SSA can take place. There is no known current application of the technologies
amongst small-scale farmers that was identified in the current review. Nevertheless, these
technologies are important in supporting sustainable agricultural development in SSA that
is mainly characterized by small-scale farmers who form the highest percentage especially
in agricultural production.



Sustainability 2021, 13, 1158 14 of 17

The technologies will be key in decision making on resource allocation and man-
agement based on information and knowledge. For SSA, this will help to stop blanket
recommendations and enable efficient use of scarce resources for improved productivity.
Implementation of precision agriculture technologies in smallholder farming systems in SSA
can drastically improve overall efficiency of input use and hence increased yields without
extra use of inputs. Specifically, water and nutrient use efficiency will increase tremendously
given they are often limiting in these systems. Adoption of PA technologies by smallholder
farmers will enhance productive inputs for the farmers (fertilizers, water, crop protection
items), decreasing expenses, and minimizing the negative environmental influence.

Precision agriculture is known to use inputs in a judicious manner to improve produc-
tivity and resource efficiency, reduce costs and minimize negative environmental impacts.
For the developed countries, PA involves use of technologies such as satellite imagery,
information communication technology and geospatial tools. Technologies used to collect,
analyze and document data on productivity levels, soil conditions in different parts of
the field for both nutrient and water management. In developing countries such as those
found in SSA, there is little or no use of western PA technology due to limitations of access
to the technologies, capacity and financial constraints. However, it is possible for farmers
in these regions to explore the means and resources available to them in order to increase
agricultural productivity. This can be done through prudent and targeted application of
inputs such as microdosing, soil testing and proper spacing and utilization of indigenous
knowledge. These will enable the farmers to increase yields other than application methods
such as broadcasting of, e.g., fertilizer and seeds. The targeted application can also help
the smallholder farmers in SSA to be more competitive by lowering the production costs.

For a complete review of PA in SSA, there is need to conduct a similar review in
the French language, given that there are a number of countries in SSA that publish their
research in French.
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