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Abstract: The high-resolution Sentinel-2 data potentially enable the estimation of gross primary pro-
ductivity (GPP) at finer spatial resolution by better capturing the spatial variation in a heterogeneous
landscapes. This study investigates the potential of 10 m resolution reflectance from the Sentinel-2
Multispectral Instrument to improve the accuracy of GPP estimation across Nordic vegetation types,
compared with the 250 m and 500 m resolution reflectance from the Moderate Resolution Imaging
Spectroradiometer (MODIS). We applied linear regression models with inputs of two-band enhanced
vegetation index (EVI2) derived from Sentinel-2 and MODIS reflectance, respectively, together with
various environmental drivers to estimate daily GPP at eight Nordic eddy covariance (EC) flux
tower sites. Compared with the GPP from EC measurements, the accuracies of modelled GPP were
generally high (R2 = 0.84 for Sentinel-2; R2 = 0.83 for MODIS), and the differences between Sentinel-2
and MODIS were minimal. This demonstrates the general consistency in GPP estimates based on
the two satellite sensor systems at the Nordic regional scale. On the other hand, the model accuracy
did not improve by using the higher spatial-resolution Sentinel-2 data. More analyses of different
model formulations, more tests of remotely sensed indices and biophysical parameters, and analyses
across a wider range of geographical locations and times will be required to achieve improved GPP
estimations from Sentinel-2 satellite data.

Keywords: gross primary productivity; Sentinel-2 MSI; EVI2; MODIS; Nordic region

1. Introduction

Atmospheric carbon dioxide (CO2) from anthropogenic emissions is one of the key
drivers of climate change [1]. The techniques used to quantify land–atmosphere carbon
exchanges are essential for the understanding of the global carbon cycle [2]. Especially
Northern land ecosystems play an important role in the global carbon cycle due to the
high amount of carbon stored in boreal ecosystems [3] and the increasing seasonal CO2
exchange [4]. Micrometeorological eddy covariance (EC) measurements, conducted at fixed
towers, can provide in situ estimates of CO2 exchange at the ecosystem level, from which
Gross Primary Productivity (GPP) can be estimated [5]. However, these measurements lack
the spatial coverage needed for the characterization of CO2 fluxes at larger regional extents
(103–106 km2), and to represent different age classes and species diversity [6].

An efficient way to estimate GPP across larger areas is to use observations from Earth
observation satellites. Satellite-derived approaches for carbon modelling are usually based
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on the light use efficiency (LUE) model [7], empirical models with site- or ecosystem-specific
environmental variables [8], or mechanistic models with remotely sensed inputs [9–11].
LUE models express GPP as a product of the photosynthetic light use efficiency (ε), and
photosynthetically active radiation absorbed by the vegetation (APAR). Although APAR
is nonlinearly correlated to GPP at the daily time step [12,13], the relationship can be
considered linear over monthly or annual periods [14–16]. APAR can be derived by
multiplying PAR (photosynthetically active radiation) by fAPAR (fractional PAR absorbed
by the vegetation). Several studies have shown that satellite-derived spectral vegetation
indices have linear or near-linear relationships with fAPAR within different vegetation
types and climatic conditions and are therefore used as proxies of fAPAR [17–20]. The
LUE factor, on the other hand, is more difficult to estimate. LUE models usually rely on
biome-specific maximum LUE factors that are reduced due to environmental constraints
such as air temperature and water content [21–23]. However, meteorological data and a
biome-specific maximum LUE factor might be too coarse to accurately describe spatial and
temporal variations of the LUE factor [11,22,24]. Due to this issue, empirical models based
on remotely sensed input have been developed for estimating terrestrial GPP [25–27]. In
these models the regression parameter represents the LUE factor since it scales fAPAR
to the level of carbon assimilation. The simplest empirical models use only a vegetation
greenness index such as the Normalized Difference Vegetation Index (NDVI) proposed
by Tucker [28] or the Enhanced Vegetation Index (EVI) proposed by Huete et al. [20] to
estimate GPP. In comparison to the widely used NDVI, EVI is more adjustable for reducing
soil and atmospheric effects and more sensitive to structural variations in vegetation [20].
The further developed two-band Enhanced Vegetation Index (EVI2) provides similar
information on vegetation properties to EVI but only uses the red and near-infrared bands,
whereas EVI also requires the blue band [29]. However, Sims et al. [24] showed that a
model based entirely on EVI only poorly explains the seasonal variation of GPP at sites
with evergreen vegetation that experience summer drought. Especially in boreal forests the
air temperature (Ta) and the availability of light (PAR) regulate the seasonal photosynthetic
activity [30]. In addition, summer drought is typically the result of high Ta and increased
vapor pressure deficit (VPD) [31]. Consequently, including PAR, Ta and VPD variables
in the model along with a remotely sensed vegetation index is assumed to improve the
GPP estimation.

When calibrating remote sensing models against EC CO2 data, it should be noted
that the EC data represent large exchange areas, roughly covering a distance of 10 to
100 times the height of the measurements over displacement height [32,33]. The area
influencing the measured flux is called the source area [34], the contribution of each part
to the measured flux (source weight) is called the flux footprint, and it depends on wind
direction, wind speed and turbulence, leading to the variation of footprint from one half-an-
hour flux averaging period to another [35]. The rough approximation above disregards this
variation in flux footprint, thus introducing scale and weather-dependent approximation
errors [36,37]. For accurate spatial representation of flux variations, a footprint model
should be used [38,39]. This type of model can be used to assess which pixels belong to the
footprint and hence should be selected for the calibration.

To model GPP on local and global scales, data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor on board NASA’s Terra and Aqua satellites have been
widely used. Due to its high temporal resolution, MODIS provides data for monitoring
vegetation dynamics and changes in land cover over time. However, MODIS acquires
data at three relatively low spatial resolutions: 250 m, 500 m, and 1 km. The widely used
MODIS GPP/NPP (MOD17, collection 6) product at 500 m spatial resolution has been
questioned by many, mainly due to a lack of sufficient flux measurements for validation
and calibration of the algorithm [40–42].

The spatial resolution of satellite products has been identified as a critical factor that limits
spatially detailed carbon flux estimates, especially in heterogeneous landscapes [43]. The new
Sentinel-2A and 2B satellites with the MultiSpectral Instrument (MSI) have great potential for
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studying CO2 fluxes in terrestrial ecosystems due to improved spatial resolution (10 m, 20 m,
and 60 m) and high temporal resolution (2–5 days’ revisit frequency depending on latitude).
A few studies have explored the performance of the Sentinel-2 products for CO2 flux
modelling, e.g., Lin et al. [44] applied 30 m Sentinel-2 data from the Harmonized Landsat
and Sentinel-2 product to estimate the GPP (R2 = 0.77 and RMSE = 0.81 g C m−2 day−1

comparing to EC GPP) of three evergreen broadleaf forest sites and two grassland sites
in southeast Australia. In the study by Wolanin et al. [45], Sentinel-2 and Landsat 8 data
were used to estimate GPP (R2 = 0.92 and RMSE = 1.38 g C m−2 day−1) on five crop fields
(four in the USA and one in Germany). Given that Sentinel-2 has been shown to be
capable of accurate representation of phenology [46,47] and has the capability to provide
detailed estimates of biophysical and biochemical vegetation parameters [48,49] it can be
hypothesized that Sentinel-2 MSI data has the potential to enhance the performance of GPP
models also in northern landscapes. However, the impact of the lower temporal frequency
of Sentinel-2 compared to MODIS in these high-cloudiness areas is a factor that could have
negative impact.

In this study, we analyze eight study sites within the Nordic region (Denmark, Finland
and Sweden, Figure 1) to investigate the accuracy of GPP estimates from Sentinel-2 data in
comparison with MODIS data. We base the comparison on empirical regression models
as they are commonly used for estimating GPP, and are functionally similar to the LUE
type models. Following this, we examine the relationships between EC-derived GPP and
EVI2-derived GPP using EVI2 and meteorological variables. In investigating the potential
of Sentinel-2 vegetation index data for modeling carbon uptake, the study aims to (1)
examine the effects of using Sentinel-2 MSI 10-m data compared to MODIS 250 m and
500 m data on modeling GPP from EC measurements, and (2) determine the importance
of the input data for modeling accuracy in comparison to the choice of environmental
driving variables.
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2. Materials and Methods
2.1. Study Sites and Environmental Variables

The study area contains eight EC flux sites located in Denmark, Finland and Sweden,
at latitudes from 55◦ N to 68◦ N (Figure 1). The flux sites belong to the ICOS infrastructure
(https://www.icos-ri.eu) and follow the ICOS measurement protocols [50]. We analyzed
data from 2016 to 2017, except at the SE-Svb site where we used only the data from 2016.
There is an air-temperature gradient from south to north across the eight sites, with climate
zones ranging from temperate in the south, through hemiboreal and boreal, and up to the
northernmost subarctic landscapes. The sites cover diverse and major Nordic land cover
types: evergreen forest, deciduous forest, wetlands, and agriculture (Table 1).

Table 1. The eight ICOS flux tower sites used in this study. For more site information, refer to the national ICOS information
pages (https://www.icos-ri.eu/).

Site Name Site Name Latitude
(Degree)

Longitude
(Degree)

Annual Average
Ta (◦C) 1

Flux Measurement
Height (m) Biome/Vegetation

SE-Sto Abisko-Stordalen 68.36 19.05 0.5 2 Subarctic mire

SE-Svb Svartberget 64.25 19.77 2.9 33
Boreal mixed-evergreen forest: Scots
pine (Pinus sylvestris) and Norway

Spruce (Picea abies)

SE-Deg Degerö 64.18 19.55 2.0 2 Boreal mire

FI-Hyy Hyytiälä 61.85 24.29 4.3 23 Boreal evergreen forest: Scots pine
(Pinus sylvestris)

SE-Nor Norunda 60.09 17.48 6.7 36
Boreal evergreen mixed forest: Scots
pine (Pinus sylvestris) and Norway

spruce (Picea abies)

SE-Lnn Lanna 58.33 13.10 7.5 2 Temperate agriculture

SE-Htm Hyltemossa 56.10 13.42 8.1 27 Temperate evergreen forest: Norway
spruce (Picea abies)

DK-Sor Sorø 55.49 11.64 8.7 43 Temperate deciduous forests: Beech
dominated (Fagus sylvatica)

1 Daily air temperature averaged 2016–2017.

At the ICOS sites, auxiliary meteorological parameters, such as photosynthetically
active radiation (PAR), air temperature (Ta) and water vapor pressure deficit (VPD) are
measured using standardized methodology [51,52]. PAR is measured as instantaneous
photosynthetic photon flux density (PPFD, µmol m−2 s−1) at the sites and was summed to
daily total PPFD (µmol m−2 d−1). The measurements of Ta (◦C), relative humidity, wind
components and gas concentrations were located above the canopies at the forest sites
and at around 2 m above the ground at the agriculture and wetland sites. VPD (hPa) is
estimated from Ta and relative humidity. The VPD and Ta data used in the study were
daily averages.

The net ecosystem exchange of CO2 (NEE) at ICOS sites is measured by the EC
method, with standardized methods and data processing [53,54]. GPP (g C m−2 day−1)
was estimated by partitioning the NEE, with the help of auxiliary in situ environmental
variables, such as global radiation, air or soil temperature, and VPD, by using the REd-
dyProc tool [55,56], implemented as an online tool (https://www.bgc-jena.mpg.de/bgi/
index.php/Services/REddyProcWeb).

2.2. Eddy Covariance Influence Area

To estimate the approximation of the climatological footprint of the EC measurements,
we used the Matlab implementation of the Flux Footprint Prediction (FFP) model of Kljun
et al. [39], which provides position, size, and contribution details of surface source areas.
Most of the input variables were collected as a part of the EC systems at the sites. The
displacement height was defined as 0.67 times the canopy height. The boundary layer

https://www.icos-ri.eu
https://www.icos-ri.eu/
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
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height was not measured directly at the sites but estimated using the friction velocity,
Obukhov length and latitude of the site for near-neutral and stable conditions following
Kljun et al. [39]. For convective conditions the boundary layer was set to be 1500 m.

Through input half-hourly measured data (meeting the condition that the friction
velocity was higher than 0.1 m s−1) to the FFP model, we obtained annual flux footprint
climatology contours (Figure 2) and contribution weights in 10 m resolution pixel (matched
to Sentinel-2 pixel). Following the suggestion in Kljun et al. [39], we used the 80% flux
footprint contribution contour line as the maximum footprint area since it is sufficient for
estimating the main source area in most cases.
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Figure 2. An example of the contribution contours of eddy covariance flux measurement. The black
dot represents the location of the flux tower. The red curves represent the flux contribution of the
area. The background image (green) shows Sentinel-2 EVI2 at the flux tower site SE-Lnn on day of
year 182 in 2017. The 80% flux footprint contribution contour was used to define the footprint area of
the site.

2.3. Daily EVI2 Trajectories of Satellite Pixels

The eight ICOS sites are covered by seven Sentinel-2 MSI tiles. A total of 1312 available
Sentinel-2 images acquired in 2016 and 2017 for the seven tiles were downloaded from the
ESA Copernicus Sentinels Scientific Data Hub [57]. The Sen2Cor processor (version 2.5.5)
was applied for atmospheric correction to obtain Level-2A surface reflectance and scene
classification layer (SCL) [58]. EVI2 of each Sentinel-2 pixel (10m resolution) was calcu-
lated by red reflectance (ρRED) and near-infrared reflectance (ρNIR) using the following
equation:

EVI2 = 2.5× ρNIR− ρRED
ρNIR + 2.4× ρRED + 1

. (1)

Through the SCL, pixels recorded as vegetation and soil were marked as high quality,
whereas those recorded as cloud, snow, and water, were marked as low quality. Two
different spatial resolution MODIS EVI2 (250 m and 500 m) datasets for 2016 and 2017
were generated from MODIS/Terra MOD09Q1 (250 m) and MOD09A1 (500 m) [59] to
be comparable to Sentinel-2 EVI2. Each MODIS pixel’s quality flag was created from the
binary MODIS quality (QA) data.
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For generating daily EVI2 time-series from Sentinel-2 data and MODIS data, we
applied a time-series fitting algorithm, box constrained separable least squares fitting to
double logistic model functions [60], so that the datasets could be compared. This is a time-
series fitting method that reduces noise, gap-fills the data, and generates output a regular
time step (Figure 3). The inputs of the method were EVI2 time-series and quality flags.
Only highest quality data were used in the function fitting. To avoid errors due to unequal
time sampling of MODIS [61], the actual acquisition dates of the MODIS observations were
used as a time vector of the MODIS EVI2 time-series. The default procedure and settings as
described by Jönsson et al. [60] were applied to produce daily EVI2 time-series. The fitting
method is similar to the commonly used double logistic model functions [62] but with
the following three differences: (1) the box constrained method applies a constant base
level, which was estimated from a 5% low threshold of the clear observation histogram
for the full time-series; (2) through a shape prior, i.e., a common season estimated for the
full time-series through which the box constrained method improves the reconstruction
of the seasons also in cases when the amount of observation data is insufficient; and (3)
where the observation data was sufficiently large over a growing season, the estimation of
parameters of the double logistic function for the season was constrained within a set of
ranges (‘box’) in the box constrained method.
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Figure 3. Fitted daily EVI2 time-series on a Sentinel-2 pixel (10 m × 10 m) at site SE-Lnn (Sentinel-2
tile 33VUE; row 8891 and column 3190). The black dots represent the raw EVI2 time-series of the
pixel. The red and black circles are points marked as vegetation and soil from SCL. The red curve is
the fitted daily EVI2 time-series by box constrained separable least squares fitting to double logistic
model functions.

2.4. Daily EVI2 of Flux Footprint

The pixels’ daily EVI2 trajectories, which were generated from the previous section,
were further used to estimate daily EVI2 over the flux footprint. To compute MODIS 250 m
EVI2 averages over the flux footprint area, denoted as EVI2250m, a maximum of four pixels
around the tower were used, and 500 m EVI2 averages (EVI2500m) were computed from the
500 m pixel(s) where the towers are located (Figure 4). Sentinel-2 weighted averages over
the flux footprint areas, denoted as EVI210m, were thus computed from 450–5800 pixels
depending on the estimated footprint size. Since 10 m Sentinel-2 pixels are much smaller
than flux footprints, we calculated the footprint EVI2 more precisely by

EVI210m = ∑n
i=1 EVI2i ∗ wi , (2)

where EVI210m is the footprint EVI2; n is the number of Sentinel-2 pixels covering the flux
footprint; EVI2i and wi (0–1) are EVI2 of the pixel i and the corresponding contribution
weight to the total flux.
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2.5. Empirical Regression Models for GPP Estimation

For the eight stations, regression models were used to estimate daily GPP (g C m−2 day−1)
following previously tested model formulations for our study region by Schubert et al. [27],
one model for each ICOS site:

GPP = a× EVI2× E + b, (3)

where the variable EVI2 is daily averaged EVI2 reconstructed by the box constrained
method from Sentinel-2 MSI data and MODIS data. E is the EC tower measured daily sum
of PPFD (µmol m−2 day−1), the daily average air temperature Ta (◦C), the daily average
VPD (hPa) or the product of them. Available light and temperatures above the freezing
point are requirements for photosynthesis. Therefore, only dates with both a daily sum
PPFD larger than 0 µmol m−2 day−1 and a daily average Ta above 0 ◦C were used in the
further model calculation. E in the model was smoothed by a moving average with a
7-day moving window for reducing the noise of the data. Although there would be six
possible model formulas based on the combinations between satellite-derived EVI2 and
the different environmental variables at each site, a single model formula was required
to enable a direct comparison between Sentinel-2 MSI EVI2 and MODIS EVI2 at each site.
The selection of this single model formula was achieved by assessing the coefficient of
determination values (R2) and root mean square error (RMSE) between the EC GPP and
model estimated GPP.

To evaluate the EVI2-driven GPP models, we computed the root mean square error
(RMSE), mean absolute error (MAE) and R2 between EVI2-driven daily GPP (GPPEVI2)
and EC-driven daily GPP (GPPEC) for each GPP site:

RMSE =

√
∑n

i=1 (GPPEVI2 − GPPEC)
2

n
, (4)
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MAE =
∑n

i=1|GPPEVI2 − GPPEC|
n

, (5)

where n is the number of valid days for modelling GPP at the site.
In order to further clarify whether the RMSE, MAE, and R2 at different spatial resolu-

tions (10 m, 250 m and 500 m) are significantly different, we used the Wilcoxon signed-rank
test to perform pairwise tests with a null hypothesis of zero medians for the difference of
RMSE/MAE/R2 between paired sample sites.

3. Results
3.1. Relationships between GPP, EVI2 and Environmental Variables

Daily EVI2 from Sentinel-2 MSI and MODIS all showed linear relationships with
flux tower-derived GPP (R2 = 0.45–0.93, Table 2). There was no tendency for stronger
relationships with higher resolution data. MODIS EVI2 showed stronger relationships than
Sentinel-2 at four sites; however, at the evergreen forest site SE-Htm, the relationships with
EC GPP were considerably weaker than for Sentinel-2 (R2 = 0.45 and 0.56). Comparing
the two MODIS resolutions, the higher spatial resolution EVI2250m provided stronger
relationships with flux tower GPP at the agricultural site SE-Lnn. At this site and the
deciduous forest site DK-Sor, daily EVI2 at all spatial resolutions from both Sentinel-2 MSI
and MODIS showed very strong relationships with flux tower GPP (R2 > 0.85).

Table 2. Coefficient of determination, R2, of environmental variables/satellite EVI2 versus EC derived
GPP in daily time step. No VPD data were available at FI-Hyy site.

EVI210m EVI2250m EVI2500m Ta PPFD VPD

SE-Sto 0.77 0.81 0.83 0.69 0.04 0.24
SE-Svb 0.74 0.73 0.79 0.86 0.51 0.41
SE-Deg 0.59 0.58 0.63 0.68 0.28 0.34
FI-Hyy 0.73 0.83 0.86 0.87 0.54 -
SE-Nor 0.81 0.67 0.72 0.82 0.74 0.53
SE-Lnn 0.89 0.93 0.90 0.31 0.49 0.23
SE-Htm 0.78 0.45 0.56 0.75 0.82 0.43
DK-Sor 0.93 0.87 0.89 0.79 0.76 0.57

The environmental variables showed lower correlations with GPP than EVI2 for five
of the eight sites. Ta had higher R2 than PPFD at most sites, expect at the agricultural site
SE-Lnn and the evergreen forest site SE-Htm. For PPFD, R2 values were lower at high
latitudes than at low latitudes, and values at the forest sites were higher than values for
the agricultural and wetland sites. VPD showed the weakest relationships among all three
environmental variables at all sites. In DK-Sor and SE-Nor, however, the relationships
between VPD and GPP were relatively strong, with R2 values of 0.57 and 0.53, respectively.
Spring 2017 was relatively dry in the study areas and for SE-Nor summer 2017 remained
dry which increased the sensitivity to VPD. Otherwise, shallow soil depth at these sites
might affect the water storage capacity. Despite this, the influence of VPD seemed to be
low for most of the sites so only EVI2, Ta and PPFD were chosen for the final regression
models, because of their stronger relationships with GPP.

3.2. Multiple Linear Regression Models of GPP

Based on the general relationships shown in Table 2, and with the aim of fitting models
that had the same formulation for the three satellite data sets at each site, Ta was chosen as
input environmental variables into the final linear GPP regression model:

GPP = a× EVI2× Ta + b. (6)

We tested three models at all sites, and the RMSEs, MAEs, and R2 of satellite-derived
GPP and flux data-derived GPP were calculated (Table A1). We found that the differences
of RMSE, MAE, and R2 due to the differences in the model were greater than those due to
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the difference in the satellite data. Referring to the RMSEs from the three models at each site
(Table A1), we used the model that generated the highest R2 at each site for the final GPP
estimation results (Table 3). Therefore, we applied the model driven by Ta (Equation (5)) at
all sites.

Table 3. Linear regressions for GPP (g C m−2 day−1) at each site driven by the products of Ta and
EVI2 in 10 m from Sentinel-2, and 250 m, 500 m from MODIS.

Resolution a b RMSE 1 MAE 1 R2

SE-Sto
10 m 0.61 −0.23 0.49 0.39 0.83

250 m 0.60 −0.17 0.45 0.35 0.86
500 m 0.69 −0.13 0.44 0.35 0.86

SE-Svb
10 m 1.72 1.06 1.12 0.95 0.87

250 m 1.77 1.09 1.10 0.94 0.88
500 m 1.71 1.20 1.04 0.88 0.89

SE-Deg
10 m 0.54 0.10 0.51 0.39 0.71

250 m 0.42 0.13 0.52 0.40 0.69
500 m 0.42 0.12 0.51 0.40 0.70

FI-Hyy
10 m 1.34 0.61 0.98 0.73 0.89

250 m 1.17 0.78 0.96 0.71 0.89
500 m 1.13 0.87 0.96 0.70 0.89

SE-Nor
10 m 1.28 0.63 1.27 1.02 0.84

250 m 1.29 0.68 1.36 1.09 0.81
500 m 1.20 0.81 1.33 1.07 0.82

SE-Lnn
10 m 1.25 −0.18 1.60 1.03 0.88

250 m 1.23 −0.68 1.60 1.19 0.88
500 m 1.23 −0.71 1.96 1.43 0.82

SE-Htm
10 m 1.56 1.00 1.92 1.63 0.77

250 m 1.39 1.24 2.13 1.83 0.72
500 m 1.25 1.50 2.09 1.81 0.73

DK-Sor
10 m 1.35 −0.36 1.91 1.44 0.91

250 m 1.52 −0.81 2.19 1.68 0.88
500 m 1.54 −0.84 2.12 1.63 0.88

1 in unit g C m−2 d−1.

The slopes and intercepts of the regression models are similar within the same site
(Table 3). The largest differences of slopes and intercepts among the different satellite EVI2
data were found at the three southern sites, SE-Lnn, SE-Htm, and DK-Sor. RMSEs, MAEs,
and R2 had similar patterns across sites, satellite data sets and model formulations, which
means that the low RMSE values usually coincided with low MAE and high R2 values.
There was no single satellite dataset that always generated the lowest RMSE, lowest MAE,
or highest R2. RMSE, as well as MAE and R2, differed mostly across sites, and the smallest
differences were found between the EVI2 variables from the different satellite datasets
(Table A1). All the p-values shown in Table 4 from Wilcoxon signed-rank tests are over
0.10, which means that the test failed to reject the null hypothesis of zero medians for the
difference of RMSE/MAE/R2 between paired sample sites. Separately averaging RMSE,
MAE, and R2 across sites, it was seen that there was almost no difference in the results
generated from Sentinel-2 MSI data and MODIS data (Table 5).

Table 4. Paired p-values of RMSE, MAE and R2 over 8 sites from Wilcoxon signed-rank test. All
p-values of 0.10 over fail to reject the null hypothesis.

RMSE MAE R2

250 m 500 m 250 m 500 m 250 m 500 m

10 m 0.547 0.313 10 m 0.250 0.313 10 m 0.461 0.461

500 m 0.195 - 500 m 0.250 - 500 m 0.195 -
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Table 5. Average errors and coefficients of determination across sites.

Resolution RMSE 1 MAE 1 R2

10 m 1.23 0.95 0.84
250 m 1.29 1.02 0.83
500 m 1.31 1.03 0.82

1 in unit g C m−2 d−1.

The modelled GPP time-series were very close between Sentinel-2 and 250 m MODIS
data at all sites (Figure 5). The shape and magnitude of the daily GPP time-series between
satellite driven GPP and flux data-derived GPP were similar (Figure 5). Peak season GPP
decreased from the south to the north. The subarctic and boreal mire sites (SE-Sto and
SE-Deg, respectively) had much smaller peak GPP (less than 5 g C m−2 d−1) compared to
other sites. The GPP peak at the coniferous forest sites varied between 10–15 g C m−2 d−1,
whereas the deciduous and agricultural sites had the peak around 15–20 g Cm−2 d−1. The
agriculture site SE-Lnn had high peak GPP but a relatively short growing season with
a narrow shape, mainly controlled by the activities of cultivation. The GPP time-series
pattern at the deciduous and evergreen forest sites, DK-Sor and SE-Htm, was much wider
than at SE-Lnn, which indicates a much longer growing season (Figure 5).
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4. Discussion

The results showed that for all sites and all satellite products, the relationship be-
tween EVI2 and the flux tower modelled GPP was generally strong (Table 2). This means
that seasonal GPP variations can be estimated at different resolutions, from 500 down to
10 m spatial resolution, implying that remotely sensed data has the potential to provide
highly detailed spatial estimates of carbon uptake dynamics across northern boreal land-
scapes. This tool can contribute to future work on carbon-friendly forest management and
climate mitigation.

The model selection using climatological flux footprint led to a linear regression
model, driven by Ta, in combination with satellite reconstructed daily EVI2 (Equation
(6)). However, the selected model is not always optimal for each site (Table A1). The
agricultural sites and deciduous forest sites had a larger seasonal variation of greening in
comparison with the evergreen coniferous forest sites, which helps to explain the strong
relationship between EVI2 and GPP in SE-Lnn and DK-Sor. Air temperature was the
most important environmental variable for estimating GPP at the northern sites (SE-Sto,
SE-Svb, SE-Deg and FI-Hyy) whereas at the southern sites (SE-Nor, SE-Lnn, SE-Htm and
DK-Sor) the differences between models were small. This is explained by the fact that
in the northern part of our study area the growing season begins when the temperature
exceeds the temperature limit, which occurs well after the amount of light has reached
sufficient levels for photosynthesis [63,64]. This finding indicates that, although EVI2 is
the most important driving variable overall, choosing the correct model formulation is
important for GPP estimation across a study area traversing such a large latitudinal range.

The method of estimating GPP used in this study is similar to the method proposed by
Schubert et al. [27] regarding the methodology, model design and study area, but we used
finer spatial and temporal resolution satellite data, dynamic flux footprint, and ground-
based measured environmental variables. In comparison with the study by Schubert
et al. [27], we used four common sites: SE-Sto, FI-Hyy, SE-Nor and DK-Sor. The estimation
of GPP has small RMSE and higher R2 at site SE-Sto, but it has larger RMSE and lower R2

at site FI-Hyy. The RMSEs are larger but R2 are lower at sites SE-Nor and DK-Sor. One of
the reasons for this inconsistency is that we used a different time period in the study.

4.1. Similar Performance of Sentinel-2 and MODIS on GPP Modelling

Despite its finer spatial resolution, Sentinel-2 data did not enhance the performance of
the empirical GPP models. This result is mainly explained by the homogeneous surround-
ing vegetation of the EC areas in combination with the quite large area of flux footprint;
however, other factors that may have contributed to this result are, e.g., (1) the function
fitting model used eliminated minor fluctuations of EVI2 time-series, which might have
masked some differences among the input datasets; (2) the use of linear regression models
reduced the magnitude difference between Sentinel-2 EVI2 and MODIS EVI2 data. These
points are further discussed below.

A factor that strongly reduced the differences in GPP relationships between Sentinel-2
and MODIS was the homogeneity of the EC sites. We applied the FFP model to more
precisely estimate the EC measurements’ footprint [35,39]. The coverage areas of MODIS
pixels and Sentinel-2 pixels that are used to represent the flux footprint are quite differ-
ent at some sites, e.g., SE-Lnn. However, the footprint EVI2 in Sentinel-2 and MODIS
scales did not show large differences due to the homogeneity of the surrounding areas of
EC measurement.

As previously mentioned, the satellite daily EVI2 time-series were generated based on
double logistic functions, which are robust at handling data gaps and reducing data noise
but lead to a loss of daily fluctuations of the EVI2. Therefore, the day-by-day fluctuations
in the output GPP were all mainly generated by Ta or PPFD. Since the same environmental
datasets were applied to the GPP models for all satellite data, the differences in the GPP
outputs between the satellite datasets at each site only reflect the differences in fitted
EVI2. Thus, the seasonal shape and magnitude of EVI2 make up the principal differences
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between the GPP of the different satellite datasets (Figure A1 in Appendix A). Our previous
experiences show that Sentinel-2 MSI EVI2 time-series perform better than MODIS in
capturing ground multispectral measured EVI2 time-series [65]. However, in the current
study, the effects of the differences in seasonal shape and magnitude of EVI2 time-series on
GPP modelling at each site were reduced by the intercepts (a) and slopes (b) in the linear
regression models. The intercepts reduced the bias of estimations, while the slopes reduced
the differences in the amplitudes of the estimations.

In a recently published study, Wang et al. [11] applied a very high resolution (VHR)
hyperspectral sensor on a UAV platform, to study the effects of spatial resolution on the
model performance in a willow field at a 30 minutes’ flux basis. They found that the
performance of footprint weighted simulations to represent the measured flux started to
decline as resolutions exceeded 10 m, while performance was high and relatively constant
from 0.03 m to 10 m. They compared their results with the typical scales of the canopy
structure and concluded that the spatial resolution should be in the same order of mag-
nitude as the typical crown sizes and distances between the plant rows. While this high
requirement might be typical for a homogeneous study site as the willow plantation, the
rule of thumb might be general [11]. Yet the spatial resolutions of satellite-based remote
sensing techniques are currently much coarser.

4.2. Challenges and Outlook

In this study, we did not separate the data into training data and evaluation data. This
was because of the limited number of flux sites and the short coverage time of Sentinel-2 in
Northern Europe, and because our main concern was the ability of Sentinel-2 and MODIS
to drive the GPP models but not the absolute accuracy of the prediction model. With more
data in the future, it will be possible to fine-tune an accurate model by dividing the data
into training data and evaluation data. The high p-values in the test indicated that the
conclusion of no significant differences between the data sets may change with a larger
sample size.

Although the empirical regression models were generally accurate, further GPP model
development may need to be carried out when developing upscaling methodology from
Sentinel-2 MSI. The fact that model selection had more impact on the accuracies than the
choice of input data highlights the importance of further studying the input environmental
drivers and the model formulations for estimating GPP, e.g., Tagesson et al. [66]. To
further improve the match between flux tower EC data and remote sensing, applying
daily rather than annual footprint climatologies is a possibility that should be pursued in
future studies [38,39]. This is a rather complex analysis and given the small differences
observed between the different data sets it is not likely that this would radically change the
conclusions in the current study. For upscaling across large areas, a practically applicable
methodology needs to be developed (such as the abovementioned study by Wang et al. [11]).
It may also be fruitful to further investigate the drivers behind the spatial variation of GPP,
e.g., canopy openness or leaf area index, and find suitable remote sensing variables that
directly or indirectly represent these drivers. Another factor to consider is the contribution
of the understory vegetation to the ecosystem carbon exchange, which is not usually taken
into account in satellite-derived GPP models. This affects remotely sensed data [67] and
could account for errors in GPP estimates at the beginning and the end of the growing
season [68]. Along with EC towers, flux chambers may be useful for mapping spatial
heterogeneity in GPP in low vegetation areas [69].

With regard to satellite data processing, we suggest analyzing more efficient vegetation
indices, e.g., the Plant Phenology Index, which has shown to correlate more strongly with
GPP than EVI or NDVI [70,71]. Though efficient, this index requires angular effects to be
corrected for, which precluded us from using the index with the available Sentinel-2 data.
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5. Conclusions

In this paper, we examined the effect of the spatial resolution of daily two-band
enhanced vegetation index (EVI2, 10m from Sentinel-2 MSI, 250m and 500m from MODIS)
on the accuracy of gross primary productivity (GPP) estimations with different regression
models at eight Nordic eddy covariance flux sites. The results gave high and consistent
coefficients of explanation (R2 = 0.84 for Sentinel-2; R2 = 0.83 for MODIS) verifying the
potential of remotely sensed data to provide accurate estimates of the seasonal carbon
uptake dynamics across northern boreal landscapes at both the coarse and fine spatial
scale. Sentinel-2 opens the possibility of very detailed GPP estimation across the northern
landscape, which is of benefit for climate mitigation and adaptation work. The analysis
showed that the quantitative differences in GPP estimation due to the different input
data were small between Sentinel-2 MSI GPP and MODIS GPP; smaller than the effect
of different model formulations. This can be explained by the combined effects of the
higher temporal frequency of MODIS compensating for its lower spatial resolution, the
time-series fitting method used for reconstructing daily EVI2, the homogeneity of the
surrounding areas of the EC measurements, and the use of linear regression models. To
further strengthen the development of GPP models based on Sentinel-2 data will require
more analyses of different model formulations (including environmental drivers), more
tests of remotely sensed indices and biophysical parameters, and analyses across a wider
range of geographical locations and time.
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Table A1. RMSEs, MAEs, and R2 between EC driven GPP (g C m−2 day−1) and EVI2 driven GPP
from three linear models in 10 m, 250 m, and 500 m resolutions at eight Nordic sites. The three linear
models are model I: GPP = a·Ta·EVI2 + b, model II: GPP = a·PPFD·EVI2 + b, and model III:
GPP = a·Ta·PPFD·EVI2 + b.

Model I Model II Model III

Resolution RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

SE-Sto
10 m 0.49 0.39 0.83 0.97 0.76 0.33 0.74 0.54 0.62

250 m 0.45 0.35 0.86 0.95 0.73 0.37 0.73 0.54 0.62
500 m 0.44 0.35 0.86 0.93 0.72 0.39 0.71 0.53 0.64

SE-Svb
10 m 1.12 0.95 0.87 1.83 1.57 0.67 1.50 1.20 0.77

250 m 1.10 0.94 0.88 1.80 1.55 0.68 1.49 1.20 0.78
500 m 1.04 0.88 0.89 1.76 1.52 0.69 1.48 1.20 0.78

SE-Deg
10 m 0.51 0.39 0.71 0.62 0.49 0.56 0.56 0.42 0.64

250 m 0.52 0.40 0.69 0.65 0.52 0.52 0.58 0.44 0.61
500 m 0.51 0.40 0.70 0.63 0.50 0.55 0.57 0.44 0.62

FI-Hyy
10 m 0.98 0.73 0.89 1.76 1.39 0.65 1.01 0.78 0.88

250 m 0.96 0.71 0.89 1.38 1.09 0.78 0.92 0.72 0.90
500 m 0.96 0.70 0.89 1.34 1.06 0.79 0.91 0.72 0.90

SE-Nor
10 m 1.27 1.02 0.84 1.36 0.97 0.81 1.21 0.95 0.85

250 m 1.36 1.09 0.81 1.35 0.94 0.81 1.24 0.96 0.84
500 m 1.33 1.07 0.82 1.27 0.89 0.84 1.24 0.99 0.84

SE-Lnn
10 m 1.60 1.03 0.88 1.50 0.90 0.90 1.73 1.08 0.86

250 m 1.60 1.19 0.88 1.33 1.02 0.92 1.47 0.98 0.90
500 m 1.96 1.43 0.82 1.56 1.14 0.89 1.77 1.19 0.85

SE-Htm
10 m 1.92 1.63 0.77 1.49 1.09 0.86 1.85 1.50 0.79

250 m 2.13 1.83 0.72 1.36 0.97 0.88 1.84 1.48 0.79
500 m 2.09 1.81 0.73 1.29 0.93 0.90 1.81 1.46 0.79

DK-Sor
10 m 1.91 1.44 0.91 1.59 1.16 0.93 1.76 1.29 0.92

250 m 2.19 1.68 0.88 1.95 1.37 0.90 1.79 1.28 0.92
500 m 2.12 1.63 0.88 1.96 1.39 0.90 1.78 1.29 0.92

Average
10 m 0.49 0.39 0.83 0.97 0.76 0.33 0.74 0.54 0.62

250 m 0.45 0.35 0.86 0.95 0.73 0.37 0.73 0.54 0.62
500 m 0.44 0.35 0.86 0.93 0.72 0.39 0.71 0.53 0.64

Note: the numbers in bold type are the smallest RMSEs, the smallest MAEs, and the largest R2 in the three models.
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