
lable at ScienceDirect

Biochemical and Biophysical Research Communications 544 (2021) 86e90
Contents lists avai
Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate/ybbrc
Plant mitochondria and chloroplasts are targeted by the Rhizoctonia
solani RsCRP1 effector

Georgios Tzelepis a, *, Fredrik D€olfors b, Louise Holmquist c, Christina Dixelius b

a Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala Biocenter, Box 7026, SE-750 07, Uppsala,
Sweden
b Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007,
Uppsala, Sweden
c MariboHillesh€og Research AB, S€abyholmsv€agen 24, S-26191, Landskrona, Sweden
a r t i c l e i n f o

Article history:
Received 7 January 2021
Accepted 7 January 2021
Available online 5 February 2021

Keywords:
Basidiomycete
Chloroplast
Effector
Mitochondria
Soilborne pathogen
* Corresponding author.
E-mail address: georgios.tzelepis@slu.se (G. Tzelep

https://doi.org/10.1016/j.bbrc.2021.01.019
0006-291X/© 2021 The Authors. Published by Elsevie
a b s t r a c t

The fungal species Rhizoctonia solani belongs to the Basidiomycota division and is a ubiquitous soil-borne
pathogen. It is the main agent of the damping-off disease in seedlings and causes the root and crown rot
disease in sugar beets. Plant pathogens deploy small secreted proteins, called effectors, to manipulate
plant immunity in order to infect the host. Here, a gene (RsCRP1) encoded a putative effector cysteine-
rich protein was cloned, expressed in Cercospora beticola and used for virulence assays. The RsCRP1
gene was highly induced upon the early-infection stage of sugar beet seedlings and disease was pro-
moted. Confocal microscopy demonstrated localization to the chloroplasts and mitochondria upon
transient expression of RsCRP1 in leaves of Nicotiana benthamiana. Further, this effector was unable to
induce necrosis or to suppress hypersensitive response induced by the Avr4/Cf4 complex in
N. benthamiana. Overall, these data indicate that RsCRP1 is a novel effector targeting distinct plant cell
organelles in order to facilitate a successful infection at the early stages of the disease development.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Pathogens can enter plant hosts using various strategies; via
openings and wounds, secretion of cell wall degrading enzymes or
manipulation of a wide range plant defense mechanisms.
Commonly, these strategies are combined to promote efficient
colonization and proliferation in the host. Events involving path-
ogen growth and reproduction in host tissue require nutrients,
which is the ultimate rational to cause disease by any organism. In
order to establish a compatible interaction, pathogens must evade
or suppress plant immunity [1]. To do that, among others, they
secrete small proteins, called effectors. Effectors can have various
functions such as inducing necrosis, protecting fungal hyphae from
plant chitinases, suppressing hypersensitive response (HR), or
helping fungal hyphae to stealth themselves, avoiding recognition
by plant receptors [2]. Although effector biology is a growing field,
still a majority are undiscovered and important aspects of their
exact roles and functions are unknown. This is particularly the case
is).
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for the understudied but important soil-borne pathogens.
Plants on the other hand, deploy different layers of defense

including sophisticated signaling against pathogens [3]. The first
layer induced by microbial elicitors, called pathogen-associated
molecular patterns (PAMPs) are recognized by pattern recogni-
tion receptors (PRRs) [4]. PAMPs can be essential components of
fungal cell wall, such as chitin, or proteins with a crucial role in the
formation of filament in a bacterial flagellum, such as flagellin.
Recognition of PAMPs by the plant leads to a PAMP-triggered im-
munity (PTI) response. Next layer of defense involves recognition of
effectors by intracellular plant resistance (R) genes, leading to in-
duction of effector-triggered immunity (ETI) such as the hyper-
sensitive response, HR [5]. However, the present understanding of
the plant immune system is far more differentiated.

Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) is a
soil-borne pathogen, with a wide host range. Isolates are catego-
rized in different anastomosis groups (AG) based on their hyphal
anastomosis reactions [6]. Rhizoctonia solani AG2-2IIIB is the causal
agent of crown root rot in sugar beets. During recent years the
genomes of different R. solani AGs have been sequenced with the
purpose to enhance our knowledge of the infection pathways
[7e11]. To assist the work on sugar beet improvement we used the
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The RsCRP1 gene is highly induced upon early infection stages. Relative tran-
script levels were analyzed in sugar beets 4, 5, 6 and 7 dpi. R. solani mycelia was grown
in PDB medium and used as a control. Data were normalized to the expression levels of
the G3PDH gene according to the 2�DDCt method. Asterisks (*p < 0.05, **p < 0.01)
indicate statistically significant differences between columns at the same time point
according to Student’s t-test. Error bars represent SD and is based on at least three
biological replicates.
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genome information of R. solani AG2-2IIIB [12] to search for 1)
novel effector candidates, and 2) investigate their function. The
latter is a challenge since R. solani is not amenable for genetic
modifications as many other basidiomycetes.

2. Materials and methods

2.1. Fungal isolates and growth conditions

Rhizoctonia solani AG2-2IIIB isolate BBA 69670 (DSM 101808)
was used in this study and cultured as earlier described [12]. The
Cercospora beticola strain Ty1 (MariboHillesh€og, Research AB) was
cultured on potato dextrose agar (PDA, Difco) at 22 �C in darkness.
To induce sporulation, C. beticola was grown on tomato extract
medium at 25 �C with a photoperiod of 12 h.

2.2. RNA preparation and quantitative RT-qPCR

For gene expression analysis of the RsCRP1 (RSOLA-
G22IIIB_02432) gene, 3-week-old sensitive sugar beet plantlets
(hybrid 1604511801, MariboHillesh€og Research AB) replanted in
soil infested with R. solani mycelia. Total RNA was extracted from
infected plants using the RNeasy Plant Mini Kit (Qiagen) according
to manufacturer’s instructions, while R. solani mycelia grown on
potato dextrose broth (PDB, Difco) were used as a control. Primers
are listed in Table S1. RT-qPCR was conducted as previously
described [13]. The data was normalized to the G3PDH expression
[14] and relative transcripts were calculated according to the 2�DDCt

method [15]. Statistical analysis was done using Student’s t-test.

2.3. Cloning and Cercospora beticola transformation

The RsCRP1 gene was PCR amplified from R. solani cDNA using
high fidelity Phusion Taq polymerase (Thermo Fisher Scientific).
Primers are listed in Table S1. The cDNA fragment was inserted in
the pRFHUE-eGFP vector [16] using the In-Fusion HD cloning kit
(Takara Bio), followed by plasmid transformation to the Agro-
bacterium tumefaciens C58C1 strain. Transformation of C. beticola
was performed using an A. tumefaciens-mediated protocol [17] and
three individual colonies were used for further analysis. Expression
of the RsCRP1 gene was validated using RT-PCR on hygromycin-
resistant colonies (Fig. S1).

2.4. Virulence assay and fungal biomass

For the virulence assay, leaves of 3-week-old sugar beet plants
(hybrid 16045118 01 MariboHillesh€og Research AB) were inocu-
lated with C. beticola conidia as previously described [18]. The area
of disease lesions was calculated 7 days post infection (dpi). Total
genomic DNAwas extracted frommock (H20) and inoculated leaves
and fungal DNAwas quantified using the C. beticola actin (act) gene
and normalized with B. vulgaris elongation factor (elf-1), using
qPCR analysis (Table S1). At least three biological replicates were
used and each replicate comprised of two leaves from four inocu-
lated plants.

2.5. Sequence analysis and confocal microscopy

Presence of conserved domains in the RsCRP1 effector was
tested using the SMART 6.0 protein analysis tool [19]. Subcellular
localization was investigated using the WoLF PSORT predictor [20]
the ChloroP [21] and the DeepMito servers [22]

For confocal microscopy, the RsCRP1 gene was subcloned to the
pENTR/D-TOPO vector (Thermo Fisher Scientific) and inserted to
the pGWB605 destination vector using the Gateway system,
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followed by Agro-transformation in C58C1 cells and transiently
expressed in N. benthamiana leaves. Imaging was performed using
an LSM 800 confocal microscope (Zeiss). The green fluorescence
was excited/emitted at 488/516 nm and detected at 411e553 nm.
The red fluorescence was excited/emitted at 633/684 and detected
at 645e700 nm. For the HR suppression assay, the RsRCP1 genewas
entered to the pGWB602 binary vector and transiently expressed in
N. benthamiana plants harboring the Cf-4 receptor protein from
tomato plants. The HR was triggered 24 h after RsRCP1 Agro-
infiltration with the Cladosporium fulvum Avr4 effector.

3. Results and discussion

3.1. The RsCRP1 gene is highly induced upon early infection stages

The current wealth of pathogen genomes led to prediction of
effector proteins which in general builds on the presence of a
secretion signal, size (>400 aa) and content of cysteines [2]. To
narrow down the effector candidates in the R. solani genome we
compared the data from five different strains resulting in eleven
genes unique for the AG2-2IIIB strain [12]. The small cysteine-rich
protein-encoding gene RsCRP1 was chosen for further studies
based on its transcription patterns. It was highly induced already
4dpi in sugar beet seedlings, followed by reducing levels at 5 dpi as
compared to fungal mycelia grown in PDB (Fig. 1).

3.2. Heterologous expression of RsCRP1 in Cercospora beticola
promotes disease development

To take the next step involving further gene analysis, we eval-
uated the options among fungal sugar beet pathogens. We finally
chose the ascomycete C. beticola causing Cercospora leaf spot dis-
ease which per se is a serious problem particularly in countries
with strict fungicide restrictions. C. beticola produces rich amount
of conidia another feature that further simplify its use compared to
R. solani. The RsRCP1 gene was ligated to the pRFHUE-eGFP vector
driven by the constitutively expressed PgdpA promoter from
Aspergillus nidulans, transformed to C. beticola and used for sugar
beet infection. Increased necrotic lesions was observed for the
RsCRP1 þ strains as compared to the wild type (WT) and the strain
where only the empty vector was inserted (Fig. 2a). In parallel, DNA
was extracted from infected leaf regions 7dpi and fungal biomass
was calculated. No significant difference in the amount of fungal
DNA was observed among WT and strains where the RsCRP1 gene
was overexpressed (Fig. 2b). Taking together, these data indicate



Fig. 2. Overexpression of the RsCRP1 gene promotes C. beticola disease development.
a) Symptoms in sugar beet leaves. b) Area (mm2) of necrotic lesions in sugar beet
leaves. c) C. beticola DNA biomass in infected leaves. Data show the average of three
independent overexpression strains each includes three biological replicates 7dpi.
Asterisk (*p < 0.05) indicates statistically significant differences according to Student’s
t-test.

Fig. 3. RsCRP1 does not suppress PTI-induced HR. Leaves were Agro-infiltrated first
with the RsCRP1 effector ligated to the pGWB602 binary vector driven by the 35S
promoter, followed by HR challenge 24hpi with the Avr4 effector derived from Cla-
dosporium fulvum in Cf-4 transgenic N. benthamiana plants. Agro-infiltration with
empty vector was used as a control. Images taken 3dpi.

G. Tzelepis, F. D€olfors, L. Holmquist et al. Biochemical and Biophysical Research Communications 544 (2021) 86e90
that RsCRP1 is involved in disease development at the early stages
of the infection process.

3.3. Transient expression of RsCRP1 does not suppress PTI-related
HR

A broad variety of effectors have been found in secretomes of
different R. solani strains. In the rice sheath blight disease pathogen,
R. solani AG1 IA, three effectors associated with necrosis are found
among other categories such as carbohydrate-active enzymes [8]. A
cell death-inducing effector was later identified in this genome
together with RslA_NP8 [23,24]. In R. solani AG8, AG1-IA and AG3
secretomes, a xylanase and a protease are involved in the cell death
process as well [25]. Further, our previous data showed that
R. solani deploys LysM effectors to suppress chitin-induced
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immunity similar to hemibiotrophic ascomycete pathogens [18].
To generate additional functional data on RsCRP1, it was tran-

siently expressed in N. benthamiana plants using a construct where
RsCRP1 was driven by the 35S promoter. No necrosis was observed
in the Agro-infiltrated area, indicating that the RsCRP1 effector is
not involved in this process (Fig. 3). It is also known that certain
effectors suppress immune responses such as HR [26]. In case of
R. solani the newly found effector RsRlpA (a rare lipoprotein A) has
this feature, suggesting that R. solani deploys effectors to suppress
basal immune responses [27]. To investigate whether RsCRP1
functions as a suppressor of programmed cell death, the Avr4/Cf4
complex was used. The Avr4 is a chitin-binding effector from the
tomato pathogen Cladosporium fulvum and recognized by the to-
mato PRR Cf4 leading to a strong HR [28,29]. Our data showed that
RsRlpA was not able to suppress PTI-related HR induced by this
complex (Fig. 3).

3.4. RsCRP1 targets plant mitochondria and chloroplasts

Knowledge on fungal effectors has expanded over the last years
and it is known that they can be localized in different parts of host
cells such as apoplast, nucleus and vacuoles [2]. To get insights to
the subcellular localization of RsCRP1 in host cells, it was fusedwith
the GFP fluorescence protein at the C-terminus, keeping its signal
peptide intact followed by transiently expression in N. benthamiana
leaves. Examination under confocal microscope 48 h post infiltra-
tion showed that RsCRP1 targeted distinct cell compartments, a
novel feature for this pathogen (Fig. 4). To clarify localization,
RsCRP1-GFP was co-expressed with the ScCOX4-mCherry, a marker
of mitochondria [30]. Co-localization was observed, indicating
accumulation of RsCRP1-GFP in this organelle (Fig. 4). In addition,
co-localization between RsCRP1-GFP and chlorophyll was also
seen, suggesting chloroplasts targeting as well (Fig. 4). Analysis of
the RsCRP1 amino acid sequence revealed presence of a chloroplast
transit peptide (cTP) at the N-terminus, and prediction of locali-
zation to the mitochondrial matrix, further support organellar
accumulation of this effector.

Effector localization to chloroplasts and mitochondria of host
plants has been mostly reported in host-bacteria interactions
[31e34]. Similar observations have also emerged from the poplar
rust fungal basidiomycete Melampsora larici-populina [35]. This
fungal pathogen is thought to use its chloroplast-targeted protein 1
(CTP1) effector to subvert host cell machinery for protein sorting
[36]. CTP1 also accumulates in the mitochondria [35]. The N-ter-
minus of CTP1 facilitate the organelle targeting. Whether targeting
domains that mimics the plant transit systemmay have evolved via



Fig. 4. RsCRP1 is localized to plant mitochondria and chloroplasts. Live-cell imaging of
C-terminal GFP-tagged RsCRP1 in N. benthamiana leaf epidermal cells. Proteins were
expressed in N. benthamiana leaves by Agro-infiltration. Monitoring was performed
using a laser-scanning confocal microscope with a sequential scanning mode 48 h post
infiltration. The GFP and the chlorophyll were excited at 488 nm. GFP (green) and
chlorophyll (red) fluorescent signals were collected at 505e525 nm and 680e700 nm,
respectively. Mitochondrial localization was assayed using the ScCOX4-mCherry
marker (red) and excited at 561 nm and collected at 580e620 nm. (cp): chloro-
plasts, (mt): mitochondria.
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sequence exchange with fungal mitochondrial or horizontal gene
transfer process is presently unclear.

Exploitation of an endogenous plant system is an efficient
strategy to abate plant defense. To this end, impact on plant cellular
compartments added to the list of resistance genes, different
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phytohormones and gene regulatory pathways that could be tar-
geted by pathogen effectors. Impaired photosynthesis or functions
channeled via mitochondria such as production of reactive oxygen
species [37] could be an important complement of the R. solani
effector repertoire affecting other functions than those related to
biotrophic or necrotrophic infection stages.
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