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A B S T R A C T

Ecological indicator approaches typically compare the prevailing state of an ecosystem component to a reference
state reflecting good environmental conditions, i.e. the desirable state. However, defining the reference state is
challenging due to a wide range of uncertainties related to natural variability and measurement error in data, as
well as ecological understanding. This study propose a novel probabilistic approach combining historical
monitoring data and ecological understanding to estimate the uncertainty associated with the boundary value of
an ecological indicator between good and poor environmental states. Bayesian inference is used to estimate the
epistemic uncertainty about the true state of an indicator variable during an historical reference period. This
approach replaces the traditional boundary value with probability distribution, indicating the uncertainty about
the boundary between environmental states providing a transparent safety margin associated with the risk of
misclassification of the indicator’s state. The approach is demonstrated by applying it to a time-series of an
ecological status indicator, ‘Abundance of coastal key fish species’, included in HELCOM’s Baltic Sea regional
status assessment. We suggest that acknowledgement of the uncertainty behind the final classification leads to
more transparent and better-informed decision-making processes.

1. Introduction

Environmental status assessments form the basis of environmental
management (Borja et al., 2011; 2013). Comparing the current state of
ecosystem components to their desirable and undesirable states pro-
vides information about the need for protective or restorative measures.
Many indicator-based approaches, such as applied in the EU’s Water
Framework Directive (WFD; European commission, 2000), the Marine
Strategy Framework Directive (MSFD; European Commission, 2008)
and the Baltic Sea Action Plan (BSAP; HELCOM, 2007), use data from
long-term monitoring programs that are intended to assess trends and
changes in marine ecosystems over time (Danovaro et al., 2016). An
indicator is a data-based metric assumed to reflect the status of the
ecosystem component. The current value, based on recently collected
data, is compared to a reference (or boundary) value, reflecting a

healthy ecosystem. Depending on the indicator, the desirable state can
be represented by a single boundary value, by two boundary values
where the target level is found between them, as well as by multiple
boundary values of several parameters, where the good environmental
status is achieved when multiple parameters meet the required condi-
tions simultaneously (HELCOM, 2012).
Alternative approaches to determine the boundary values based on

reference conditions are applied in marine management (Borja et al.,
2012). Historical data (Muxika et al., 2007), analysis of indicator re-
sponses to pressures (Borja et al., 2012; Piroddi et al., 2015), or in-
formation concerning the spatial gradients of anthropogenic pressures
(Zucchetta et al., 2016) can be used to define reference conditions.
However, epistemic uncertainty about the actual state of the ecosystem
is unavoidable regardless of the approach. This uncertainty arises from
several sources, including stochasticity in ecosystem dynamics and
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errors in sampling (e.g. Borja et al., 2014; Carstensen & Lindegarth,
2016; Wach et al., 2019).
In this paper we propose the use of Bayesian inference to estimate

the epistemic uncertainty associated with the boundary value between
a desirable (Good Environmental Status “GES”) and a non-desirable
(“Sub-GES”) states. Earlier studies have not addressed this particular
uncertainty. Instead, given a fixed boundary value with no associated
uncertainty, they have focused on the confidence of status assessments
arising from e.g. the errors and variabilities related to sampling (Balsby
et al., 2013; Carstensen & Lindegarth, 2016; Ramos-Merchante and
Prenda, 2017). Being transparent about the uncertainty related to the
boundary values and the data behind them is important, since the
boundary value is a crucial element of the indicator-based status as-
sessment, and its uncertainty affects the overall uncertainty of the as-
sessment result.
Bayesian inference is commonly used in population analyses and

fisheries stock assessments to evaluate the uncertainty related to po-
pulation structure and abundance, or other population dynamic para-
meters (Mäntyniemi et al., 2005, 2015; Michielsens et al., 2006). In the
indicator-based status assessment context, the approach could help
quantify the epistemic uncertainty about both the boundary and current
value of an indicator. This information can then be used to estimate the
uncertainty related to the derived boundary values in the assessment. In
the present study we use monitoring data to demonstrate how Bayesian
inference can support the establishment of accurate boundary values in
indicator-based ecological assessments and how the result differs from
the output of the prevailing approach.
As a case example, we use an ecological indicator ‘Abundance of

coastal key fish species’, included in the regional status assessment of
coastal fish communities in the Baltic Sea (HELCOM, 2018a). The in-
dicator is represented by the catch per unit effort (CPUE) of European
perch (Perca fluviatilis) in standardised fisheries independent surveys.
Perch is a prevalent predatory fish species along large parts of the Baltic
Sea coast (HELCOM, 2018b). In our Bayesian approach, the CPUE is not
seen as a direct proxy of species abundance, but as a naturally noisy
metric with observation error adding the noise. We develop a prob-
abilistic model that, based on the prevailing ecological knowledge and
available data, computes posterior distributions of population abun-
dance indices. The model estimates relative perch abundance during a
reference period, and the uncertainty of this estimate. These posterior
distributions of population abundance indices are used in the status
evaluation, instead of an estimator (e.g. CPUE data) that is a direct
function of data including both the actual natural variation of the po-
pulation and variation caused by the sampling procedure. The proposed
Bayesian model filters out random observation error so that status

assessment rules can be developed on the basis of natural variation
only. As its output, this approach produces probability distributions for
the boundary value that distinguishes “GES” from “Sub-GES” as well as
the indicator’s status, representing the amount of uncertainty con-
cerning the classification result. Our analysis demonstrates how the
selection of a safety margin – an inherent, but often neglected element
of evidence-based management processes – affects the final assessment.
The probabilistic form of the result saddles decision-makers with the
burden of outlining an acceptable risk of misclassification of the in-
dicator’s state.

2. Materials and methods

2.1. Overview of the current indicator calculation and assessment protocol

The current status evaluation protocol for the indicator ‘Abundance
of key coastal fish species’, used as the example in this article, consists
of three steps (HELCOM, 2018c):

1. Defining, whether the predefined baseline (reference) period reflects
GES or Sub-GES conditions. This can be done based on historical
data, identification of structural changes during the baseline period
or expert judgement (Östman et al., 2020).

2. Defining the GES boundary. The boundary is calculated as the value
of the indicator at the 5th (Fig. 1: if the baseline is defined as GES)
or 98th (if the baseline is defined as Sub-GES) percentile of the
median distribution of the baseline data (HELCOM, 2018c). The
distribution of medians during the baseline period is approximated
by using resampling of observed CPUE values with replacement.
Additionally, a smoothing parameter is applied to the resampled
data of the baseline period.

3. Assessing the indicator’s status during the assessment period. To
reflect GES, the median value of the indicator during the assessment
period must be above the GES boundary.

2.1.1. Study area and example data
We use long-term fisheries-independent data (Fig. 1) from the

Forsmark monitoring area at the southern part of the Bothnian Sea
coast of Sweden (Fig. 2). Perch were caught using a passive fishing gear,
the multi-mesh coastal survey net, in eight sampling stations within the
area (HELCOM, 2015). The data consists of the number of perch in-
dividuals ≥ 14 cm as the smaller sizes are not representatively sampled
by the gear (Olsson et al., 2012). The data covers the years 1987 – 2016,
excluding 2010. The same methodology and the number of stations has
been used throughout the time-series but the data has two formats that

Fig. 1. Catch per unit effort (CPUE, yearly average
over the sampling stations) data (grey solid line) in
the Forsmark area between 1998 and 2016, based
on the survey fishing data (https://www.slu.se/
KUL). The GES boundary at the 5th percentile of
the baseline period data (grey dashed line) and the
median value of the indicator during the assess-
ment period (black solid line).
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are used in the developed model (see section 2.2) differently. The data
between 1987 and 2006 consist of the number of perch caught per
sampling station per year (the individual number of perch per night is
not listed), whereas the data between 2007 and 2016 includes also the
number of perch per night. The presented status assessment is based on
a baseline period of 12 years (from 1998 to 2009) and an assessment
period of six years (from 2011 to 2016) (Fig. 1). The quantity currently
used for the status assessment of the ‘Abundance of key coastal fish
species’ indicator is catch per unit effort (CPUE) calculated as the
average number of perch (≥14 cm) caught per station per fishing night.

2.2. Bayesian Belief Networks

The developed approach applies Bayesian statistics to compute
probability distributions of the perch indicator for the given amount of
survey data. In Bayesian inference, the existing knowledge (i.e. a prior
probability) is revised after more information (i.e. data) becomes
available, leading to an updated state of knowledge (i.e. posterior
probability).
Bayesian Belief Networks (BBNs) consist of directed acyclic graphs

(DAG) describing dependencies between the variables in a probabilistic
form (Jensen, 2009; Korb & Nicholson, 2010). DAG defines the de-
pendencies between the variables, and the variable values are denoted
as probability distributions. If the variable’s value depends, i.e. is
conditional, on other variables, it has a conditional probability dis-
tribution (CPD). These probability distributions can be continuous or
discrete. There is a variety of ways and sources to define CPDs: a) ob-
served or modelled data (Rahikainen et al., 2014; Uusitalo et al., 2015;

Moe et al., 2016), b) stakeholder or expert beliefs (Shaw et al., 2016;
Salliou et al., 2017), c) literature reviews (Forio et al., 2015), and d)
mixtures of these (Lehikoinen et al., 2013; Xue et al., 2017).
According to the Bayes’ theorem, the posterior probability of pro-

position A being true given that the state of proposition B is known (Eq.
(1)):

=P A B P B A P A
P B

( | ) ( | ) ( )
( ) (1)

where P A( ) and P A B( | ) are the prior and posterior distributions,
respectively, and the term P B A( | ) denotes the probability density of
data B given the parameters A. The term =P B P B A P A dA( ) ( | ) ( ) is the
marginal (predictive) probability of proposition B. The prior distribu-
tion defines the amount of information about the subject before seeing
the data. If there are no prior information about the subject or a prior is
preferred to have minimal influence on our inference, an uninformative
prior is selected. Then, the data has relatively more effect on the pos-
terior compared to the prior information (Van de Schoot et al., 2014).

2.3. Estimating the uncertainty concerning the reference state

We develop a model to estimate the epistemic uncertainty about
both the reference and the current states of the perch indicator. The
probabilistic model accounts for the stochastic variation and the spatial
and temporal observation errors of the CPUE to infer the underlying
relative perch abundance.
The fish survey data aims at detecting changes in the targeted stock

over time. However, the abundance is not independent between years.
An autoregressive model is a typical method to analyse the change
between years in time-series data for relative abundance and dynamics
by using values from previous time steps as an input to a regression
equation to predict the value at the next time step (Berryman and
Turchin, 2001). In our study, the autoregressive model with log-normal
distributions is used to describe the assumption that the yearly popu-
lation index depends on the previous year’s population index:

+log N log µ( )~ N[ ( ) 0.5 , ]t t t t1
2 2 (2)

= +µ I N(1 )t t (3)

= +log
µ

(1 ) 1t
t

2
2 2 2

(4)

where Nt+1 is the population index of the next year, µt is the ex-
pected population mean at year t, ɸ defines the amount of auto-
correlation in the time-series, t

2is the residual variance of the auto-
regressive process on the log-scale, I is the mean log-population index
over the time-series, i.e. assuming that the population index fluctuates
around the given mean, and ν is the marginal standard deviation, i.e.
the standard deviation of the population index over the time-series.
Table 1 shows all the prior distributions used in the model.
Count data, which is common in ecological monitoring, is prone to

overdispersion. When it comes to the process of collecting fish mon-
itoring data, overdispersion can be caused by schooling behaviour,
sampling error and environmental variability (Lemos and Gomes, 2004;
Linløkken and Haugen, 2006; Lindén and Mäntyniemi, 2011; Pagel
et al., 2014; Zipkin et al., 2014). Overdispersion means that the var-
iance in the data is higher than is predicted by a reference statistical
model (Ver Hoef and Boveng, 2007). Perch might show aggregative
behaviour and schooling (Thorpe, 1977), the size of the school de-
pending on the foraging strategies, habitat complexity and the size of
the individuals (Eklöv, 1997). As a result of schooling behaviour the
fish are not caught independently from each other. A passive mon-
itoring gear might hence rather catch or miss entire schools, which
leads to overdispersion of observed counts compared to dispersion ex-
pected under independent behaviour.
Negative binomial distribution is often used when count data is

Fig. 2. Map of the Forsmark monitoring area in the southern part of the
Bothnian Sea on the Swedish coast. Triangles denote the eight sampling sta-
tions.
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assumed to show clustering of counts (Lindén and Mäntyniemi, 2011;
Ver Hoef and Boveng, 2007), applied also here to describe the process
of catching perch at each sampling night (Fig. 3; see e.g. Lindén and
Mäntyniemi, 2011):

X NB~
1

, 1
t station night

t station night
, ,

, ,

(5)

where Xt station night, , denotes observed counts within a station and
fishing nights in year t, t station night, , denotes expected number of in-
dividuals caught within the station and fishing nights in year t, and ω
denotes the mean size of schools.
Variability of the total catch of the fish survey arise from several

factors. Expected catch ( t station night, , ) is assumed to depend on a latent
population index (Nt) as well as on station ( station t, ) - and night effects
( nightn) through a log-linear model:

= + +Nlog( )t station night t station t nightn, , , (6)

Hierarchical model structure for the spatial variation between the
stations is defined as

µ N~ (0, )S S
2 (7)

where µS isspatial effect of each station and S
2 describes variation

between stations. Temporal variation within each station is modelled
using similar structure:

N µ~ ( , )station t S T,
2 (8)

where station t, defines annual effect (difference in catch of the fish
survey) within each station and T

2 represents variance over years at
each station. In our example, the stations are distributed around the
monitoring area (Forsmark) and therefore each of the stations are
treated as independent. However, these are replicated samples of the
same (Forsmark) population.
Parameter nightndescribes the effect that can be used to account for

any systematic variation in catch of the fish survey between the con-
secutive fishing days (three nights in a row). As the fishing is done in
consecutive days, the parameter nightncan be used to detect if the
amount of caught fish is systematically highest or lowest during a
certain night.
The hierarchical model structure is presented in Fig. 3. The pos-

terior distributions of model parameters were approximated using
Markov Chain Monte Carlo (MCMC) sampling with the JAGS -software
version 4.3.0 (Plummer 2003). We ran the MCMC simulations for 2 000
000 iterations in three chains using thinning of 1000 and dropped the
first 1 000 000 iterations as a burn-in block, thus leaving 1000 samples
in the analysis. Convergence was assessed by visual inspection of the
chains. The model code for estimating the variance in population index
inferred in scientific survey data is provided as part of the SI.

2.4. Estimating the uncertainty related to the boundary value

We apply the computed posterior distributions of population indices
for estimating the uncertainty related to the boundary value. The key
idea here is to follow the logic of the BSAP and MSFD assessments
(HELCOM, 2018a; 2018c) with the twist that instead of using pooled
CPUE observations in the evaluation, we use the computed posterior
distributions of population indices (Table 2). The posterior distributions
of population indices (Nt) represent the relative variation of population
abundance, since the observation process variance has been filtered out
by the hierarchical model. We provide the model code for the prob-
abilistic status evaluation in the SI.
Fig. 4 shows the main steps of the proposed probabilistic status

evaluation approach. Comparison between the calculated GES
boundary, Y ,B q, and the median value of the assessment period, YA , is
done within each MCMC simulation at a time (Fig. 4A) and not at the
end of all the MCMC simulations to avoid the correlation between the
baseline (reference) period and the assessment period to influence on
the result. Fig. 4B illustrates how probability distribution P(GES
boundary) for the GES boundary (of 50th percentile) is produced by
computing the distribution (Fig. 4A) repeatedly by X MCMC simula-
tions. Probability distribution for the GES boundary shows the level of

Table 1
Model parameters and their prior distributions. Beta = beta-distribution; N = normal distribution; Unif = uniform distribution.

Abbreviations Explanation Prior distribution

An autoregressive model ɸ The autocorrelation parameter Beta~ (2, 2)
I The mean log-population index over the time-series

log I N
log
log( )~

(60),
(2)

ν The marginal standard deviation Unif~ (0, 200)
Overdispersion ω The mean size of schools N truncated~ (5, 100), [1.01, ]
The spatial variation between the stations µS The average station effect µ N~ (0, )S S

2

S
2 Variance of station effects between stations Unif~ (0, 2)S

2

T
2 The variance over years within each station Unif~ (0, 2)T

2

Night effect nightn Effect of the fishing night on expected catch =night1 0 N~ (0, 1)night2 N~ (0, 1)night3

Fig. 3. Structure of the Bayesian Belief Network describing conditional re-
lationships between data (rectangle) and parameters (ovals) at different levels.
Xt station night, , (the observed counts at year t), t station night, , (the expected number of
individuals caught per station and night in a year t), Nt (the population index at
a year t), ω (the size of the school), nightn (the effect of fishing night), station t,

(the spatial variation between the stations), µS (the average station related ef-
fect), T

2 (the variance over years within each station), S
2the (variance of station

effects between stations).
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knowledge concerning the reference conditions. Final step of the ap-
proach is to estimate the probability distribution P(GES) indicating the
uncertainty associated with the final classification result (Fig. 4C).
Fig. 4C presents also how the safety margin operates behind the man-
ager’s final judgement, setting the required level of certainty to judge
the status as GES. For instance, when the GES boundary at 50th is used
with the safety margin set to 0.75 (Fig. 4C), the probability of the status
being GES is below the limit, which means that the system should not
be evaluated to reach GES.

3. Results

3.1. Uncertainty about the reference state

Fig. 5 shows the estimated relative variation in the population
abundance (i.e. the posterior distributions for the population index) of
perch in the Forsmark area between 1987 and 2016, based on the
survey fishing data. Medians of the posterior distributions follow a si-
milar pattern to the raw CPUE data (Fig. 5). The medians exhibit a
slightly lower interannual variation compared to the raw CPUE data
because the observation error has been filtered out. Fig. 5 also reveals
evident year-to-year variation in the population indices (Nt).
Fig. 6 shows the observation error related to the spatial variation

between the stations. The station effect of each sampling stations in the
Forsmark monitoring area varies slightly between years. Fig. 7 a shows
the observation error related to the night effect showing the systematic
variation in catch of the fish survey between the consecutive fishing
days. The estimated size of the perch school is shown in the Fig. 7 b.

3.2. Uncertainty related to the boundary value

As each resampling (n = 1000) is calculated using a random MCMC
draw from the posterior distributions of the population indices, the
population indices of both the baseline and assessment periods vary
between MCMC simulations (Fig. 8 and 9a-c).
Fig. 9 illustrates the probability distribution of the GES boundary

computed from the MCMC simulations. Each MCMC simulation pro-
duces a different GES boundary, YB q, (Fig. 9), which then yields a pos-
terior probability distribution for the GES boundaries atYB,0.05 (Fig. 10a)
and at YB,0.5 (Fig. 10b) when all MCMC simulations are combined.
The probabilistic status evaluation result in the probability that the

evaluation period median is within the defined GES boundaries, i.e. the
proportion of MCMC simulations in which the median value of the
assessment period reached the GES boundary computed based on the
baseline period of the same simulation. Thus, the overall probabilistic
status evaluation in the Forsmark monitoring area indicates that when
the GES boundary is set at YB,0.05, the probability to reach GES, i.e. P
(GES), is 1, suggesting that GES is reached in all simulations (Fig. 11a).
Whereas when the GES boundary is set at Y ,B,0.5 the P(GES) is 0.96, thus
4% of the MCMC simulations indicating that GES is not reached
(Fig. 11b). Fig. 9c and f illustrate one MCMC simulation where the
median of the assessment period, YA is below the calculated YB,0.5.

4. Discussion

We have presented a novel probabilistic approach to quantify the
uncertainty associated with the boundary value between good (GES)
and poor environmental (Sub-GES) state of an ecological indicator.
Bayesian inference was applied to estimate epistemic uncertainty

Table 2
Steps of the proposed probabilistic status evaluation approach and the specific model settings used in this example.

Proposed approach Model settings for the perch example

Step 1 Define whether the predefined baseline period reflects GES or Sub-GES conditions. In
data-poor cases, this may be based on expert elicitation.

The baseline period is selected from the years 1998 to 2010 and according to
HELCOM (2018c) it is defined to reflect good status.

Step 2 Determine the boundary value(s) defining the target state (GES). This is calculated at
the qth percentile of resampled population indices (Nt) used to define the baseline
period, YB to produce the GES boundary atYB q, . The selected qth percentile depends
on whether the baseline period reflects GES or Sub-GES conditions.

In the first demonstration, the 5th percentile of resampled distribution of
medians YB is used as the baseline period, and assessed to reflect GES conditions
(HELCOM, 2018C). This GES boundary is represented asYB,0.05.
In the second demonstration, the approach is also presented for the 50th
percentile of resampled distribution of medians, YB for comparison to illustrate
the significance of the percentile choice. This GES boundary is represented as
YB,0.5.

Step 3 Each MCMC simulation is a random draw from the posterior distributions of
population indices and represents a hypothesis about the relative variation of the
populations.
For each MCMC simulation at a time, the population indices from the baseline period,
YB are used. From each of theseYB, the random samples are picked by using the
resampling with replacement. The number of samples should equal the number of
years used to determine the assessment period (e.g. 6 years). After each computed
random sample, the median value is calculated. Resampling is repeated multiple
times (preferably n > 1000) to create the resampled distribution of medians, YB.
Then from this YB, the GES boundary, Y ,B q, is calculated.

As the assessment period is selected from the years 2011 to 2016, the number of
samples is six.
The resampling with replacement is repeated 1000 times for each of the MCMC
simulations.

Step 4 Compare the calculated GES boundary, Y ,B q, to the median value of the assessment
period, YA , to evaluate whether YA is above or below the GES boundary (Fig. 4A).
Each of the repeated status evaluation produces either 1 or 0, depending whether the

<Y YB q A, (reflecting GES) or >Y YB q A, (reflecting Sub-GES), respectively.
Note: The steps 2 to 4 mostly correspond the currently used status evaluation for the
indicator ‘Abundance of key coastal fish species’ (HELCOM, 2018c). The only
difference is that instead of using the raw CPUE data, the proposed probabilistic
status evaluation use the population indices taken from the posterior distributions by
MCMC method.

Step 5 The steps 2 to 4 are repeated for each of the MCMC simulations (e.g. 1000). After
repeating this for all the MCMC simulations, the probability distribution for the GES
boundary (Fig. 4B) is produced and the consequent probabilistic status evaluation
(Fig. 4C)created. The probability of reaching GES is estimated by comparing the
number of MCMC simulations, where GES was reached to total number of MCMC
simulations.

The steps are repeated for the total 1000 MCMC simulations.
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arising from sampling variation, concerning the reference conditions of
a coastal fish species abundance. Explicit consideration of uncertainty
affects our confidence in the indicator’s target state, determined by the
GES – Sub-GES -boundary value resulting in a probabilistic classifica-
tion (i.e. status assessment result). In this chapter, we discuss the results
of the presented case study, the general applicability of the approach, as

well as its potential implications to environmental management.

4.1. Case study

The results of our case study support the notion that good en-
vironmental status (GES) of the perch abundance indicator is attained

Fig. 4. Illustration of the main steps of the probabilistic status evaluation (for demonstrative purposes only, not based on any data from the study). (A) depicts the
GES boundaries at 5th and 50th to be compared with the median of the assessment period to inform whether the GES is achieved or not. (B) illustrates the probability
distribution P(GES boundary) for the GES boundary (of 50th percentile). (C) demonstrates the resulting probability distribution P(GES) quantifying the uncertainty
associated with the final classification result and how the safety margin operates behind the manager’s final judgement.

Fig. 5. Estimated relative time-series of medians of
the posterior distributions (grey line with the grey
dots) with 95% posterior credible interval (shaded
area) of the population index compared to the raw
catch per unit effort (CPUE, yearly average) data
(black squares) in the Forsmark area between 1987
and 2016 (https://www.slu.se/KUL).
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in the Forsmark area, with a minor risk of misclassification. However,
this result relies on the predefined assumption of the baseline period
representing a GES, which is uncertain in itself. This uncertainty is out
of the scope of this study, but should still be acknowledged. In this
study, the estimated posterior probability distributions of population
indices denote the relative variation of population abundance, as the
observation process variance has been filtered out by the Bayesian
hierarchical model structure. We assumed spatial and temporal varia-
tion within and between the fishing stations in the Forsmark area. In the
hierarchical model structure, the stations were treated as independent
of each other, but still able to exchange information. For instance,
considering the spatial effect of each station, we may detect whether
the location of a certain fishing station has higher or lower catches on
average, and thus acknowledge the spatial variation as a source of
uncertainty. The suggested Bayesian hierarchical model structure be-
comes useful here as our model allows to build dependence between the
interrelated parameters on multiple levels (Gelman et al., 2013; Pagel
et al., 2014). If the available data is discontinuous or has random
missing values, the hierarchical model structure allows the information

to flow between parameters, updating information poor parameters
(Punt et al., 2011).
In general, models for discrete count data often estimate abundance

by assuming random spatial distribution of the individuals as well as
random catch processes (Trenkel and Skaug, 2005). The Poisson process
is commonly used to model stochastic variation around the model ex-
pectation (Ver Hoef and Boveng, 2007). For a Poisson distribution, the
variance is equal to the mean, which rarely is the case in ecological
count data (Lindén and Mäntyniemi, 2011). In case of fish species, an
aggregated distribution is more typical due to schooling behaviour,
environmental stochasticity, habitat complexity, and sampling varia-
bility (Richards, 2008; Lindén and Mäntyniemi, 2011; Dorazio et al.,
2013). Negative binomial distribution was therefore used in our model
to account the observation error related to overdispersion in the esti-
mated population indices. As stated earlier in this paper, the type of
overdispersion in ecological data can arise from multiple factors, and
the presented modelling approach is adaptable to include different
types of mean–variance relationships described by the negative bino-
mial distribution (as presented in Lindén and Mäntyniemi, 2011).

Fig. 6. Illustration of the spatial variation between the stations in year 1 (a), 10 (b), 25 (c), and 30 (d).

Fig. 7. Model outputs for night effect (a) and the size of the school (b).
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After considering the different sources of uncertainty, our model
does not level out the substantial variation of the catch data between
some years. Although the natural population is known to fluctuate over
time, it is unlikely that the true variation of the perch population would
show variance of this magnitude between years, such as the population
index doubling or being halved from one year to the next, especially as
the data includes only adult individuals (> 14 cm) that likely have
lower natural mortality rate than younger individuals. The year-to-year
fluctuations could be caused by the fish migrating between areas or the
varied fishing survey conditions (e.g. water temperature at fishing is an
obvious factor that can affect the catchability of fish in passive gears).
Perch is known to be local and rarely move>5 km (Saulamo &
Neuman, 2002), thus the latter explanation may be more plausible in
our case. One way to handle substantial variation in the indicator va-
lues in time series data could be to use a breakpoint analysis (Probst and
Stelzenmüller, 2015; Östman et al., 2020). In the current model, the
autocorrelation parameter of the autoregressive model controls how
much the population is allowed to fluctuate between the years. In future
studies, it is possible to provide more realistic range for the changes in
the annual population abundance indices by providing more in-
formative prior for the autocorrelation parameter, for instance by using
information from simulation-based population dynamics model or
other studies with same or similar species.

4.2. General applicability of the approach for divergent types of ecological
indicators

As temporal and spatial uncertainty of indicator-based status as-
sessments such as the WFD, BSAP and MSFD vary across spatial as-
sessment units, in the accuracy of the assessment units is unequal (Borja
& Elliott, 2013; Carstensen, 2014; Fleming-Lehtinen et al., 2015). The
uneven distributions of monitoring sites across European Seas (Patrício
et al., 2016) may lead to a lack of proper data for the assessments in
certain areas, causing difficulties to use the agreed indicators and to
compare the assessment results of the above-mentioned assessment
protocols. Additionally, confidence of a status evaluation can be lower
in those locations where available data series are short. Bayesian ap-
proach gives valid uncertainty estimates for the parameters of interest
given the available data (Hox et al., 2012, McNeish, 2016). As the focus
is in analysing the level of prevailing knowledge, the inference is co-
herent regardless of the amount of data or missing values in it. This
makes the approach applicable also in areas where systematic mon-
itoring and time-series data are relatively short or discontinuous.
Many of current status assessment protocols rely heavily on

statistical thinking, and it is suggested that for this reason the class
boundaries may not correspond to biologically meaningful changes in
ecosystems (Birk et al., 2012). The presented approach can add the
prevailing ecological understanding to the assessment process via the
hierarchical model structure, such as the acknowledgement of
schooling behaviour explaining part of the variance in the perch
monitoring data in our case study. The general approach of assessing
spatial and temporal sources of uncertainty as we suggest is applicable
for all kinds of indicators that describe the abundance, distribution or
trend of species, inferred from survey-based count data. It could be
possible to make similar models for commercial fishery data as well, but
the model should be modified to take into account the fishers’ tendency
to concentrate at the best fishing locations.
Applying this approach to other types of ecological indicators could

be beneficial too, as the systemic understanding about ecological pro-
cesses giving rise to the data is often good. For instance, sea ice
thickness is known to affect the breeding success of Baltic grey seal
(Halichoerus grypus) (Jüssi et al., 2008) whereas salinity is known to be
one of the main environmental factors influencing the macroalgal
(Fucus vesiculosus) growth and survival (Barboza et al., 2019;
Rothäusler et al., 2019). Using the prevailing ecological understanding
in the data analysis makes the interpretation of data more informative,
potentially improving the quality of the status assessments. However,
applying this approach to different types of indicators and units of
measurement (e.g. whether using areal density, spatial coverage or
biomass estimates as the measures of abundance) requires modifying
the hierarchical modelling structure and the type of distributions used
for each parameter. The process could be generalised for the similar
types of indicators and measures, though.

4.3. Management under uncertainty

As demonstrated, it is not straightforward to define the target state
and set the corresponding boundary value for an ecological indicator.
Acknowledgement of the uncertainty behind the classification result
might lead to more transparent and better-informed decision-making
processes. However, the probabilistic approach requires the decision-
makers to make an explicit statement about the acceptable level of risk
for the potential misclassification – in other words, them being trans-
parent about their risk attitude (Fig. 4C). The risk attitude is a crucial –
but often hidden - factor in the decision-making process, affecting the
decision-maker’s definition of the need for management actions (Pratt,
1964; Burgman, 2005; Keith, 2009; Burgman et al., 2018).
In practice, with the probabilistic outcome, one have to make a

Fig. 8. For the clarity of illustration, only the first 50 MCMC simulations out of total 1000 MCMC simulations for both the baseline (light blue lines) and assessment
(dark blue lines) periods is shown here.
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Fig. 9. Illustration of the GES boundary evaluation for a selected suite of MCMC simulations. The posterior distributions of the population indices during the baseline
period YB (light blue) and the assessment period (dark blue) for three MCMC simulations (a-c). The median of the assessment period, YA, compared to the calculated
YB,0.05 (d,e) and YB,0.5 (f) from the resampled distributions of medians, YB.

Fig. 10. The probability distribution for the GES boundary (a) at the 5th percentile, YB,0.05 and (b) at the 50th percentile, YB,0.5 after all MCMC simulations.
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decision on the acceptable safety margin for the risk of misclassification
of the indicator’s status (and further on – after integration of the
probabilistic status classification results for several indicators from the
same area - a spatial assessment unit). For example, if the safety margin
is set to 0.75, GES should be achieved with the minimum probability of
0.75, as demonstrated in Fig. 4C. In the presented case study analysis of
Forsmark, the probability of the perch indicator representing GES was
0.96 (Fig. 11b), thus with the safety margin of 0.75 good status is
achieved. Similar probabilistic safety margins have been adopted e.g. in
the management of the Baltic salmon (Salmo salar) stocks (Kuikka et al.,
2014; ICES, 2019).
Notably, another type of safety margin is defined in the beginning of

the status evaluation process, namely when the analysts make the
statement to use either 5th or 98th percentile of the baseline period,
depending on whether the baseline period is thought to represent the
GES or the Sub-GES, respectively. Applying higher percentiles would
mean higher boundary levels and thus impact the final classification.
Often, the pristine state of the ecosystem is unknown, may not even be
desirable. The extent and time range of the data used to establish the
boundary value is also typically limited, and case-specific amount of
uncertainty is thus inevitably associated with the status classification.
One option to tackle this in the probabilistic approach is that instead of
presenting the baseline status as known, the analysts would give an
estimate about the amount of uncertainty related to it. Following this,
the corresponding percentiles (5th and 98th) could be weighted ac-
cordingly in the computation process. This way the uncertainty related
to the baseline status would be reflected in the final probabilistic status
classification result.
To conclude, it is important to pay attention to how we commu-

nicate uncertainty in environmental management processes.
Transparent probabilistic representation of divergent assessment out-
puts may even lead to easier decision-making processes with fewer
conflicts between decision-makers and stakeholders (Ramos et al.,
2013; Laurila-Pant et al., 2019). Showing the uncertainty related to the
assessment results can also make decision-makers select actions that are
less risky, in turn impacting their risk attitudes (Ramos et al., 2013).
Importantly, the lack of certainty should not be taken as an argument
for inaction, but instead as a call for more information (De Santo,
2010). Even though the remediation would be costly, neglecting it due
to uncertain result can become much more expensive (Nygård et al.
2016). More active societal discussion on the acceptable risk for this
kind of unwanted consequences is needed.

5. Conclusion

This study presents an approach to quantify the uncertainty related
to the boundary value between desirable (GES) and non-desirable (Sub-
GES) states of ecological indicators and consequently to the uncertainty
associated with the status classification. The uncertainty related to the

boundary value definition has not been addressed in earlier studies.
Instead of a fixed boundary value with no associated uncertainty, we
use Bayesian inference to estimate the epistemic uncertainty regarding
the hidden state of an indicator during the reference period, arising
from environmental and sampling variation. Defective treatment of
uncertainty may lead to erroneous status classification and further on to
inadequate management measures or non-optimal prioritisation of ac-
tions and investments. The proposed approach uses ecological knowl-
edge and available data to quantify the level of knowledge concerning
the reference conditions and to produce posterior probability distribu-
tion for the boundary value. The final probabilistic status classification
requires decision-makers to make a statement about the acceptable
safety margin for the risk of misclassification of the indicator’s status.
We suggest the acknowledgement and transparent presentation of the
uncertainty behind status classification results lead to better-informed
decision-making processes.
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